
Extending EDF for Soft Real-Time Scheduling on
Unrelated Multiprocessors
Stephen Tang, Sergey Voronov, and James H. Anderson

Department of Computer Science, University of North Carolina at Chapel Hill
{sytang|rdkl|anderson}@cs.unc.edu

Abstract—Though recent work has established the soft real-
time (SRT)-optimality of Earliest-Deadline-First (EDF) variants
on multiprocessor models with limited heterogeneity (e.g., uni-
form speeds or affinity masks), such models are insufficient to
describe modern multiprocessors, which have grown increasingly
heterogeneous. This fact highlights the need to extend theoretical
results to more asymmetric models, such as the unrelated mul-
tiprocessor model. This paper presents an EDF variant tailored
for this model and proves that it is at least nearly SRT-optimal.
Simulation results for random task systems are also presented
that suggest that the proposed EDF variant may actually be
SRT-optimal.

Index Terms—Real-time scheduling theory, unrelated multi-
processors

I. INTRODUCTION

The significance of the unrelated multiprocessor model,
under which execution speed depends on both the task being
executed and the processor being executed on, has increased
with the heterogeneity of modern multiprocessors. Sources
of this increasing heterogeneity include heterogeneous archi-
tectures such as big.LITTLE by ARM, accelerators such as
Graphics Processing Units (GPUs) and Digital Signal Pro-
cessors (DSPs), and features such as Dynamic Voltage and
Frequency Scaling (DVFS) and processor affinities (per-task
restrictions upon which processors said tasks may execute on).

Conversely, the theoretical understanding of unrelated mul-
tiprocessors for real-time scheduling has lagged behind their
proliferation, often falling back on existing techniques for
identical multiprocessors (where execution speeds do not
vary). For example, a common approach for dealing with unre-
lated speeds is to partition tasks among clusters of processors,
with the processors in each cluster being of the same type
(an exemplar of this approach is given in [1], which itself
cites several related works). While the illusion of homogeneity
has allowed the real-time community to fall back on existing
analyses, partitioning often relies on heuristics (due to the
intractability of bin-packing) and results in capacity loss due
to the inability to split tasks across clusters.

Fully migratory approaches to scheduling under unrelated
multiprocessors can avoid capacity loss, but are less common.
Work in this vein includes [2] and [3], both of which present
schedulers that can optimally schedule tasks to meet all
deadlines. A drawback of these schedulers is that they require

This was supported by NSF grants CNS 1563845, CNS 1717589, CPS
1837337, CPS 2038855, and CPS 2038960, ARO grant W911NF-20-1-0237,
and ONR grant N00014-20-1-2698.

partitioning time into slices between deadlines such that any
task receives its proportionate share of execution within a
time slice. This approach may be impractical due to frequent
preemptions caused by short time slices, a tradeoff previously
observed in work on Pfair scheduling [4].

This tradeoff was partially resolved for identical multipro-
cessors with Earliest-Deadline-First (EDF) scheduling. Unlike
Pfair, preemptions under EDF are limited to job releases and
completions. Consequently, deadlines may be missed under
EDF; however, EDF is soft real-time (SRT)-optimal under
identical multiprocessors [5], meaning that any task’s tardiness
is bounded if the system is feasible.

As discussed below, the SRT-optimality of EDF has been
extended to consider processor speeds with limited hetero-
geneity (i.e., special cases of unrelated multiprocessors besides
homogeneous multiprocessors). To our knowledge, no attempt
has been made to extend these SRT-optimality results to
fully unrelated multiprocessors. Such theoretical results are
necessary to help inform the development of EDF implemen-
tations that will need to consider unrelated multiprocessors
in the future, such as SCHED DEADLINE [6] in Linux.
We highlight SCHED DEADLINE because its documentation
explicitly mentions that response times are limited if the
platform is not over-utilized [7].

EDF variants. Prior works that have extended the results
of [5] to more heterogeneous processor models have done so
by proposing EDF variants for their specific models. This
is because naı̈ve implementations of EDF that only schedule
tasks with the earliest deadlines without care for which proces-
sors tasks are scheduled on fail to consider heterogeneity. This
often results in capacity loss. Proposed EDF variants avoid
capacity loss by adding rules to standard EDF that result in
tasks being migrated more aggressively to better utilize any
available processors; these variants reduce to standard global
EDF for the special case where the multiprocessor is identical.

Relationships between EDF variants and their targeted
platforms are illustrated in Fig. 1. EDF variants have been
proven SRT-optimal for uniform multiprocessors [8] (in which
execution speeds depend on the processor, but not the task)
and for identical multiprocessors with affinities [9], [10]. We
denote these variants as Ufm-EDF and Strong-APA-EDF,
respectively. At a high level, Ufm-EDF migrates tasks such
that tasks with earlier deadlines run on faster processors.
Likewise, Strong-APA-EDF migrates tasks to maximize the

Fig. 1: Relationships between heterogeneous models and EDF
variants. (Note that for Unr-EDF, the other variants are only

approximately special cases.)

number of scheduled tasks.

Extending EDF’s SRT-optimality to unrelated multipro-

cessors is challenging for two reasons. First, it is not im-

mediately obvious how to migrate tasks to best utilize the

available processors when the processor model is unrelated.

For example, consider a task system with two tasks and two

processors, with one task, τe, having a substantially earlier

deadline than the other, τl. Suppose one processor has a

fast execution speed for both tasks, while the other slower

processor executes τe with moderate speed and cannot execute

τl at all (due to its affinity setting). Scheduling τe on the faster

processor (as would Ufm-EDF) underutilizes the platform by

only scheduling one available task. In contrast, scheduling τe
on the slower processor allows for both tasks to be scheduled

(as would Strong-APA-EDF), but scheduling a higher-priority

task on a slower processor seems antithetical to EDF.

The second reason is that a property, called HP-LAG-

Compliance [10], which is upheld by Ufm-EDF and

Strong-APA-EDF on their respective processor models, is not

generally true under any scheduler in the unrelated model

(see Sec. 8 of [10]). This is problematic because the SRT-

optimality proofs of both Ufm-EDF and Strong-APA-EDF on

their respective models heavily rely on HP-LAG-Compliance.

Thus, any analysis for an EDF variant for the unrelated model

requires fundamentally new insights and invariants.

Contributions. In this work, we propose Unr-EDF, an EDF
variant for unrelated multiprocessors. Unr-EDF migrates tasks

to best utilize the multiprocessor by solving instances of an

assignment problem. We justify Unr-EDF as our choice of

variant by proving that Unr-EDF (approximately) reduces

to Ufm-EDF and Strong-APA-EDF for the special cases of

unrelated multiprocessors where the multiprocessor is uniform

or identical with affinities, respectively—a variant that reduces

exactly to Ufm-EDF and Strong-APA-EDF is problematic for

reasons we discuss in Sec. IV.

As solving an assignment problem at every scheduling event

may result in impractically large overheads, we show that

Unr-EDF can potentially be implemented more efficiently by

leveraging a solution [11] to an online version of the assign-

ment problem called the incremental assignment problem. This

gives Unr-EDF comparable asymptotic time complexity to

that of Strong-APA-EDF under arbitrary affinities.

We prove that Unr-EDF is at least nearly SRT-optimal.

In particular, we prove that Unr-EDF guarantees bounded

tardiness as long as no task or processor is tight—a task

(resp., processor) is tight if any increase (resp., decrease) in

its utilization (resp., capacity) results in an infeasible system.

The tardiness bound we prove is inversely proportional to a

task-system-dependent value �, which approaches 0 as any task

or processor approaches tightness.1 Hence, tardiness becomes

unbounded once any task or processor is tight.2

To evaluate our tardiness bounds, we simulated Unr-EDF
on randomly generated task systems. Observed tardiness re-

mained below the largest period as � → 0, unlike what our

tardiness bound predicts. This suggests that Unr-EDF may in

fact be SRT-optimal.

Placing our contributions in context. As presented in this

work, the above contributions are likely not yet suitable for

practical use. As an implementation is not provided, we lack

grounds to argue that Unr-EDF has reasonable overheads. Our

tardiness bounds are also likely overly pessimistic if any tasks

or processors approach tightness. Nevertheless, this work has

theoretical value as a first step towards extending EDF for

SRT-optimality under the unrelated model.

This theoretical value is illustrated with the context of

prior work on EDF variants. Prior efforts for designing EDF
variants for multiprocessors with limited heterogeneity that

lend themselves to practical implementations and tardiness

bounds were non-trivial. Such efforts were spread over several

submissions, authors, and years. For example, with respect

to implementations, efforts to improve the practicality of

Strong-APA-EDF (originally proposed in [9]) by restricting

to special cases of affinity masks have warranted their own

publications [15], [16]. With respect to optimality, the first

proof of Ufm-EDF’s SRT-optimality [8] followed a series of

works considering whether any EDF variant was SRT-optimal

on uniform multiprocessors [17], [18]. Also, reducing analyti-

cal tardiness bounds to match observed tardiness has remained

an open problem even for EDF on identical multiprocessors,

and this problem has inspired multiple works [19]–[21].

These prior works show that it is the norm for initial works

on new EDF variants to require refinement by future work.

Organization. The remainder of this paper is organized as

follows. In Sec. II, we cover needed background. In Sec. III,

we define our new EDF variant Unr-EDF, prove that it

approximately reduces to Ufm-EDF and Strong-APA-EDF
for their respective special cases of multiprocessors, and

demonstrate how it can be efficiently implemented by lever-

aging the incremental assignment problem. In Sec. IV, we

prove our sufficient condition for bounded tardiness under

Unr-EDF. In Sec. V, we evaluate our derived tardiness bound

via simulation. We conclude in Sec. VI.

1The analysis in this work does not permit tightness, even for the spe-
cial cases where the multiprocessor is uniform or identical with affinities.
Unr-EDF is actually SRT-optimal for such special cases. This can be proven
by showing that Unr-EDF is in the class of window-constrained schedulers,
which are known to be SRT-optimal for these special cases [12].

2A parallel can be drawn to approximation schemes for feasibility analysis
of fixed-priority uniprocessor schedulers [13], [14], where the runtime com-
plexity of the approximation scheme is inversely proportional to the distance
between the approximation and an optimal condition.

TABLE I: Notation and Terminology.

Symbol Meaning
τ Task system
τi ith task
n Number of tasks
π Processors
πj jth processor
si,j Speed of τi on πj
smax Largest speed
Ci τi’s worst-case execution requirement
Ti τi’s period
ui Ci/Ti
Tmax Largest period
umax Largest utilization
umin Smallest utilization
τi,j jth job of τi
Ci,j Execution requirement of τi,j
ri,j Release time of τi,j
di,j Deadline of τi,j

current Incomplete job with earliest release time
ready Current job that has been released

pending Task with ready job; able to be scheduled
ri(t) Release time of current job of τi at t
di(t) Deadline of current job of τi at t
Ci(t) Total execution requirement of job of τi that is

current at t
ci(t) Remaining execution of current job of τi at t
si(t) Speed of processor assigned to τi at t
MVM Maximum Vertex Matching—see (1)
φi Weight of τi in MVM
wi,j Weight of (τi, πj) in assignment problem
xi,j Decision variables of MVM or assignment

problem
τp(t) Set of pending tasks at t

I-Unr-EDF Idealized Unrelated EDF—see (3)
Strong-APA-EDF EDF variant for identical w/ affinities—see [9]

Ufm-EDF EDF variant for uniform—see [8]
Unr-EDF Unrelated EDF—see (4)
Ri(t) Latest release time of any job of τi no later than t
R′

i(t) Latest pseudo-release—see Def. 4
Di(t) Latest pseudo-deadline—see Def. 5
Φi(t) Weight function of τi used by Unr-EDF—see

Def. 6
vti(t) Virtual time of τi at t—see Def. 7

Devi(t) Deviation of τi at t—see Def. 8
non-fluid See Def. 9
x′ Solution (with `) of sufficient condition (12)
` Parameter corresponding with tightness—see (12)
K See (13)

II. BACKGROUND

In this section, we present our system model and discuss
several optimization problems of relevance to this work.

A. System Model

A table of notation is provided in Tbl. I.
We consider n tasks τ = {τ1, τ2, . . . , τn} running on

n processors π = {π1, π2, . . . , πn}. Processor πj executes
task τi with speed si,j ≥ 0. The largest si,j is denoted
smax. Tasks are sporadic, and we assume familiarity with the
sporadic model. Task τi has worst-case execution requirement
Ci (relative to an execution speed of 1.0), period Ti, and
utilization ui , Ci/Ti. For task τi, Ci, Ti, and ui are all
positive. The largest period and utilization are denoted Tmax
and umax. The smallest utilization is denoted umin.

We assume an equal number of tasks and processors to
facilitate usage of theorems on the assignment problem, which
canonically assumes two input sets of equal size. This can be
assumed without loss of generality. If the tasks outnumber
the processors, we can add processors such that si,j = 0 for
any task τi. Tasks cannot make progress on such processors,
so their addition does not affect our system. Likewise, if
the processors outnumber the tasks, tasks with ui = 0 may
be added. Note that minor modifications to definitions and
quantifiers in our analysis are required when accounting for
such tasks to avoid division by zero (e.g., the umin in the
denominator of our tardiness bound (21) is changed to denote
the smallest positive utilization). Such modifications are not
discussed due to space constraints.

Task τi releases an infinite sequence of jobs with τi,j
denoting the jth job of τi for j ≥ 1. Job τi,j has execution
requirement Ci,j ∈ (0, Ci], release time ri,j , and deadline
di,j = ri,j +Ti. Release times are separated such that for any
j ≥ 1, we have ri,j + Ti ≤ ri,j+1.

. Def. 1. At time t, the current job of task τi is the incomplete
job of τi that has the earliest release time at time t. If the
current job of τi at t is released by time t, this job is ready.
Tasks with ready jobs are pending. /

We let ri(t), di(t), Ci(t), and ci(t) be the release time,
deadline, total execution requirement, and remaining execution
requirement of the current job of τi at t (Ci(t) and ci(t) are
also relative to an execution speed of 1.0). Task τi’s deadline
at time t is defined as di(t).

It will be convenient for our analysis to define schedulers
via how tasks are assigned processors. By this, we mean that a
task τi executes on a processor πj under a given scheduler if τi
is assigned πj by said scheduler and τi is pending. We make a
distinction between a task being assigned and it being executed
because the instances of the assignment problem used to define
our EDF variant will always assign each task a processor,
while said tasks will only execute if they are pending. Let
si(t) be si,j when τi is assigned πj .

We assume time is continuous and starts at 0.

B. Relevant Optimization Problems

Some EDF variants discussed later in Sec. III are defined
via the maximum vertex matching (MVM) and assignment
problems on bipartite graphs. For ease of notation, denote the
node sets of the bipartite graph as τ and π. A matching on
a bipartite graph is a subset of edges in the graph such that
each vertex shares an edge with at most one other vertex.

MVM. MVM seeks to pair vertices such that the most valuable
vertices are paired. Under MVM, each vertex τi ∈ τ has
weight φi ≥ 0 and E denotes the edges in the bipartite graph.
MVM can be expressed as follows.

max
∑
τi∈τ

φi
∑

(τi,πj)∈E

xi,j s.t.

∀τi ∈ τ :
∑
πj∈π

xi,j = 1

∀πj ∈ π :
∑
τi∈τ

xi,j = 1

∀τi ∈ τ ∧ πj ∈ π : xi,j ∈ {0, 1}


(1)

The constraints of this integer program require that each
node in τ is matched with a unique node in π.
The assignment problem. Under the assignment problem,
each edge (τi, πj) has weight wi,j ≥ 0. The assignment
problem can be expressed as follows.

max
∑
τi∈τ

∑
πj∈π

wi,jxi,j s.t.

∀τi ∈ τ :
∑
πj∈π

xi,j = 1

∀πj ∈ π :
∑
τi∈τ

xi,j = 1

∀τi ∈ τ ∧ πj ∈ π : xi,j ∈ {0, 1}


(2)

Note that (1) is a special case of (2) where wi,j = φi if
(τi, πj) ∈ E and 0 otherwise.
Linear program relaxation. The following well-known the-
orem about the assignment problem is used by our analysis.
A proof can be found in Theorem 3.2.1 of [22].

Theorem 1. The optimum value of (2) remains optimal if
xi,j ∈ {0, 1} is relaxed to xi,j ≥ 0.

Theorem 1 will be used to lower bound the efficacy of
Unr-EDF (defined via the assignment problem) assuming our
sufficient condition (expressed as a linear program) is true.

III. I-UNR-EDF AND UNR-EDF
Here we show that EDF variants Ufm-EDF and

Strong-APA-EDF are special cases of a new EDF variant
we call Idealized Unr-EDF (I-Unr-EDF) on their respective
targeted platforms (see Fig. 1). This justifies that (I-)Unr-EDF
are EDF variants. We also explain why I-Unr-EDF is not
directly implementable and propose Unr-EDF.

. Def. 2. Let τp(t) ⊆ τ be the pending tasks at time t. /

I-Unr-EDF is defined via an optimization problem.

max
∑

τi∈τp(t)

(Tmax + t− di(t))
∑
πj∈π

si,jxi,j s.t.

∀ τi ∈ τ
∑
πj∈π

xi,j = 1

∀ πj ∈ π :
∑
τi∈τ

xi,j = 1

∀ τi ∈ τ ∧ πj ∈ π : xi,j ∈ {0, 1}


(3)

I-Unr-EDF: At time t, assign tasks such that τi ∈ τ
is assigned on πj if xi,j = 1 in the solution to the
optimization problem in (3).

The expression Tmax + t − di(t) in the objective function
of (3) rewards assigning tasks with earlier deadlines (hence,
−di(t)) to faster processors. Tmax + t is an offset used to
guarantee non-negative weights.

A. Existing EDF Variants are Special Cases of I-Unr-EDF
For identical multiprocessors with affinities, si,j = 1.0 if

task τi has affinity for processor πj and si,j = 0 otherwise.
The existing Strong-APA-EDF algorithm [9] for identical
multiprocessors with affinities is defined as follows.

Strong-APA-EDF: At time t, assign to each pend-
ing task τi a value φi ≥ 0 such that di1(t) <
di2(t)⇔ φi1 > φi2 . Assign φi = 0 for non-pending
tasks. Solve the instance of MVM (see (1)) that
results when an edge exists in E if its corresponding
task has affinity for its corresponding processor, and
assign τi on πj if xi,j = 1.

Note that [9], which primarily considered fixed-priority
scheduling, does not specify how to assign φi for EDF.

Lemma 1. Strong-APA-EDF on identical multiprocessors
with affinities is a special case of I-Unr-EDF.

Proof. We prove this lemma by showing that (3), which is
an instance of the assignment problem, reduces to the MVM
problem specified by Strong-APA-EDF for the special case
where speeds are identical and tasks have specified affinities.
Because MVM and the assignment problem only differ in their
objective functions, it is sufficient to show that the objective
function of (3) reduces to that of the MVM problem instance.
The MVM problem in [9] has node sets τp(t) and π, with
(τi, πj) ∈ E if τi has affinity for πj .

Let φi = Tmax + t − di(t). To see that these weights are
well-defined, we must show that they are non-negative and
that tasks with earlier deadlines have higher weights.

To show non-negativity, note that τi ∈ τp(t) implies the
current job of τi is ready. Thus, t ≥ ri(t)⇒ Ti + t ≥ ri(t) +
Ti = di(t)⇒ Tmax + t ≥ di(t)⇒ φi = Tmax + t− di(t) ≥ 0.

To show di1(t) < di2(t) ⇔ φi1 > φi2 , note that di1(t) <
di2(t) implies that φi1 = Tmax+t−di1(t) > Tmax+t−di2(t) =
φi2 . This reasoning can be applied in reverse.

As si,j = 1 if (τi, πj) ∈ E, and si,j = 0 otherwise, the
objective function of (3) reduces to∑

τi∈τp(t)

(Tmax + t− di(t))
∑
πj∈π

si,jxi,j

=
∑

τi∈τp(t)

φi
∑
πj∈π

si,jxi,j

=
∑

τi∈τp(t)

φi
∑

(τi,πj)∈E

xi,j

Thus, the objective function of (3) reduces to the objective
function of MVM (1), which is our proof obligation.

It remains to show that Ufm-EDF is a special case of
I-Unr-EDF for uniform multiprocessors. Under uniform, each
processor πj has speed sj such that for any task τi, si,j = sj .
Formally, Ufm-EDF is defined as follows [8].

Time2 3 4 5 6 7 8 9 10

τ1

τ2

Deadline π1 π2

Fig. 2: Reschedule occurs without scheduling event under
I-Unr-EDF.

Ufm-EDF: Assign the task with the earliest deadline
on the fastest processor, the task with the second
earliest deadline on the second fastest processor, etc.

Lemma 2. Ufm-EDF on a uniform multiprocessor is a special
case of I-Unr-EDF.

Proof. We prove the lemma by showing that (3) has the same
behavior as Ufm-EDF when the multiprocessor is uniform
without affinities, which we prove by contradiction.

Suppose otherwise that at time t, I-Unr-EDF schedules
some task τi1 on processor πj1 and task τi2 on processor πj2
such that di1(t) < di2(t) and sj2 > sj1 . Thus, in an optimal
solution of (3) at time t, we have xi1,j1 = xi2,j2 = 1. Observe
that an alternative solution that instead has xi1,j2 = xi2,j1 = 1
and is otherwise identical decreases the objective function of
(3) by (Tmax + t − di1(t))sj1 + (Tmax + t − di2(t))sj2 and
increases the objective function by (Tmax + t − di1(t))sj2 +
(Tmax + t − di2(t))sj1 . The net change is (in this and future
derivations, justifications for certain steps are given in brack-
ets)

(Tmax + t− di1(t))sj2 + (Tmax + t− di2(t))sj1

− (Tmax + t− di1(t))sj1 − (Tmax + t− di2(t))sj2

= (Tmax + t− di1(t))(sj2 − sj1)

+ (Tmax + t− di2(t))(sj1 − sj2)

= (Tmax + t− di1(t)− Tmax − t+ di2(t))(sj2 − sj1)

= (di2(t)− di1(t))(sj2 − sj1)

> {di2(t) > di1(t) ∧ sj2 > sj1}
0.

Because the objective function takes a higher value with
the alternative solution and I-Unr-EDF chooses the solution
that maximizes the objective function, I-Unr-EDF choosing
the supposed solution is a contradiction.

B. Approximating I-Unr-EDF with Unr-EDF

Under the special cases of identical with affinities or uni-
form, the solution to (3) is only dependent on the relative order
of di(t) and not the magnitude of Tmax + t− di(t). This does
not hold for unrelated, as shown in the following example.

I Ex. 1. This example is illustrated by Fig. 2. Consider a
two-task and two-processor system with s1,1 = 1, s1,2 = 2,
and s2,1 = 0 and s2,2 = 2. Let Tmax = 10 and suppose both
tasks are pending over [2, 10] with d1(t) = 5 and d2(t) = 10.

At time t = 4, we have Tmax + t− d1(t) = 10 + 4− 5 = 9
and Tmax + t − d2(t) = 10 + 4 − 10 = 4. The solution of
(3) is x1,2 = x2,1 = 1 with objective value 9s1,2 + 4s2,1 =
9(2) + 4(0) = 18 (compared to x1,1 = x2,2 = 1 with value
9s1,1 + 4s2,2 = 9(1) + 4(2) = 17).

However, at time t = 6, Tmax + t−d1(t) = 10 + 6−5 = 11
and Tmax + t− d2(t) = 10 + 6− 10 = 6. The optimal solution
of (3) at time t = 6 is then x1,1 = x2,2 = 1 with value
11s1,1 + 6s2,2 = 11(1) + 6(2) = 23 (compared to x1,2 =
x2,1 = 1 with value 11s1,2 + 6s2,1 = 11(2) + 6(0) = 22).

Thus, a rescheduling occurs in [2, 10] even though the tasks’
deadlines did not change. J

This makes I-Unr-EDF impractical because rescheduling
may occur at any time instant. The cause of this problem is that
the coefficients in the objective function of (3) change at every
time instant. We circumvent this by replacing t with the latest
pseudo-deadline, defined below, which changes discretely.

. Def. 3. For task τi, Ri(t) , max {0} ∪ {ri,j | ri,j ≤ t}. /

With the exception of when ri,1 6= 0, Ri(t) is the latest
release time of any job of τi by time t. Treating time 0 as
a special case simplifies the following definition of pseudo-
release times. Pseudo-releases simulate periodic job releases
within any inter-release time greater than a period.

. Def. 4. The latest pseudo-release of task τi is R′i(t) ,
max {Ri(t) + kTi | k ∈ N0 ∧Ri(t) + kTi ≤ t}. /

The definition of latest pseudo-deadline follows.

. Def. 5. For task τi, Di(t) , R′i(t) + Ti. /

Because the latest pseudo-release updates at least once every
Ti time units, Di(t) is a reasonable approximation of (i.e.,
stays within a bounded interval around) t.

I Ex. 2. This example is illustrated by Fig. 3. Let task τi
with Ti = 10 have initial release times ri,1 = 12, ri,2 = 22,
and ri,3 = 50. Pseudo-releases within [0, 50] occur at times
0, 10, 12, 22, 32, 42, and 50. Di(t) then changes values at
Di(0) = 10, Di(10) = 20, Di(12) = 22, Di(22) = 32,
Di(32) = 42, Di(42) = 52, and Di(50) = 60. J

. Def. 6. The Unr-EDF weight function is

Φi(t) ,

{
0 τi /∈ τp(t)
Tmax +Di(t)− di(t) τi ∈ τp(t)

/

Unr-EDF replaces Tmax + t−di(t) in the objective function
of (3) with Φi(t). Rescheduling is limited to job completions
and pseudo-releases (though unlike prior EDF variants, tasks
that are already pending may still be rescheduled due to their
own pseudo-releases), as Φi(t) only changes with such events.

Consider the following instance of the assignment problem
(2) in which wi,j = Φi(t)

∑
πj∈π si,j .

Time0 5 10 15 20 25 30 35 40 45 50 55 60

Di(0) = 10 Di(10) = 20, Di(12) = 22 Di(22) = 32 Di(32) = 42 Di(42) = 52 Di(50) = 60

τi

Deadline Release Pseudo-Deadline Pseudo-Release

Fig. 3: Pseudo-deadline example.

max
∑
τi∈τ

Φi(t)
∑
πj∈π

si,jxi,j s.t.

∀ τi ∈ τ :
∑
πj∈π

xi,j = 1

∀ πj ∈ π :
∑
τi∈τ

xi,j = 1

∀ τi ∈ τ ∧ πj ∈ π : xi,j ∈ {0, 1}


(4)

Unr-EDF: At time t, for some optimal solution to
(4), τi ∈ τ is assigned πj if xi,j = 1.

C. Implementing Unr-EDF
As (4) is an instance of the assignment problem, indepen-

dently solving (4) at every scheduling event can be done with
time complexity O(n3) using the Hungarian algorithm [23].

This can be implemented more efficiently by leveraging an
algorithm for the incremental assignment problem presented
in [11]. We cover this at a high level due to space constraints.
The input of the incremental assignment problem is an instance
of the assignment problem of size n− 1 alongside its optimal
solution x(n−1) (as well as dual variables of x(n−1)). The
incremental problem then considers how to optimally compute
x(n) from x(n−1) when new vertices τn and πn (as well as
their corresponding edges) are added. Computing x(n) from
x(n−1) requires O(n2) time.

Assuming simultaneous scheduling events are serialized, let
τk be the unique task whose value of Φ changed with some
scheduling event. Let πp be the unique processor τk was
assigned to via xprev, the solution of (4) before said scheduling
event. Note that the reduced solution xprev,(n−1) derived by
removing xk,p = 1 is itself an optimal solution of (4) if τk
and πp are removed from τ and π, respectively. Otherwise,
prior to the scheduling event, a better solution than xprev could
have been constructed by combining the better solution than
xprev,(n−1) for τ \{τk} and π\{πp} with xk,p = 1. This would
contradict the definition of Unr-EDF.

Because xprev,(n−1) is an optimal assignment for τ\{τk} and
π \ {πp} and τk and πp can be treated as additional vertices,
the algorithm in [11] can be applied to compute the optimal
assignment after the scheduling event.

IV. A SUFFICIENT SRT CONDITION

Due to space constraints, certain proofs that highly resemble
proofs from prior works or are fairly intuitive are omitted.
Omitted proofs are available online [24].
Proof strategy. We present the high-level steps of our proof
for bounding tardiness under Unr-EDF assuming τ satisfies

our sufficient condition (12). Consider any Unr-EDF schedule
for any task system that satisfies (12).

Step 1: For any time t ≥ 0, the state of each task τi
is mapped to a scalar using a function called deviation
(Dev). Devi(t) (Def. 8) is a function of time t and the
state of task τi’s current job at t, and is defined such
that the tardiness of task τi is roughly proportional to the
largest Devi(t) for any time t ≥ 0 (Lemma 5).

Step 2: A necessary condition (6) on the assign-
ment by Unr-EDF at time t is derived such that∑
τi∈τ ui(Devi(t))2 is non-increasing at t (Lemma 7).

Step 3: Theorem 1, which relates instances of the as-
signment problem (such as Unr-EDF (4)) with linear
programs (the sufficient condition (12)), is used to show
that Unr-EDF satisfies the necessary condition (6) of
Step 2 if

∑
τi∈τ ui(Devi(t))2 = K for some K. That∑

τi∈τ ui(Devi(t))2 is non-increasing is used to prove
that

∑
τi∈τ ui(Devi(t))2 ≤ K for all t ≥ 0 (Lemma 15).

Step 4: The bound
∑
τi∈τ ui(Devi(t))2 ≤ K is used

to derive an upper bound on Devi(t) for each task τi.
Because Devi(t) is proportional to tardiness and Devi(t)
is bounded, tardiness bounds can be derived (Theorem 2).

Steps 1 and 2 are covered in Sec. IV-A, and Steps 3 and 4
in Sec. IV-B.

A. Deviation Properties

Steps 1 and 2 are accomplished by proving properties about
deviation [12], a measure of how behind a task’s execution is
at a specific time instant.3 Deviation is similar to the well-
known concept of lag, but is more closely tied to deadlines
than lag when releases are sporadic and jobs do not execute
to their worst-case requirement.

The definition of deviation relies on that of virtual time.

. Def. 7. The virtual time of task τi is

vti(t) , ri(t) + Ti
Ci(t)− ci(t)

Ci(t)
. /

While a job τi,j is current, vti(t) interpolates between τi,j’s
release time and deadline based on what fraction of τi,j’s
execution requirement has been completed. As jobs do not
receive negative execution, it is intuitive that vti(t) is non-
decreasing. This is formalized in Lemma 3, which is analogous
to Lemma 4 of [12].

Lemma 3. For task τi, ∀t ≥ 0 : ∀ε > 0 : vti(t+ε) ≥ vti(t).

3The definitions in this work vary slightly from those in [12]. Our proof
reasons about (Devi(t))2, which behaves undesirably when Devi(t) < 0. As
such, we chose definitions such that ∀t ≥ 0 : Devi(t) ≥ 0.

In Steps 1 and 3, Lemma 3 is used in proofs by contradic-
tion via showing that scenarios are impossible unless vti(t)
decreased for some τi. We present it early for this reason.

We now begin Step 1 by formally defining deviation.

. Def. 8. τi has deviation Devi(t) , max {0, t− vti(t)}. /

Before completing Step 1 by proving Lemma 5, we require
intermediate Lemma 4, which relates vti(t) and di(t).

Lemma 4. vti(t) < di(t) ≤ vti(t) + Ti.

Proof. By Def. 7, vti(t) = ri(t) +Ti
Ci(t)−ci(t)

Ci(t)
. Because 0 <

ci(t) ≤ Ci(t), we have ri(t) ≤ vti(t) < ri(t) + Ti. Because
di(t) = ri(t) + Ti, we have di(t) − Ti ≤ vti(t) < di(t).
Rearrangement yields the lemma statement.

Step 1 is completed by showing that tardiness is bounded
if deviation is bounded in Lemma 5.

Lemma 5. If for some L > 0, for all t ≥ 0, we have Devi(t) ≤
L, then the tardiness of τi is at most L.

Proof. We prove the contrapositive: if tardiness exceeds L
then for some time instant t we have Devi(t) > L.

Let τi,j be a job with tardiness exceeding L. Then at t′ ,
di,j + L, τi,j is released and incomplete. Either τi,j or an
earlier job must be the current job of τi at t′, so di(t′) ≤ di,j .
Thus, t′ ≥ di(t

′) + L ⇒ t′ − vti(t′) ≥ di(t
′) − vti(t′) + L.

By Lemma 4, di(t′) > vti(t
′), so t′ − vti(t′) > L. Because

L > 0, by Def. 8, we have Devi(t′) > L.

Step 2 requires that we prove a condition under which∑
τi∈τ ui(Devi(t))2 is non-increasing. In this context, this

means the sum’s value at t upper bounds the sum’s value over
some interval beginning at t. This will be shown in Lemma 7.
This proof is simplified using Lemma 6, which considers the
change in (Devi(t))2 for a single task τi over such an interval.
The proof of Lemma 6 relies on the concept of non-fluidity.

. Def. 9. A scheduler is non-fluid if at any time t, if task τi is
assigned processor πj , then there exists δ > 0 such that task
τi is assigned processor πj over [t, t+ δ). /

For a scheduler to be fluid, there must be some finite
time interval in which the scheduler has infinitely many
preemptions. Thus, any implementable scheduler is non-fluid.

Non-fluidity allows us to assume that tasks’ rates of execu-
tion (i.e., si(t)) are constant over small time intervals. This is
useful for reasoning about changes in (Devi(t))2 over small
intervals, as will be done in Lemma 6. Note that the proof
of Lemma 6 is subdivided into Cases 6.1-6.3 depending on
which argument of the max function is greater in Def. 8.

Lemma 6. For a non-fluid scheduler, ∀τi ∈ τ : ∀t ≥ 0 :
∃δ > 0 : ∀ε ∈ [0, δ) :

(Devi(t+ ε))2

≤ (Devi(t))2 + 2εDevi(t)(1− si(t)Ti/Ci(t))
+ ε2(1− si(t)Ti/Ci(t))2.

(5)

Proof. Restrict δ to be small enough such that the current job
of τi and si(t) are both constant over [t, t+ δ) (as allowed by
Def. 9). There are three cases: t < vti(t), t ≥ vti(t)∧ t+ ε <
vti(t+ ε), or t ≥ vti(t) ∧ t+ ε ≥ vti(t+ ε).

Case 6.1. t < vti(t).

Further restrict δ such that δ ∈ (0, vti(t)−t). By Lemma 3,
for any ε ∈ [0, δ), vti(t+ε)−(t+ε) ≥ vti(t)−(t+ε). Because
ε < δ < vti(t) − t, we have vti(t + ε) − (t + ε) > 0. Thus,
t+ ε < vti(t+ ε).

By Def. 8 and because t < vti(t) and t + ε < vti(t + ε),
we have Devi(t) = Devi(t+ ε) = 0. This satisfies (5).

Case 6.2. t ≥ vti(t) and t+ ε < vti(t+ ε).

(Devi(t+ ε))2

= {By Def. 8}
(max {0, t+ ε− vti(t+ ε)})2

= 0 {t+ ε− vti(t+ ε) < 0}
≤ {Squares of real numbers are non-negative}

(Devi(t) + ε(1− si(t)Ti/Ci(t)))2

= (Devi(t))2 + 2εDevi(t)(1− si(t)Ti/Ci(t))
+ ε2(1− si(t)Ti/Ci(t))2

Case 6.3. t′ ≥ vti(t) and t+ ε ≥ vti(t+ ε).

(Devi(t+ ε))2

= {By Def. 8}
(max {0, t+ ε− vti(t+ ε)})2

= {t+ ε− vti(t+ ε) ≥ 0}
(t+ ε− vti(t+ ε))2

By Def. 7, (Devi(t + ε))2 = (t + ε − ri(t + ε) −
Ti
Ci(t+ε)−ci(t+ε)

Ci(t+ε)
)2. Because the current job of τi is constant

over the interval [t, t+ε] ⊂ [t, t+δ), (Devi(t+ε))2 = (t+ε−
ri(t) − Ti Ci(t)−ci(t+ε)

Ci(t)
)2. Because si(t) is constant over this

interval, (Devi(t+ε))2 = (t+ε−ri(t)−Ti Ci(t)−ci(t)+εsi(t)
Ci(t)

)2.
Thus,

(Devi(t+ ε))2

= {By Def. 7}
(t− vti(t) + ε [1− si(t)Ti/Ci(t)])2

= {By Def. 8 and t− vti(t) ≥ 0}
(Devi(t) + ε [1− si(t)Ti/Ci(t)])2

= (Devi(t))2

+ 2εDevi(t)(1− si(t)Ti/Ci(t))
+ ε2(1− si(t)Ti/Ci(t))2

For all cases, (5) holds.

Lemma 6 demonstrated the conditions on Devi(t), si(t),
Ti, and Ci(t) for (Devi(t))2 to be non-increasing at t for a
single task τi. Using Lemma 6, we can infer what conditions
on the task system and scheduler assignment as a whole are
necessary for sum

∑
τi∈τ ui(Devi(t))2 to be non-increasing.

Lemma 7. For a non-fluid scheduler, for any time t, if we
have ∑

τi∈τ
Devi(t)si(t) > ∆ +

∑
τi∈τ

Devi(t)ui (6)

for some ∆ > 0 and
∑
τi∈τ Devi(t) > 0, then

∃δ > 0 : ∀ε ∈ [0, δ) :∑
τi∈τ

ui(Devi(t))2 >
∑
τi∈τ

ui(Devi(t+ ε))2. (7)

Proof.

Claim 7.1. We have∑
τi∈τ

uiDevi(t)(1− si(t)Ti/Ci(t)) < −∆.

Proof. −∆

> {By (6)}∑
τi∈τ

Devi(t)ui −
∑
τi∈τ

Devi(t)si(t)

=
∑
τi∈τ

Devi(t)(ui − si(t))

=
∑
τi∈τ

uiDevi(t)(1− si(t)/ui)

≥ {Ci(t)/Ti ≤ ui ⇒ −1/ui ≥ −Ti/Ci(t)}∑
τi∈τ

uiDevi(t)(1− si(t)Ti/Ci(t)) �

By Lemma 6, for any time t, for each task τi, there exists
δ > 0 such that (5) is true. Let δi denote this δ for task τi.
Let

δmax ,
2∆∑

τi∈τ ui(1− si(t)Ti/Ci(t))
2

δ′ ,min {δ1, δ2, . . . , δn, δmax} .

 (8)

If the denominator of δmax is 0, then δmax , ∞. We have
δ′ > 0 because δi > 0 holds for each i and, by the lemma
statement, ∆ > 0. By Lemma 6 and because δ′ ≤ δi for every
task τi, then for each task τi we have

∀ε ∈ [0, δ′) :(Devi(t+ ε))2 ≤ (Devi(t))2

+ 2εDevi(t)(1− si(t)Ti/Ci(t))
+ ε2(1− si(t)Ti/Ci(t))2.

Summing over all tasks and multiplying by ui, we have for
any ε ∈ [0, δ′), ∑

τi∈τ
ui(Devi(t+ ε))2

≤
∑
τi∈τ

ui


+ε2(1− si(t)Ti/Ci(t))2
+2εDevi(t)(1− si(t)Ti/Ci(t))

(Devi(t))2


=

[∑
τi∈τ

ui(Devi(t))2

]

+ 2

[
ε
∑
τi∈τ

uiDevi(t)(1− si(t)Ti/Ci(t))

]

+ ε2

[∑
τi∈τ

ui(1− si(t)Ti/Ci(t))2

]

=

[∑
τi∈τ

ui(Devi(t))2

]

+ ε

 +ε

[∑
τi∈τ

ui(1− si(t)Ti/Ci(t))2

]
2

[∑
τi∈τ

uiDevi(t)(1− si(t)Ti/Ci(t))

]
< {By Claim 7.1}[∑

τi∈τ
ui(Devi(t))2

]

+ ε

(
−2∆ + ε

[∑
τi∈τ

ui(1− si(t)Ti/Ci(t))2

])

<

{
By (8), ε < δ′ ≤ 2∆∑

τi∈τ ui(1− si(t)Ti/Ci(t))
2

}
∑
τi∈τ

ui(Devi(t))2 + ε(0)

=
∑
τi∈τ

ui(Devi(t))2

Thus (7), the proof obligation, is true. �

Thus, the sum
∑
τi∈τ ui(Devi(t))2 is non-increasing if (7)

is true. This completes Step 2.

B. Analysis of Unr-EDF

Step 3 requires that we prove Unr-EDF satisfies condition
(6) if

∑
τi∈τ ui(Devi(t))2 = K for some K. Note that the best

scheduler for satisfying (6) (i.e., yields the largest difference
between the left- and right-hand-sides of the inequality) is the
scheduler whose choice of si(t) at a given time t maximizes∑
τi∈τ Devi(t)si(t). In comparison, Unr-EDF (4) maximizes∑
τi∈τ Φi(t)si(t). We show Unr-EDF is related to this ‘best’

scheduler by showing Φi(t) ≈ Devi(t) in Lemma 11, whose
proof requires intermediate Lemmas 8-10.

Lemma 8. t < Di(t) ≤ t+ Ti.

Proof. Follows from Defs. 4 and 5.

Lemma 9. τi ∈ τp(t)⇒ di(t) ≤ t+ Ti.

Proof. Because τi ∈ τp(t), we also have ri(t) ≤ t⇒ ri(t) +
Ti ≤ t+ Ti ⇒ di(t) ≤ t+ Ti.

Lemma 10. For any t ≥ 0 and task τi, Φi(t) ≥ 0.

Proof. By Def. 6, we need only consider the case where τi ∈
τp(t). We have Φi(t) = Tmax + Di(t) − di(t). By Lemma 9,
Φi(t) ≥ Tmax + Di(t) − t − Ti ≥ Di(t) − t. By Lemma 8,
Φi(t) > 0.

That Φi(t) ≈ Devi(t) is formalized in Lemma 11.

Lemma 11. Φi(t)− 2Tmax < Devi(t) ≤ Φi(t).

Proof. We consider three cases.

Case 11.1. τi /∈ τp(t).

By Def. 6, Φi(t) = 0. By Def. 7, t − vti(t) = t − ri(t) −
Ti
Ci(t)−ci(t)

Ci(t)
. Because ci(t) ≤ Ci(t), t − vti(t) ≤ t − ri(t).

Because τi /∈ τp(t), the current job of τi at t is not released
by t, thus t − ri(t) < 0. Thus, t − vti(t) < 0, and by
Def. 8, Devi(t) = 0. Thus, Devi(t) = Φi(t), which satisfies
the lemma statement.

Case 11.2. τi ∈ τp(t) ∧ t− vti(t) ≥ 0.

By Lemmas 4 and 8, we have t − vti(t) − Ti < Di(t) −
di(t) < t− vti(t) +Ti. Rearrangement yields Di(t)− di(t)−
Ti < t−vti(t) < Di(t)−di(t)+Ti. By Def. 8 and t−vti(t) ≥
0, we have Di(t)−di(t)−Ti < Devi(t) < Di(t)−di(t)+Ti ⇒
Di(t) − di(t) − Tmax < Devi(t) < Di(t) − di(t) + Tmax. By
Def. 6, we have Φi(t)− 2Tmax < Devi(t) < Φi(t).

Case 11.3. τi ∈ τp(t) ∧ t− vti(t) < 0.

By Def. 8 and t− vti(t) < 0, we have Devi(t) = 0.
By t − vti(t) < 0, we have t < vti(t). By Def. 7, we

have t < ri(t) + Ti
Ci(t)−ci(t)

Ci(t)
. Because ci(t) ∈ (0, Ci(t)], we

have t < ri(t) + Ti = di(t). Thus, t < di(t). Furthermore, by
Lemma 9, we have t < di(t) ≤ t+ Ti.

Because t < di(t) ≤ t+ Ti and by Lemma 8, t < Di(t) ≤
t+ Ti, by Def. 6, we have Tmax − Ti < Φi(t) < Tmax + Ti ⇒
0 < Φi(t) < 2Tmax. Because Devi(t) = 0, we have the lemma
statement.

In all cases, we have the lemma statement.

By Lemma 11, the relative difference between
∑
τi∈τ Φi(t)

and
∑
τi∈τ Devi(t) decreases as both sums increase.

Lemma 12 establishes how large K must be for these sums
to have a given magnitude.

Lemma 12. Associate each task τi ∈ τ with a decision
variable yi. For any K > 0, the problem

min
∑
τi∈τ

yi such that∑
τi∈τ

uiy
2
i = K (9)

y ≥ 0 (10)

has optimal value
√
K/umax.

Proof. This problem is optimized when yi =
√
K/ui for

some unique yi where ui = umax, and yj = 0 for all j 6= i.
We prove this by showing that the objective value of any

other solution can be decreased.

Claim 12.1. Let τi and τj be two tasks such that for some
solution vector y, we have yj > 0. The vector

y′k =


0 k = j√
y2
i +

uj

ui
y2
j k = i

yk otherwise

is also a solution.

Proof. We need to show that y′ satisfies (9) and (10). (10) is
true because y is a solution.

For (9), note that
∑
τk∈τ uk(y′k)2 =

∑
τk∈τ\{τi,τj} uky

2
k +

ui(y
′
i)

2 + uj(y
′
j)

2 = K − uiy2
i − ujy2

j + ui(y
′
i)

2 + uj(y
′
j)

2 =
K − uiy2

i − ujy2
j + ui(y

2
i +

uj

ui
y2
j) + uj(0) = K. �

Claim 12.2. Let τi and τj be two tasks such that for some
solution y, we have yj > 0 and umax = ui > uj . Solution y′

as defined in Claim 12.1 has a lower objective value than y.

Proof. Consider yi and yj to be the length of the legs of a
right triangle (possibly of 0 area). Then

yi + yj

≥
{

Pythagorean Theorem and Triangle Inequality
yi, yj ≥ 0,

}
√
y2
i + y2

j

>{ui > uj ∧ yj > 0}√
y2
i +

uj
ui
y2
j .

Thus, the objective value of y′ is∑
τk∈τ

y′k

= y′i + y′j +
∑

τk∈τ\{τi,τj}

y′k

= y′i + y′j +
∑

τk∈τ\{τi,τj}

yk

=

√
y2
i +

uj
ui
y2
j + 0 +

∑
τk∈τ\{τi,τj}

yk

<
∑
τk∈τ

yk



(11)

�

Claim 12.3. Let τi and τj be two tasks such that for some
solution y, we have yi, yj > 0 and umax = ui = uj . y′ as
defined in Claim 12.1 has a lower objective value than y.

Proof. Consider yi and yj to be the non-zero length legs of a
right triangle.

yi + yj

>

{
Pythagorean Theorem and Triangle Inequality
yi, yj > 0,

}
√
y2
i + y2

j

=

√
y2
i +

uj
ui
y2
j

Thus, the objective value of y′ is then less than that of y
by the same reasoning as (11). �

Observe that any solution that is not the optimal solution
described at the beginning of this proof can be improved by
being modified as described by Claims 12.2 and 12.3. �

There are two remaining lemmas needed to prove Lemma 15
(required by Step 3). Lemma 13 establishes the value of
Devi(t) at time 0.

Lemma 13. For any task τi, Devi(0) = 0.

Proof. At time 0, by Def. 7, vti(0) = ri(0) + Ti
Ci(0)−ci(0)

Ci(0) .
Because at time 0, the current job of τi is τi,1 and τi,1 has
not yet executed, we have vti(0) = ri,1 + Ti

Ci,1−Ci,1

Ci,1
= ri,1.

Because ri,1 ≥ 0, we have vti(0) ≥ 0.
Because vti(0) ≥ 0, we have −vti(0) ≤ 0. By Def. 8,

Devi(0) = max {0, 0− vti(0)} = 0.

Lemma 14 establishes that Devi(t) is always finite.

Lemma 14. For any t ≥ 0 and task τi, we have Devi(t) ≤ t.

Proof. By Def. 8, Devi(t) = max {0, t− vti(t)}. If t −
vti(t) ≤ 0, then Devi(t) = 0 ≤ t.

Otherwise, Devi(t) = t−vti(t). By Lemma 4, vti(t)+Ti ≥
di(t) = ri(t) +Ti. Because jobs are not released prior to time
0, vti(t) ≥ ri(t) ≥ 0. Thus, Devi(t) = t− vti(t) ≤ t.

We can now present our sufficient condition and prove that
an invariant on squares of deviations is maintained if it is true
(note that x′ is indexed by task and processor while ` is scalar).

∃x′ ≥ 0, ` ∈ (0, 1) : ∀ τi ∈ τ :
∑
πj∈π

si,jx
′
i,j ≥ ui

∀ τi ∈ τ :
∑
πj∈π

x′i,j = 1− `

∀ πj ∈ π :
∑
τi∈τ

x′i,j = 1− `


(12)

Note that were we to allow ` = 0 in the latter two con-
straints, (12) would be equivalent to the feasibility condition
for any scheduler on unrelated multiprocessors [2].

Lemma 15. For any ∆ > 0, let

K , umax

(
2nTmaxsmax + ∆

`umin

)2

. (13)

Under Unr-EDF, if ∃x′, ` such that (12) is satisfied, then
for any time t ≥ 0,∑

τi∈τ
ui(Devi(t))2 ≤ K. (14)

Proof. We prove the lemma by contradiction. Suppose other-
wise that there exist time instants such that (14) does not hold.
By Lemma 13, (14) holds at time 0. Let tb be the last time
instant such that (14) holds over [0, tb). In other words,

∀t ∈ [0, tb) :
∑
τi∈τ

ui(Devi(t))2 ≤ K (15)

∀δ > 0 : ∃ε ∈ [0, δ) :
∑
τi∈τ

ui(Devi(tb + ε))2 > K (16)

Claim 15.1.
∑
τi∈τ ui(Devi(tb))2 = K.

Proof. We prove the claim by contradiction. Suppose other-
wise that

∑
τi∈τ ui(Devi(tb))2 6= K.

Case 15.1.1.
∑
τi∈τ ui(Devi(tb))2 < K

Let L = K −
∑
τi∈τ ui(Devi(tb))2 > 0 and let

δ′ ,
√
t2b + L/(numax)− tb > 0. (17)

By (16), ∃ε ∈ [0, δ′) :
∑
τi∈τ ui(Devi(tb + ε))2 > K.

Thus, ∑
τi∈τ

ui
[
(Devi(tb + ε))2 − (Devi(tb))2

]
> K −

∑
τi∈τ

ui(Devi(tb))2 = L.

Because the maximum of a finite set of reals is at least the
mean, ∃τi ∈ τ : ui

[
(Devi(tb + ε))2 − (Devi(tb))2

]
>

L/n. Dividing both sides by ui and factor-
ing the left-hand side of the above yields
[Devi(tb + ε) + Devi(tb)] [Devi(tb + ε)− Devi(tb)] >
L/(nui). Note that because L/(nui) > 0 and by
Def. 8, Devi(tb + ε) + Devi(tb) ≥ 0 holds, we have
Devi(tb + ε)− Devi(tb) > 0. Thus, by Lemma 14,

[2tb + ε] [Devi(tb + ε)− Devi(tb)] > L/(nui)

⇒ {ε < δ′}
[2tb + δ′] [Devi(tb + ε)− Devi(tb)] > L/(nui)

⇒ Devi(tb + ε)− Devi(tb) >
L

nui(2tb + δ′)
.

Because Devi(tb + ε)−Devi(tb) > 0 and Devi(tb) ≥ 0 (by
Def. 8), Devi(tb+ε) > 0. By Def. 8, Devi(tb+ε)−Devi(tb) =
tb + ε− vti(tb + ε)− tb + vti(tb). Thus, tb + ε− vti(tb + ε)−
tb + vti(tb) >

L
nui(2tb+δ′) . Rearrangement yields

vti(tb + ε)− vti(tb)

< ε− L

nui(2tb + δ′)

< {ε < δ′}

δ′ − L

nui(2tb + δ′)

= {tb, δ′ > 0⇒ 2tb + δ′ 6= 0}
1

2tb + δ′

[
δ′(2tb + δ′)− L

nui

]
= {By (17)}

1

2tb + δ′


− L

nui

×
(√

t2b + L/(numax) + tb

)
(√

t2b + L/(numax)− tb
) 

=
1

2tb + δ′

[
t2b +

L

numax
− t2b −

L

nui

]
≤ {ui ≤ umax}

0.

This contradicts Lemma 3.

Case 15.1.2.
∑
τi∈τ ui(Devi(tb))2 > K

The reasoning of Case 15.1.2 is fairly similar to that of
Case 15.1.1 in that we prove vti(t) must have decreased for
some task τi for this case to have occurred, thereby contra-
dicting Lemma 3. We defer the reasoning for Case 15.1.2 to
the online appendix [24].

In either case, we have a contradiction. Thus,∑
τi∈τ ui(Devi(tb))2 = K. �

Claim 15.2. Unr-EDF is non-fluid.

This claim follows from the fact that Unr-EDF only
reschedules at job completions and pseudo-releases. A formal
proof is provided in the online appendix [24].

Claim 15.3.
∑
τi∈τ Devi(tb) ≥

√
K
umax

= 2nTmaxsmax+∆
`umin

.

Proof. Consider the optimization problem in Lemma 12. Be-
cause Devi(tb) ≥ 0 (by Def. 8), (10), Claim 15.1, and (9),
letting yi = Devi(tb) for each task τi ∈ τ is a solution to
this optimization problem. Because an optimal solution must
have a lower or equal objective function value than any other
solution,

∑
τi∈τ Devi(tb) =

∑
τi∈τ yi ≤

√
K/umax. By (13),√

K/umax = (2nTmaxsmax + ∆)/(`umin). �

Claim 15.4. At time tb,∑
τi∈τ

Devi(tb)si(tb) > ∆ +
∑
τi∈τ

Devi(tb)ui. (18)

Proof. Consider the values of x′/(1 − `). By (12), we
have ∀τi ∈ τ :

∑
πj∈π x

′
i,j/(1− `) = 1, ∀πj ∈ π :∑

τi∈τ x
′
i,j/(1− `) = 1, and x′/(1− `) ≥ 0.

Thus, x′/(1 − `) is a fractional solution (i.e., when xi,j ∈
{0, 1} in (4) is relaxed to xi,j ≥ 0) of (4). Let xb be
the optimal solution of (4) at time tb used to assign tasks
to processors. Because (4) is an instance of the assignment
problem (2) with wi,j = Φi(tb)

∑
πj∈π si,j , by Theorem 1,

the optimum value obtained by xb for (4) is at least as large
as the value obtained by (fractional) solution x′/(1−`). Thus,∑

τi∈τ
Φi(tb)

∑
πj∈π

si,jx
b
i,j

≥
∑
τi∈τ

Φi(tb)
∑
πj∈π

si,jx
′
i,j/(1− `).

(19)

By (12), ∀τi ∈ τ :
∑
πj∈π si,jx

′
i,j/(1− `) ≥

ui/(1 − `). Because Φi(tb) ≥ 0 (by Lemma 10),
multiplying both sides by Φi(tb) and summing over
all tasks yields

∑
τi∈τ Φi(tb)

∑
πj∈π si,jx

′
i,j/(1− `) ≥∑

τi∈τ Φi(tb)ui/(1− `). Thus, by (19),∑
τi∈τ

Φi(tb)
∑
πj∈π

si,jx
b
i,j ≥

∑
τi∈τ

Φi(tb)ui/(1− `). (20)

By (4), the definition of assignment, and the definition of
si(t), we have

∑
πj∈π si,jx

b
i,j = si(tb). Because Φi(tb) =

Devi(tb) + (Φi(tb)− Devi(tb)), by (20), we have

∑
τi∈τ

Devi(tb)si(tb)

≥
∑
τi∈τ

Devi(tb)ui/(1− `)

+
∑
τi∈τ

(Φi(tb)− Devi(tb))(ui/(1− `)− si(tb))

≥
{
ui > 0 ∧ ` ∈ (0, 1)⇒ ui/(1− `) > 0
By Lemma 11, Φi(tb)− Devi(tb) ≥ 0.

}
∑
τi∈τ

Devi(tb)ui/(1− `)−
∑
τi∈τ

(Φi(tb)− Devi(tb))si(tb)

=
∑
τi∈τ

Devi(tb)ui +
`

1− `
∑
τi∈τ

Devi(tb)ui

−
∑
τi∈τ

(Φi(tb)− Devi(tb))si(tb)

≥ {By Lemma 11 and si(tb) ≤ smax}∑
τi∈τ

Devi(tb)ui +
`

1− `
∑
τi∈τ

Devi(tb)ui

−
∑
τi∈τ

2Tmaxsmax

= {|τ | = n}∑
τi∈τ

Devi(tb)ui +
`

1− `
∑
τi∈τ

Devi(tb)ui − 2nTmaxsmax

> {By (12), ` ∈ (0, 1) ∧ ui ≥ umin}∑
τi∈τ

Devi(tb)ui + `umin

∑
τi∈τ

Devi(tb)− 2nTmaxsmax

≥ {By Claim 15.3}∑
τi∈τ

Devi(tb)ui + 2nTmaxsmax + ∆− 2nTmaxsmax

= ∆ +
∑
τi∈τ

Devi(tb)ui. �

By Claim 15.2, we have that Unr-EDF is non-fluid; by
Claim 15.3, we have that

∑
τi∈τ Devi(tb) > 0; by Claim 15.4,

we have (18). Thus, by Lemma 7, we have

∃δ > 0 : ∀ε ∈ [0, δ) :∑
τi∈τ

ui(Devi(tb))2 >
∑
τi∈τ

ui(Devi(tb + ε))2.

However, by Claim 15.1 and (16), we have

∀δ > 0 : ∃ε ∈ [0, δ) :∑
τi∈τ

ui(Devi(tb))2 <
∑
τi∈τ

ui(Devi(tb + ε))2.

Thus, the existence of the time instant tb is a contradiction.
Thus, (14) is maintained for all t ≥ 0. �

Proving Lemma 15 completes Step 3. Step 4 (proving
tardiness bounds) is a straightforward with Lemmas 5 and 15.

Theorem 2. Under Unr-EDF, if ∃x′, ` such that (12) is
satisfied, then the tardiness of any task τi is at most√

umax

ui

2nTmaxsmax

`umin
. (21)

Proof. By Lemma 15, for any time t ≥ 0 and ∆ > 0, we have∑
τi∈τ ui(Devi(t))2 ≤ umax

(
2nTmaxsmax+∆

`umin

)2

. Because for any
task τi, we have Devi(t) ≥ 0 (by Def. 8), we have for each

i that ui(Devi(t))2 ≤ umax

(
2nTmaxsmax+∆

`umin

)2

. Thus, we have

Devi(t) ≤
√

umax
ui

2nTmaxsmax+∆
`umin

.
By Lemma 5, the tardiness of τi is therefore at most√
umax
ui

2nTmaxsmax+∆
`umin

. This value approaches (21) in the limit
as we allow our choice of ∆→ 0.

V. EVALUATION

To evaluate our tardiness bound, we simulated Unr-EDF
on randomly generated task systems and multiprocessors in
Python. The source code of the simulation is provided on-
line [24]. This simulation implements the incremental algo-
rithm discussed in Sec. III-C.

We generated task systems of sizes n = {20, 40, 80}, with
{4, 8} processors (the number of processors was increased to
n by the techniques discussed in Sec. II). We also considered
values of ` ranging from {1/2, 1/4, 1/8, . . . , 1/256}. Proces-
sor speeds for each task were sampled uniformly from [0.0,
1.0). Utilizations were generated to match given ` values by
solving a maximization linear program with constraints taken
from (12) with decision variables x′ and u. The objective
function of was a linear combination of the elements of u, with
coefficients sampled uniformly from [0.0, 1.0). Periods were

Fig. 4: Plot of tardiness against ` for 40 tasks and 4 processors.

then sampled uniformly from [10, 100]. 100 task systems and
multiprocessors were generated for each triplet of task count,
processor count, and ` value. For each generated system,
tardiness of tasks under Unr-EDF with periodic releases was
measured for 100,000 simulated time units.

For each pair of task and processor counts, we plotted
the maximum tardiness relative to Tmax of each task system
against `. An example graph is presented in Fig. 4 (` halves at
each step from left to right). Boxplots illustrate the quartiles
and outliers of tardiness for each `. In Fig. 4, as well as
the other generated graphs, it can be observed that, while
tardiness increases as `→ 0, tardiness does not scale inversely
with ` (unlike our analytical bound in (21)). All observed
task systems suffered tardiness at worst Tmax, with a majority
suffering a small fraction of Tmax.

While this suggests that our analysis is fundamentally
pessimistic and Unr-EDF may actually be SRT-optimal, this
is not conclusive evidence. It has always been the case,
even for standard EDF on identical multiprocessors [5], that
the tardiness of randomly generated task systems tends to
be lower than the worst-case tardiness of hand-crafted task
systems. Unfortunately, the complexity of Unr-EDF and, more
generally, of tracking remaining execution requirements of
jobs under unrelated multiprocessors seem to make computing
schedules by hand intractable. For now, this has left simulation
as our only approach for counterexample searching.

VI. CONCLUSION

In this work, we have designed a new EDF variant
Unr-EDF for unrelated multiprocessors. We have proven
that existing SRT-optimal EDF variants are special cases of
Unr-EDF. We have proven that Unr-EDF is at least nearly
SRT-optimal and have shown in simulation that tardiness under
Unr-EDF for randomly generated task systems is reasonable.

Topics of future work include refining the analysis of this
work to either prove full SRT-optimality with improved tardi-
ness bounds or demonstrate the existence of counterexamples
with unbounded tardiness. Additionally, we will investigate
how Unr-EDF (or special cases of the algorithm) might be
practically implemented for unrelated multiprocessors.

REFERENCES

[1] S. K. Baruah, V. Bonifaci, R. Bruni, and A. Marchetti-Spaccamela, “ILP-
based approaches to partitioning recurrent workloads upon heteroge-
neous multiprocessors,” in Euromicro Conference on Real-Time Systems
(ECRTS), 2016, pp. 215–225.

[2] S. K. Baruah, “Feasibility analysis of preemptive real-time systems upon
heterogeneous multiprocessor platforms,” in IEEE Real-Time Systems
Symposium (RTSS), 2004, pp. 37–46.

[3] H. S. Chwa, J. Seo, J. Lee, and I. Shin, “Optimal real-time scheduling
on two-type heterogeneous multicore platforms,” in IEEE Real-Time
Systems Symposium (RTSS), 2015, pp. 119–129.

[4] B. B. Brandenburg, “Scheduling and locking in multiprocessor real-time
operating systems,” Ph.D. dissertation, University of North Carolina,
Chapel Hill, NC, 2011.

[5] U. M. C. Devi and J. H. Anderson, “Tardiness bounds under global EDF
scheduling on a multiprocessor,” in IEEE Real-Time Systems Symposium
(RTSS), 2005, pp. 12 pp.–341.

[6] J. Lelli, C. Scordino, L. Abeni, and D. Faggioli, “Deadline scheduling
in the Linux kernel,” Softw. Pract. Exper., vol. 46, no. 6, p. 821–839,
Jun. 2016.

[7] “Deadline task scheduling,” https://github.com/torvalds/linux/blob/
master/Documentation/scheduler/sched-deadline.rst, 2018, online;
accessed 03 June 2020.

[8] K. Yang and J. H. Anderson, “On the soft real-time optimality of
global EDF on uniform multiprocessors,” in IEEE Real-Time Systems
Symposium (RTSS), 2017, pp. 319–330.

[9] F. Cerqueira, A. Gujarati, and B. B. Brandenburg, “Linux’s processor
affinity API, refined: Shifting real-time tasks towards higher schedulabil-
ity,” in IEEE Real-Time Systems Symposium (RTSS), 2014, pp. 249–259.

[10] S. Tang, S. Voronov, and J. H. Anderson, “GEDF tardiness: Open prob-
lems involving uniform multiprocessors and affinity masks resolved,”
in Euromicro Conference on Real-Time Systems (ECRTS), ser. Leibniz
International Proceedings in Informatics (LIPIcs), S. Quinton, Ed., vol.
133. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2019, pp. 13:1–13:21.

[11] I. Toroslu and G. Üçoluk, “Incremental assignment problem,” Informa-
tion Sciences, vol. 177, pp. 1523–1529, 03 2007.

[12] S. Tang and J. H. Anderson, “Towards practical multiprocessor EDF
with affinities,” in IEEE Real-Time Systems Symposium (RTSS). Los
Alamitos, CA, USA: IEEE Computer Society, dec 2020, pp. 89–101.

[13] K. Albers and F. Slomka, “An event stream driven approximation for the
analysis of real-time systems,” in Euromicro Conference on Real-Time
Systems (ECRTS), 2004, pp. 187–195.

[14] N. Fisher and S. K. Baruah, “A fully polynomial-time approximation
scheme for feasibility analysis in static-priority systems with arbitrary
relative deadlines,” in Euromicro Conference on Real-Time Systems
(ECRTS), 2005, pp. 117–126.

[15] V. Bonifaci, B. B. Brandenburg, G. DAngelo, and A. Marchetti-
Spaccamela, “Multiprocessor real-time scheduling with hierarchical
processor affinities,” in Euromicro Conference on Real-Time Systems
(ECRTS), July 2016, pp. 237–247.

[16] S. Tang, J. H. Anderson, and L. Abeni, “On the defectiveness of
sched deadline w.r.t. tardiness and affinities, and a partial fix,” in
International Conference on Real-Time Networks and Systems (RTNS),
2021.

[17] K. Yang and J. H. Anderson, “On the soft real-time optimality of global
EDF on multiprocessors: From identical to uniform heterogeneous,” in
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2015, pp. 1–10.

[18] G. Tong and C. Liu, “Supporting soft real-time sporadic task systems on
uniform heterogeneous multiprocessors with no utilization loss,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 9, pp.
2740–2752, 2016.

[19] J. Erickson, U. M. C. Devi, and S. K. Baruah, “Improved tardiness
bounds for global EDF,” in Euromicro Conference on Real-Time Systems
(ECRTS), 2010, pp. 14–23.

[20] J. Erickson, J. Anderson, and B. Ward, “Fair lateness scheduling:
Reducing maximum lateness in G-EDF-like scheduling,” Real-Time
Systems, vol. 50, 07 2014.

[21] P. Valente, “Using a lag-balance property to tighten tardiness bounds for
global EDF,” Real-Time Systems, vol. 52, 08 2015.

[22] J. Matoušek and B. Gärtner, Understanding and Using Linear Program-
ming. Springer, 01 2007.

[23] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic
efficiency for network flow problems,” J. ACM, vol. 19, no. 2, p.
248–264, Apr. 1972.

[24] S. Tang, S. Voronov, and J. H. Anderson, “Extending EDF for soft real-
time scheduling on unrelated multiprocessors,” Full version of this paper,
available at http://jamesanderson.web.unc.edu/papers/, 2021.

