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ABSTRACT

Graphics processing units (GPUs) have been the target of a sig-
nificant body of recent real-time research, but research is often
hampered by the “black box” nature of GPU hardware and soft-
ware. Now that one GPU manufacturer, AMD, has embraced an
open-source software stack, one may expect an increased amount
of real-time research to use AMD GPUs. Reality, however, is more
complicated. Without understanding where internal details may
differ, researchers have no basis for assuming that observations
made using NVIDIA GPUs will continue to hold for AMD GPUs.
Additionally, the openness of AMD’s software does not mean that
their scheduling behavior is obvious, especially due to sparse, scat-
tered documentation. In this paper, we gather the disparate pieces
of documentation into a single coherent source that provides an
end-to-end description of how compute work is scheduled on AMD
GPUs. In doing so, we start with a concrete demonstration of how
incorrect management triggers extreme worst-case behavior in
shared AMD GPUs. Subsequently, we explain the internal schedul-
ing rules for AMD GPUs, how they led to the “worst practices,” and
how to correctly manage some of the most performance-critical
factors in AMD GPU sharing.
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1 INTRODUCTION

Real-time systems research seeks to enable predictable timing on
computing hardware that is becoming ever more varied and so-
phisticated. While different hardware components of a full compu-
tational platform may require different management techniques,
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some truths hold for all aspects of real-time research. One such fact
is that, for any given hardware component, techniques for manag-
ing and predicting timing are only as powerful as the models they
are predicated upon.

This fact is reflected by the recent research attention given to
graphics processing units (GPUs) in real-time systems. Early work
viewed GPUs as black boxes, capable of predictably handling one
computational task at a time. As later work published more de-
tails and management techniques, sharing a GPU among multiple
real-time tasks without compromising timing predictability became
increasingly possible. While this progress is encouraging, describ-
ing research trends in this way fails to capture part of the difficulty
in working with GPUs as opposed to some better-established hard-
ware components, i.e., CPUs. Namely, even in the face of different
hardware-implementation details, the models of CPU execution
assumed in the real-time literature are often applicable to a wide
variety of CPUs. The same cannot be said for any current model of
GPU execution.

The foremost difficulty with establishing a widely applicable
model of GPU behavior is that adequate details about GPU behav-
ior can be difficult to obtain. The second difficulty is related: it is
often unknown whether details will remain the same between old
and new GPU models from the same manufacturer [2], much less
GPUs from different manufacturers entirely. In summary, models
of GPU execution suffer from both a lack of information and a lack

of commonality.
Both of these problems are related, though. Working around the

lack of commonality requires establishing a baseline of identical
expectations and capabilities. If such a common baseline diverges
from default behavior in some GPUs, perhaps sufficient additional
management can be applied to create a common abstraction. Stated
as a question: can we build a sufficiently powerful model using
only the attributes that all GPUs have in common? And, if not,
how can we work around the differences? Even if an ideal solution
requires new hardware, there is no way to determine which hard-
ware changes are necessary if we do not sufficiently understand the
behavior of current hardware. In all cases, solving the problem of
commonality must begin with solving the problem of information.

“Open source” and the information problem. Following the
above argument, one would think that an open-source platform, like
AMD’s GPU-compute software, would be in an unrivaled position
of prominence within real-time GPU research. Unfortunately, mere
source-code access is far from an ideal solution to the information
difficulties discussed above. Depending on how one counts, AMD’s
open-source code base contains from tens of thousands to millions
of lines of code [16], and even accounts for ten percent of the lines
of code in the entire Linux kernel source tree [13]. This is certainly
a rich source of information, but without external documentation
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it is a set of encyclopedias without an index: mostly useful to those
who already know where to look.

For NVIDIA GPUs, which offer very little official information
about internal behavior, this lack of knowledge has been partially
filled by black-box experiments and reverse-engineering efforts of
real-time researchers [2, 15]. This paper fills an information gap for
AMD GPUs that is similar to that filled by prior work on NVIDIA.
Unlike this prior work, however, we do not rely on black-box tests
or reverse engineering in this paper. Instead, we collected the details
in this paper from several sources, including public presentations,
white papers, and specific source code references.! Our investiga-
tion is particularly focused on AMD GPUS’ compute-unit masking
feature, which allows partitioning GPU-sharing tasks to separate
compute resources. Compute-unit masking is highly desirable to
prevent unpredictable contention when sharing GPU hardware [16],
but apart from some software “tricks” (i.e. [9]), such partitioning
remains almost exclusive to AMD GPUs? and is inextricable from
internal hardware-scheduling behavior.

Contributions. Our contributions are twofold. First, using dis-
parate sources of information, we present an end-to-end view of
how general-purpose computations are scheduled on AMD GPUs.
Second, we present the first and only (to our knowledge) public
documentation on how to effectively use the compute-unit masking
feature of AMD GPUs.

Organization. In Section 2, we begin with an overview of GPU
programming and prior work on GPU scheduling. Following this,
we present our motivating experimental example in Section 3, in-
cluding our hardware and software test platforms. We describe
AMD’s GPU-compute scheduling in Section 4. We discuss practi-
cal applications of compute-unit masking and future research in
Section 5 and finally conclude in Section 6.

2 BACKGROUND

An understanding of basic GPU usage for general-purpose compu-
tation is necessary to understand the experiments and scheduling
details discussed later in this paper. Similarly, the context of this
paper is motivated by the current state of real-time GPU research.
We cover both of these topics in this section.

2.1 GPU Programming

Programs that offload work to a GPU typically use the following
pattern (omitting setup such as allocating memory):

(1) Copy input data from CPU memory to GPU memory.

(2) Invoke a piece of GPU code, called a kernel.

(3) Wait for the GPU code (the kernel) to finish executing.

(4) Copy the resulting data from GPU memory to CPU memory.

From userspace, all of these steps are carried out using a higher-
level API for controlling the GPU. For example, the well-known
CUDA API provides this functionality for NVIDIA GPUs. CUDA is
unsupported on AMD GPUs, so in this paper we instead use the HIP

!We originally learned many of these details in a private conversation with an AMD
engineer, to whom we are extremely grateful. This simplified our search for corre-
sponding information in the publicly available material.

ZNVIDIA introduced partitioning support, known as MIG (multi-instance GPU) in
its most recent top-end GPUs [6]. MIG is arguably more powerful than AMD’s CU
masking, as, unlike CU masks, MIG allows memory partitioning. Unfortunately, it is
unclear if or when MIG will be supported in NVIDIA’s consumer-oriented GPUs.
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// Code for the GPU kernel. Sets vector c¢c = a + b
__global _ void VectorAdd(@nt *a, int *b, int *c) {
int i = blockIdx.x * blockDim.x + threadIdx.x;

c[i] = ali] + bli];

}

int main() {
// [Omitted: allocate and initialize vectors a, b, and c]

// Create a stream

hipStream t stream;

hipStreamCreate (&stream);

// [Omitted: Copy input data to the GPU]

// Launch the kernel

hipLaunchKernelGGL (block_count, thread_count, 0,

stream, a, b, c);

// Wait for the kernel to complete
hipStreamSynchronize (stream) ;

// [Omitted: Copy results from the GPU, cleanup, etc.]

Figure 1: HIP code that defines and launches a GPU kernel.

API, which is highly similar to CUDA but supported by AMD. Note
also that we use the term kernel to refer to a section of code that
runs on the GPU (this is common terminology in GPU literature).
When it is necessary to refer instead to the operating-system notion
of “kernel code,” we use alternate terminology such as “driver code”

Threads, blocks, and streams. In this paper, we use the term
thread to refer to a single logical thread of computation on the GPU.
When invoking a kernel, the (CPU) program specifies a number of
parallel GPU threads with which to execute the kernel code. From
a programming standpoint, threads are an abstraction designed
to simplify writing software that takes advantage of the GPU’s
parallel-processing hardware. In hardware, each GPU thread will
be executed using a single lane in one of the GPU’s SIMD (single
instruction, multiple data) vector-processing units.

Figure 1 illustrates the concepts of blocks and streams as used in a
real application. The beginning of the code in Figure 1 defines a ker-
nel for setting vector ¢ to the sum of input vectors a and b. The ker-
nel is launched using the hipLaunchKernelGGL function in main.
Of particular interest are the block_count and thread_count ar-
guments when launching the kernel. These two arguments control
the number of parallel threads created to execute the kernel code. A
thread block, or simply block consists of up to 1,024 parallel threads
(specified by thread_count). The number of threads in a block
is limited to 1,024, but billions of blocks may be requested per
kernel—effectively an unlimited quantity for practical applications.

As shown in Figure 1, threads in the VectorAdd kernel are able
to use the special blockIdx and threadIdx variables to access
their per-thread block and thread indices, meaning that threads and
blocks serve the essential purpose of distinguishing between GPU
threads at runtime. In the example kernel, each thread uses this
information to compute a unique index into the vectors. However,
thread blocks also play another role: they serve as schedulable
entities when dispatching work to the GPU’s computation hardware.
We cover this role in detail in Section 4.

The other detail present in the hipLaunchKernelGGL invoca-
tion is the stream argument. This makes use of the HIP stream
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created earlier using the hipStreamCreate API call. HIP streams
are queues of GPU operations, such as kernel launches or memory
transfers. Operations enqueued in a HIP stream execute in FIFO
order, meaning that each enqueued operation must complete before
the next begins. In Figure 1, the stream argument indicates that the
kernel-launch operation is to be enqueued in the stream created ear-
lier in main. Specifying a stream argument to hipLaunchKernelGGL
is actually optional; kernel launches default to being enqueued in a
special “null stream.” While an explicit non-default stream will not
provide any benefit in Figure 1’s single-kernel example, user-created
streams have a performance benefit in complex applications: work
enqueued in separate streams may execute concurrently, whereas
work in a single stream (e.g., the null stream) is guaranteed to be
serialized. Given the obvious connection between execution order
and GPU scheduling, this basic understanding of the HIP stream
APl is essential background for our discussion in Section 4.

2.2 Prior Work

The past decade of academic literature includes a handful of papers
dedicated to reverse engineering or revealing various aspects of
NVIDIA GPU behavior. In 2013, Peres used reverse engineering to
infer power-management controls for NVIDIA GPUs [17]. Later
that year, Fuji et al. reverse engineered and modified the microcon-
troller firmware for the NVIDIA GTX 480 to improve response times
for some workloads [8]. In 2016, Mei and Chu used microbenchmark
experiments to infer the cache and memory layout for several gen-
erations of NVIDIA GPUs [14]. Later, Jia et al. published successive
papers using microbenchmarking to infer instruction-set details
about both NVIDIA’s Volta [11] and Turing [10] GPU architectures.

While potentially applicable in a real-time setting, the work
mentioned in the previous paragraph all focuses on aspects of
performance other than predictable timing. This aspect has been
the focus of prior work from the real-time literature. Rather than
attempting to summarize the significant, growing collection of all
real-time GPU research, we restrict our focus to the narrower set
of papers directly related to our current topic: those that heavily
feature new information about internal GPU scheduling policies.

Early GPU-management work tended to treat GPUs as black
boxes. In this early work (e.g., [12]), separate real-time tasks ac-
quire exclusive ownership over one or more GPUs. This requires
interacting with GPU internals to some extent, e.g., when imple-
menting modified schedulers, but the principle of exclusivity is
agnostic to the underlying GPU architecture. The principles out-
lined in Section 1 explain the motivation behind such an approach:
treating GPU-internal behavior as a black box is certainly sufficient
for establishing commonality across many GPUs. Unfortunately,
treating entire GPUs as black boxes can also lead to capacity loss:
the GPU’s computational capacity may be sufficient to support sev-
eral concurrent tasks, but this type of scheduling treatment mostly
prevents truly concurrent GPU sharing.

While GPUs have become only more powerful since 2011 (when
[12] was published), the demands made of GPUs have increased
apace with, or faster than, the hardware’s capabilities. Nowhere is
this more apparent than with Al-oriented embedded GPUs, such as
NVIDIA’s Jetson TX2. Avoiding capacity loss is essential for effec-
tive usage of embedded GPUs, which not only are less powerful,
but also must often be shared by entire task systems. This motivates
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some of our group’s prior work, in which we used black-box exper-
iments to infer the queueing structure used to schedule work on
the Jetson TX2 GPU [2]. This information led to useful models [20],
and yielded software tools capable of re-testing queuing behavior
on future NVIDIA GPUs. Nonetheless, strictly black-box experi-
ments are unable to adequately expose some details and require
re-validation after hardware or software updates.

Another notable contribution, by Capodieci et al. [5], focuses
on the NVIDIA Drive PX embedded-GPU system-on-chip, promi-
nently aimed at the automotive market. This work focuses on the
implementation of preemptive deadline-based schedulers for GPU
workloads, but it also serves as a rich source of information about
(the unmodified) GPU scheduling behavior. Unlike the other prior
work we discuss, this paper leverages NVIDIA collaboration, elimi-
nating any need for black-box experiments or reverse engineering.
So, while the scheduling internals described in [5] are certainly
useful for enriching models, the implementation approach depends
on NVIDIA’s willingness to collaborate, which unfortunately may
remain out of reach for other groups.

A 2019 paper by Jain et al. [9] contains one of the most com-
prehensive reverse-engineering efforts of NVIDIA GPUs’ memory
hierarchy to date. Jain et al. focus on partitioning: methods to divide
a single GPU’s compute and memory resources into non-interfering
regions. Not only do Jain et al. rely partially on reverse engineer-
ing, they also rely on modifications to an open-source subset of
NVIDIA’s Linux driver. Strong partitioning somewhat obviates the
need for a deeper understanding of scheduling behavior, which even
Jain et al. acknowledge depends on closed-source, unmodifiable
components of the driver code. Given our similar focus on partition-
ing, we hope that in the future our own work can be combined with
work like Jain et al’s to produce a “complete” GPU-management
system that offers not only memory and compute-unit partitioning
but also uses a fully open-source software stack to remove some
remaining uncertainties about inter- or intra-partition interference.

To our knowledge, the most recent real-time paper focused on
GPU scheduling internals comes from Olmedo et al. [15], who seek
to update work such as our own group’s 2017 paper [2]. Olmedo et
al. use more specific terminology and, more importantly, provide
new details regarding the assignment of thread blocks to streaming
multiprocessors (computational units in NVIDIA GPUs). Olmedo
et al. specifically refute some simplistic round-robin scheduling
models assumed in a handful of prior papers, demonstrating the
importance of accurate information when developing GPU sched-
uling models. Despite our use of a different hardware platform, in
this paper we attempt to build an in-depth, confident model more
similar to that of Olmedo et al. than that of our group’s 2017 effort
for the Jetson TX2. Naturally, the comparison is not entirely direct
due to the fundamental architectural differences between AMD and
NVIDIA GPUs, but the goal remains the same: provide a foundation
for future models.

3 MOTIVATING EXPERIMENTS

With foreknowledge of AMD GPU behavior, we can craft workloads
that intentionally trigger highly destructive interference between
competing tasks. Doing so serves a dual purpose: first, the challenge
of explaining degenerate cases gives structure to our subsequent
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Figure 2: Components of the ROCm software stack.

explanation of scheduling behavior. Second, the experiments con-
cretely illustrate the magnitude of the impact scheduling behavior
can have on response times. In this case, we intentionally apply
“worst practices” in contrived scenarios, but the lack of documenta-
tion discussed in Section 1 means that there is almost no relevant
guidance from AMD on how to properly design GPU-sharing work-
loads. In other words, a naive developer, not knowing to avoid these
practices, may feasibly stumble into the same mistakes.

3.1 Hardware and Software Platform

Our test platform was a desktop PC containing an Intel Xeon E5-
2630 CPU, 16 GB of DRAM, and running version 5.10.0-rc2 of the
Linux kernel. We conducted our experiments using an AMD Radeon
VII GPU, which at the time of writing is generally considered a
higher-end model featuring 16 GB of memory and 60 compute units.

Compute units. Compute units (CUs) contain the bulk of the
vector-processing logic responsible for carrying out parallel com-
putations in AMD GPUs. For practical purposes, up to 2,048 GPU
threads can be assigned to a CU at once [16], but other factors, such
as register availability, may impose further restrictions [1]. This
should sound familiar to readers who have worked with CUDA, as
the role of CUs is analogous to that of NVIDIA’s streaming multi-
processors (SMs). Unlike with CUDA, however, the HIP API allows
users of AMD GPUs to specify a compute unit mask when creat-
ing streams—defining a set of CUs on which kernels issued to the
stream are required to execute. We discuss this further in Section 4.

Software platform. For these experiments, we used version 3.9
of the ROCm (Radeon Open Compute) software stack. On NVIDIA
GPUs, the term “CUDA” often monolithically refers to the GPU-
programming compiler, API, and runtime libraries, but ROCm is
less monolithic, and is typically described in terms of its compo-
nents. Figure 2 shows the primary stack of components involved
in ROCm. The top user-facing component of ROCm is typically
the HIP API (Heterogeneous-Compute Interface for Portability),
which is nearly identical to CUDA, with the main practical differ-
ence only being the names of the API functions. GPU kernels in
HIP programs are compiled using the LLVM compiler’s AMDGPU
backend, and run using the ROCclr (ROCm Common Language
Runtime) runtime library. Below ROCclr is a lower-level userspace
library implementing the HSA (Heterogeneous System Architec-
ture) API, which creates and manages the memory-mapped queues
and commands that interface with the driver and hardware.

3.2 Experimental Setup

All of the experiments in this paper measure response times of a
matrix-multiply task. All tasks multiply two 1,024x1,024 square
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matrices, writing the output into a third matrix of the same size.
Each GPU thread is responsible for computing one element in the
results matrix. All elements of each matrix are 32-bit floating-point
numbers, randomly initialized to values between 0 and 1. All of our
source code and data is available online.3

We chose to use a matrix-multiply workload for several reasons.
First, each matrix multiplication requires a constant amount of
computation and memory accesses, ideally resulting in low vari-
ability between kernel invocations. Second, matrix multiply is a
relevant and common operation in many Al and graphics applica-
tions. Third, it is easy to configure matrix multiplication kernels to
use differing thread block sizes without affecting the total amount
of GPU computation required.

Choice of competing tasks. Even though all of our tasks carry
out multiplication of 1,024x1,024 matricies, we use the flexibility
with respect to block size to define two different tasks:

e MM1024: Uses blocks of 1,024 threads (specifically, 2D blocks
with dimensions of 32x32 threads). Since the matrix contains
1,024x1,024 elements, this task launches exactly 1,024 blocks.

e MM256: Uses blocks of 256 threads (in this case, 16x16 2D
blocks). Covering the complete matrix therefore requires
4,096 blocks.

Once again, we stress that both MM1024 and MM256 carry out an
identical number of floating-point computations, just under slightly
different configurations. Most of our experiments consist of running
a measured task and a single competitor at the same time on the
GPU. We measure the response times of the measured task while it
contends with the competitor for GPU resources.

We took several additional steps when launching experiments.
We disabled graphics on the host system, to prevent graphics pro-
cessing from affecting our measurements. In order to amplify con-
tention for compute resources (as opposed to memory), we config-
ured our tests to copy the input matrices to the GPU only once, at
initialization time. Tasks using CU masking created their streams
using HIP’s hipExtStreamCreateWithCUMask function. At run-
time, we configured competing tasks to run as many multiplication
iterations as possible within 60 seconds, as opposed to using a fixed
number of iterations. (This is why the number of samples in Table 1
differs between tasks.) A fixed number of samples would require
estimating a number of iterations for each competing task, risking
outliers if the competitor ends too early.

3.3 “Anomalous” Results

Table 1 contains the results of all of our experiments, showing the re-
sponse times for each possible measured task against each possible
competitor. Table 1 also includes three partitioning configurations
for each combination of measured task and competitor:

o Full GPU Sharing: Both the measured task and the competitor
have unrestricted access to all CUs on the GPU.

o Even Partitioning: Both the measured task and the competi-
tor were restricted to separate non-overlapping partitions
containing half of the GPU’s CUs.

30ur test framework, including code for GPU kernels, is available at https://github.
com/yalue/hip_plugin_framework. Scripts and data specific to this paper are available
at https://github.com/yalue/rtns2021_figures.
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Scenario Partitioning # Samples ~ Min Max  Median Arith. Mean Std. Dev.
Isolated MM1024 N/A 18258 3.094 3.631 3.203 3.201 0.018
Isolated MM256 N/A 11712 4.499 5.588 5.034 5.034 0.100
Full GPU Sharing 9179 5.915 7.292 6.421 6.447 0.144
MM1024 (vs. MM1024) | Even Partitioning 8482 6.774 8.254 6.973 6.988 0.082
Uneven Semi-Partitioning 789 61.986  98.380 73.402 76.011 5.888
Full GPU Sharing 3811 12.214 19.578 15.503 15.652 1.114
MM1024 (vs. MM256) Even Partitioning 8477 6.784 7.630 6.944 6.991 0.133
Uneven Semi-Partitioning 711 64.873 101.531  84.047 84.362 4.381
Full GPU Sharing 10383 5.115 7.932 5.552 5.687 0.367
MM256 (vs. MM256) Even Partitioning 9269 6.126 7.031 6.316 6.386 0.182
Uneven Semi-Partitioning 1064 55.535  56.928  56.311 56.310 0.171
Full GPU Sharing 15539 3.240 6.923 3.564 3.770 0.557
MM256 (vs. MM1024) | Even Partitioning 9361 6.085 7.610 6.256 6.318 0.167
Uneven Semi-Partitioning 1079 55.137  56.028 55.549 55.550 0.114

Table 1: Table of experimental results. All times are in milliseconds.

o Uneven Semi-Partitioning: CU partitions were identical to the
“Even Partitioning” case, but the measured task was allowed
access to one additional CU in the competitor’s partition.

Without an understanding of AMD scheduling internals, these
results likely contain several surprises.

OBSERVATION 1. Competing against MM256 adversely affects
MM1024°s performance more than any other configuration.

Observation 1 is illustrated by comparing the “MM1024 (vs. MM256)”
section of Table 1 with the corresponding values in any other sec-
tion. In particular, the “Full GPU Sharing” results, shown in bold, are
the slowest under this configuration, with average-case response
times more than double those against an identical MM1024 competi-
tor, and five times that of MM1024 in isolation. We can check that
this has almost no impact from MM256’s perspective by checking the
“MM256 (vs. MM1024)” portion of the table. Not only does MM1024 not
harm MM256’s performance, it slightly improves MM256’s response
times over MM256 in isolation.*

OBSERVATION 2. Even partitioning protects MM1024 against
MM256, but otherwise moderately increases response times.

Observation 2 is made evident by comparing the “Even Partition-
ing” lines in Table 1 against the “Full GPU Sharing” lines. In all cases
except for MM1024 vs. MM256 (and the worst-case time of MM256 vs.
MM256), the response times when the full GPU is shared are at least
one millisecond faster than the times when the competitors are par-
titioned. This is not particularly surprising for the common case; it
makes sense that it will be faster to allow a kernel to occupy any CU
as it becomes available across the entire GPU. However, partition-
ing’s ability to protect a workload against an “evil” competitor is
obvious when observing MM1024’s partitioned performance against

4The material in Section 4 does not entirely explain this particular anomaly, but the
improvement likely is due to a competitor’s presence improving the performance of
block-dispatching hardware. Two factors support this assumption. MM256 launches
four times the number of blocks as MM1024, meaning that speeding up block launches
provides a stronger benefit to MM256. For example, the presence of the MM1024 competi-
tor may help keep some hardware components active, but, as we shall see in Section 4,
it will cause minimal additional contention for resources against M256. Second, even
though MM256’s times are faster in this case than in isolation, it still is not as fast as
MM1024 in isolation. This indicates that MM1024 still has some advantage arising from
its block configuration, as it is otherwise identical to MM256.

MM256, where the improvement in the observed worst case is nearly
12 milliseconds. So, Observation 2 is not particularly surprising,
and a classic example of a “real-time” tradeoff between overhead
and predictability.

OBSERVATION 3. Poor partitioning causes abysmal performance.

The most surprising feature of Table 1 is undoubtedly the ex-
treme increase in response times of “Uneven Semi-Partitioning,”
regardless of competitor choice (though MM1024 vs. MM256 is still
the worst, especially in the average cases). Under this “partition-
ing” approach, the measured task still maintains sole ownership
over all of the CUs it was allowed under “Even Partitioning,” but is
additionally granted one CU that is shared with the competitor’s
partition. In other words, one additional CU leads to response times
around ten times slower than under full GPU sharing or with equal,
non-overlapping partitions.’

Remarks on these results. We clearly demonstrated that
a naive application of CU masking is dangerous. With such ex-
treme performance degradation, even someone only passingly fa-
miliar with GPU management should suspect that our uneven semi-
partitioned setup is a “worst practice.” Nonetheless, partitioning
is also essential, as different combinations of GPU-sharing tasks
(i.e., MM1024 vs. MM256) reveal that asymmetrically destructive in-
terference is a real possibility. The interesting issue is, of course,
not the results themselves, but the underlying causes. Why does
simply reducing a kernel’s block dimensions make it such a fierce
competitor? Why can adding a compute unit, even a shared one,
lead to a dramatic, nearly 14-fold increase in worst-case response
time? Fortunately, answers to these questions become apparent
with an understanding of AMD GPU scheduling internals.

4 SCHEDULING COMPUTE KERNELS ON
AMD GPUS

The effects from Section 3 turn out to mostly arise from hardware,
but we also must explain how a kernel arrives at the hardware to
begin with. This section covers this entire path, beginning with a
description of the queuing structure used to issue kernel-launch
commands to AMD GPUs.

5The competitor’s response times are barely impacted by sharing one CU with the
measured task. For brevity, we chose to exclude these measurements from Table 1.
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Figure 3: Paths through ROCm’s queuing structure.

4.1 Queue Handling

Readers familiar with prior work on NVIDIA GPUs [2, 5, 15] should
not be surprised to learn that a kernel-launch request proceeds
through a hierarchy of queues before reaching AMD GPU hardware.
Figure 3 depicts the paths this request may take. To help reduce
the complexity of our later explanations (and to provide an easier
introduction than Figure 3), we begin with a high-level outline of
the steps involved:
(1) A user program calls the hipLaunchKernelGGL API function
to launch a kernel.
(2) The HIP runtime inserts a kernel-launch command into a
software queue managed by the ROCclr runtime library.
(3) ROCclr converts the kernel-launch command into an AQL
(architected queuing language) packet.
(4) ROCeclr inserts the AQL packet into an HSA (heterogeneous
system architecture) queue.
(5) In hardware, an asynchronous compute engine (ACE) pro-
cesses HSA queues, assigning kernels to compute hardware.
A kernel’s journey to the GPU’s computational hardware begins
with the hipLaunchKernelGGL API call, which is shown at the top
of Figure 3 and responsible for enqueuing a kernel-launch request.
A programmer’s typical point of contact with the queuing structure
is through HIP’s “stream” interface introduced in Section 2.1. Briefly
restated, a HIP stream is one of several arguments a programmer
may specify when calling hipLaunchKernelGGL. Each HIP stream
is backed by a software queue managed by ROCclr,® the backend
runtime library used by HIP (see Figure 2). ROCclr stores the argu-
ments to hipLaunchKernelGGL in a C++ object, then inserts this
object into the software queue.

HSA queues. Once a kernel-launch C++ object reaches the head
of its software queue, ROCclr converts it into an kernel-dispatch
AQL (Architected Queueing Language) packet. AQL packets are
used to request single GPU operations, such as kernel launches or
memory transfers.” In order to send the AQL packet to the GPU,

OThis is largely defined in platform/commandqueue. hpp in ROCclr’s source code.

"We do not cover memory-transfer requests further in this paper, but they follow
the same queuing structure as kernel launches. Ultimately, memory transfers are
dispatched to hardware “DMA engines” [3] rather than asynchronous compute engines.
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Figure 4: The Radeon VII’s compute-related components.

ROCclr copies the AQL packet into an HSA (Heterogeneous System
Architecture) queue. HSA queues are ring buffers of AQL packets,
and are directly shared between the GPU and userspace memory.
This direct memory sharing allows user programs to issue GPU
commands without system calls.

It may seem like an intuitive choice to back each ROCclr queue
with a dedicated HSA queue, but Figure 3 likely already revealed
that ROCclr’s behavior is more complicated. ROCclr’s software
queues internally share a pool of HSA queues: one software queue
may submit work to multiple different HSA queues, and each HSA
queue may contain work from multiple software queues. Even
though sharing HSA queues may occasionally prevent concurrent
kernel launches, it will not break any of the ordering guarantees
behind the top-level “stream” abstraction. ROCm employs a com-
bination of hardware (i.e., “barrier” AQL packets) and software
mechanisms (i.e., ROCclr’s software queues) to enforce the in-order
completion of commands from a single stream.

Figure 3 depicts fewer ROCclr software queues than HSA queues,
but this is just to save space in the figure. In practice, using a shared
pool of HSA queues is intended to reduce the total number of HSA
queues created by an application; even if there are dozens of HIP
streams, ROCclr will still use the same small pool of HSA queues.
In the default configuration of ROCm 3.9, the pool is limited to
four HSA queues.? Understanding the reason for this limitation,
however, requires traveling farther down the scheduling hierarchy.

The role of the driver. HSA queues are created and managed
as needed by userspace applications, and directly accessed by GPU
hardware. Even so, they require driver assistance for initialization.
While not shown in Figure 3, Linux’s amdgpu driver must provide
the GPU with a runlist, containing a list of all HSA queues and their
locations in memory.” Whenever an application creates a new HSA
queue, the driver needs to send the GPU an updated runlist.

Handling HSA queues in hardware. At this point, handling
HSA queues (and their contents) becomes the responsibility of the
GPU hardware. Figure 4 gives a rough representation of the GPU

8This, and related behavior can be observed by examining ROCclr’s source code.
For example, https://github.com/ROCm-Developer-Tools/ROCclr/blob/master/device/
rocm/rocvirtual.cpp implements the multiplexing between HSA queues and a single
“virtual” queue of commands.

9 As of Linux 5.10.0-rc2, source code for runlist construction is mostly contained in
drivers/gpu/drm/amd/amdkfd/kfd_packet_manager.c in the Linux source tree.


https://github.com/ROCm-Developer-Tools/ROCclr/blob/master/device/rocm/rocvirtual.cpp
https://github.com/ROCm-Developer-Tools/ROCclr/blob/master/device/rocm/rocvirtual.cpp
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Figure 5: Hardware involved in dispatching blocks to CUs.
(This figure abbreviates “Workload Manager” as WLM.)

hardware involved in compute workloads. As shown in Figure 3,
Asynchronous Compute Engines (ACEs) are the hardware units re-
sponsible for processing the AQL packets contained in HSA queues.
Figure 3, however, does not include the process by which HSA
queues are assigned to ACEs in the first place.

After receiving a runlist from the driver, the GPU’s top-level
command processor uses hardware scheduling (HWS) to assign HSA
queues to ACEs.!® The command processor contains four ACEs,!!
and up to eight HSA queues can be assigned to each ACE at a time.
Knowing this, we can finally explain why ROCm attempts to limit
the number of HSA queues used by any single application: the GPU
hardware only supports up to 32 concurrent HSA queues—eight
queues on each of the four ACEs. Failing to abide by this limit
can lead to profoundly negative performance, as the HWS has no
inherent prioritization mechanism to favor “active” queues [18].

How CU masks affect the queuing hierarchy. Internally,
the GPU hardware associates a single CU mask with each HSA
queue. If no mask is explicitly set, HSA queues default to allowing
work to execute on any CU. Recall from before that HIP streams
generally are backed by ROCclr software queues, which in turn
submit work to a shared pool of HSA queues. The HSA queues in
this shared pool are all created in the default configuration, and
are therefore not suitable for use by any HIP stream that requires
a non-default CU mask. In order to support CU masking, ROCclr
follows a slightly different code path when handling a HIP stream
with a CU mask, shown on the right side of Figure 3: it creates a
separate HSA queue with the requested mask, and uses the new
HSA queue exclusively on behalf of the single stream.

4.2 Scheduling Thread Blocks

We now describe how a kernel at the head of an HSA queue gets
assigned to computing hardware. Recall that thread blocks are the
basic schedulable entity for GPU computations, so when kernel-
dispatch AQL packets reach the heads of their queues, the question
becomes how the GPU decides which blocks to run, and where to
run them. Figure 5 essentially continues the kernel-launch process
after the end of Figure 3, from the perspective of an ACE handling
a single HSA queue. To simplify Figure 5, we only included a single
This is described in a comment in drivers/gpu/drm/amd/include/
kgd_kfd_interface.h in the Linux 5.10.0-rc2 source tree. It is also possible
to disable HWS, forcing the driver to use software to assign queues to ACEs.

11 ACEs are sometimes called “pipes” in AMD’s code. Each ACE is a actually a core

in a multicore microcontroller. This, and a few other details from this paragraph, are
described by an AMD engineer in a forum post: [4].
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HSA queue and a single ACE. If multiple HSA queues are assigned
to the same ACE, the ACE alternates between dispatching packets
from the head of each queue in a time-sliced round-robin fashion.!?

Dispatching blocks to shader engines. One of the more
prominent features in Figures 4 and 5 is the division of the GPU’s
compute resources into four shader engines (SEs). As illustrated in
Figure 5, the primary role of an ACE is to dispatch blocks from the
kernel at the head of an HSA queue to the SEs. However, without
a prior explanation of the reasons underlying certain design de-
cisions, the ACE’s behavior when dispatching blocks to SEs may
seem bizarre. To forestall such confusion, we first describe a thread-
ordering guarantee made by the HSA specification, which AMD
implements in their GPU-compute architecture [7].

The HSA specification states that it must be safe for GPU threads
to wait for the completion of any GPU threads with a lower block
index!? (i.e., the value provided by blockIdx.x in Figure 1). For
example, it must be safe for threads in block 1 to wait for threads
in block 0 to complete, but it may be unsafe for a threads in block 0
to wait for block 1’s completion—block 0 could occupy resources
needed by block 1, preventing block 1 from ever starting to execute.
A block-ordering guarantee has a practical application: prior work
formally proves that it enables producer-consumer relationships
between blocks in a single kernel [19]. Even though the experiments
in this paper do not use such complicated kernel logic, the block-
ordering guarantee plays an important role in scheduling, with
significant performance ramifications.

AMD hardware enforces the block ordering when assigning
blocks to SEs. The method is simple: ACEs must assign blocks to
SEs in sequential order. For example, an ACE cannot assign block
1 to SE 1 until after it has assigned block 0 to SE 0.* Figure 6
illustrates this concept as the ACE dispatches four consecutive
blocks to SEs. The cycle depicted in Figure 6 continues with block 5
being assigned to SE 0, and only ends after all blocks in the kernel
have been dispatched. To use a metaphor: the block-dispatching
behavior can be likened to a card game where a dealer is dealing
cards to four players. As in most real-life card games, even one slow
player may force the dealer to wait, slowing down the entire game!
Nonetheless, it would ruin the game for the dealer to skip the slow
player. When applying this to AMD GPUs, the “dealer” is the ACE,
the four “players” correspond to the four SEs, and the “cards”are
the blocks of a kernel. But what can cause an SE, the metaphorical
“player,” to be abnormally slow? The answer is intertwined both
with CU masking, and with the behavior of the workload managers.

The role of workload managers. In order for an ACE to as-
sign a block to an SE, the block must be assigned to a specific CU on
that SE. As shown in Figures 4 and 5, assigning blocks to CUs is the
job of a piece of per-SE hardware called the workload manager [3].
Each workload manager has four dedicated “slots” for staging in-
coming blocks: one slot dedicated to each of the GPU’s four ACEs.

12We hope to investigate inter-queue ACE contention in the future. This is difficult for
now, because we do not have a method to guarantee a certain queue-ACE assignment,
though it is likely possible with driver modifications.

BTechnically, the HSA specification states this in terms of a block’s flattened ID, which
takes into account the fact that the special blockIdx variable is three-dimensional.
4Qur only source for this claim remains private correspondence, which indicated
that hardware enforces this rule using a “baton-passing” mechanism between the
SEs. Despite the lack of additional external support for this claim, it is certainly well-
supported by our experiments, i.e., Table 1 or Figure 9.



RTNS’2021, April 7-9, 2021, NANTES, France

Otterness and Anderson

160000

120000

80000

# threads,
1024-thread blocks

40000

)

160000

120000

80000

»
S
3
1
3

# threads,
1024-thread blocks

)

9.48 11.85 8.19 10.24

160000

120000

80000

# threads,

40000

# threads,
Identical Competitor
®
2
8
8
8

0 0

160000

120000

80000

# threads,
256-thread blocks

40000

0

1024-thread blocks (isolated)

0.000 1.084 2.168 3.252 4.336 5.421
Time (millions of GPU cycles)

(a) An isolated MM1024 kernel.

0.00 237

4.74

Time (millions of GPU cycles)

(b) Two overlapping MM1024 kernels.

7.11 9.48 11.85 0.00 2.05 4.10 6.15

Time (millions of GPU cycles)

8.19 10.24

(c) Overlapping MM1024 and MM256.

Figure 7: Comparison between timelines of matrix-multiply thread blocks in different configurations.

i
[5E1) A [CacE
) g s

SE 2

i
<j ACE
[sE2]\ SE 2

SE3

Figure 6: A simplified diagram of an ACE’s behavior when
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This design means that activity from one ACE cannot prevent an-
other ACE from accessing the workload manager. Ideally, workload
managers will assign blocks from each of these four slots to CUs in
a round-robin manner.!® This behavior changes, however, if no CU
has sufficient available resources (e.g., registers or threads [1]) for a
block from a particular slot. In this situation, the workload manager
will allow blocks with smaller resource requirements to cut ahead if
possible. This finally allows us to explain why, in Section 3, MM256
was always more destructive to MM1024’s performance than any
other configuration: each CU only supports a limited number of
threads, and the completion of a 256-thread MM256 block does not
release enough resources to allow a block of MM1024 to run. Instead,
it merely allows another MM256 block to cut ahead again, causing
the problem to continue until no more MM256 blocks remain!

Figure 7 illustrates this behavior on real hardware. The timelines
correspond to the same workloads from the “Full GPU Sharing”
configurations from the “MM1024 (vs. M1024)” and “MM1024 (vs.
MM256)” portions of Table 1. In order to generate the timelines, we
instrumented our kernel code to use the clock64() function to
obtain the start and end GPU clock cycle for every block of threads.
After a kernel completes, we copy the block start and end times to
the CPU and use them to compute the number of active threads at

5Unfortunately, we also learned this from private conversation and were not able
to find corroborating published material. Nonetheless, this claim is supported by the
observations in Figure 7b.

each GPU clock cycle. The timelines in Figures 7a, 7b, and 7c all
cover a single kernel’s execution for each respective task.

As expected, the kernel running in Figure 7a uses the GPU at
near-full capacity for its entire duration. In prior work [16], we
note that CUs appear to only run a maximum of 2,048 threads,
despite AMD’s documentation listing 2,560 as a theoretical limit.
Figure 7a reaffirms this observation, with an obvious plateau at
122,880 active threads corresponding to 2,048 threads running on
each of the GPU’s 60 CUs. The occasional spikes likely coincide
with groups of blocks nearing the end of their execution, as, unlike
on NVIDIA [2], our Radeon VII allows new blocks to start as soon
as resources start to become available, even if the entire preceding
block has not yet completed. To avoid the high overhead for tracking
the start and end times of each individual thread, we only record
the start of the first thread and end of the last thread in each block.
However, we plot timelines as if all of a block’s threads remain
active so long as any thread in the block is active, leading to spikes
where active thread or block counts are inaccurate. Fortunately,
the behavior shown in Figure 7 is distinctive enough to be obvious
even without perfectly tracking the active-thread count.

The cutting-ahead behavior is apparent when comparing Fig-
ures 7b and 7c. When two identical MM1024 instances contend for
GPU resources, Figure 7b shows that GPU computing capacity is
divided evenly for the entire time that the two kernels overlap,
corresponding to the workload managers dispatching blocks evenly
from separate ACEs. Additionally, when the kernels do not overlap,
the sole running kernel uses the full capacity. The contrast provided
by Figure 7c is striking, where MM1024 competes against an MM256
kernel. Shortly after MM256’s kernel begins, it has taken sole control
of virtually all GPU resources, with MM1024 making practically no
progress in the meantime.

4.3 Explanation of the Worst Practices in
Section 3

“Cutting ahead” explains the destructive interference that MM256
causes against MM1024, but the terrible performance of “Uneven
Semi-Partitioning” in Section 3 is, perhaps unsurprisingly, better
attributed to a poor choice of CU partitions.

With the prior explanation of block-SE distribution, this behavior
is now easier to explain. Recall that the ACE will always distribute
blocks to SEs in sequential order, and never skip an SE. There is
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one exception to this rule: the ACE will skip an SE only if a CU
mask disables all CUs on that SE. In other words, blocks are evenly
distributed among the set of SEs for which any CUs are enabled.
This approach to block-ordering enforcement can lead to extreme
performance pitfalls: If only one CU is enabled on an SE, it is far
more difficult for an ACE to assign a block to that particular SE, as
it must wait for the single CU to be available. On top of this, the
ACE is also prevented from “skipping” the slow SE and assigning
blocks to the other SEs in the meantime! We exploited this behavior
for our Section 3 experiments, by designing a CU mask that enables
only one CU on an SE. Naturally, performance becomes even worse
when the single CU is shared with a kernel where blocks can cut
ahead: this is precisely what happens in Table 1 under “Uneven
Semi-Partitioning” when MM1024 competes against MM256.

5 PRACTICAL APPLICATIONS

In this section we give some guidance for using CU masking in
practice, remark on some obstacles that real-time research may
encounter when using AMD GPUs, and discuss future work.

5.1 Usage of the CU-Masking API

The primary practical method for using CU masking on AMD GPUs
is through the HIP API, so the relevant HIP API details bear some
more explanation. In order to specify a CU mask for a HIP stream,
programmers must use the hipExtStreamCreateWithCUMask func-
tion (HIP offers no function to set a CU mask for an existing stream,
due to the HSA-queue multiplexing discussed in Section 4.1). In HIP,
CU masks are specified as bit vectors using 32-bit integers, where
set bits indicate enabled CUs and clear bits indicate forbidden CUs.

The hardware, however, does not use the same “flat” CU mask
that a HIP programmer specifies, and instead requires a separate
CU mask for each SE. In fact, the amdgpu driver is responsible for
transforming the single user-provided CU mask into the per-SE
masks. By examining the driver code,'® we can discover the specific
mapping. Figure 8 shows how bits in a HIP CU mask relate to shader
engines and CUs in the GPU. The pattern in Figure 8 is simple: every
fourth bit maps to a different CU in the same SE. In the example
mask in Figure 8, the first of every group of four bits is set, defining
a partition consisting only of CUs on SE 0.

Knowing the mapping between HIP’s CU masks and SEs in
hardware allows partitioning tasks to specific SEs, but it is not
clear if doing so has benefits over an approach that distributes CUs
evenly across SEs. In order to evaluate the possible benefits and
drawbacks of limiting partitions to specific SEs, we contrast two
basic partitioning approaches:

o SE-packed: Pack as many of the partition’s CUs as possible
into each single SE before starting to occupy CUs on an
additional SE. This uses as few SEs as possible.

o SE-distributed: Distribute the partition’s CUs across all SEs as
evenly as possible. This implies that any partition containing
over four CUs will use all SEs.

Figure 9 shows the behavior of these two partitioning approaches
when applied to an instance of MM1024 running in isolation. For the

16For Linux 5.10.0, this is found in the mqd_symmetrically_map_cu_mask function in
drivers/gpu/drm/amd/amdkfd/kfd_mqd_manager.c.
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Figure 9: Performance of CU-masking strategies for varying
partition sizes.

most part, Figure 9 seems to show that there is little benefit to SE-
packed partitioning: SE-packed visibly outperforms SE-distributed
only for some partition sizes smaller than 15 CUs. Unsurprisingly,
SE-packed performs far worse than SE-distributed when only one
CU is enabled on an SE. The jumps in the SE-packed response times
occur where expected: the Radeon VII has 15 CUs per SE, so SE-
packed partitions with sizes of 16, 31, or 46 will end up occupying
only a single CU on one of the SEs. Overall, SE-packed partitioning
may look inferior in Figure 9, but Figure 9 is based on measurements
taken without an important factor: contention.

CU partitioning in the presence of a competitor. We car-
ried out a final experiment using an MM1024 measured task facing
an MM256 competitor (as this results in the most destructive inter-
ference in the absence of partitioning). This experiment partially
reuses data from Section 3, which used SE-packed partitioning. The
main contribution from the new experiment is the inclusion of
SE-distributed partitioning for contrast.

Table 2 shows the results of this experiment. For further illustra-
tion, Table 2 also includes the CU mask used by both the MM1024
measured task and MM256 competitor. For example, MM1024’s SE-
packed CU mask sets every even-numbered bit, starting with bit 0,
meaning that MM1024 will occupy every CU on SEs 0 and 2, whereas
MM256’s SE-packed CU mask causes it to occupy every CU on SEs 1
and 3. As we did in Section 3, we also include “Unequal Partitions”
cases in Table 2, produced by adding a single CU to MM1024’s “Equal
Partitions” CU masks.

OBSERVATION 4. For some partition sizes, SE-packed partitioning
is slightly better than SE-distributed partitioning.

Observation 4 is seen when comparing the two “Equal Parti-
tions” rows from Table 2. Both partitioning approaches ensure that
MM256 does not share CUs with MM1024, and therefore sufficiently
prevent the poor unpartitioned performance due to MM256 cutting
ahead (shown for convenience in Table 2’s first row). However,
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Description MM1024 CU Mask | MM256 CU Mask | Min Max  Median Arith. Mean Std. Dev.
Full GPU Sharing (Unpartitioned) | 1111..1111 11111111 12.214  19.578 15503 15.652 1.114
SE-packed, Equal Partitions 1010..1010 0101..0701 6.784  7.630 6.944 6.991 0.133
SE-packed, Unequal Partitions 1010..1011 0101...0101 64.873 101.531  84.047 84.362 4.381
SE-distributed, Equal Partitions 1111...0000 0000...1111 6.391 9.113 7.250 7.269 0.074
SE-distributed, Unequal Partitions | 1111...0001 0000..1111 7.109 7.906 7.288 7.324 0.122

Table 2: MM1024’s response times in the presence of an MM256 competitor. All times are in milliseconds.

SE-packed partitioning exhibits slightly better response times than
SE-distributed, likely due to two factors. First, SE-distributed par-
titioning is actually unable to assign an equal number of CUs to
all SEs, as a 30-CU partition is not evenly divisible among four
SEs. Second, SE-packed CU masks likely prevent a small amount of
contention for SE-wide resources such as workload managers.

OBSERVATION 5. SE-distributed partitioning is vastly superior
when a partition’s size prevents it from occupying all CUs in an SE.

Observation 5 is supported by comparing the “Unequal Parti-
tions” lines in Table 2, where it should be apparent that it is highly
undesirable to use an SE-packed partition containing 31 CUs. While
it is hard to imagine a practical application where a task requires
a partition containing exactly 31 CUs, one can certainly envision
applications where greater flexibility in partition sizing could be
useful. One such situation would be a task system requiring prioriti-
zation. For example, high-priority work may need a larger partition
than low-priority work, but designating a full additional SE as “high-
priority” could cause unacceptable adverse effects to low-priority
performance. Instead, it could be better to allocate 40 CUs to high-
priority work, while low-priority tasks use the remaining 20 CUs.
With these partition sizes, Figure 9 indicates that SE-distributed
partitioning would be better than SE-packed partitioning for both
high- and low-priority tasks, with low-priority work seeing a par-
ticular benefit given the gap between SE-distributed and SE-packed
performance at 20 CUs.

5.2 Other AMD-Specific Performance Concerns

While CU masking ended up being the largest cause of the poor
performance in Section 3, it is certainly not the only pitfall with
broader implications. For example, it is a common practice to di-
rectly port CUDA code to HIP [16]. CUDA code cannot use CU
masking, but the performance of multi-stream CUDA code may
depend on implicit assumptions about other scheduling details.
For example, on NVIDIA GPUs, smaller thread blocks will not cut
ahead of larger blocks [2], but this is clearly not the case for AMD
GPUs. Therefore, in order for research results to be portable be-
tween NVIDIA and AMD GPUs, the cutting-ahead behavior must
be addressed and accounted for. In some cases it may be possible to
modify source code and adjust the block dimensions. In other cases,
however, source-code complexity or algorithmic details may make
this impractical, meaning that CU partitioning or other scheduling
methods must be applied to prevent cutting ahead, and performance
assumptions must be re-tested.

Additionally, the multiplexing between HIP streams and HSA
queues may be a concern for some task systems. The topic of HSA
queue oversubscription is covered in prior work [18], but other tools
can reduce the possibility for queue contention in the first place. For

example, it is possible to use environment variables to adjust the
number of shared HSA queues that ROCclr will create.!” The ability
to modify ROCm’s source code enables still more possibilities, such
as applying a process-wide CU mask to the shared HSA queues, or
requiring a separate HSA queue for every HIP stream.

5.3 Future Work

In the future, we hope to continue investigating other features of
AMD GPUs that we did not cover for this paper, such as the ability
to preempt compute workloads. Our broader goal, however, focuses
on solving the problems described in Section 1: we hope to produce
a platform that can serve as a model for implementing and testing
a variety of real-time GPU-management techniques. AMD GPUs’
open-source software brings this goal closer to fruition, especially
as we continue to learn new information such as what we present
in this paper.

6 CONCLUSION

This work provides several clear demonstrations of the practical
implications of knowing or failing to know key aspects of GPU-
internal behavior. In doing so, we provide information about AMD
GPUs using a combination of public (but poorly advertised) infor-
mation, first-party source code, and experimental evidence. Addi-
tionally, we give the first published guidance on how to properly
apply the CU-masking feature of AMD GPUs.

Without knowing this information, the risks of disastrous per-
formance pitfalls makes developing a reliable real-time system vir-
tually impossible. But, from another view, with knowledge of this
information, developers can expect predictable performance from
their systems with a level of confidence that will not be present
with a closed-source platform.
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