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Abstract—MLPerf, an emerging machine learning benchmark
suite, strives to cover a broad range of machine learning
applications. We present a study on the characteristics of
MLPerf benchmarks and how they differ from previous deep
learning benchmarks such as DAWNBench and DeepBench.
MLPerf benchmarks are seen to exhibit moderately high memory
transactions per second and moderately high compute rates,
while DAWNBench creates a high-compute benchmark with low
memory transaction rate, and DeepBench provides low compute
rate benchmarks. We also observe that the various MLPerf
benchmarks possess unique features that allow unveiling various
bottlenecks in systems. We also observe variation in scaling
efficiency across the MLPerf models. The variation exhibited by
the different models highlight the importance of smart scheduling
strategies for multi-GPU training. Another observation is that
dedicated low latency interconnect between GPUs in multi-GPU
systems is crucial for optimal distributed deep learning training.
Furthermore, host CPU utilization increases with an increase
in the number of GPUs used for training. Corroborating prior
work, we also observe and quantify improvements possible by
mixed-precision training using Tensor Cores.

Index Terms—Benchmarking, Machine Learning, Training

I. INTRODUCTION

The recent advances in machine learning have led to an

evolution of a myriad of applications, revolutionizing scientific,

industrial and commercial fields. Machine learning, primarily

deep learning, is the state-of-the-art in providing models,

methods, tools, and techniques for developing autonomous and

intelligent systems.

Among the two parts of machine learning (training and

inference), training is the long-running task. This is not only

because of the massive datasets needed for high accuracy but

also because the weights in the neural network need to be

iteratively tuned until the model meets the desired quality. As

the system’s compute power plays a significant role in how fast

the neural network learns, training is usually done using high-

performance compute clusters such as multi-GPU systems.

Evaluation of training capability necessitates benchmarks

that encompass the training requirements of modern DL mod-

els from different domains. MLPerf [22] is an emerging

consortium that provides separate benchmark suites for ma-

chine learning training and inference. The training suite helps

to measure the performance of machine learning frameworks,

hardware accelerators, and cloud platforms [11], [19], [42].

The major contributors of the benchmarks include Google,

NVIDIA, Baidu, Intel, and other commercial vendors, as well

as universities such as Harvard, Stanford, and the University

of California, Berkeley. MLPerf’s initial release v0.5 in

2018 consisted of benchmarks only for training, but inference

benchmarks have been added in June 2019. MLPerf training

benchmark suite covers the areas of computer vision, product

recommendation, and other key areas where deep learning

models have shown success and the datasets are available

publicly. In this work we solely focus on the MLPerf v0.5

training benchmark suite.

We evaluate the MLPerf benchmarks with experiments

on diverse hardware platforms. Additionally, we investigate

whether the execution characteristics of these benchmarks

point out sufficient dissimilarities, or they are mostly similar

in spite of diverse domains. The objective of this work is to

unfold the answers to following enigmas:

• How different are the MLPerf benchmarks from the prior

deep learning benchmarks?

• How different are the MLPerf benchmarks from each

other?

• Does the MLPerf suite contain models that can achieve a

performance differential by using reduced precision and

NVIDIA’s tensor cores?

• How well does the training performance scale with in-

creasing the number of GPUs?

• What is an efficient way for a user to operate on multiple

GPUs to train several models: should they run distributed

jobs one-by-one on all GPUs or should they run jobs

assigning one model to each GPU or is there any other

better solution?

• How are CPU, GPU and interconnect utilizations? Is

there a significant performance impact from the high-

bandwidth GPU interconnects?

The key insights revealed by this work are summarized

in Table I, and the rest of paper is organized as follows:

Section II introduces the emerging MLPerf [22] benchmark

suite as well as some prior deep learning benchmarks (e.g.,

DAWNBench [7] and DeepBench [3]). In Section III, we

expand on the system configurations and topologies, on which

various experiments were performed. We investigate various

benchmark characteristics, performance impacts from mix

precision scheduling, and present the similarity of various
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TABLE I: Summary of key insights from the work.
Observation Location Insight/Explanation

MLPerf benchmark suite has a disjoint envelope from
DAWNBench and DeepBench.

Figure 1a MLPerf, DAWNBench, and DeepBench suite stress HBM2 memory
at different levels, and are optimized to different extents. Throughput
and arithmetic intensity: DAWNBench > MLPerf > DeepBench.DeepBench, MLPerf, and DAWNBench are located in different

regions in the roofline graph.
Figure 2

Every benchmark in MLPerf benchmark suite is on the boundary
of the workload space.

Figure 1b There is a great diversity existing in MLPerf benchmark suite, e.g.,
in terms of the scaling efficiency. This information is helpful for
resource scheduling in systems with multiple devices, such as data
centers and cloud platforms.

Different benchmarks scale up differently, and by exploiting
these differences, the optimal scheduling can save hours of
training on multi-GPU systems.

Table IV
Figure 4

Data points representing machine learning workloads are close
to the slanted roof line.

Figure 2
It’s easy to exploit the abundant parallelism in ML applications and
finally end up being bound by hardware resources.

Mixed precision in combination with TensorCores earns
significant speedup on MLPerf.

Figure 3
Hardware support for reduced precision arithmetics is important,
especially for machine learning workloads.

When scaling to more GPUs, many benchmarks have a
super-linear increase in PCIe / NVLink utilization.

Table V Machine learning applications can become communication-heavy
workloads, so it is worth paying attention to the buses in ML
processor designs. Direct connections between GPUs facilitate better
performance in machine learning workloads.

Training time: GPU-system with NVLink enabled <

GPU-system with PCIe switch enabled < system with GPUs
connected using CPU PCIe ports.

Figure 5
Table III

benchmarks in Section IV. Section V presents measurements

on the system resources utilization to provide insights on

CPU’s, GPU’s, and interconnect’s impact on machine learning

training performance as well as the memory requirement to

store the dataset during processing. Then we conclude the

paper with Section VI.

II. BACKGROUND

In this section, we introduce MLPerf [22], DAWNBench [7],

and DeepBench [3] benchmarks for machine learning.

A. MLPerf Benchmarks

The MLPerf [22] benchmark suite includes workloads from

image classification, object detection, translation, recommen-

dation and reinforcement learning.

Image classification identifies the object classes present in

the image. This benchmark uses ResNet-50 [13], [14] model.

ResNet-50 signifies a 50-layered residual network, which

effectively overcomes the problem of degradation of training

accuracy and is easier to optimize, and can gain accuracy from

considerably increased depth.

Object detection is a technology that classifies individual

objects and localizes each using a bounding box. Mask R-

CNN [12] adds a branch for predicting segmentation masks

on each Region of Interest, along with the existing branch for

classification and bounding box regression. In Mask R-CNN,

the additional mask output is distinct from the class and box

outputs, as it extracts a finer spatial layout of an object. On

the contrary, Single Shot Detection (SSD) [18] discretizes the

output space of bounding boxes into a set of default boxes

over different aspect ratios and scales per feature map location.

SSD eliminates proposal generation and subsequent pixel or

feature resampling stage and encapsulates all computation in

a single network. This makes SSD easy to train and integrate

into systems that require a detection component.

Translation is the task of converting an input text from

one language to another. The model architecture - Trans-

former [34], avoids recurrence and relies on an attention

mechanism to generate global dependencies between input

and output. The attention weights apply to all symbols in

the sequences. On the other hand, Google’s Neural Machine

Translation system (GNMT) [39] model uses residual con-

nections as well as attention connections. GNMT provides a

decent balance between the flexibility of “character”-delimited

models and the efficiency of “word”-delimited models, and

handles translation of rare words.

Recommendation is a task accomplished by a recommen-

dation system, that predicts the ”rating” or ”preference” to

an item. This benchmark uses Neural Collaborative Filtering

model (NCF) [15] that can express and generalize matrix fac-

torization under its framework. To supercharge NCF modeling

with non-linearities, a multi-layer perceptron can be utilized

in this model to learn the user-item interaction function.

Reinforcement Learning is associated with how software

agents should take actions in an environment to maximize

the notion of cumulative reward. This benchmark is based on

a fork of the mini-go project [30], inspired by DeepMind’s

AlphaGo algorithm [28], [29]. 1

Table II displays a summary of the various workloads of

MLPerf v0.5 release, including respective models as well

as the datasets used. The metric used by MLPerf is the time

taken to reach a specified accuracy or quality target, which is

also listed in Table II for each benchmark. MLPerf benchmark

implementations provided by the submitters currently include

frameworks such as PyTorch [26], MXNet [6] and Tensor-

Flow [1]. Many of the workloads consume days of training

time on powerful GPUs, as indicated in Table IV for MLPerf’s

reference machine which has an NVIDIA Tesla P100 GPU.

B. DAWNBench

DAWNBench [7], developed by Stanford University in 2017,

evaluates deep learning systems across different optimization

strategies, model architectures, software frameworks, clouds,

and hardware. It supports benchmarking of Image Classifi-

cation on CIFAR10 [17] and ImageNet [8], and Question

1Since our evaluation focus is on MLPerf v0.5 on GPU platforms, and the
only GPU code of Reinforcement Learning is the reference one, which spends
more time on the CPU than the GPU, Reinforcement Learning is excluded in
the rest of the paper.
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TABLE II: Summary of benchmarks in MLPerf (top), DAWNBench (middle), and DeepBench (bottom) used in this study.

Abbreviation Domain Model Framework Submitter Dataset Quality Target

MLPf Res50 TF
Image Classification ResNet-50

TensorFlow Google
ImageNet Accuracy: 0.749

MLPf Res50 MX MXNet NVIDIA

MLPf SSD Py SSD (light-weight) mAP: 0.212

MLPf MRCNN Py

Object Detection Mask RCNN

(heavy-weight)

PyTorch NVIDIA
Microsoft

COCO
Box mAP: 0.377,

Mask mAP: 0.339

MLPf XFMR Py Transformer
BLEU score
(uncased): 25

MLPf GNMT Py
Translation

RNN GNMT
PyTorch NVIDIA WMT17 Sacre BLEU score

(uncased): 21.80

MLPf NCF Py Recommendation
Neural Collaborative

Filtering
PyTorch NVIDIA

MovieLens

20-million
Hit rate @ 10: 0.635

Abbreviation Domain Model Framework Submitter Dataset Quality Target

Dawn Res18 Py Image Classification ResNet-18 (modified) PyTorch bkj CIFAR10 Test accuracy: 94%

Dawn DrQA Py Question Answering DrQA PyTorch Yang et al. SQuAD F1 score: 0.75

Abbreviation Operation Parameters Targeted Application

Deep GEMM Cu Dense Matrix Multiply all specified in the repository N/A

Deep Conv Cu Convolution all specified in the repository N/A

Deep RNN Cu

Vanilla Recurrent Units=1760 N=16
DeepSpeech

GRU Recurrent Units=2816 N=32

GRU Recurrent Units=1024 N=32 Speaker ID

LSTM Recurrent Input=512 N=16 Machine Translation

LSTM Recurrent Input=4096 N=16 Language Modeling

LSTM Recurrent Input=256 N=16 Character Language Modeling

Deep Red Cu Communication (AllReduce) all specified in the repository N/A

Answering on SQuAD [27]. DAWNBench assesses the per-

formance based on four metrics: training time to a speci-

fied validation accuracy, cost (in USD) of training, average

latency of performing inference, and the cost (in USD) of

inference. It provides reference implementations and seed

entries, implemented in two popular deep learning frameworks:

PyTorch [26] and TensorFlow [1]. The hyperparameters that

DAWNBench considers for optimizations are optimizer for

gradient descent, minibatch size, and regularization.

C. DeepBench

DeepBench [3] [4], primarily uses the neural network li-

braries to benchmark the performance of basic operations on

different hardware. The performance characteristics of models

built for various applications are different from each other.

DeepBench essentially benchmarks the underlying operations

such as dense matrix multiplication, convolutions, recurrent

layers, and communication. For training, DeepBench specifies

the minimum precision requirements as 16 and 32 bits for

multiplication and addition, respectively [3]. The benchmarks

are written in CUDA and thus, are more fundamental than any

deep learning framework or model implementation. Addition-

ally, there is no concept of a quality target.

With research in the field of deep learning, various other

benchmarks have also appeared in the past, such as Fathom [2],

Training Benchmark for DNNs (TBD) [43], etc., but our study

is restricted to MLPerf, DAWNbench and DeepBench.

III. METHODOLOGY

A. System configurations

For experimentation, we used different system configs,

whose hardware specifications are highlighted in Table III.

B. Benchmarks

The benchmarks we chose to conduct research on are:

• GPU submissions of the MLPerf [22] training bench-

marks, which were made by Google (cloud) and Nvidia

(on-premise). The submitted source codes were optimized

for performance on their respective hardware. Among the

various submissions, we picked Google’s submission on

8x Volta V100 and NVIDIA’s submission on DGX-1

as we had access to platforms with a maximum of 8

GPUs. Note that, as there was no GPU submission for

Reinforcement Learning benchmark (one of the MLPerf

training benchmarks), we exclude this benchmark from

the study.

• From DAWNBench [7], for Image Classification (CI-

FAR10) training we selected the ResNet-18 implemen-

tation [5] provided by bkj, and for Question Answer-

ing (SQuAD) training we choose the DrQA implementa-

tion [41] submitted by Yang et al.

• In the case of DeepBench [3], we used four NVIDIA

training benchmarks: gemm_bench, conv_bench,

rnn_bench, and nccl_single_all_reduce. We

omit the MPI version of all_reduce as our study

focus on single machine. The aggregated numbers are

used for all the kernels with different sizes, except for

rnn_bench, for which we only take six configurations

because the benchmark takes long time to profile.

C. Measurement tools

nvprof: We use nvprof profiler from CUDA-toolkit to

profile the Region of Interest (ROI) in the benchmarks. In-

formation collected are: invocation and duration of kernels,
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TABLE III: Hardware specifications of systems for experimentation.

Systems T640 C4140 (B) C4140 (K) C4140 (M) R940 XA DSS 8440

CPUs (Intel Xeon Gold)

Model # 6148 6148 6148 6148 6148 6142

Base freq. 2.40GHz 2.40GHz 2.40GHz 2.40GHz 2.40GHz 2.60GHz

Memory (Samsung/Micron DDR4)

# DIMM 12 12 12 24 24 12

Size 16GB 16GB 16GB 16GB 16GB 32GB

GPUs (NVIDIA Tesla V100)

Form
Factor

PCIe Full
Height/Length

PCIe Full
Height/Length

SXM2 SXM2
PCIe Full

Height/Length
PCIe Full

Height/Length

Inter-
connect

PCIe & UPI3 PCIe NVLink NVLink UPI3 PCIe & UPI3

# GPUs 4 4 4 4 4 8

Memory 32GB HBM2 16GB HBM2 16GB HBM2 16GB HBM2 32GB HBM2 16GB HBM2

System (Dell PowerEdge)

Topology

floating point operation counts, and memory read/write trans-

actions. With this information, we added data points as the

representatives of machine learning workloads to the roofline

plot.

dstat: Additionally, we used dstat [37] to obtain the real-

time statistics of system resource usage such as CPU usage,

memory usage, disk activity, and network traffic. In UNIX plat-

form, dstat gives more flexibility that combines vmstat

(virtual memory statistics) [33], iostat (storage input/output

statistics) [31], and netstat (network statistics) [32]. The

statistics can then be exported to comma-separated values for

further analysis. Moreover, we can extend the functionality of

dstat by adding plugins such as one to measure NVIDIA

GPU Utilization [36].

dmon: Finally, we also make use of dmon which

is available in Nvidia System Management Interface

(nvidia-smi) [25] to get individual GPU usage statistics

that includes GPU streaming multiprocessor usage, GPU

memory usage, temperature, frequency, and PCI Express bus

usage. A feature to measure the NVLink bus utilization using

hardware counters is also employed in nvidia-smi.

IV. BENCHMARK ANALYSIS

The analysis is presented on the optimized codes submitted

by Google and NVIDIA to MLPerf unless specified otherwise.

It may be noted from the MLPerf website that only three

vendors (Google, NVIDIA, and Intel) have submitted results

to MLPerf, and no vendor has submitted results for all

benchmarks. The effort to run MLPerf codes on the systems

mentioned in Table IV was non-trivial, and some of the

benchmarks are omitted from some studies due to difficulties

with runs. A statistic of kernels is available online [35].

3UPI: Ultra Path Interconnect

A. Similarity/Dissimilarity analysis

We perform Principal Component Analysis (PCA) on 8

collected workload characteristics (namely, PCIe utilization,

GPU utilization, CPU utilization, DDR memory footprint,

HBM2 footprint, flop throughput, memory throughput, and

number of epochs), and visualize the distribution of the

targeted machine learning benchmarks in the workload space.

This analysis helps us to understand how similar and different

these benchmarks are.

As shown in Figure 1a, MLPerf benchmarks are so different

from DeepBench kernels as well as DAWNBench benchmarks

on PC1, that they become two isolated clusters (with outliers

labeled) sitting in two sides. PC1 is dominated by GPU

memory footprint. The location in the space is actually a

reflection of the fact that DeepBench kernels and DAWN-

Bench benchmarks are working on relatively smaller datasets,

and they cannot stress GPU memory as much as MLPerf

benchmarks can. On the PC2 axis MLPerf benchmarks have a

shorter span than other benchmark do, mainly because MLPerf

benchmarks are optimized end-to-end applications, having a

stable floating point operation throughput, while more diver-

sity exists in the other benchmarks (e.g., the communication

kernel Deep Red Cu even has zero floating point operations).

MLPerf benchmarks are more sparsely-spread on the PC3-PC4

plane (Figure 1b), and cover what other benchmarks cover. The

intra-suite diversity is exposed in Figure 1 as well. For PC1 to

PC4 (covering 88% variance), each MLPerf benchmark gets

at least one chance to extend the boundary, and there are no

two MLPerf benchmarks that are very close to each other.

B. Roofline analysis

A roofline model [38] is a visual representation of the

maximum attainable performance for a given workload in a

given hardware by combining the processing core performance,

memory bandwidth, and the data locality.
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(a) PC1 - PC2

(b) PC3 - PC4

Fig. 1: The distribution of MLPerf, DAWNBench, and Deep-

Bench in the dominant principal component workload space.

The dominant metric is the one with the greatest absolute value

in the eigenvector of a principal component.

Figure 2 presents the roofline model for a single Tesla V100

GPU and machine learning workloads we studied. The runs

were carried out on the T640 system, invoking just one GPU.

The vertical axis represents the compute capability that can be

expressed usually in a unit of Floating Point Operation per Sec-

ond (FLOPS/sec). Meanwhile, the horizontal axis denotes the

arithmetic intensity, which is the ratio between floating point

operations and data amount, using Floating Point Operations

per Byte (FLOPs/Byte) as the unit. Memory-bound workloads

have lower arithmetic intensity, hence their performance are

limited by memory bandwidth (corresponding to the slope of

the slash lines in Figure 2). Compute-bound workloads have

high enough arithmetic intensities so their performance are

limited by the computational resources (the horizontal lines

in Figure 2). We indicate the location of different machine

learning workloads with points in different shapes. Workloads

10
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MLPf_XFMR_Py
MLPf_GNMT_Py
MLPf_NCF_Py
Dawn_Res18_Py
Dawn_DrQA_Py
Deep_GEMM_Cu
Deep_Conv_Cu
Deep_RNN_Cu

Fig. 2: V100 roofline model. Red, blue, green polylines show

the empirical limitations (from available memory bandwidth

and computational resources) for V100 to perform double,

single, and half-precision floating point operations (measured

with Empirical Roofline Toolkit [40]). MLPerf benchmarks are

labeled in blue shapes, DAWNBench programs labeled in red

shapes, and DeepBench programs labeled in cyan shapes.

from the same benchmark suite are assigned the same color.

As we can see from the Figure 2, MLPerf benchmarks are

more optimized than DeepBench kernels so that there is more

data reuse, achieving higher arithmetic intensity, while the two

DAWNBench workloads shows even higher arithmetic intensi-

ties with higher throughputs. Nevertheless, all the workloads

are memory-bound (have not cross the turn point, and touch

the horizontal lines). This observation implies memory is the

system bottleneck for machine learning workloads, and we

should dedicate more resources to memory interface for a well-

balanced system.

C. Sensitivity of MLPerf models to Mixed Precision Training

using Tensor Cores

Prior work ( [10], [16], [20] ) suggests that deep learning

benefits from reduced precision in the following ways:

• Lowering the on-chip memory requirement for the neural

network models.

• Reducing the memory bandwidth requirement by access-

ing less or equal bytes compared to single precision.

• Accelerating the math-intensive operations especially on

GPUs with Tensor Cores.

Typically, only some pieces of data employ reduced preci-

sion leading to mixed precision implementations. Moreover,

employing mixed precision for training is getting easier for

programmers with the release of NVIDIA’s Automatic Mixed

Precision (AMP) [24] feature on different frameworks like

TensorFlow [1], PyTorch [26] and MXNet [6]. Figure 3 shows

the speedup observed in different MLPerf training benchmarks

by employing half-precision along with single-precision when
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tested on DSS 8440 using 8 GPUs. The speedup observed

is in the range of 1.5× in MRCNN Py to 3.3× in Res50 TF.

Thus, it can be inferred that MLPerf, an end-to-end benchmark

suite, is capable of testing the reduced precision support of

processors. For example, TensorCores are tested here.
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Fig. 3: Mixed Precision training (supported by Tensor Cores)

results in 1.5× to 3.3× speedups over single precision. (Note

the time of NCF Py is in seconds)

(a) (b)
Fig. 4: Scheduling a mix of MLPerf workloads on 4 GPUs: (a)

naive scheduling, which distributes one benchmark on all the

GPUs one by one; (b) optimal scheduling, found by searching

through the possible space, saves 3.0 hours.

D. Scalability of the benchmarks

TABLE IV: Scaling efficiency.

Training Time (min) Scalability (speedup)
Benchmark

1×P100 1×V100 P-to-V 1-to-2 1-to-4 1-to-8

Res50 TF 8831.3 1016.9 8.68× 1.92× 3.84× 7.04×

Res50 MX 8831.1 957.0 9.23× 1.92× 3.76× 5.92×

SSD Py 827.7 206.1 4.02× 1.94× 3.72× 7.28×

MRCNN Py 4999.5 1840.4 2.72× 1.76× 2.64× 5.60×

XFMR Py 1869.8 636.0 2.94× 1.42× 2.92× 5.60×

NCF Py 46.7 2.2 21.23× 1.88× 2.16× 2.32×

The scalability study is performed on a system with 8

GPUs, the DSS 8440, where the number of GPUs employed

to train the model is controlled. Ideally performance speedup

of using 2 GPUs, 4 GPUs and 8 GPUs over 1 GPU should be

2×, 4× and 8×, respectively. Table IV shows the scalability

trends for every MLPerf benchmark except for GNMT Py.

The training time using a single GPU is also added to provide a

better understanding. We can see that some of the benchmarks

like Res50 TF, Res50 MX, and SSD Py scale well with the

number of GPUs while for others increasing the number

of GPUs beyond a certain point is not rewarding enough.

For instance, in the case of Res50 TF, when the number of

GPUs is increased from 1-to-2, from 1-to-4, and from 1-to-

8, training time improves by approximately 1.9×, 3.8×, and

7×, respectively. On the contrary, for NCF Py the speedup

achieved over a single GPU is 1.9×, 2.2×, and 2.3× when the

number of GPUs is increased to 2, 4, and 8, respectively. This

data does not justify increasing the number of GPUs beyond

2 for training Recommendation benchmark. We believe the

small dataset (MovieLens 20-million) causes this behavior for

the benchmark. Small dataset limits the maximum batch size

which as a result restricts the scalability of the benchmark.

Few other benchmarks, such as XFMR Py and MRCNN Py

fall between the most and the least scalable ones, providing a

scale-up by a factor of roughly 1.6×, 2.8×, and 5.6× for 2,

4, and 8 GPUs, respectively.

Such differences in scalability between different workloads

give users hints to schedule a mix of machine learning

training tasks. The naive scheduling scheme, that sequentially

distribute every workload to all resources at once, avoids

fragmentation, and keeps the resources busy all the time.

However, it may not be the most efficient way in terms of total

training time, because users having multiple GPUs can choose

to distribute some scalable workloads, while they decide to

run workloads with poor scalability in sets simultaneously on

fewer GPUs. Thus, the system administrators associated with

super computing clusters might be interested in finding an

effective algorithm to schedule various of machine learning

training jobs submitted from researchers, developers, and all

other kinds of machine learning users. To show the potential

benefit, we search through all permutations of scheduling 7

MLPerf benchmarks on multiple GPUs, and Figure 4 presents

4-GPU scheduling for illustration. In each subfigure, available

GPUs are listed along the x-axis, with vertical dashed lines

as their timelines. Different color shades under the timeline

correspond to the executions of the 7 different MLPerf work-

loads. Figure 4b shows the shortest scheduling of the 7 MLPerf

benchmarks on 4 GPUs. Compared with the naive scheduling

in Figure 4a, it saves about 3 hours to finish all the training

tasks. In the optimal scheduling, the workloads chosen to be

distributed on 4 GPUs, namely XFMR Py and SSD Py are

the scalable benchmarks we observed above. MRCNN Py gets

two GPUs to execute due to its medium scalability. Two Im-

age Classification workloads, Res50 MX and Res50 TF, are

assigned to single GPUs separately to achieve faster training

time. Note that, two similar workloads running in parallel will

provide lower training time than running them in a distributed

fashion even if they are highly scalable. Similarly, optimal

scheduling could save around 4.1 hours and 0.4 hours for 2-

GPU and 8-GPU settings, respectively. It is worth mentioning

that this performance gain is without any effort in optimizing

the software or adding costly hardware.

V. SYSTEM LEVEL MEASUREMENTS

In this section we present observations on system level

utilization measurements performed with the tools dstat and

dmon in order to better understand the impact of running DL
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training workloads and system requirements for the different

models. The experimentation is conducted on C4140 (K)

system by appropriately regulating the number of GPUs.

A. CPU utilization across different workloads

In the previous section, we presented the scalability of each

benchmark for 1, 2, 4, and 8 GPUs runs. Although most of the

computation are offloaded to the GPUs, it will be interesting

to know how the CPU is utilized during the execution of the

benchmarks. We run each workload on C4140 (K) platform

and configure accordingly to use 1, 2, or all 4 GPUs available

on that platform and sample the CPU usage with dstat.

The average CPU usage while running 1, 2, and 4 GPUs

is summarized in Table V. Note that, the average CPU usage

includes the operating system (e.g., kernel, low-level driver)

usage as well as that used by the user programs. In general, as

we double the number of GPUs used to run the workloads, the

CPU utilization roughly doubles. This trend is observable for

all submissions to MLPerf which indicates that the CPU must

have adequate performance to keep all GPUs busy otherwise

it will become a bottleneck during the run.

Among the MLPerf submissions, MLPf Res50 TF has the

highest CPU Utilization followed by MLPf Res50 MX. This

is because, compared to other workloads, both Image Classi-

fication benchmarks require CPU to perform more packaging

of the data before dispatching them to the GPUs and post-

processing the data after the GPUs finish the requested tasks.

Moreover, the dataset used for Image Classification benchmark

is significantly bigger (around 300GB) compared to datasets

for other benchmarks. Since it is not feasible to store such a

big chunk of data on GPU memory, the CPU has to coordinate

small parts of the dataset that can be stored in GPU memory

at one time. The GPU can then perform a partial computation.

This copying back and forth between CPU memory and GPU

memory also increases the utilization of CPU. MLPf NCF Py

shows lowest CPU utilization followed by MLPf GNMT Py

and MLPf XFMR Py. The Object Detection workloads are in

the middle in terms of CPU utilization.

Another observation comes from Dawn DrQA Py. Al-

though this benchmark runs on a single GPU, it has the highest

CPU usage of all the workloads included in the Table V. Un-

fortunately, this benchmark also shows least GPU utilization

among all the workloads, around 20%, which indicates that a

major part of the computation is performed on the CPU with

few tasks that can be offloaded to the GPU.

B. GPU utilization for different workloads

The GPU utilization as given in Table V is the sum of

the utilization of every GPU that is used during the runtime.

Therefore, single-, dual-, and quad-GPU run will have maxi-

mum utilization of 100%, 200%, and 400%, respectively. For

Image Classification workloads, both MLPf Res50 TF and

MLPf Res50 MX, show near identical GPU utilization with

around 85% GPU usage for single-GPU run, around 190%

GPU usage (i.e., around 95% utilization per GPU) for dual-

GPU run, and around 375% GPU usage (i.e., around 93.5%

utilization per GPU) for quad-GPU run.

Most of the submissions to MLPerf show a similar trend for

single-GPU and dual-GPU runs. Moreover, MLPf NCF Py

shows decreasing individual GPU usage for quad-GPU run

compared to dual-GPU run. This observation agrees with the

one mentioned in Section IV-D that due to the limited scope

of increase in the batch size for the workload, it is unable to

utilize the GPUs efficiently. The increasing of communication

cost for multi-GPU run that can impact individual GPU

utilization is confirmed by Deep Red Cu benchmark from

DeepBench which shows the same trend.

C. CPU and GPU memory footprint

The system memory is mostly used to store the dataset that

is used for the training as well as the intermediate data required

between computations. In the case when the dataset is too large

to fit in the GPU memory, the system memory acts as a buffer

to store the dataset. The user program will move the data back

and forth between the system and GPU memory to perform

partial calculations. Moreover, in an extreme case, the dataset

can be too large to be stored inside the system memory. Thus

the disk storage (e.g., hard disk drive, solid state drive) is used

to store them, and the CPU is responsible for coordinating the

switching between each part of the dataset.

From Table V, we can notice that the system memory

footprint roughly doubles every time we double the number

of GPUs. The GPU memory footprint is the total memory

footprint for every GPU used during the run. Note that, the

TABLE V: System resource usage statistics on C4140 (K).

Utilization and footprint increase along # GPUs. Note: for

DeepBench G. is GEMM Cu, C. is Conv Cu, R. is RNN Cu,

and for DAWNBench R. is Res18 Py, D. is DrQA Py.

# Util. (%) Footprint (MB) Bus Util. (MBps)

GPU CPU GPU DRAM HBM PCIe NVLink

M
L

P
er

f
R

es
5

0
T

F 1 10.76 85.84 17,922 15,927 1,251 0

2 16.25 188.08 18,521 31,896 2,609 967

4 29.06 372.43 19,970 62,214 4,269 2,867

R
es

5
0

M
X 1 4.56 85.84 7,091 10,343 1,251 0

2 9.16 190.90 14,924 20,605 6,913 1,871

4 18.12 378.94 28,781 40,959 11,480 21,755

S
S

D
P

y 1 3.89 96.13 4,100 15,406 4,720 0

2 7.21 180.58 10,305 30,772 6,998 509

4 13.69 334.84 20,273 60,539 9,791 1,500

M
R

C
N

N
P

y

1 2.45 62.46 7,208 4,762 258 0

2 4.83 144.40 13,561 15,933 2,219 2,472

4 10.39 283.88 24,923 33,935 3,444 6,547

X
F

M
R

P
y 1 1.80 91.14 3,992 14,926 47 0

2 3.35 189.30 7,167 29,493 123 11,247

4 6.39 376.91 14,244 58,229 249 35,862

G
N

M
T

P
y 1 1.91 89.94 7,210 12,098 2,743 0

2 3.32 185.71 13,561 24,479 4,609 1508

4 6.41 360.89 24,923 46,016 7,692 33,262

N
C

F
P

y 1 0.76 96.39 1,550 13,870 42 0

2 2.41 194.44 3,077 24,847 110 17,887

4 5.69 333.11 5,978 39,634 200 75,051

D
aw

n
R

. 1 4.67 76.90 2,670 2,056 176 0

D
. 1 48.84 20.30 6,721 2,657 52 0

D
ee

p
B

en
ch

G
. 1 1.80 99.60 333 1,067 13 0

C
. 1 1.73 99.10 948 783 13 0

R
. 1 1.80 94.80 994 2,536 3,747 0

R
ed

C
u 1 0.75 91.30 313 631 27 0

2 0.96 193.20 430 994 86 77,992

4 1.68 366.24 1123 2320 134 404,376
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footprint of GPU memory depends on the batch size, and the

batch sizes for the experiments are scaled accordingly from

the original submissions as mentioned in Section III-B.

Although the table only shows the memory footprint of each

benchmark, we would like to emphasize that the heterogeneity

of the medium where the dataset is stored may become a

bottleneck especially for memory-bounded applications which

perform data exchange frequently. In this case, the interconnect

bandwidth between each storage medium and the intelligence

of the program to overlap the data transfer just before the next

computation and to manage the locality of the data can play

a crucial factor.

In our C4140 (K) platform, for example, each CPU has

96GB of memory consisting six 16GB DDR4-2666 DIMMs

in hexa-channel memory configuration. The theoretical unidi-

rectional memory bandwidth available to each CPU is around

128GBps [9] while the Intel’s proprietary Ultra Path Inter-

connect (UPI) that links two CPUs has only unidirectional

theoretical bandwidth of 20.8GBps [21]. In a case when a

CPU needs a part of the dataset stored in other CPU’s memory,

the performance of data transfer will be significantly reduced

(i.e., 128GBps direct access for local DRAM v.s. 20.8GBps

neighbor DRAM access via UPI).

The same thing happens with a GPU that has more limited

dedicated memory. In our C4140 (K) platform, each Nvidia

Tesla V100 is equipped with 16GB HBM2 stacked memory

which is capable of 450GB/s unidirectional bandwidth. In the

case that the dataset cannot be fully stored inside the GPU

memory, the CPU should bring a part of the dataset from the

system memory into the GPU memory. This data exchange

uses PCIe 3.0 bus which connects the CPU and GPU and able

to provide theoretical unidirectional bandwidth of 15.8GBps

for x16 lanes which limits the performance of data transfer.

D. System and GPU bus utilization

In the previous section, we have mentioned that inter-

connection bus between CPU-GPU and between GPU-GPU

may play an important role in determining the overall sys-

tem performance. Moreover, as we have learnt previously,

the choice interconnection topology between CPU and GPU

should be considered carefully. In this section, we will explain

more details about how the performance is impacted by the

interconnection bus based on the data on Table V.

Modern microprocessor systems use PCI Express (PCIe)

bus as the interconnection standard between CPU and external

peripheral that requires high-speed data communication. PCIe

3.0 standard, introduced in 2010, has been widely adopted by

most computer system products available in today’s market.

PCIe 3.0 provides theoretical unidirectional bandwidth up-

to 984.6 MBps per lane and up-to 15.8 GBps per PCIe

3.0 compatible device connected using 16 PCIe 3.0 lanes

(PCIe 3.0 x16). This massive bandwidth, in theory, should be

sufficient for most of the peripheral devices including GPU,

network interface card, and non-volatile memory storage.

Usually a GPU is connected to the CPU using PCIe 3.0 x16

to assure that there is plenty of bandwidth between them. High

bandwidth is easy to achieve for a single-GPU system, but

more complicated for a multi-GPU system since the number

of PCIe 3.0 lanes that the CPU has are limited. High-end Intel

Xeon may have up to 48 lanes of PCIe 3.0 which are then

allocated to various devices. With this constraint, each GPU

on a four GPUs system, for example, may only be assigned

eight PCIe 3.0 lanes. While it depends on how we use the GPU

and how intense the data exchange happens between the CPU

and GPU, some applications like gaming may find PCIe 3.0

x8 already provides plenty of bandwidth. On the other hand,

this much bandwidth may not be optimal for deep learning

training.

Alternatively, a PCIe switch, such as those manufactured

by PLX Technology, can be used to provide additional PCIe

lanes; thus each GPU can have PCIe 3.0 x16 lanes. This switch

will be useful for GPU-to-GPU communication since the data

exchange will only take place on the switch without going

over to the CPU. However, the switch will not be beneficial

to improve the bandwidth between CPU and all GPUs on the

system as the effective CPU-to-GPU bandwidth is still limited

by what the CPU has. We will discuss the interconnection

topology in detail and how it affect the performance in

Section V-E.

Furthermore, apart from CPU-to-GPU communication,

PCIe bus can be used for GPU-to-GPU communication for

a multi-GPU system. Although each GPU can be allocated

with PCIe 3.0 x16 lanes, the available bandwidth may not

be sufficient for some workloads that require intensive data

exchange between the GPUs. Therefore, an additional bus has

been developed to be used specifically for GPU-to-GPU com-

munication such as NVLink which is high-speed proprietary

interconnect system in NVIDIA GPUs. Each NVLink lane

provides 25 GBps theoretical unidirectional bandwidth. The

Nvidia Tesla V100 GPU in SXM2 form factor has six NVLink

lanes which are capable of transferring data with theoretical

unidirectional bandwidth of 150GBps. This is significantly

faster than what PCIe 3.0 x16 can offer.

Table V shows the PCIe 3.0 bus utilization between CPU

and GPU available on the system as well as NVLink utilization

between GPU and GPU. The value presented in the table is

the sum of PCIe 3.0 bidirectional PCIe bus utilization for each

GPU that is used during the run, and the sum of NVLink lane

utilization from each GPU used during the run. As we can

see from the table, the data transfer rate over NVLink bus

increases as we add more GPU for the run. The Deep Red Cu

and the MLPf NCF Py use the highest bandwidth of NVLink

which means that the data exchanges between GPU for those

benchmark are intensive. On the other hand, the utilization

of PCIe 3.0 bus increases as we add more GPU which is as

expected. In a multi-GPU system equipped with NVLink, the

PCIe 3.0 bus is used only for communication between CPU

and each GPU because the GPU to GPU communication has

been offloaded into the higher speed NVLink.
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Fig. 5: Training time on 4-GPU systems (topologies shown in Table III). Time on systems with NVLink interconnect (the first

2 bars) is less than training time on the remaining systems. (Note that, the time of NCF Py is in seconds)

E. Impact of GPU-Interconnect Topology

To reduce the training time it is becoming increasingly

common to scale deep learning (DL) training across multiple

GPUs within a system. There are multiple ways in how GPUs

can be connected within the system. Primarily there are two

options available - using a PCIe based interconnect (which

may include PCIe switches if the number of lanes from

the CPU is not sufficient) and using NVIDIA’s proprietary

interconnect like NVLink. The theoretical bandwidth of an

NVLink interconnect is 10× higher than PCIe (300 GB/s

vs. 32GB/s) [23]. Additionally, communication libraries like

NCCL from NVIDIA are optimized to perform GPUDirect

peer-to-peer (P2P) direct access when NVLink is available

between GPUs, which can lower training times if there is

significant peer-to-peer communication during model training.

GPUDirect P2P is also feasible in certain PCIe topology

designs where GPUs are the same PCIe domain (single root

complex). Using MLPerf, we conduct a performance evalua-

tion of five different 4-GPU platforms, each of them with a

unique GPU interconnect topology. Table III shows how the

GPUs are interconnected for the servers used in this study.

Two of the five servers, C4140 (M) and C4104 (K) include

the high-speed proprietary NVLink interconnect to provide

100GB/s bandwidth between any two GPUs. The difference

between the two NVLink based designs is the use of a PCIe

switch in the C4140 (K) to aggregate the PCIe connections

to the GPUs. The remaining three systems use PCIe based

interconnects. They use very different approaches in how the

GPUs are connected to the CPUs and in how they communi-

cate with other GPUs. One system C4140 (B), uses a 96-lane

PCIe switch that allows for 4 GPUs to be hosted in a single

PCIe domain where it can perform GPUDirect peer-to-peer

(P2P) between the GPUs using the PCIe switch. This is not

feasible in the other two PCIe based interconnect platforms -

the T640, where two GPUs are hosted per CPU and R940 XA

which is a 4 CPU platform with each GPU connected directly

using the PCIe lanes of the CPU.

The training times for the different servers are plotted in

Figure 5 which illustrates the impact of GPU interconnect

topology on DL training times. As expected, due to lack

of GPUDirect P2P capability between any of the GPUs, the

T640 and R940 XA take the longest time to train all the

MLPerf models. Conversely, the two servers that use NVLink

interconnect (the C4140 (M) and (K) systems) show the best

training times across all the MLPerf models. However, the

performance improvements differ depending on the model

that is being trained and ranges from 42% and 17% for

the Translation benchmarks, 30% for MLPf MRCNN Py to

11% for the Image Classification benchmarks. The C4140 (B)

which uses a PCIe topology, but can perform GPUDirect P2P

between GPUs due to all GPUs connected to a PCIe switch,

shows performance parity to the NVLink platform for the

Image Classification benchmarks and better performance than

the R940 XA and T640 servers for remaining benchmarks.

This platform provides a mix of flexibility that is available

when using PCIe based GPU cards in addition to higher

performance over PCIe based designs that do not support

GPUDirect P2P transactions between GPUs.

VI. CONCLUSION

We have presented a detailed characterization of the re-

cent MLPerf benchmark suite in this paper. While MLPerf

benchmark characteristics may be heavily influenced by the

specific implementations, the suite does provide a diverse set

of benchmarks which allows to unveil various bottlenecks in

the system. Our experiments point towards (i) the importance

of powerful interconnects in multi-GPU systems, (ii) the

variation in scalability exhibited by different ML models, (iii)

the opportunity for smart scheduling strategies in multi-gpu

training exploiting the variability in scaling, and (iv) the need

for powerful CPUs as host with increase in number of GPUs.

We also present the dissimilarity of the benchmarks to

other benchmarks in the suite (intra-suite dissimilarity) and

dissimilarity against other suites such as DAWNBench and

DeepBench (inter-suite dissimilarity). MLPerf provides bench-

marks with moderately high memory transactions per second

and moderately high compute rates. DAWNBench creates a

high-compute benchmark with low memory transaction rate,

whereas DeepBench provides low compute rate benchmarks.

The various MLPerf benchmarks show uniqueness such as

high NVLink utilization in NCF Py, low NVLink utilization in

SSD Py, near-perfect scalability with increasing GPU counts

in Res50 TF and SSD Py, and low scalability in NCF Py.
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P. Bailis, K. Olukotun, C. Ré, and M. Zaharia, “Dawnbench : An end-
to-end deep learning benchmark and competition,” in NIPS ML Systems

Workshop, 2017.
[8] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “Imagenet:

A large-scale hierarchical image database,” in 2009 IEEE Conference

on Computer Vision and Pattern Recognition, June 2009, pp. 248–255.
[9] FUJITSU, “White paper fujitsu server primergy & primequest

memory performance of xeon scalable processor(skylake-sp) based
systems,” https://sp.ts.fujitsu.com/dmsp/Publications/public/wp-skylake-
memory-performance-ww-en.pdf, 2018.

[10] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” 2015.

[11] L. Gwennap, “Ai benchmarks remain immature,” Microprocessor Report,
January 28, 2019.

[12] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1,
2018.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” 2016.

[15] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural
collaborative filtering,” 2017.

[16] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low precision
weights and activations,” 2016.

[17] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
https://www.cs.toronto.edu/∼kriz/learning-features-2009-TR.pdf, 2009.

[18] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “Ssd: Single shot multibox detector,” 2015.

[19] P. Mattson, C. Cheng, C. Coleman, G. Diamos, P. Micikevicius, D. Pat-
terson, H. Tang, G.-Y. Wei, P. Bailis, V. Bittorf, D. Brooks, D. Chen,
D. Dutta, U. Gupta, K. Hazelwood, A. Hock, X. Huang, B. Jia,
D. Kang, D. Kanter, N. Kumar, J. Liao, D. Narayanan, T. Oguntebi,
G. Pekhimenko, L. Pentecost, V. J. Reddi, T. Robie, T. S. John, C.-J.

Wu, L. Xu, C. Young, and M. Zaharia, “Mlperf training benchmark,”
2019.

[20] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia,
B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh, and H. Wu,
“Mixed precision training,” 2017.

[21] Microway, “Performance characteristics of common transports
and buses,” https://www.microway.com/knowledge-center-articles/
performance-characteristics-of-common-transports-buses/, 2019.

[22] “MLPerf,” https://mlperf.org/, MLPerf, 2018.

[23] NVIDIA, “Nvidia tesla v100 gpu accelerator,” https://images.nvidia.
com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-
fnl-web.pdf, 2018.

[24] NVIDIA, “Automatic mixed precision (amp),” https://developer.nvidia.
com/automatic-mixed-precision, 2019.

[25] NVIDIA Corporation, “Nvidia system management interface program,”
https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-
smi-367.38.pdf, 2016.

[26] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” in NIPS-W, 2017.

[27] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+
questions for machine comprehension of text,” 2016.

[28] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of go with deep neural networks and tree search,”
Nature, vol. 529, pp. 484–489, 01 2016.

[29] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis,
“Mastering the game of go without human knowledge,” Nature, vol. 550,
pp. 354–359, 10 2017.

[30] “Minigo: A minimalist Go engine modeled after AlphaGo Zero, built
on MuGo,” https://github.com/tensorflow/minigo, tensorflow.

[31] The FreeBSD Project, “Iostat: I/o statistics tool,” https://www.
freebsd.org/cgi/man.cgi?query=iostat&manpath=FreeBSD+12.0-
RELEASE+and+Ports.

[32] The FreeBSD Project, “Netstat: Network status and statistics
tool,” https://www.freebsd.org/cgi/man.cgi?query=netstat&sektion=1&
manpath=FreeBSD+12.0-RELEASE+and+Ports.

[33] The FreeBSD Project, “Vmstat: Virtual memory statistics tool,”
https://www.freebsd.org/cgi/man.cgi?query=vmstat&sektion=8&
manpath=FreeBSD+12.0-RELEASE+and+Ports.

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.

[35] S. Verma, Q. Wu, B. Hanindhito, G. Jha, E. B. John, R. Radhakrishnan,
and L. K. John, “Demystifying the mlperf benchmark suite,” 2019.
[Online]. Available: https://arxiv.org/abs/1908.09207

[36] V. Vryniotis, “Nvidia gpu utilization plugin for dstat,” https://raw.
githubusercontent.com/datumbox/dstat/master/plugins/dstat nvidia gpu.
py, 2017.
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