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Abstract

Computational quantum chemistry promises to help guide the design of catalysts

that are more sustainable and economical. This feature article gives a tutorial overview

of how our group accounts for thermodynamics and kinetics of chemical reactions in

complex environments. We start with explanations of how to include environmental

contributions when modeling homogeneous and heterogeneous catalytic processes. We

also provide examples of schemes that use machine learning and alchemical pertur-

bation density functional theory that eschew high computational costs while providing

useful insights into chemical reaction mechanisms. With this tool-box of computational

methods, we highlight progress in understanding how to reliably model renewable en-

ergy catalysis reaction mechanisms that occur in complex environments.
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Introduction

Catalysis plays a critical role in society by producing fuels and value-added chemicals, 1 but

the continually evolving socioeconomic and environmental landscapes require advances to

make catalytic processes more sustainable.2–4 Science and engineering have traditionally used

knowledge, intuition, and ingenuity to guide catalyst design, but we are in an exciting epoch

where computational codes and algorithms are becoming faster, more accurate, and better

automated. This means that more and more hypothetical catalysts can be computationally

screened to find the most promising candidates that warrant consideration in the arduous

and costly process of experimental synthesis, testing, and implementation.

In catalysis applications, computational chemistry is wielded to predict quantitative

trends in how local chemical bonding and solvent effects influence thermodynamics and

kinetics of reaction steps. The required robustness of the modeling ultimately depends on

the complexity of the system. The proverbial zoo of multiscale methods, model chemistries

(i.e., levels of theory and basis sets) and assorted keywords can make it almost too easy for

novices to use a method to obtain a pre-conceived result. But for experts, this zoo represents

a gallery of ornate methods that account for different physicochemical interactions within

molecules and materials in hierarchical degrees of physical rigor and computational expense.

Depending on the relevant physics of the system, homogeneous reactions might be suf-

ficiently modeled within a vacuum, within a polarizing continuum solvent model, or they

may require more complex and locally heterogeneous solvating environment. 5 Alternatively,

heterogeneous mechanisms will occur at an interface of two (or more) different phases, for ex-

ample, a solid/liquid interface (SEI). If the solid phase here is a conductor, then standard gen-

eralized gradient approximation (GGA)-based Kohn-Sham density functional theory (DFT)

might be adequate. However, GGA-based functionals also might not be trustworthy, includ-

ing the case of CO adsorption on transition metal surfaces being imprecisely described by

PBE.6,7 Additionally, studying the water gas shift reaction (WGSR) on copper with increas-

ingly complex DFT functional can result in different kinetic predictions of WGSR. 8 In cases
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such as these, and if the solid phase in a SEI is a highly correlated semi-conductor, higher

level calculations such as DFT+U, other methods from the Jacob’s Ladder of DFT func-

tionals, or one of a variety of different embedded DFT theories may be needed to physically

describe the correct state. Additionally, studies of the water gas shift reaction (WGSR) on

copper with increasingly complex GGA exchange-correlation functionals can result in vary-

ing kinetic predictions of WGSR, including the determination of the surface mechanism. In

cases such as these the solid phase in the SEI is a highly correlated semi-conductor, then

higher level calculations such as DFT+U,9–12 other methods from the Jacob’s Ladder of DFT

functionals,13 or one of a variety of different embedded DFT theories 14–22 may be needed to

physically describe the correct state. Besides the choice of model chemistry for the electronic

structure, the solvent phase could be modeled using one or more well-ordered solvent layers,

pseudo-amorphous blobs of solvent molecules (perhaps including ions and counterions), sol-

vent interactions might be treated with implicit models, 23–26 or neglect solvation altogether.

The nature of atoms within the local environment around homogeneous or heterogeneous

chemical steps also depend on the outer shell environmental factors: chemical potentials of

protons, electrons, electric fields, and any potentially mass-transfer limited species. There

admittedly is not a consensus about the ‘correct’ way to model all of these effects. However,

whatever the approach chosen, computational models must provide useful insight to advance

understanding and guide the design of new and improved technologies.

One of our group’s primary interests is understanding how to best model chemical reac-

tions on a computer and navigate the vastness of chemical and material space for improved

design. Even with the advances in computational quantum chemistry (QC) and more efficient

calculation platforms,27–31 chemical and materials space are so tremendously massive that

QC calculations on all possible candidates should be considered intractable for quite some

time. With catalysts, the vastness of chemical space arises from different hypothetical atom

configurations at active sites, their surrounding ligands and/or degrees of strain, and envi-

ronmental aspects such as solvation, pH, and ionic strength. Thus, there is recent interest in
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developing and applying cost-efficient and approximate methods based on machine learning

(ML) and/or other physical theories.32 The validity of these methods can be assessed with

straightforward fundamental application studies that consider metrics for their reliability in

catalysis applications: e.g., predicted binding energies of reaction intermediates, activation

energies of chemical reactions, or thermodynamic descriptors such as acidity constants and

standard redox potentials. Below, we discuss our progress in understanding how to model

these factors.

Materials screening with alchemy

In 2011, the United States launched the Materials Genome Initiative (MGI) to create new

infrastructure for rapid computational prediction and screening of novel materials. 33,34 Catal-

ysis researchers have followed suit and pursued similar efforts with the catalyst genome. 35

The main target of interest has been the atomically precise nature of the active site; which

is characterized in part by the local coordination of atoms within the surface facet. Use-

ful descriptors—such as the reacting adsorbate binding energy (BE) to a surface site and

reaction step energetics—provide a straightforward way to assess kinetics of heterogeneous

catalyzed reactions. Indeed, there are concerted efforts for developing databases of these

properties such as Citrination,36 Catalysis-Hub,37 and the Material’s Project33 to name a

few.

However, with more promising classes of materials being discovered experimentally and

computationally, the community must adopt procedures suitable for systematic studies.

GGA methods in general are suitable for many systems, but some require higher levels

of theory that bottleneck high-throughput screening. Our group has been investigating

computationally efficient alchemical perturbation DFT (APDFT) approaches that leverage

a small set of QC calculations to create much more useful data without sacrificing much

accuracy.38–40
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Figure 1: Illustration of a thermodynamic cycle that depicts the energetic pathways of
adsorption, atomic transmutations, and how these transmutations impact the adsorption.
We commonly refer to this type of cycle when considering APDFT predictions of BEs on alloy
surfaces that were hypothesized from a reference material. Pathways are composed of the
BEs of an adsorbate on a surface (horizontal legs) and atomic transmutations (vertical legs).
∆E0|λ=0 and ∆E0|λ=1 denote the BEs for the top and bottom horizontal legs, respectively.
∆Es

λ→1 and ∆Ea
λ→1 denote the energy change associated with the atomic transmutation for

the left (s = surface) and right (a = ads-site) vertical legs, respectively. Reprinted with
permission from Ref. 41. Copyright 2020 John Wiley & Sons.

In theory, APDFT provides many adsorbate binding energies by an approximated rela-

tionship of how electrostatic potentials in a reference adsorbate-catalyst system and the BE

change (∆BE) upon a compositional change i.e., an alchemical transmutation. This proce-

dure is illustrated in Figure 1, where a thermodynamic cycle depicts the energetic changes

of adsorbate binding to a surface after an atomic transmutation. The hypothetical energy

contribution arising from this alchemical transmutation is approximated as a Taylor series

∆E0|λ=1 = ∆E0|λ=0 + ∂λ∆E
0∆λ+

1

2
∂2λ∆E

0∆λ2 + · · · , (1)

where ∆E0|λ=1 is the energy of the adsorbate binding on the hypothetical system result-
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ing from the alchemical transmutation. This is equal to the BE on the reference system

(∆E0|λ=0) plus alchemical derivative terms that are written as ∂nλ∆E0, where n is the order

of the derivative, and ∆λ = 1.

In past applications of APDFT,40–56 this expression is typically truncated to just the first

order derivative to approximate the change in BE between the two states as

∆BE = ∆E0|λ=1 −∆E0|λ=0 = ∆Ea
λ→1 −∆Es

λ→1 = ∂λ∆E
0∆λ, (2)

where ∆Es
λ→1 and ∆Ea

λ→1 are the energy changes associated with an alchemical transmuta-

tion done to a bare surface model (s) and a surface model with an adsorbate (a), respectively.

When the alchemical transmutation is made, the nuclear charge of an atom (NI) is altered

by an integer amount (∆Z), resulting in an energy change equal to the energy gradients of

nuclear chemical potential (∆µnI) with respect to this variation in NI . When alchemical

transmutations are done isoelectronically (number of electrons in the system is conserved)

and the atomic positions remain the same, ∆BE is equal to a simplified first order derivative:

∆BE = ∂λ∆E
0∆λ =

∑
I

∆µnI∂λNI . (3)

With this approximation, simple arithmetic manipulations involving electrostatic potentials

of a reference catalyst model are used to predict BEs of hypothetical materials with minimal

computational cost. For a more detailed explanation of first order approximations, we direct

the reader to our recent article, which offers hands-on resources that allow users to perform

APDFT analyses with Jupyter Notebooks.41 Here, we overview our recent work with APDFT

for heterogeneous catalyst and offer our perspective on future implications of this method.

In our first published work on APDFT, we showed that first order approximations are

quite accurate for high-throughput binding energy predictions for doped active sites in transi-

tion metal surfaces.54 Using oxygen reduction reaction intermediates binding on hypothetical

alloys of Pt, Pd, and Ni, we benchmarked APDFT predicted binding energies against DFT
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predicted values and found that these estimates agreed within 0.1 eV.

In a study where we applied APDFT to BE predictions on carbides, nitrides, and oxides,

we found that APDFT agrees with DFT predictions within 0.33 eV for rocksalt TiC(111),

TiN(100), and TiO(100) materials, which do not exhibit a bandgap. 55 Conversely, we found

that APDFT has significant shortcomings with BE predictions on materials based on semi-

conductors like rutile TiO2(110), rutile SnO2(110), and rocksalt ZnO(100). Our hypothesis

was that first order corrections using APDFT were benefited by error cancellation present

in conductive systems that are subjected to electronic screening. We tested this hypothesis

adding Pt dopants to surface layers in TiO2, which decreased the reference material’s band

gap and we found higher accuracy was achieved with those APDFT predictions. We continue

to search for a more precise physical explanations for why APDFT is challenged by these

systems so that it can be used more generally in semi-conducting and insulating systems.

We are also interested in understanding the kinetics of reactions on surfaces that are

dictated by the energy barrier (Ea) between two reaction steps. A standard approach for

predicting Ea for a surface-bound reaction is to employ the nudged elastic band (NEB)

algorithm57 that interpolates images between the initial and final states of a reaction step.

This procedure does not require a Hessian, but the electronic energies and forces on all images

are calculated, and thus making it moderately computationally expensive. The expense

for each NEB calculation makes it challenging to use this approach for determining many

hypothetical Eas for different elementary processes or for systems involving different surface

atoms. Just as when calculating a BE, the number of required calculations for each NEB

pathway will linearly scale with the number of barriers we want to predict.

We tackled this issue by using one NEB calculation to establish an elementary reaction

pathway as a set of reference data and then APDFT to generate approximate many NEB

pathways based on this reference.41 Using the same thermodynamic cycle scheme to approx-

imate the binding energy change following an alchemical transmutation (shown in Figure

1), we approximated the energy change for alchemically transmuted target systems based
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on each image from a traditional NEB calculation for CH4 dehydrogenation on a surface

of Pt(111) that contained 10 images. From this, we used APDFT to generate approximate

energy profiles of this pathway on 32 transmuted variations of the surface (Figure 2). With

these profiles we also predicted Ea for all 32 pathways that agreed with DFT calculations

within 0.3 eV.

Figure 2: Energy profiles for the CH4 dehydrogenation mechanism on hypothetical alloys of
Pt. Here we compare the reaction energy pathway on the original Pt(111) reference surface,
which was calculated with DFT, and the APDFT predicted reaction energies of the same
pathway taken over 32 transmuted variations of the reference surface. The reference pathway
on pure Pt is denoted with red asterisks. Pathways with the most significant effect from a
transmutation with a nuclear charge change ∆Z = +1 is shown in dark blue, pathways with
the most significant effect from a transmutation with a nuclear charge change ∆Z = −1 is
shown in dark green, and other reaction pathways computed with APDFT are shown in a
less visible light blue/green. Due to energy profiles being very similar, there is significant
overlap for many alloys. Reprinted with permission from Ref. 41. Copyright 2020 John
Wiley & Sons.

We have also investigated procedures to buttress APDFT models using ∆-ML proce-

dures,58 showing that the computational effort in developing ML models is justified when

they are valid for data sets magnitudes larger than data sets used for training. 56 By rank-

ing the relative importance of the input features to our models, we identified the variables

that contributed most to low accuracy APDFT BE predictions on certain target alloys, the

size of the transmutation (∆Z), and the number of transmutations. Based on the work of

von Lilienfeld and coworkers demonstrating accurate screening of deprotonation energies us-

ing APDFT with third order corrections,59 we expect that shortcomings we observe with

first order corrections would likely be treatable with higher order corrections and thus allow

accurate screening of more target alloys made with multiple transmutations of larger ∆Z.
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Using third order alchemical derivatives, a symmetric finite differences procedure that re-

quires 1 + 2N + N2 single point energy calculations, where N is the number of sites that

could be transmuted. For a catalyst surface slab model with 16 transmutable sites, one

would only need 289 single point energies to accurately screen thousands of adsorbate BE

on hypothetical alloys. We also anticipate the possibility of higher order corrections treat-

ing the shortcomings we observed with semiconducting systems. With second and third

order energy derivatives, systems that are not subjected to screening effects may be bet-

ter described, and these derivatives may be able to accurately point us in the direction of

more complex materials with higher catalytic activity without a large reliance on other more

expensive methods like DFT+U or using more complex exchange correlation functionals.

Finally, in other ongoing work, we are investigating how APDFT procedures would be re-

lated to other traditional theoretical models for understanding catalyst descriptors such as

Newns-Anderson Hamiltonian methods.60

Since APDFT brings high computationally efficiency, we foresee it making a transforma-

tive change in how to alleviate the necessity of running many calculations to understanding

stable states of catalysts under ambient reaction conditions across chemical space. Catalyst

descriptors are normally modeled assuming ideal conditions on an idealized surface facet, but

in reality, materials may succumb to defects, alloy segregations, 61,62 reconstruction, or non-

innocent phase reconstruction when subjected to a reaction environment. In future work,

we will tackle these challenges with APDFT schemes coupled with other methods, described

in the following section, that our group has applied to model ambient catalyst states.

Modeling catalysts under ambient conditions

Combining the computational hydrogen electrode model 63 with atomistic thermodynam-

ics64–68 allows one to construct electrochemical phase diagrams (including Pourbaix dia-

grams) that identify stable resting states of catalysts under ambient reaction conditions.
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We showed that purported catalysts for CO2 reduction have different and complementary

accessible states that would facilitate energetically efficient shuttling of multiple protons

and electrons.67,69 The procedures outlined there would be useful for identifying and under-

standing bio-inspired orthogonal hydride transfers that have been identified as a promising

catalyst design strategy.70

We also showed, in a collaboration with Snyder’s group at Drexel University, that ac-

counting for multiple thermodynamically accessible states can help deconvolute complex

experimental observations.71 Nanoporous PdX skin alloys (X = Co, Ni, Cu, and Ag) were

presented as electrocatalysts that produced formate from CO2 with high selectivity and

avoided deactivation from CO poisoning. Among these alloys, Pd-skin/Pd3Co was found to

be most promising, which our group theoretically explained by evaluating stable configura-

tions of CO and H binding on the surface with DFT. Moreover, we had to computationally

reconcile both the destabilization of CO (poisoning tolerance) and H (facilitating CO2 hy-

drogenation to formate) on these surfaces. BE calculations with co-adsorbed species were

run (shown in Figure 3), and results showed that adsorbed CO and H were both the most

destabilized on Pd-skin/Pd3Co, regardless of the co-adsorbed species. Again, simple calcu-

lation models for understanding catalyst activity would be significantly amplified by using

accurate APDFT modeling.

In other work, we used electrochemical phase diagrams to understand which molecular

and material states would be relevant under different electrochemical reaction conditions. In

one study,67 electrochemical phase diagrams illustrated the stability of different intermediates

on SnO2 (110) surface as a function of the thermodynamic driving force for CO2 binding to

a surface (i.e., ∆µCO2) and electrochemical potential (i.e., U). We plotted and overlaid the

theoretical Pourbaix diagram over the experimental Pourbaix diagram for CO2 intermediates

in aqueous phase to show the proximity of boundaries between them. This led us to propose

reaction intermediates that would explain experimentally observed overpotentials potentials

for CO2 reduction at maximum Faradaic efficiency.
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Figure 3: DFT calculations considered the interplay of co-adsorbed species to rationalize
experimental observations of nanoporous PdX skin alloys as CO poisoning tolerant electro-
catalysts for CO2 reduction to formate. Tabulated above are binding energies (in eV) on
Pd-skinned Pd3X alloys (X = Co, Ni, Cu, Ag) for CO binding to a clean surface (CO*-1),
CO binding to a surface with H* (CO*-2), CO binding to a surface with 2 H* (CO*-3), H
binding to a clean surface (H*-1), H binding to a surface with H* (H*-2), and H binding
to a surface with CO* (H*-3). Reprinted with permission from Ref. 71. Copyright 2019
American Chemical Society.

To create these diagrams, we first calculated the free energy change for different reac-

tions in the system. We refer back to our work on the electroreduction of CO2 on N-doped

graphene69 as an example derivation. Considering the following chemical formula for reduc-

ing a graphene basal planes (GBP) in aqueous environment according to atomistic thermo-

dynamics follows:

C32 +
x

2
N2 +

z

2
H2 −→ C32−x−yNxHz + Cx+y. (4)

(Note that C32 refers to the clean GBP model.) We then calculated the Gibbs energy

(G = EDFT + Gvib) of each species in the equation with the electronic energy from DFT

(EDFT) and Gvib, which is comprised of the energy correction from zero point energy (EZPE)

and vibrational entropy (TSvib). The free energy change of the reaction as shown in Equation

4 is written below, where the chemical potentials (µ) of atomic species are included:

∆G = G(C32−x−yNxHz)−G(C32) + (x+ y)µ(C)− xµ(N)− zµ(H). (5)
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Next, we could reference this energy with the Standard Hydrogen Electrode (SHE), and

finally, we get the free energy expression for the GBP reaction as a function of pH and

applied potential (U) below, where ∆µN is the thermodynamic driving force for N binding:

∆G =EDFT
C32−x−yNxHz

− EDFT
C32

+ ∆Gvib − x
(

1

2
EN2 + ∆µN

)
+ (x+ y)EC − z

(
1

2
µ(H2)− 2.303 kBT pH− U

) (6)

To plot an electrochemical phase diagram, the free energy of each intermediate is cal-

culated with Equation 6 assuming a constant pH environment, and this gives a relation

between ∆G and ∆µN for each intermediate. Next, ∆G is converted into a reduction po-

tential Ered with Ered = −∆G/ (nF ) to have a relation between reduction potential and

thermodynamic driving force, where n is the number of electrons transferred and F is Fara-

day’s constant. Finally, we could plot the boundary lines of each intermediate and find the

most thermodynamically stable state at different voltages and ∆µN. Plotting a Pourbaix

diagram can be done with a similar procedure, where we set ∆µN as zero and find out the

relationship between U and pH for each intermediates. With that, we determine the most

stable intermediate at different U and pH to get the final Pourbaix diagram.

We believe these atomistic thermodynamics schemes should be and will be used more

often for theoretically complete catalyst screening studies. For example, there are excellent

opportunities for combining schemes for identifying thermodynamically relevant structures

using high-throughput generations of microkinetic mechanism parameters, 72,73 active site en-

sembles of metastable states,74,75 and models based on active site coordination numbers. 76–78

This is not done now because it would require very large numbers of QC calculations, but

this would also be alleviated with new advances in APDFT and ML approaches.
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Toward mechanistic understanding

Any given chemical species may undergo countless reaction mechanisms. Hydrogenations

are one such example, and Figure 4 shows 23 hypothetical steps (consisting of covalent

hydrogen atom transfers, stepwise or coupled proton and electron transfers, and formal

hydride transfers) that might warrant consideration when computationally analyzing an

arbitrary reduction starting with species A (or an oxidation ending with species A).

Figure 4: A general hydrogenation of A can be considered as a series of elementary electron
and proton transfers, proton coupled electron transfers, or formal hydride transfers, and
energetics of each pathway may vary depending on the environment.

For example, suppose a catalyst were experimentally found to reduce CO2 (A in Figure

4), but its actual mechanism was unclear, and computational theory was needed for insight.

From standard QC calculations, the most favorable state of CO2 and the catalyst with respect

to pH and applied potential (a Pourbaix diagram) can be determined as shown in Figure 5.

The boundary lines of the calculated Pourbaix diagrams show at which conditions of applied

potential and pH species on opposite sides of the boundary have the same chemical potential

(i.e., when a reaction from one to the other would bring ∆G = 0). This is an important

point of reference for understanding reaction mechanisms, but reaction barriers would also
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Figure 5: (A) Pourbaix diagram showing stable states of the reactant, CO2; (B) Pourbaix
diagram showing stable states of a hypothetical molecular catalyst, 1,10-phenanthroline;
(C) overlaid Pourbaix diagrams from (A) and (B) showing similar boundaries for hydrogen
shuttling and CO2 reduction. Vertical lines represent pK as, the horizontal lines represent the
pH-independent standard redox potentials and the diagonal lines represent the pH-dependent
proton-coupled electron transfer steps. Adapted with permission from Ref. 79. Copyright
2019 Wiley Periodicals, Inc.

need to be introduced for modeling reaction kinetics. Since these reactions very likely can

involve the participation of solvent molecules, we now turn to how our group approaches

solvated systems.

Modeling solvent environments

We consider three main classifications of solvent models: implicit (or continuum), mixed im-

plicit/explicit (or cluster–continuum), and explicit. All bring different strengths and weak-

nesses, but useful insights can be learned by comparing results from different models. Implicit

models is a broad category, but generally refers to any solvent models that does not explicitly

include solvent molecules as shown in Figure 6A. Many are parameterized to predict solva-

tion energies based on a homogeneous dielectric medium interacting with the solute. 80,81

Other implicit models use more complicated solute-solvent and/or ensemble descriptions.

The conductor-like screening model for real solvents (COSMO-RS), for example, uses QC
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Figure 6: Various solvent modeling techniques are illustrated on a fictitious solute (purple)
solvated in water. (A) Local and bulk solvent interactions can treated with a implicit solvent
model; a fictitious solute cavity is shown. (B) Local solvent effects are captured with explicit
solvent molecules. The less important bulk contributions are efficiently described with an
implicit model. (C) The entire solvent is modeled explicitly.

to describe the solute polarization of a conductor’s cavity surface and statistical thermody-

namics to compute the molecular chemical potential. 82 The reference interaction site model

(RISM) models correlation functions of solute and solvent molecular sites to compute the sol-

vent distributions and thermodynamics.83 This is not an exhaustive list, and there are many

more implicit models and variations that each have their own approximations, formulations,

and applications.

The well-known problem of implicit models is their respective approximations and pa-

rameterizations that dictate their accuracy, reliability, and transferability. By including

some explicit solvent molecules with the solute in QC calculations the solvent is essentially

separated into local (inner) and bulk (outer) contributions. 84 This technique is commonly

called mixed implicit/explicit or cluster–continuum modeling (Figure 6B). Quasi-chemical

theory (QCT) is a physically rigorous way to separate solvation free energies into statistical

contributions and is thoroughly explained elsewhere. 85–89 Essentially, the excess chemical
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potential (i.e., molar solvation free energy) of some arbitrary solute, X, in a pure solvent, L,

is expressed in QCT as

µ
(ex)
X = −kBT ln(K(0)

n ρn) + kBT ln pX (n) +
[
µ
(ex)
LnX
− nµ(ex)L

]
. (7)

The terms in Equation 7 can be conceptually described as desolvating n individual sol-

vent molecules (−nµ(ex)L ), associating the solute and solvent molecules (nL + X ⇀↽ (L)nX)

into a cavity with a solvent density ρ and equilibrium constant K(0)
n in the ideal-gas phase

(−kBT ln K
(0)
n ρn), solvating the associated solute-solvent cluster (µ(ex)LnX

), then releasing the

geometric constraint inside the cavity (kBT ln pX(n)) where pX(n) is the probability of ob-

serving n ligands in solution within a predefined region.

Various contributions in Equation 7, specifically ln pX (n), require a priori information

of solvent coordination numbers or dynamic simulations to explicitly quantify them. Alter-

natively, one could use preformed solvent clusters as proposed by Bryantsev et al. 90 This

cluster thermodynamic cycle can be thought of as applying QCT to both the solvent and

solute-solvent clusters to provide error cancellation allowing one to forgo a priori informa-

tion requirements and dynamic simulations. The challenge with these approaches, however,

is determining the quantity and configurations of solvent molecules to be used. This would

involve molecular simulations or comparisons to experiment.

To tackle this challenge, we employed an unsupervised ML procedure to identify solute-

solvent clusters that result in single-ion solvation energies that appear to converge toward

values in reasonable agreement to experimental data. 91 The smooth overlap of atomic po-

sitions (SOAP)92 representation with sketch-map93 dimensionality reduction was used to

quantitatively compare structures from an automated, multi-step filtering procedure of can-

didate solute-solvent clusters of different sizes. We then compared the closeness, or distance

between points, to determine the local solvent environment similarity of the solute-solvent

structures. Once larger solute-solvent clusters overlap with smaller ones on the sketch-map
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one can assume the additional solvent molecules are far enough away to have minimal impact

on the local solvent environment.

Figure 7: (A) SOAP/sketch-map representations of solute-solvent clusters containing Na+

with various numbers of water molecules. An example of a cluster with four water molecules
is shown. The color bar represents the number of water molecules in the cluster. (B)
Boltzmann-weighted average of solvation free energies of Na+ with the variable number of
water ligands from B3LYP-D3BJ/def2-SVP geometries and ωB97X-D3/def2-TZVP energies.
An example of a cluster with eight water molecules is shown. Adapted with permission from
Ref. 5. Copyright 2020 AIP Publishing.

Figure 7 shows the case of Na+ hydration. A global optimization code, ABCluster, 94 was

used to generate hundreds of solvent and solute-solvent clusters. The five lowest-energy struc-

tures were then optimized using a relatively inexpensive QC method: BP86-D3BJ/def2-SVP,

and the solute-solvent clusters were mapped using SOAP/sketch-map as shown in Figure 7A.

One dot represents a single solute-solvent structure (an example case is given for four water
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molecules). A Boltzmann-weighted average of the clusters were used to calculate the solva-

tion free energy of Na+ in water. Based on our procedure, the most reliable structures came

from 12-water clusters, and data closely agreed with the experimental solvation free energy.

Our approach has also been successfully demonstrated on ion solvation free energies spanning

2− to 2+ charges.91 Reiher and coworkers have recently developed a similar computational

implementation that focuses on rigorously achieving statistically relevant ensembles of local

solvent molecules in an automated manner.95 Their approach is an improved implementation

compared to what we published previously, but it does not make an explicit connection to

QCT, which is a useful way to reduce computational expense by leveraging implicit solvent

models. Even though their approach has not yet been tested for single ion solvation energy

predictions, the similarities of our and their approaches indicates that theirs should be useful

and accurate as well.

A key point to reiterate is that cluster-continuum modeling, when done correctly, can be

useful and cost-effective calculation scheme for property predictions and mechanistic studies

in solvents.84,96,97 However, the dynamics of the solvent are often crucial for accurate pre-

dictions98 and when implicit or mixed implict/explicit models are not sufficient, they should

be modeled with explicit solvent modeling (Figure 6C) such as Born-Oppenheimer molecu-

lar dynamics (BOMD)99–101 or quantum mechanics/molecular mechanics (QM/MM). 102–104

Both methods offer unparalleled assessment of the vast configurational space observable in

reactions.

Accounting for radial and spatial distribution functions (SDFs) in explicit solvation can

provide molecular insights into solvent effects of reactions in electrolyte solutions. Figure

8 shows SDFs of our group’s BOMD simulations in two different solvent environments and

the effects of high base concentrations. In pure H2O (Figure 8a), the oxygen distribution

in the first solvation shell forms a spherical cage around BH4
– . Moreover, hydrogen has

some distributions inside this oxygen shell that results in the formation of dihydrogen bonds

between BH4
– and H2O. However, in 7 mol/L NaOH, the oxygen distribution has no sig-
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Figure 8: Computational insight into the local solvent environment of BH4
– liquid simula-

tions of (a) pure H2O and (b) 7 mol/L NaOH (isovalue of 48 nm−3). Oxygen and hydrogen
distributions in the three-dimensional spatial distribution functions (SDFs) are described
with orange and white colors, respectively. The central blue sphere represents the boron
atom.

nificant spherical shape. Furthermore, the hydrogen distribution inside of the oxygen shell

has a smaller distribution range compared to that in the BH4
– liquid simulations. These

observations indicate that increased concentrations of NaOH result in weaker interactions

between H2O and BH4
– , and this may have ramifications in reaction mechanism and kinetics

studies in realistic electrolyte environments.

Solvated reaction mechanisms

Consider again the hydrogenation reaction network in Figure 4. While a local environment

can influence which states are thermodynamically favorable, each fundamental reaction step

may have a significant energy barrier to consider. Experimental observations (or strong chem-

ical intuition) would help clarify which pathways would be likely; however, in the absence of

these, QC explorations can rigorously discern pathways to find which would be most likely.
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Next, we will overview our approach and general guidelines for modeling solvated reaction

mechanisms with minimal user bias.

BOMD simulations have proven to be a powerful tool for analyzing solvated reaction

mechanisms,105,106 but such methods are usually costly and make them used less often. Mod-

eling using mixed implicit/explicit modeling with chain-of-states methods such as nudged

elastic band (NEB) or growing string method (GSM) can be done on smaller systems and

these will be more amenable to higher levels of theory. On the other hand, this benefit

of lower computational cost comes with its own complexities. For example, we compu-

tationally investigated aqueous sodium borohydride (NaBH4) reduction of carbon dioxide

(CO2) to formate (HCOO– ) via a hydride (H– ) transfer using several different modeling

approaches.107,108 Hydride transfers are charge migrations, and one might expect these to

be sensitive to the local solvent environment. As such, it might be expected to be com-

putationally demanding to modeling this kind of system using explicit solvent molecules.

The reaction pathway energetics using this modeling scheme is shown in Figure 9 (labeled

“Explicit PMF”).108 Since this approach involves the least empiricism, this is the reaction

pathway all other less expensive computational schemes would ideally reproduce.

Using the same collective variable as the explicit PMF we identified a static pathway

using the generalized solid-state NEB (g-SSNEB)109 method while keeping the explicit sol-

vent modeled with QC.107 This pathway, “Explicit NEB” in Figure 9, is essentially the same

as the PMF without any free energy (entropic) contributions. The quantitative similarity

in energy profiles shows that entropies along this pathway do not significantly impact the

barrier for this reaction. This is good to know since avoiding dynamics simulations would

significantly lower the computational costs for mechanisms studies. For example, instead of

full dynamics in an explicit solvent, one might treat the bulk contributions (i.e., everything

but the first solvent shell) using an implicit model. The resulting reaction pathways are

shown in Figure 9. We found that cluster-continuum modeling was actually suitable for

qualitatively capturing the metastable intermediate, second transition state, and the prod-
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Figure 9: Free energy differences and comparison of continuum and cluster-continuum sol-
vent modeling of a g-SSNEB pathway of sodium borohydride reduction of carbon dioxide.
Different subsystems were crafted from an explicit g-SSNEB pathway containing 70 water
molecules with an implicit solvent model replacing the removed explicit water molecules. 107
The continuum solvent model was unable to capture the qualitative trend of the g-SSNEB
pathway unless the counterion and first solvent shell was included. A BOMD PMF calcula-
tion at 300 K quantified the free energy differences not included in the g-SSNEB energies. 108

uct. The counterion was also crucial for describing the reaction mechanisms with the static

calculations. As expected, static calculations benefit from cluster-continuum modeling when

a full solvent shell is modeled.

Modeling multi-step reactions brings additional complexities as well. Plata and Singleton

demonstrated that implicit solvent models often fall short of reliably capturing local solvent

effects of the five-step Morita Baylis–Hillman (MBH) reaction. 110 Liu et al. illustrated that

explicit methods with free energy perturbation solvation treatments on top of high-level wave

function methods (i.e., DLPNO-CCSD(T)) can accurately reproduce reaction energetics from

kinetics experiments.111 Their work showed that predictions of complicated reactions are

possible with significant computational resources; something that is not always available nor

recommended before properly vetting collective variables using less intensive methods.

Cluster-continuum modeling of the borohydride mechanism above relied on taking struc-
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tures out of a periodic, explicitly solvated chain-of-state calculation derived from QM BOMD

simulations. The multiple steps of the MBH mechanism make it challenging to employ this

method of determining the solvent shells. Instead, BP86-D3BJ/def2-SVP optimized struc-

tures from ABCluster were used to describe the local solvent environment of each MBH

intermediate.112 Solute-solvent clusters containing between zero to ten explicit methanol

molecules were considered. We unexpectedly observed a lack of correlation between more

methanol molecules and accuracy; showing that adding more explicit solvent molecules does

not guarantee better predictions due to intrinsic errors in calculation procedures.

Reactive atomistic modeling and machine learning

We have stressed that different modeling schemes can be used depending on the complexity of

the systems and computational resources available. Still, computational insight is generally

most reliably derived when modeling as much of the actual reaction environment as possible.

Reactive force fields, such as ReaxFF,113,114 are a framework to provide very useful insights

even if these methods might not always be as accurate or transferable as QC methods they

are trained on.

As an example, we previously studied catalytic reaction mechanisms using the computa-

tional hydrogen electrode model to understand how doping TiO2 might deoptimize reduction

kinetics and therefore result in an improved anticorrosion coating. 115 The actual system in-

volved Ti materials that formed native oxides that were believed to have largely amorphous

structures, but QC analyses could not be carried out until atomic scale amorphous structures

were established. Using ReaxFF parameters from another study, 116 we used computationally

efficient molecular dynamics to anneal crystalline TiO2 structures into less ordered structures

following analogous procedures used by Johnson and coworkers for studies of amorphous

silica.117 The amorphous TiO2 structures we obtained did not well represent experimental

structures for small nanoparticles,118 but further geometry optimizations using DFT resulted
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in structures that were in good agreement with experimental data. Furthermore, our analysis

of atomic dopants predicted that aluminum and vanadium would be useful for suppressing

oxygen reduction activity, and this was later confirmed by experiment in our publication.

Thus, in this case ReaxFF was still very useful for identifying salient structures for reactions.

However, when we turned to analyze similar reaction mechanisms on more complicated

TiAl2O5 materials, we sought to determine whether these materials could form stable amor-

phous structures. Attempts to train a ReaxFF model using automated procedures were

unsuccessful (which could be due to any number of factors), so alternative automatably

trained forcefield methods were sought. Ideally, BOMD with on-the-fly electronic structure

calculations would be useful, but computational costs are severely limiting. ML is now a

popular alternative to reactive force fields used in molecular simulation. 119–121 Neural net-

works (NNs) have recently become popular for learning energies and forces across chemical

space, one example being the Behler–Parrinello NN (BPNN) approach. 122 To understand

how BPNN methods compare to ReaxFF methods trained using the same DFT data sets

(largely based off of earlier data sets),123 we collaborated with Kitchin’s group to study

Au bulk, surfaces, and clusters totaling 9, 972 Kohn-Sham density functional calculations. 124

The optimally trained BPNN potential was trained on 9, 734 calculations; while ReaxFF only

required 848 data points. BPNN outperformed ReaxFF in all cases, but the computational

cost for training the BPNN was substantially higher. Since existing ReaxFF parameters

were not sufficiently accurate and BOMD simulations were too expensive, we turned to

generate accurate BPNN potentials using Khorshidi and Peterson’s AMP code. 125 We then

could predict that amorphous structures of TiAl2O5 were unlikely to form even though TiO2

systems did, but analyses of dopants on TiAl2O5 systems were inconclusive with respect to

experimental results from our collaborators at the Naval Research Lab. 126 This showed that

agreement between experiment and computation on these more complicated systems are still

an open question. In particular, the next step for this work might be to account for solvation

interactions at the TiAl2O5/electrolyte interface.
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In principle, different variety of ML potentials could be used here to account for solvated

interfaces, but we are intrigued at the possibilities of kernel-based symmetric gradient do-

main machine learning (sGDML) methods127 that can be trained against potential energy

surfaces of medium-sized molecules with far fewer data points than standard BPNN poten-

tials (sGDML methods usually require only a few hundred training points whereas BPNNs

can requires many thousands). The need for less data again allows one to focus computa-

tional costs on obtaining much higher quality data, for instance ab initio molecular dynamics

energies and forces using correlated wave function methods. A key current limitation with

sGDML force fields though is their reliance on a few molecular representations as well as

their inability to be transferable to systems with different numbers of atoms than is used in

their training set, and this currently limits there use to simulations on just single molecules

or clusters. Current efforts by our group in collaboration with the Tkatchenko group have

been toward exploring ways to overcome these limitations. Once overcome, we see opportu-

nities for automated and efficient developments of ML models suitable for studies of mixed

solvent systems,5 and using those in studies of electrochemical interfaces, e.g. in the context

of Refs:.128–131

Conclusions

We have given an overview and outlook for how our group uses computational chemistry

to examine the thermodynamic and kinetic properties of hypothetical catalysts in complex

environments. APDFT, especially using higher order corrections, has tremendous promise

for accelerating computational screening efforts while relying on only relatively small sets of

QC calculations. For example, APDFT can be used on a single set of images along a reaction

pathway to generate insightful data for many other related processes. As it becomes more

tested, it will become more likely to transform how conventional computational modeling

workflows are used when exploring chemical space for new catalysts that are subjected to
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conditions in their local environment under ambient conditions that include applied potential

and pH effects. Finally, while less expensive modeling schemes can be effective, we envision

comprehensive investigations of explicitly solvated reaction mechanisms will become possible

with continued developments of ML force fields. All combined, one can envision elaborate

workflows that would be suitable for microkinetic predictions based on massive search spaces

for hypothetical candidates across chemical and materials space.
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