
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2021 1

Using Footsteps to Estimate Changes in the Desired
Gait Speed of an Exoskeleton User

Roopak M. Karulkar1, Patrick M. Wensing1

Abstract—This letter outlines an estimation framework to de-
tect changes in the intended gait speed of an assistive exoskeleton
user during walking. A twice-per-step estimation strategy, termed
a Buttressed Kalman Filter, is presented to leverage changes
in foot placement to infer changes in desired speed. The first
stage of the estimator applies a Bayesian update to the center of
mass state at midstance before it is passed to a Kalman filter in
the second stage. The Bayesian update relies on the comparison
between a predicted step length computed as a function of the
intended velocity and the measured step length, the difference
of which provides insight into user intent. This framework was
tested with sensor data acquired from walking trials in an Ekso
GT exoskeleton for users with and without incomplete Spinal
Cord Injuries (iSCIs) from the middle to lower spine. The trials
consisted of users changing their gait speed upon command. The
presented framework was able to anticipate these desired changes
before users physically changed their speed. It was also found
that using measurements of the root mean square (RMS) current
of the hip motors increased the effectiveness of the estimator in
predicting intent changes for individuals with iSCIs.

Index Terms—Exoskeletons, Intent Recognition, Physical
Human-Robot Interaction

I. INTRODUCTION

A. Motivation and Previous Work

EACH year there are 12,000 new spinal cord injury
(SCI) cases in the US, in addition to the quarter of

a million existing ones [1]. Traditionally, gait rehabilitation
following SCI involves physiotherapists manually moving the
affected person’s legs through prescribed trajectories toward
establishing new neural pathways to relearn walking. However,
this process requires multiple physiotherapists per treatment
session making it labor intensive and expensive. Additionally,
since patients’ legs are moved manually, the physiotherapists
may suffer from exhaustion and may be unable to track the
prescribed trajectories accurately.

Robotic exoskeletons, such as the Ekso GT [2], ReWalk
Personal System [3], and Indego [4], have been cleared by the
FDA for use as tools for gait rehabilitation due to their ability
to repeatedly and accurately track the desired joint trajectories
necessary for gait rehabilitation. This increased repeatability
and accuracy may accelerate rehabilitation [5]. The use of
exoskeletons also reduces the number of therapists per patient
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and the amount of work required from them. Exoskeleton
usage has the potential to increase the patient’s level of
autonomy, and this increased level of autonomy requires fluent
Human-Robot Interaction (HRI) in order to maintain safety
and efficacy.

Fluency in HRI depends heavily on the ease with which
the user can convey their intent to the robot to accomplish
their desired goal. One indication of high fluency in HRI is
the robot’s ability to provide timely assistance to the user [6],
and accurate assistance timing requires the robot to anticipate
the user’s actions [7]. Therefore, accurate intent detection is a
key requirement in achieving the necessary fluency. Currently
available exoskeletons rely on buttons and joysticks for the
user to explicitly convey their intent. However, the goal of
this work is to present an anticipative framework that detects
intent changes more intuitively and without added interfaces.

Intent detection can be performed in multiple ways by
leveraging HRI. A straightforward approach is to infer intent
by comparing measurements of user activity to a discrete
set of predefined actions stored in a database [8]. However,
since generating comprehensive activity databases may be
prohibitive, another approach is to treat intent as a continuous
variable. Corteville et al. [9] studied point-to-point reaching
movements and assumed the human to be in control of the
point of interaction between the human and robot. They used
the onboard position sensors to fit the user’s motion to a
bell-shaped velocity profile to predict the desired speed of
the reaching motion. Similarly, user intent can be inferred
by comparing the user’s force contribution to the desired
motion [10]. Alternatively, intent can be inferred based on how
the user makes the robot interact with the environment. For
example, in Brescanini et al. [11], Inertial Measurement Units
(IMUs) were mounted to crutches to estimate their orientation.
The estimated placement of crutch tips was then used to infer
user intent variables such as stride length, direction, and stair
ascent/descent.

To pose intent as a continuous variable in an estimator,
intent evolution needs to first be characterized; this can
be achieved using model-based or learning-based strategies.
Model-based strategies use the dynamics of physics-based
models and sensor feedback to infer user intent. Previous
work on model-based user intention detection used Ground
Reaction Force (GRF) patterns observed during walking to
assist individuals with paraplegia while walking using a lower-
extremity exoskeleton [12]. Work has also been done to infer
intent using simplified models of locomotion called template
models. These models can approximate key features of human
gait using parameters such as leg length and weight, and can
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Fig. 1. Change in intended velocity may be inferred from change in step
length

therefore be adapted to accommodate a wider range of users
with varying physiology.

One example of a template model is the Bipedal Spring-
Loaded Inverted Pendulum (B-SLIP) model [13], [14] that
exhibits center of mass (CoM) trajectories similar to those
of a person running or walking. This model exhibits hybrid
dynamics to describe the various phases of human gait. As part
of previous work, we developed a framework that used Inter-
acting Multi-Model (IMM) estimation to infer an exoskeleton
user’s gait phase and velocity by comparing predicted B-SLIP
CoM trajectories to sensor measurements [15]. However, the
average gait speed for people with an SCI ranges from 0.2
m/s - 0.6 m/s [16] and it is difficult to find B-SLIP gaits at
these velocities due to low passive stability [17]. Additionally,
the inter- and intra-subject gait variability seen in human
walking is increased due to spasticity following SCI, which
increases the difficulty of intent estimation with these and
other approaches.

In contrast to model-based strategies, learning-based strate-
gies use gait data to form relationships between the observed
gait and sensor measurements. Lee et al. used a Convolutional
Neural Network (CNN) to predictively estimate user intent
in real time with low error rates [18]. The CNN, which
was trained using walking data from healthy individuals, uses
measurements from various sensors such as electromyogra-
phy (EMG), IMUs, and electrogoniometers to classify intent
between level walking, ramp and stair ascent/descent. Gait
patterns in individuals with iSCIs are dependent on the severity
of their injury and the interaction with the robot. Therefore,
data-driven approaches may require a large amount of training
data to accommodate all the variability.

Since learning-based methods may require prohibitive
amounts of data to achieve acceptable accuracy, this also
makes it difficult to design controllers and estimators that
accommodate multiple users. The scarcity of available training
data may require the use of methods that have low data
reliance. Thatte et al. developed an estimator that uses a
Gaussian Process (GP) based Extended Kalman Filter [19]
to estimate the user’s gait phase during stance to control a
prosthetic leg. GPs are one class of models that are well suited

for use in data-scarce applications. Needing fewer training
datasets may also allow designers to train for a wider variety
of use scenarios such as varied assistive devices, terrains, and
injury levels.

Learning-based strategies can be used to capture charac-
teristics of gait that are difficult to model such as step-to-
step variability, the presence of ambulatory devices, and the
coupled dynamics of the human and the robot. The hybrid
nature of legged locomotion dynamics alone increases the dif-
ficulty of control and state estimation for lower-limb assistive
devices. Kalinowska et al. used a data-driven approximation
of the SLIP dynamics to identify gait phases such as stance
or swing, and events such as heel strike or toe-off [20]. Other
methods that use the sensors onboard the exoskeleton have
shown how intent may be inferred. Gambon et al. presented
an algorithm [21] to identify instances where an exoskeleton
user wanted to walk faster or slower than their nominal speed
based on the Mahalanobis distance of the sensor measurements
from the nominal trajectory.

The work presented in this letter outlines a method of
intent recognition that relies on a simple model to exploit the
relationship between velocity change and step length change,
as illustrated in Fig. 1, to infer the intended gait speed of an
exoskeleton user. Estimating the gait speed of an individual
may increase the possibility for finer control of the gait and
also limit the need to train for multiple discrete scenarios.

B. Contribution
Anticipative intent detection is a crucial requirement for

the robot to fluently interact with and assist the user. The
main contribution of this work is a new Bayesian estimation
framework that relies on a simple model to anticipate a
user’s intent to change speeds before it happens physically.
Since ground contacts greatly influence the stability of legged
locomotion, it is hypothesized that user intent will be reflected
in the contacts chosen. As such, the work presented in this
letter explores exploiting changes in foot placement to infer
the intended gait speed changes of an exoskeleton user.

The footstep model emulates the trends in footstep versus
velocity in uninjured individuals as an indicator of intent
change. An additional model for RMS hip motor currents was
used for individuals with iSCIs to capture the users’ interac-
tion with the exoskeleton and improve estimation accuracy.
This framework was evaluated on an experimental dataset
containing speed change trials of subjects with and without
iSCIs walking in an Ekso GT lower-limb exoskeleton. The
framework is able to estimate whether the user wants to speed
up or slow down, and does so before the user physically
changes speed.

C. Overview
The remainder of the paper is organized as follows. Sec-

tion II details the two-stage estimation framework used to
incorporate information gained from foot placement into the
intent estimation problem. The performance of this framework
was evaluated on experimental data of exoskeleton walking
trials and is discussed in Section III. Concluding remarks and
future work are outlined in Section IV.
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Fig. 2. Gait events in a step and estimation points

Fig. 3. Twice-per-step strategy to estimate user intent

II. INTENT DETECTION

A. Estimation Framework

Legged locomotion is governed by ground contact, which
suggests that features regarding contact will carry a great
deal of information regarding user intent. Modulating foot
placement while walking is an effective control mechanism to
maintain stability [22] and step-to-step gait variability may be
stabilizing responses to internal muscle noise [23]. Therefore,
it has been shown that velocity changes at midstance (MS)
influence foot placement at touchdown (TD) [24].

In order to detect user intent, it must first be quantified.
Quantification of intent is a design choice, and given that the
primary objective of the lower-extremity exoskeletons herein
is gait rehabilitation, the intended gait velocity was deemed
an appropriate quantity to represent intent. The state of the
exoskeleton is represented in a vector

x = [p>CoM ,v>CoM ]>

that contains the position and velocity of the exoskeleton user’s
CoM relative to the stance foot, reported with the units m
and m/s respectively. To capture intent, the state was extended
to include the desired gait velocity vdx in an augmented state
vector z = [x>, vdx]>. The gait velocity vdx only represents
the velocity in the sagittal plane. Velocity in the transverse
plane (e.g., while turning) is neglected, as the exoskeleton
restricts adduction/abduction of the legs. Overall, the state
augmentation approach allows using estimation tools such as
the Kalman filter directly on the intent.

It was assumed that intent changes made at the first MS
are reflected in the placement of the foot at TD and then
maintained as constant until the subsequent MS. As illustrated
in Fig. 2, a step starts at MS, the footstep is finalized at
TD, and the step is completed at the next MS. Therefore, a
twice-per-step estimation strategy was used to estimate intent
at TD and MS as shown in Fig. 3, where the unit delay
represents the passing of estimates as initial conditions for
the next estimation cycle.

Fig. 4. The effect of velocity change on step length. Speed-up and slow-down
increase and decrease the step length respectively.

There is a correlation between step length and walking
velocity that can be exploited to infer changes in intended
gait speed. People walking at lower velocities exhibit shorter
step lengths, and an increase in velocity results in an increase
in step length [17], as illustrated in Fig. 4. Such a velocity-
step-length relationship can also be viewed as valid assuming
that the walk ratio is roughly constant [25].

The walk ratio, defined as the ratio of the step length to
cadence, is fairly invariant with respect to gait speeds for
community ambulation, i.e., gait velocities greater than 0.8
m/s, despite age and terrain. It is affected when attention
is divided between motor and cognitive tasks i.e., dual-task
walking [26]. The walk ratio increases as speed decreases
below community ambulation velocities [27] and is dependent
on the nature and severity of injuries [28] during unassisted
walking. In rehabilitation, the variability in the walk ratio may
be reduced due to the stability provided by the exoskeleton
structure and consistent timing of the exoskeleton assistance
[29]. While the effects of exoskeleton-assisted walking on
the walk ratio remain open, this analysis suggests that it is
reasonable to assume a constant walk ratio for the work herein.

Since intent changes were primarily hypothesized to be
inferred using the step length change information, a staged
estimation scheme was considered that updates the intent state
at the MS prior to the touchdown of the leading foot and then
corrects the other state estimates at the terminal MS. A simple
data-driven model of step length was used as a function of the
velocity vx at the MS prior to TD, desired velocity vdx, and
leg length lleg:

lstep = [vx (vdx − vx) lleg]κ, (1)

where κ is a vector containing regression coefficients and the
model output is a scalar value in meters. This model takes
into consideration the nominal step length as a function of leg
length, the current velocity, and desired velocity.

The step length model may be used as a measurement
model in a Kalman filter framework to relate the intended
gait speed to the measured step length. The estimator operates
on the the state ẑ and its covariance P. In the following
equations, the superscripts − and + denote pre-/post-update
states respectively, the subscripts M and T denote MS and
TD respectively, and the bar denotes the update location. For
instance, ẑ+M |T represents the state of the CoM at MS updated
at TD.

Since the footstep model is data-driven and may have
inaccuracies, a process noise covariance QT was added to
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the state estimate covariance P−M |M . Additionally, the esti-
mated measurement covariance Σyy was computed using the
Jacobian of the measurement model HT and measurement
covariance RT . The predicted step length from Eq. (1) was
compared to the measured step length ỹT . The state at MS
ẑ−M |M and its covariance were then updated using a Bayesian
update as shown in Eq. (3) and Eq. (4).

ŷT = lstep(v̂x, v̂
d
x, lleg)

HT =
∂ŷT

∂z

∣∣∣∣
ẑ

Σyy = HT

(
P−M |M + QT

)
H>T + RT (2)

ẑ+M |T = ẑ−M |M + P−H>T Σ−1yy (ỹT − ŷT ) (3)

P+
M |T = P−M |M −P−M |MH>T Σ−1yy HTP−M |M (4)

This update to the previous MS state using TD information
then primes ẑ+M |T and P+

M |T to be used with a Kalman
filter. Simple dynamics are used to propagate this state and
covariance to the next MS

ẑ+M |T ← Dẑ+M |T (5)

P+
M |T ← DP+

M |TD> + QM (6)

These simple dynamics change the signs of the lateral position
and velocity of the CoM to emulate the switching of the
stance foot and allow for the application of a standard Kalman
filter from MS to MS. It is assumed that the motion of the
CoM is periodic with respect to the stance foot; however,
since the CoM position is referenced from the stance foot,
which changes step to step, the lateral position and veloc-
ity also change signs. Therefore, the propagation matrix is
D = diag([1,−1, 1, 1,−1, 1, 1]).

The second update takes place at the next MS, with the
stance foot switched. The outputs of Eq. (5) and (6) are
updated using a Kalman update

K = P+
M |TH>M

(
HMP+

M |TH>M + RM

)−1
(7)

ẑ+M |M = ẑ+M |T + K(ỹM −HM ẑ+M |T ) (8)

P+
M |M = (I−KHM )P+

M |T (9)

where the measurement model Jacobian is HM = I6×7 since
the measurements are ỹM = [p̃CoM , ṽCoM ]>.

A conventional Kalman filter formulation applied to this
problem would only take measurements at MS into account.
However, the estimator setup presented in this work varies
from that approach by taking information obtained at TD into
account and updating the prior distribution for the Kalman
filter. As the dynamics-free Bayesian update reinforces the
MS-to-MS Kalman filter, this estimation setup has been termed
as a Buttressed Kalman Filter.

The estimator needs to send an output signal to the ex-
oskeleton to inform its controller of the user’s intent. Since
the representation of user intent was chosen to be the forward
velocity, the change of v̂dx from MS to MS represents the user’s
desire to change gait speed. The estimator uses a simple model
to predict the step length, so it does not emulate the exact
relationship between the velocity at MS and the ensuing step

length. As a result, using the estimated value of the intended
velocity is not a good indicator of intent, as this value may
not match the measured values. However, the change of the
intended velocity from MS to MS ∆vdx is a better candidate for
intent change indication. This quantity represents the expected
“acceleration” from MS to MS so it can be considered to
be a “speed-up” signal when the rate is positive or a “slow-
down” signal when the rate is negative. Inferring intent as
a “speed-up” or “slow-down” signal is consistent with the
fundamentally abstract nature of intent as opposed to the
concrete velocity value given by the estimator. This ability
to capture continuous adjustments may result in finer control
of the exoskeleton compared to discrete activity classification
that is more commonly used.

B. Utilizing Exoskeleton Data
The estimation framework outlined above was tested with

data acquired during walking trials in an Ekso GT exoskeleton
developed by Ekso Bionics. Sensors onboard the exoskeleton
provide hip pitch, knee pitch, and torso roll angles, and are
fused to estimate the height and fore-aft position of the hip
in a global frame. These readings were used to approximate
the location of the subject’s CoM with respect to the stance
foot. Since the position of the CoM is considered relative to the
stance foot, the drift that may be present in the global position
estimate does not affect step-to-step calculations. The subject’s
height, thigh, and shank lengths were recorded and the location
of their CoM was approximated to be at the centroid of the
pelvis. The remaining dimensions such as ankle height and
hip width were computed using anthropometry relationships
defined by Winter [30]. The CoM velocities were computed
with finite-difference approximations.

The two main gait events to be identified for the estimator
were MS and TD. A zero-crossing event between the left
and right hip angles reported by the exoskeleton was used to
detect MS. Force sensor readings from both feet being above a
threshold of 5% of the maximum sensor value was indicative
of touchdown. For healthy individuals walking independently,
the foot touchdown process starts with a heel strike, the
ankle then undergoes plantarflexion and the foot then rests
flat on the ground. Plantarflexion is the motion of the foot
about the ankle when it rotates away from the shank, and
since the exoskeleton has no ankle mobility, the subject has
to touch down with a nearly flat foot. This results in step
lengths that are shorter than those observed in independent
walking. Additionally, the subject walking in the exoskeleton
used an ambulatory device such as a walker or crutches.
Consequently, data from walking trials of subjects using the
Ekso GT [31] was used in the regression for the step length
model shown in Eq. (1). To perform the regression, the velocity
at the subsequent MS was assumed to be the desired velocity.
For example, suppose vk was the forward velocity of the
walker at MS at time k. The regression was set up such that
lstep,k+1 = [vk (vk+1 − vk) lleg]κ, where the subscript x has
been omitted for conciseness, and the desired velocity was
vd = vk+1. This formulation provided insight into the step
length, using future velocity data to provide a proxy for the
intended velocity.
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III. RESULTS & DISCUSSION

A. Walking Trial Data Collection

Trial data was collected as part of a study approved by
the IRB of the University of Notre Dame (Protocol 18-04-
4650) [32]. Both, the exoskeleton users with and without
injuries were highly experienced in the use of the EksoGT.
The EksoGT has 4 motors, 2 revolute hip joints, and 2 revolute
knee joints. All the motion takes place in the sagittal plane,
the X-Z plane in Fig. 1. However, the lateral movement of the
CoM is observed due to the roll angle of the torso relative to
the vertical. The Ekso GT restricts torso roll with respect to the
hips, such that the tilt angle of the pelvis in the frontal plane is
the same as the torso roll. The subjects used the exoskeleton at
a self-selected speed with the assistance of a walker and were
at a steady-state gait before being issued a verbal command to
either speed up or slow down. The trial sequence was pseudo-
random and each subject underwent three speed-up (SU) and
slow-down (SD) trials.

B. Subject without iSCI

The trial shown in this section was that of a subject without
iSCI walking in free mode. In this mode, the exoskeleton
provides constant assistance akin to gravity compensation to
the user. The measurement used at TD was the step length, so
the measurement vector was ỹT = [lstep]. Measurements of
all positions and velocities were available at MS so ỹM =
[pCoM ,vCoM ]>. The process noise covariance Q and the
measurement noise covariance R were given by

QM = diag([1, 1, 1, 1, 1, 1, 10])× 10−4 (10)
RM = diag([104, 104, 104, 105, 1, 1])× 10−10 (11)
QT = 10−4 (12)
RT = 10−5 (13)

where process noise covariances for positions and velocities
are reported with units m2 and m2/s2 respectively.

The regression coefficients for the footstep model were
κ = [0.3325, 0.2635, 0.3757]> for this subject. The step
lengths for an SU trial are shown in Fig. 5. The regressed
model was able to estimate the footstep to within ∼ 5cm
with a RMS error of 2.5cm. Consequently, it will be observed
that footstep changes alone provided sufficient information
to estimate intent changes in this case. The data in Fig. 6
illustrates the estimator performance for this trial. The stem
plot represents the intent of the user as inferred at TD; a
positive value indicates speed-up and a negative value indicates
slow-down anticipated for the subsequent MS. The vertical
line represents the MS closest to the time the speed-change
command was issued and a significant speed change is to be
expected after this step. The estimator accurately estimated
the speed change for the trials i.e., the value of the signal in
the stem plot should be positive for speed-up and negative for
slow-down after the command is issued.

The estimator performance for all trials of this subject are
aggregated in Table. I. The “Command Step” column refers
to the MS when the command was issued and the “Detection
Step” refers to the step during which TD the intent change
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Fig. 5. Performance of the regressed model, Eq. (1), for the uninjured subject
for a speed-up trial
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Fig. 6. Estimator performance for SU and SD trials for an uninjured subject

was detected. Since the user must first process the command
given, an intent detection delay of up to one step was deemed
permissible. All SU and SD trials fit this criteria.

For further analysis, the estimated change in vdx for every
step was compared to the measured change. If the speed
change sign was correctly anticipated, it was considered a
successful trial. The probability of successful intent change
inference for the aggregated trials of the uninjured subject
was 69% with a 95% confidence interval [33] of 59% - 78%.
The estimator has difficulty estimating intent changes when
the velocity change is low, i.e., less than ∼ 0.15 m/s due to
insufficient changes in step lengths. This may be the reason
for a majority of the erroneous estimates.

C. Subject with iSCI

The subject whose trials were used for the following eval-
uation had previously experienced an incomplete SCI from
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TABLE I
ESTIMATOR PERFORMANCE FOR TRIALS WITH AN UNINJURED SUBJECT

Trial Command Step Detection Step
SU - 01 8 8
SU - 02 8 8
SU - 03 8 9
SD - 01 7 7
SD - 02 7 7
SD - 03 7 7

Fig. 7. Performance of the regressed models, Eqs. (1) and (14), for a subject
with iSCI

the middle to the lower spine (T8 to L2). Individuals with
these injuries generally exhibit good upper-body movement,
control and balance but signals to the hips and legs are affected
[34]. For use with such an injury, the exoskeleton was set to
adaptive mode. In this mode, the exoskeleton joints follow
predefined trajectories and correct any deviations from them.
Consequently, intent change is perceived as a deviation from
the preset trajectories and therefore the exoskeleton attempts
to correct the user’s gait.

The nature of the assistance provided in adaptive mode
results in a difference in goals of the user and the robot after
intent change. As a result, the step lengths did not exhibit
significant enough variation or a consistent trend to allow for
intent inference by themselves. The lack of step length varia-
tion is further supported by the regression coefficients for this
subject κ = [0.0818, 0.0551, 0.4045]>. When compared to the
regression coefficients for the model for the uninjured user, the
iSCI model regression coefficients for vk and (vdx − vx) are
smaller by an order of magnitude. This difference in coefficient
magnitude shows there was not enough correlation between
velocity changes and step length.

Figure 7 shows the step lengths for an SU trial; the estimated
step lengths do not follow measurements, and only vary by ∼2
cm throughout the trial, whereas the measurements vary by ∼7
cm. Therefore, it was not possible to rely solely on footstep
data. Thus, the RMS current of the hip motor during the swing
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Fig. 8. Estimator performance comparison before and after including hip
current measurements

phase was added to the measurements obtained at TD, so that
ỹT = [lstep, IRMS ]>. Another regression was performed to
establish a relationship between the intended velocities and
swing current:

IRMS = [vx (vdx − vx)]α, (14)

where α is a vector of the regression coefficients, found as
α = [8.6067, 4.2420]> for this trial.

The process noise covariance Q and the measurement noise
covariance R were then selected as follows.

QM = diag([1, 1, 1, 1, 1, 1, 10])× 10−4 (15)
RM = diag([104, 104, 104, 105, 1, 1])× 10−10 (16)
QT = 10−3 (17)
RT = diag([1, 1])× 10−4 (18)

where noise covariances for positions, velocities, and currents
are reported with units m2, m2/s2, and A2 respectively.

The hip current, in addition to the footstep data, provided
sufficient information to be able to infer the user’s intent
immediately after the speed-change command was issued. The
performance of estimator for one of the SU trials with and
without hip current measurements is illustrated in Fig. 8. When
relying solely on step length measurements, the estimator was
unable to output accurate speed-up/slow-down signals in the
beginning of the trial, and the change in intent to speed up
was detected a step after the command was issued. There
was a small dip of 0.05 m/s in velocity after the speed up
command was issued and this may be because the exoskeleton
assistance in adaptive mode overpowered the user’s motion in
order to maintain the nominal joint trajectory. However, with
the inclusion of hip motor currents, the estimator was able to
correctly identify the change in intent to speed up during the
same step the command was issued and before the user began
physically speeding up. This anticipative performance of the
estimator is shown in Fig. 9 for additional SU and SD trails.
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Fig. 9. Estimator performance for SU and SD trials for a subject with iSCI

Fig. 10. Estimated desired velocity at MS as predicted at TD (v̂dx) compared
to velocity vx over the stride.

The estimated value of v̂dx for one SU trial was compared
to the measured forward velocity over the trial, as illustrated
in Fig. 10. The vertical solid lines denote MS, dashed lines
denote TD, and red stars denote the value of v̂dx, i.e., the
estimate of the user’s intended velocity. Since v̂xd represents
the desired speed of the user, its value at TD was compared to
the measured velocity at the subsequent MS, by which point
the intended velocity should be realized. The values of v̂dx
predicted at TD show strong correlation with the measured
values of vx at the next MS, but are not exact. For the trial
illustrated in Fig. 10, the correlation coefficient of v̂dx at TD
to the measured vx at the next MS was 0.63. By comparison,
the correlation coefficient of v̂x at TD to the measured vx at
the next MS was -0.11. This correlation further bolsters the
hypothesis that incorporating information at touchdown in the
estimator is valuable for anticipating speed changes.

The estimator performance for all trials of this subject is
aggregated in Table II with similar pass/fail criteria as the
trials with the uninjured subject. For trial SD-03, the estimator
detected the speed change after the command but there were
estimator inaccuracies for the subsequent step. There were

TABLE II
ESTIMATOR PERFORMANCE FOR TRIALS WITH A SUBJECT WITH AN ISCI

Trial Command Step Detection Step
SU - 01 8 8
SU - 02 8 8
SU - 03 7 11
SD - 01 8 8
SD - 02 7 7
SD - 03 8 8

fluctuations of ∼0.15 m/s in the forward velocity of the user
after the command was issued. This may be due to the high
gait variability due to spastic disturbances that are common
in individuals with SCIs [35]. It has been observed that it
is more difficult to detect speed-up intent changes in injured
individuals since the intent signal is considerably diminished
compared to slow-down trials [32] due to the user’s reduced
strength.

The aggregate probability of success for walking trials
of the subject with iSCIs was 78% with a 95% confidence
interval of 68% to 86%. All trials except SD-03 had individual
percentages of success of at least 70%. Trial SU-02 had a
probability of success of 92% and SU-01 and SD-01 had a
100% success rate. It is worth noting that the trials with high
success rates were performed when the subject was rested
and SD-03 was the last of multiple back-to-back trials. The
subject’s exhaustion may have diminished their ability to resist
the exoskeleton’s inputs and therefore, made intent estimation
difficult.

IV. CONCLUSION & FUTURE WORK

In conclusion, the intent detection framework based on
a Buttressed Kalman Filter is capable of predicting intent
changes in both able-bodied and non able-bodied exoskeleton
users based on foot placement and leg swing currents. It can be
inferred that the hip currents may be a better indicator of intent
in individuals with iSCIs as their actions to modify their foot
placement may not be completed due to the resistance from the
exoskeleton. So we can argue that attempted foot placement
is the primary mechanism of exhibiting intent change in indi-
viduals with iSCIs, but the human-robot interface causes this
information to show up on hip current rather than kinematic
data.

The accuracy of the estimator can be further increased
by improving the models used to relate velocity changes to
the measured step length and current. These models may
change based on the user and the ambulatory device used in
conjunction with the exoskeleton. The estimator uses simple
dynamics that do not use knowledge of legged locomotion.
These simple dynamics along with the limited data to generate
the footstep model result in the framework only being able to
identify whether the user wants to speed up or slow down and
not the target velocity the user wishes to reach. The behavior
may be remedied by using a more descriptive foot placement
model that establishes a more precise relationship between
intended gait velocity and foot placement. Due to the difficulty
in identifying the threshold for the intent signal, it is difficult to
gauge the magnitude of the necessary intent change. Improving
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the measurement models may yield a more accurate estimate
of the intended gait speed, which may help transition the intent
detection to a form with more resolution than speed-up or
slow-down. Additionally, the applicability of models to users
outside the training dataset also needs to be investigated in
order to be able to accommodate a larger number of users.

The presented intent change detection framework updates
the intent change estimate once per step. To improve the
robustness against misclassification, future work may consider
fusing this strategy with other intent change estimators (e.g.,
[21]) that draw upon other sources of information across the
gait cycle. The walking trials display the inability of the user
with iSCI to resist the exoskeleton’s trajectory tracking to carry
out intent changes. These difficulties highlight the importance
of the intent detection advances herein to improve the robot’s
ability to anticipate the user’s actions and increase HRI fluidity.
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