
Shorter and Faster Post-Quantum

Designated-Verifier zkSNARKs from Lattices✯

Yuval Ishai

Technion

yuvali@cs.technion.ac.il

Hang Su

University of Virginia

hs2nu@virginia.edu

David J. Wu

UT Austin

dwu4@cs.utexas.edu

Abstract

Zero-knowledge succinct arguments of knowledge (zkSNARKs) enable efficient privacy-preserving
proofs of membership for general NP languages. Our focus in this work is on post-quantum zkSNARKs,
with a focus on minimizing proof size. Currently, there is a 1000× gap in the proof size between the
best pre-quantum constructions and the best post-quantum ones. Here, we develop and implement new
lattice-based zkSNARKs in the designated-verifier preprocessing model. With our construction, after
an initial preprocessing step, a proof for an NP relation of size 220 is just over 16 KB. Our proofs are
10.3× shorter than previous post-quantum zkSNARKs for general NP languages. Compared to previous
lattice-based zkSNARKs (also in the designated-verifier preprocessing model), we obtain a 42× reduction
in proof size and a 60× reduction in the prover’s running time, all while achieving a much higher level of
soundness. Compared to the shortest pre-quantum zkSNARKs by Groth (Eurocrypt 2016), the proof size
in our lattice-based construction is 131× longer, but both the prover and the verifier are faster (by 1.2×
and 2.8×, respectively).

Our construction follows the general blueprint of Bitansky et al. (TCC 2013) and Boneh et al.
(Eurocrypt 2017) of combining a linear probabilistically checkable proof (linear PCP) together with a
linear-only vector encryption scheme. We develop a concretely-efficient lattice-based instantiation of this
compiler by considering quadratic extension fields of moderate characteristic and using linear-only vector
encryption over rank-2 module lattices.

1 Introduction

A zero-knowledge proof of knowledge [GMR85] for an NP relation R enables a prover to convince a verifier
that a statement is true without revealing anything more about the statement. In a zero-knowledge succinct
argument of knowledge (zkSNARK) [Kil92, Mic00, GW11], we additionally require that the proof consist
of a single message π from the prover to the verifier, and moreover, that the length of the proof π and the
verification complexity be sublinear (ideally, polylogarithmic) in the size of the circuit computing R. Zero-
knowledge SNARKs have applications to delegating and verifying computations [WB15] and for constructing
privacy-preserving cryptocurrencies [BCG+14]. In the last few years, there have been numerous works
studying constructions from different assumptions and on optimizing the asymptotic and concrete efficiency of
zkSNARKs (e.g., [PHGR13, BCI+13, BCC+16, Gro16, ZGK+17, AHIV17, BBHR18b, WTS+18, GMNO18,
BBB+18, BCR+19, CHM+20, BFS20, SL20, COS20, Sta21a, LSTW21, CY21, GNS21]).

Post-quantum zkSNARKs. Many existing constructions of practical zkSNARKs for NP rely on group-
based and pairing-based assumptions [Gro10, PHGR13, GGPR13, BCI+13, Gro16, BCC+16, BBB+18,
MBKM19, CHM+20, Set20, SL20] and are insecure against quantum adversaries. Several recent works have
introduced new concretely-efficient post-quantum zkSNARKs based on cryptographic hash functions [AHIV17,

✯This is the extended version of a paper by the same title that appeared at ACM CCS 2021 [ISW21].
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BBHR18b, BCR+19, COS20, BFH+20, Sta21a] or lattice-based assumptions [GMNO18]. However, compared
to their pre-quantum analogs, current post-quantum constructions have substantially longer proofs. As a
point of comparison, in the most succinct pre-quantum construction by Groth [Gro16], proofs are just 128
bytes while those in the most succinct post-quantum constructions [BCR+19, COS20, BFH+20, Sta21a] are
generally 1000× longer (see Table 1). The increase in parameter sizes is not entirely surprising since a similar,
although smaller, gap exists between the sizes of group-based pre-quantum signatures [Sch80, BLS01] and
hash-based [BHH+15, CDG+17] or lattice-based post-quantum signatures [DKL+18, FHK+20].

This work: lattice-based designated-verifier zkSNARKs. Our focus in this work is on new ap-
proaches for constructing shorter (and faster) post-quantum zkSNARKs from lattice-based assumptions. Like
recent works [GGPR13, SBV+13, BCR+19, Set20, COS20, SL20], we focus on the NP-complete language
of rank-1 constraint satisfiability (R1CS), which generalizes Boolean and arithmetic circuit satisfiability
and enjoys efficient compiler support from other program representations [SVP+12, BCGT13, BCG+13,
PHGR13, BCTV14b, BFR+13]. While recent works have introduced post-quantum zkSNARKs from lattice-
based assumptions [BISW17, BISW18, GMNO18, Nit19], to our knowledge, only the construction of Gen-
naro et al. [GMNO18] has been implemented. Its proof sizes are significantly worse compared to alternative
post-quantum constructions based on interactive oracle proofs (IOPs) and the Fiat-Shamir heuristic (e.g.,
640 KB for the lattice-based approach [GMNO18] vs. 169 KB for an IOP-based approach [BCR+19]). The
prover time for current lattice-based instantiations is also over 10× worse than the alternative constructions.

Similar to the previous lattice-based constructions, we design our zkSNARKs in the designated-verifier
preprocessing model where there is an (expensive but practically feasible) setup algorithm that samples public
parameters and a secret verification key (needed to verify proofs). While the designated-verifier model is
a relaxation of the conventional setting of zkSNARKs, it nonetheless suffices for applications to verifiable
computation and other privacy-preserving protocols.

Our results. Our main result is a new designated-verifier zkSNARK from lattice-based assumptions where
the proof size (for verifying an R1CS instance of size 220) is just over 16 KB. This is a 10.3× reduction
in proof size compared to Aurora [BCR+19], a post-quantum IOP-based SNARK with short proofs. If we
restrict our attention to post-quantum zkSNARKs with sublinear verification, our construction is 13.1×
shorter than Fractal [COS20]. Compared to the specialized ethSTARK [Sta21a] construction, a post-quantum
STARK [BBHR18b] for verifying a STARK-friendly hash chain, our proofs are 7.7× shorter. Finally, compared
to the lattice-based construction of Gennaro et al. [GMNO18], our zkSNARKs are 42.1× shorter. However,
there remains a large gap (131×) compared to the shortest pre-quantum zkSNARK by Groth [Gro16]. We
refer to Table 1 for the full comparison and describe our experimental setup in detail in Section 4.3.

The prover and verifier complexities of our new zkSNARK compare favorably with other post-quantum
schemes for verifying general NP computations. Our construction is over 4.5× faster for the prover compared
to Aurora and Fractal on R1CS instances of similar size. Compared to the Gennaro et al. lattice-based
candidate [GMNO18], our construction is 60× faster for the prover and 5.1× faster for the verifier. Compared
to the pre-quantum pairing-based construction of Groth [Gro16], our construction is 1.2× faster for the prover
and 2.8× faster for the verifier. Using an alternative instantiation of our construction with longer proofs
(20.8 KB vs. 16.4 KB), our construction is 1.4× faster than the pairing-based construction for the prover and
7.9× faster for the verifier.

Another appealing feature of our lattice-based zkSNARK is the simplicity of proof verification: it only
requires evaluating a matrix-vector product followed by a few simple arithmetic tests. This leads to a
concretely faster verification procedure compared to previous constructions (which either required pairing
computations or multiple invocations of a cryptographic hash function) and also makes our construction
well-suited for verifying proofs on lightweight or energy-constrained devices that can only support a limited
number of arithmetic operations. We note that for verifying small computations (e.g., an R1CS system with
214 constraints) with a larger soundness error (e.g., 1/128), the group-based designated-verifier SNARK of
Barta et al. [BIOW20] can plausibly achieve even faster verification. However, this comes at the price of
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Scheme Structure PQ TP PV R1CS Size Time
Size CRS Proof Setup Prover Verifier

[Gro16] Pairings
216 12.4 MB 128 B 5.6 s 5.5 s 3.3 ms
220 199 MB 128 B 72 s 79 s 3.4 ms

[GMNO18]∗ Lattices 216 17.3 MB† 640 KB 167 s 235 s 3.5 ms

Ligero [AHIV17]
Random 216 — 4.3 MB — 2.5 s 1.3 s
Oracle 220 — 14 MB — 38 s 22 s

Aurora [BCR+19]
Random 216 — 121 KB — 18 s 380 ms
Oracle 220 — 169 KB — 304 s 6.3 s

Fractal [COS20]‡
Random 216 1.4 GB 178 KB 12 s 21 s 8.3 ms
Oracle 219 11 GB 215 KB 116 s 184 s 9.5 ms

ethSTARK [Sta21a]➜
Random 216 – 77.5 KB – 0.3 s 2.5 ms
Oracle 220 – 127 KB – 4.5 s 4.1 ms

This work
Lattices

216 191 MB 15.2 KB 88 s 3.9 s 0.69 ms
(Shorter Proofs) 220 5.3 GB 16.4 KB 2240 s 68 s 1.2 ms

This work
Lattices

216 104 MB 19.9 KB 53 s 3.4 s 0.37 ms
(Shorter CRS) 220 1.9 GB 20.8 KB 877 s 56 s 0.43 ms

∗As we discuss in Appendix D (Remark D.4), the parameter instantiation proposed in Gennaro et al. [GMNO18] only provides
15 bits of provable soundness. If we use parallel repetition to amplify to 128-bits of soundness, then all of the parameters should
be scaled by a factor of 8.5×. In the table, we report the numbers as they were presented in the original paper. Their work also
does not provide measurements for instances with more than 216 gates.
†Gennaro et al. [GMNO18] do not report the CRS size for an instance of size 216. We estimate the size by doubling the size of
the CRS for an instance of size 215.
‡The “Setup” time and “CRS” size for Fractal refers to the running time of the indexer and the size of the resulting proving
state. Our system ran out of memory when running Fractal on an R1CS instance of size 220. Thus, we report the results for an
instance of size 219 instead.
➜Performance numbers for ethSTARK are based on verifying a Rescue hash chain [AAB+20, BGL20] (specifically Rescue122).
The length of the hash chain is chosen to match the size of the corresponding R1CS system. Specifically, we use hash chains of
length 270 and 4200 to represent R1CS systems with 216 and 220 constraints, respectively (see Section 4.3 for more detail). The
ethSTARK implementation [Sta21b] does not currently support verifying general computations.

Table 1: Concrete performance comparison of our zkSNARK to the pairing-based construction of
Groth [Gro16] and several recent post-quantum zkSNARKs with polylogarithmic-size proofs. For each
scheme, we report the running time and parameter sizes for an R1CS instance with 216 and 220 constraints.
We measure the running times for an R1CS instance over each scheme’s preferred field. With the exception of
the Gennaro et al. [GMNO18] construction, all measurements are taken on the same system (see Section 4.3
for details of our setup). For our scheme, we consider two different parameter settings. The “Shorter Proofs”
instantiation works over the field Fp2 where p = 213 − 1 and the “Shorter CRS” instantiation works over
the field Fp2 where p = 219 − 1 (see Table 2 for the lattice parameters in these instantiations). The “PQ”
column specifies whether the construction is post-quantum ( ) or pre-quantum ( ), the “TP” column specifies
whether the construction has a transparent setup ( ) or relies on a trusted setup ( ), and the “PV” column
specifies whether the scheme is publicly-verifiable ( ) or designated-verifier ( ).

needing a long CRS and a high prover cost (both scale quadratically with the size of the R1CS system).
Further improvements to the proof size and prover complexity are possible if we relax zero knowledge.

For instance, a variant of our construction that is sound but not provably zero knowledge is over 2.3× faster
for the prover than the pairing-based construction of Groth and has a proof size of 11.1 KB (for verifying an
R1CS instance with 220 constraints). This construction is suitable for applications that do not require zero
knowledge, or alternatively, can tolerate a small amount of leakage. Note that while we do not prove zero
knowledge of this variant, the construction can still provide full zero knowledge assuming that the underlying
information-theoretic building block we use (linear PCPs) remains zero knowledge in the presence of leakage.
We provide more details in Remark 3.24 and Lemma 3.26. We leave the question of determining whether
the linear PCPs we use (see Appendix A) or variants thereof satisfy the stronger notion of zero knowledge
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with leakage to future work. In Section 4.3, we show trade-offs between the number of bits of provable zero
knowledge provided by our construction and its concrete efficiency.

Compared to other post-quantum constructions based on “MPC-in-the-head” [IKOS07, AHIV17, BFH+20],
the “GKR” approach [GKR08, ZXZS20, ZWZZ20], or constructions tailored for specific computations [Sta21a],
our prover times are generally higher. For instance, compared to Ligero [AHIV17], our prover is about 1.8×
more expensive, but our proof size and verification times are over 874× better (see Table 1). If we compare
against the ethSTARK scheme [Sta21a] for verifying a STARK-friendly hash chain [AAB+20, BGL20], the
running time of the ethSTARK prover is 15× smaller than the running time of our prover for verifying the
R1CS representation of the same computation. In general, these alternative approaches typically enjoy smaller
concrete prover costs, but often have longer proofs or higher verification costs when considering general,
unstructured computations. We provide more details and comparisons with other zkSNARKs in Section 5.

The IOP-based constructions have the advantage of being publicly-verifiable and transparent. Our scheme is
designated-verifier and requires an expensive trusted setup. For verifying R1CS systems with 220 constraints,
we need to sample a CRS of size 5.3 GB which takes 37 minutes. An alternative instantiation of our
construction over a larger finite field reduces the CRS size to 1.9 GB and the setup time to 15 minutes. This
leads to a modest increase in proof size from 16.4 KB to 20.8 KB (see Table 1).

Limitations of our construction. While our lattice-based zkSNARK achieve better succinctness com-
pared to other post-quantum zkSNARK candidates, they have several limitations that give rise to natural
directions for improvement. We highlight some of these here:

❼ Reusable soundness and public verification. As noted above, our lattice-based zkSNARK is in
the designated-verifier model where a secret verification key is needed to verify proofs. Moreover, like
existing lattice-based designated-verifier zkSNARKs [GMNO18, BISW18], our construction does not
provide reusable soundness where soundness holds even against a malicious prover who can make an
arbitrary polynomial number of queries to the verification oracle. Constructing a lattice-based zkSNARK
with comparable concrete efficiency and reusable soundness is an interesting direction. As we discuss in
greater detail in Remark 3.22, even without a provable notion of reusable soundness, our construction
still suffices for some applications to verifiable computation. In particular, breaking soundness requires
the prover to submit a super-constant number of “bad” proofs to the verifier. This means that the
verifier is able to detect a malicious prover trying to attack the scheme (this is reminiscent of the notion
of covert security from [AL07]). Alternatively, these “selective failure” attacks can be avoided altogether
if the verifier does not reveal whether a proof is valid or not to the prover.

More generally, it is a fascinating question to construct publicly-verifiable lattice-based zkSNARKs
with comparable concrete efficiency. Existing lattice-based constructions [BBC+18, BLNS20] that are
publicly verifiable have an expensive verifier (i.e., the verifier runs in time linear in the size of the
underlying NP relation). We refer to Section 5 for further comparison with related work.

❼ Field characteristic. In this work, we consider lattice-based zkSNARKs for R1CS systems over finite
fields of moderate characteristic (i.e., between 12 and 20 bits). Specifically, we consider quadratic
extension fields, which enable a number of concrete optimizations (see Sections 1.2 and 4.3).

For some applications, it may be helpful to consider R1CS systems over fields of higher characteristic.
For example, validity of a 32-bit addition gate (on 32-bit inputs) can be expressed as a single R1CS
constraint over any finite field with characteristic p > 232. Thus, when verifying computations that make
extensive use of 32-bit or 64-bit integer arithmetic, it can be advantageous to encode the computation
in an R1CS system over a higher characteristic field. Both the pairing-based construction [Gro16] as
well as the hash-based constructions [Gro16, AHIV17, BCR+19, COS20] operate over base fields of
high characteristic (i.e., at least 128 bits). The hash-based constructions [AHIV17, BCR+19, COS20]
also efficiently support R1CS systems on high-degree extensions of the binary field, or more generally,
any field that supports efficient fast Fourier transforms.
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While our lattice-based instantiation can in principle support fields of higher characteristic, doing so will
require using larger lattice parameters, which in turn, increases the proof size. Moreover, some of our
concrete optimizations (e.g., implementing all arithmetic operations using 128-bit integer arithmetic)
can no longer be applied when the field characteristic increases. We refer to Section 4.3 and Fig. 2 for
more discussion on how the field characteristic affects the concrete efficiency of our scheme.

1.1 Background

The basis of our work is the compiler of Bitansky et al. [BCI+13] (also implicit in the work of Gen-
naro et al. [GGPR13]), and more specifically, the vector generalization by Boneh et al. [BISW17]. These
works provided a general template for constructing SNARKs in the preprocessing model by combining a
“linear PCP” with a “linear-only” encryption scheme. A linear PCP [IKO07] for an NP language L is defined
by a linear oracle π : Fℓ → F over a finite field F. On input a statement x, a verifier can submit a query
matrix Q ∈ F

ℓ×k to the oracle and obtain the responses a ← QT
π ∈ F

k. Based on the responses, the
verifier decides whether to accept or reject. We refer to k as the number of queries and ℓ as the query length
of the linear PCP. The linear PCP is sound if for a false statement x /∈ L and any proof vector π ∈ F

ℓ,
the probability that the verifier accepts is negligible (where the probability is taken over the choice of Q).
Concretely-efficient 4-query linear PCPs for R1CS can be constructed using the quadratic arithmetic programs
(QAPs) introduced by Gennaro et al. [GGPR13]. QAPs are the basis for the most succinct pairing-based
preprocessing zkSNARKs [PHGR13, GGPR13, BCI+13, BCG+13, Gro16].

To obtain a preprocessing zkSNARK for L from a linear PCP for L, the Bitansky et al. compiler encrypts
the linear PCP queries (i.e., the entries of Q) using a “linear-only” encryption scheme and publishes the
resulting ciphertexts as part of the common reference string (CRS). As the name suggests, a linear-only
encryption scheme is an encryption scheme that only supports linear homomorphism (i.e., it is possible to add
ciphertexts, but no other homomorphic operation on ciphertexts is supported). Given the encrypted queries,
the prover can homomorphically compute the encrypted responses a = QT

π. Here, the linear-only property
restricts the prover to linear strategies and by semantic security, the prover’s choice of linear combination
is essentially independent of the linear PCP queries. This binds the prover to respect the constraints of
the linear PCP model. To verify the proof, the verifier decrypts the encrypted responses and evaluates
the linear PCP verification procedure. This yields a designated-verifier preprocessing SNARK. For zero
knowledge, it suffices that the linear PCP be honest-verifier zero knowledge and the linear-only encryption
scheme be “re-randomizable” (i.e., ciphertexts output by the homomorphic evaluation are computationally
indistinguishable from fresh ciphertexts).

Lattice-based instantiations of Bitansky et al. Gennaro et al. [GMNO18], following Boneh et al. [BISW17,
BISW18], introduced candidate linear-only encryption schemes based on lattices. In these works, the under-
lying linear-only encryption scheme is adapted from basic Regev encryption [Reg05]. For our purposes, a
Regev-based encryption of a value x ∈ Zp is a pair (a, c) where a ∈ Z

n
q and c = sTa+ pe+ x ∈ Zq, where

s ∈ Z
n
q is the secret key, e ∈ Zq is an error term, and n, q are lattice parameters. Observe that this scheme

is linearly homomorphic: if (a1, c1) and (a2, c2) encrypt values x1, x2, respectively, then (a1 + a2, c1 + c2)
encrypts the value x1 + x2 mod p, albeit with slightly larger error. As long as the error magnitude in the
final ciphertext is less than q/(2p), decryption succeeds.

Gennaro et al. [GMNO18] provided the first lattice-based implementation of the Bitansky et al. compiler
using Regev encryption.1 Compared to the best pairing-based constructions that followed a similar methodol-
ogy [Gro16], the lattice-based implementation is significantly less efficient. For an R1CS instance of size 216,
the proof size is 640 KB, over 5000× larger than the pairing-based construction of Groth [Gro16]; similarly,
the prover time for a similar-sized instance is roughly 40× slower than the pairing-based analog. In fact, as
we discuss in Appendix D, because Gennaro et al. consider linear PCPs over a small field F (log |F| = 32),

1Gennaro et al. used square span programs [DFGK14] instead of QAPs as the underlying linear PCP, but this distinction is not
important for the main discussion here.
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the specific parameter instantiation they consider provides at most 15 bits of provable soundness. Working
over a larger field or using parallel repetition for soundness amplification would incur even more overhead.

Lattice parameter sizes. The main obstacle to the concrete efficiency of lattice-based zkSNARKs following
the Bitansky et al. compiler [BCI+13] is the size of the lattice parameters. The length of a QAP for an R1CS
instance with N constraints over a finite field F is O(N), and the soundness error is O(N/ |F|). This means we
need to work over a field F where |F| > N , and we need a linear-only encryption scheme over F that supports
O(N) homomorphic operations. In the Gennaro et al. construction [GMNO18], they consider a prime field
Fp where p > N . For correctness then, the modulus q for a Regev-based encoding must satisfy q > 2p2N .
Zero knowledge adds a further multiplicative factor of 2κ where κ is a statistical security parameter.

To achieve 128 bits of soundness, one approach is to set p > 2128N . If we take q ≈ 2300 (and a typical
error distribution), then the lattice dimension n needs to be at least 104 at the 128-bit security level (based
on [APS15]). A single ciphertext is over 350 KB in this setting. This is a lower bound on the proof size since
in the basic instantiation, the proof contains at least one ciphertext for each linear PCP response.

Alternatively, instead of working over a large field, we can work over a small field Fp where p ≈ N and
amplify soundness through parallel repetition. For instance, if we take p ≈ 220 and q ≈ 2100, then a single
Regev ciphertext is roughly 45 KB. However, soundness amplification increases the proof size (and all other
metrics), again leading to parameter sizes that are significantly worse than non-lattice-based zkSNARKs. The
scheme of Gennaro et al. [GMNO18] considers a finite field of size 232 without soundness amplification, and so
their concrete instantiation provides very few bits of provable soundness (see Appendix D and Remark D.4).
But even with this choice of parameters, the proof size in their construction is already 640 KB.

1.2 Technical Overview

The primary enablers of our concretely-efficient lattice-based zkSNARK are (1) using vector encryp-
tion [PVW08] instead of vanilla Regev encryption as our linear-only encryption scheme; and (2) working over
extension fields of moderate characteristic. We provide an overview of our techniques and construction here.

Vector encryption. Our starting point in this work is the adaptation of the Bitansky et al. compiler
using linear-only vector encryption introduced by Boneh et al. [BISW17]. As the name suggests, a vector
encryption scheme (over a field F) supports encrypting a vector of field elements. Instead of encrypting
each entry in the linear PCP query matrix Q ∈ F

ℓ×k separately, the Boneh et al. compiler encrypt rows
of Q. The proof then consists of a single ciphertext encrypting the vector of linear PCP responses. The
advantage of this approach is that we can take advantage of amortization to reduce the ciphertext expansion
for lattice-based vector encryption. In more detail, with vanilla Regev encryption, the overhead of encrypting
a single Zp value is O(n), where n is the lattice dimension. Using the extension by Peikert et al. [PVW08], we
can encrypt a vector of ℓ Zp-values with a ciphertext containing (n+ ℓ) Zq-elements. This approach confers
several improvements for concrete efficiency:

❼ Soundness amplification: We can now amplify soundness of the linear PCP using parallel repetition
(i.e., using multiple independent sets of linear PCP queries). This increases the dimensions of the
vectors we encrypt, but using the Peikert et al. vector encryption scheme, the overhead is additive in
the dimension rather than multiplicative (as with vanilla Regev encryption).

❼ Number of lattice ciphertexts: For an encryption scheme to plausibly satisfy the “linear-only”
property, the ciphertext space must be sparse, and in particular, the adversary should not be able
to obliviously sample a valid ciphertext without knowledge of the corresponding plaintext value. The
heuristic from earlier works [GGPR13, BCI+13, BISW17] is to use “double encryption” where a
valid ciphertext encrypting a message x consists of a pair of independent ciphertexts encrypting x
(Gennaro et al. [GMNO18] also use a variant of this encoding method). In Section 3.3, we describe an
alternative approach to sparsify the ciphertext space by first embedding the plaintext vector v ∈ Z

ℓ
p

within a (secret) subspace T ⊆ Z
ℓ+τ
p and then encrypting the embedded vector v′ ∈ Z

ℓ+τ
p . Here, τ is
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a “sparsification” parameter. A ciphertext is valid only if it encrypts an element of the subspace T .
When T has negligible density in Z

ℓ+τ
p , we conjecture that an adversary (that does not know T ) cannot

obliviously sample a valid ciphertext without knowledge of the corresponding plaintext vector. The
advantage of this approach is that it incurs a small additive overhead on ciphertext/proof size rather
than a multiplicative one. Thus, using vector encryption, we can encrypt a vector of plaintext values
using a single lattice ciphertext (and still plausibly prevent oblivious sampling of ciphertexts).

Reducing ciphertext size with modulus switching. Homomorphic operations on lattice ciphertexts
increase the noise in the ciphertexts. To ensure decryption correctness, the ciphertext modulus q must be large
enough to accommodate the accumulated noise from the homomorphic operations. The modulus switching
technique developed in the context of fully homomorphic encryption [BV11, BGV12, CNT12, AP14, DM15]
provides a way to reduce the size of the ciphertexts after performing homomorphic operations. Specifically,
modulus switching takes a ciphertext with respect to a modulus q and scales it down to a new ciphertext
with respect to a modulus q′ < q (while preserving decryption correctness). This technique applies to most
Regev-based encryption schemes, including the vector encryption scheme we use. In our specific setting,
after the prover homomorphically computes the encrypted vector of linear PCP responses, the prover applies
modulus switching to the resulting ciphertext. For our parameter settings, this yields a 2× to 3× reduction
in ciphertext size (and correspondingly, in proof size).

Instantiating our vector encryption scheme over Fp using a 23-bit characteristic p yields a zkSNARK
where the proof size is 27 KB and the CRS size is 9.6 GB (for verifying R1CS instances with 220 constraints).
Using a larger 28-bit characteristic, the proof size increases to 29 KB and the CRS size decreases to 2.7 GB
for the same setting. Without modulus switching, the proof sizes for these two settings are 66 KB and 72 KB,
respectively. While these basic instantiations already improve on previous post-quantum zkSNARKs in terms
of proof size, the improvements come at the expense of needing a very large CRS. Below, we show how to use
extension fields to obtain instantiations with a shorter CRS and a shorter proof.

Extension fields of moderate characteristic. The second ingredient in our construction is a way to
reduce the lattice parameters themselves by considering linear PCPs over extension fields of moderate
characteristic. The key observation we make is that the size of the modulus q (and other lattice parameters)
scale with the plaintext modulus (i.e., the field characteristic) but not necessarily the size of the field. To
take advantage of this, we first note that linear PCPs based on QAPs are agnostic to the choice of the field,
and work equally well over extension fields Fpk . We develop two instantiations of this approach:

❼ Compile linear PCPs over Fpk to Fp: Our first instantiation shows how to compile a linear PCP
over Fpk to a zkSNARK using linear-only vector encryption over the base field Fp (i.e., the same
encryption scheme from above). To do so, we first show how to transform a linear PCP over Fpk to a
linear PCP over Fp. The transformation increases the query length and the number of queries by a
factor of k, and relies on the fact that Fpk -operations correspond to linear transformations over the
vector space F

k
p. We describe our construction in Section 3.1. For concrete efficiency reasons, we focus

exclusively on quadratic extensions (see Remark 3.17). Using one instantiation of this approach, we
obtain a construction with shorter proofs (21 KB) and a shorter CRS (3.8 GB) compared to working
over the prime field.2 With a longer CRS (10.5 GB), we can bring the proof size down to just 16 KB.

❼ Vector encryption over extension fields. We next consider a direct compilation from linear PCPs
over the extension field to a zkSNARK using a linear-only vector encryption scheme whose plaintext
space coincides with the extension field. To do so, we generalize our variant of the Peikert et al. [PVW08]
encryption scheme to operate over the cyclotomic ring R = Z[x]/(x2 + 1). In this case, the plaintext
space is Rp = R/pR. When p = 3 mod 4, Rp

∼= Fp2 . Under the conjecture that the vector encryption
scheme is linear-only over Rp, this gives a direct compilation from a linear PCP over a quadratic
extension Fp2 to a zkSNARK over Fp2 . By relying on linear PCPs and linear-only vector encryption

2Even though the linear PCP transformation doubles the query length of the linear PCP, working over the extension field allows
us to achieve the same level of soundness with fewer parallel repetitions, and reduces the overall size of the CRS.
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over the quadratic extension, we obtain a zkSNARK with similar proof size as the above construction,
but with a 2× reduction in the CRS size (previously incurred by transforming the linear PCP from Fp2

to Fp). We show the concrete performance in Table 1 and in Section 4.3. Leveraging encryption schemes
over extension fields and higher-rank modules has also been useful for improving the asymptotic and
concrete efficiency of other lattice-based constructions [Gen09, GHS12a, GHS12b].

Parameter selection. In this work, we consider quadratic extension fields with two different characteristics:
(1) p = 213 − 1 which yields a construction with shorter proofs but a longer CRS; and (2) p = 219 − 1 which
yields a construction with a shorter CRS and slightly longer proofs. We choose p of the form 2t − 1 so that
F
∗
p2 has a multiplicative subgroup of order 2t+1 (i.e., the subgroup of 2t+1-th roots of unity). This enables us

to take advantage of fast Fourier transforms (FFT) to implement the linear PCP prover [BCG+13]. Note
that when p is sufficiently small (e.g., p = 213 − 1), the extension field does not contain a sufficiently-large
subgroup of roots of unity to directly leverage power-of-two FFTs for the linear PCP. In Section 4.1, we
describe a simple approach using multiple small power-of-two FFTs on different cosets of the roots of unity
that still enables an efficient implementation of the linear PCP prover.

Working over extension fields also allows us to use a smaller ciphertext modulus q in the lattice-based
encryption scheme. When q < 2128, we can use compiler intrinsic types for 128-bit integer arithmetic for
our computations. This is significantly faster than using multi-precision arithmetic or even fixed-precision
arithmetic over slightly larger integers. We provide more discussion and microbenchmarks in Section 4.2
and Table 3.

Zero knowledge and circuit privacy. As noted above, the Bitansky et al. compiler yields a zero-
knowledge SNARK if the underlying linear PCP is honest-verifier zero knowledge and the linear-only
encryption scheme is re-randomizable. However, the lattice-based schemes are not directly re-randomizable
(due to the accumulation of noise through homomorphic operations). In this work, we show that a weaker
notion of circuit privacy [Gen09] suffices to argue zero knowledge for the SNARK (i.e., the ciphertext obtained
from taking a linear combination of ciphertexts hide the coefficients of the linear combination). Using noise
smudging [Gen09, AJLA+12, MW16] and the module learning with errors assumption (MLWE) [BGV12, LS15],
it is straightforward to augment our linear-only vector encryption scheme to provide circuit privacy. We give
the details in Section 3.3. We additionally note in Remark 3.24 that even without circuit privacy, a direct
compilation from a linear PCP satisfying honest-verifier zero knowledge to a zkSNARK can still provide full
zero knowledge if the underlying linear PCP remains zero knowledge given some additional information on
the linear PCP coefficients. This variant without provable zero knowledge enables a further 30-40% reduction
in prover time and a 45-50% reduction in proof size.

Implementation and evaluation. In Section 4, we describe our implementation of our lattice-based
zkSNARK. We provide a comprehensive evaluation of the different trade-offs in parameter sizes and compu-
tational costs for the different settings described here. We also give fine-grained microbenchmarks of the
different components of our system in Section 4.3. Finally, we conclude with additional comparisons against
other zkSNARK candidates in Section 5.

2 Preliminaries

Throughout this work, we write λ (oftentimes implicitly) to denote the security parameter. For a positive
integer n ∈ N, we write [n] to denote the set {1, . . . , n}. We write {xi}i∈[n] to denote the ordered multi-set
of values x1, . . . , xn. We will typically use bold lowercase letters (e.g., v,w) to denote vectors and bold
uppercase letters (e.g., A,B) to denote matrices. For a vector v ∈ Z

n
p , we will use non-boldface letters to

refer to its components; namely, we write v = (v1, . . . , vn). For a vector v ∈ R
n, we write ‖v‖∞ to denote

the ℓ∞ norm of v. For a finite set S, we write x
r← S to denote that x is sampled uniformly from S. For a

distribution D, we write x← D to denote that x is sampled from D.
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We say that a function f is negligible in λ if f(λ) = o(1/λc) for all c ∈ N; we denote this f(λ) = negl(λ).
We write poly(λ) to denote a function bounded by a fixed polynomial in λ. We say an event happens
with negligible probability if the probability that the event occurs is negligible, and that it happens with
overwhelming probability if its complement occurs with negligible probability. We say an algorithm A is
efficient if it runs in probabilistic polynomial time in the length of its input. We say that two families
of distributions D1 = {D1,λ}λ∈N and D2 = {D2,λ}λ∈N are computationally indistinguishable if no efficient
adversary can distinguish samples from D1 and D2 except with negligible probability. We say that D1 and
D2 are statistically indistinguishable if the statistical distance between D1 and D2 is negligible; we denote

this by writing D1
s≈ D2. For an algorithm A, we write A(x; r) to denote the output of running A on input x

and randomness r. In settings where we do not need to specify the randomness explicitly, we write A(x) to
denote the output distribution of A on input x where the randomness is drawn from the uniform distribution.

We also recall the Schwartz-Zippel lemma [Sch80, Zip79] and a standard “smudging” lemma:

Lemma 2.1 (Schwartz-Zippel [Sch80, Zip79]). Let f ∈ F[x1, . . . , xn] be a multivariate polynomial of total
degree at most d over F, not identically zero. Then for any set S ⊆ F,

Pr[f(α1, . . . , αn) = 0 | α1, . . . , αn
r← S] ≤ d/ |S| .

Lemma 2.2 (Smudging Lemma). Let B,B′ be integers. Fix any value |e1| ≤ B′ and sample e2
r← [−B,B].

The statistical distance between the distributions of e1 + e2 and e2 is at most B′/B.

Discrete Gaussians and tail bounds. We also recall some preliminaries on the discrete Gaussian
distribution. We refer to Peikert’s survey [Pei16] for additional details and references. For a real value
s > 0, the Gaussian function ρs : R→ R

+ with width s is the function ρs(x) := exp(−πx2/s2). The discrete
Gaussian distribution DZ,s over Z with mean 0 and width s is the distribution where

Pr[X = x : X ← DZ,s] =
ρs(x)∑
y∈Z

ρs(y)
. (2.1)

A real random variable X is subgaussian with parameter s if for every t ≥ 0, Pr[|X| > t] ≤ 2 exp(−πt2/s2).
The following two facts will be useful in our analysis.

❼ If X is subgaussian with parameter s and a ∈ R, then aX is subgaussian with parameter |a| s.

❼ If X1, . . . , Xm are independent subgaussian random variables with parameters s1, . . . , sm, respectively,
then

∑
i∈[m] Xi is subgaussian with parameter ‖s‖2 where s = (s1, . . . , sm).

Rank-1 constraint satisfiability. We recall the definition of the R1CS language introduced implicitly by
Gennaro et al. [GGPR13] and formalized explicitly in [SBV+13, BCG+13, BCR+19]:

Definition 2.3 (Rank-1 Constraint Satisfiability [GGPR13, SBV+13, BCR+19]). A rank-1 constraint
satisfiability (R1CS) system over a finite field F is specified by a tuple CS =

(
n,Ng, Nw, {ai,bi, ci}i∈[Ng ]

)

where n,Ng, Nw ∈ N, n ≤ Nw, and ai,bi, ci ∈ F
Nw+1. The system CS is satisfiable for a statement x ∈ F

n if
there exists a witness w ∈ F

Nw such that

❼ x = (w1, . . . , wn) and

❼ [1 | wT]ai · [1 | wT]bi = [1 | wT]ci for all i ∈ [Ng].

We denote this by writing CS(x,w) = 1, and refer to n as the statement size, Nw as the number of variables,
and Ng as the number of constraints. Given an R1CS system CS, we define the corresponding relation
RCS = {(x,w) ∈ F

n × F
Nw : CS(x,w) = 1}.
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Remark 2.4 (Boolean and Arithmetic Circuit Satisfiability). As shown in [GGPR13, BCG+13], the language
of R1CS capture Boolean and arithmetic circuit satisfiability as special cases. Namely, a Boolean circuit
satisfiability instance for a Boolean circuit C : {0, 1}n × {0, 1}h → {0, 1} with α wires and β bilinear gates
yields an R1CS instance with Nw = α variables and Ng = β + h+ 1 constraints. Similarly, an arithmetic
circuit C : Fn × F

h → F
ℓ with α wires and β bilinear gates corresponds to an R1CS instance with Nw = α

variables and Ng = β + ℓ constraints. In this work, we focus exclusively on linear PCPs and SNARKs for
R1CS.

2.1 Linear PCPs

We now recall the notion of a linear PCP (LPCP) from [IKO07, BCI+13]. In this work, we only consider
linear PCPs for R1CS systems, so we specialize all of our definitions to this setting:

Definition 2.5 (Linear PCP [IKO07, BCI+13, adapted]). Let p be a polynomial and let CS = {CSκ}κ∈N be a
family of R1CS systems over a finite field F where each system CSκ =

(
nκ, Ng,κ, Nw,κ, {ai,κ,bi,κ, ci,κ}i∈[Ng,κ]

)

has size at most |CSκ| ≤ p(κ). In the following, we write n = n(κ) to denote a polynomially-bounded function
where n(κ) = nκ for all κ ∈ N. We define Ng = Ng(κ) and Nw = Nw(κ) similarly. A k-query input-
independent linear PCP for CS with query length ℓ = ℓ(κ) and knowledge error ε = ε(κ) is a tuple of
algorithms ΠLPCP = (QLPCP,PLPCP,VLPCP) with the following properties:

❼ QLPCP(1
κ) → (st,Q): The query-generation algorithm takes as input the system index κ ∈ N and

outputs a query matrix Q ∈ F
ℓ×k and a verification state st.

❼ PLPCP(1
κ,x,w)→ π: On input the system index κ ∈ N, a statement x ∈ F

n, and a witness w ∈ F
Nw ,

the prove algorithm outputs a proof π ∈ F
ℓ.

❼ VLPCP(st,x,a): On input the verification state st, the statement x ∈ F
n, and a vector of responses

a ∈ F
k, the verification algorithm outputs a bit b ∈ {0, 1}.

In addition, ΠLPCP should satisfy the following properties:

❼ Completeness: For all κ ∈ N, x ∈ F
n, and w ∈ F

Nw where CSκ(x,w) = 1,

Pr[VLPCP(st,x,QT
π) = 1 | (st,Q)← QLPCP(1

κ),π ← PLPCP(1
κ,x,w)] = 1.

❼ Knowledge: There exists an efficient extractor ELPCP such that for all κ ∈ N, x ∈ F
n, and π

∗ ∈ F
ℓ, if

Pr[VLPCP(st,x,QT
π

∗) = 1 | (st,Q)← QLPCP(1
κ)] > ε,

then
Pr[CSκ(x,w) = 1 | w← E〈π

∗,·〉
LPCP (1κ,x)] = 1.

We refer to ε as the knowledge error of the linear PCP.

❼ Perfect honest-verifier zero knowledge (HVZK): There exists an efficient simulator SLPCP =
(S1,S2) such that for all κ ∈ N and all instances (x,w) where CSκ(x,w) = 1,

{(st,Q,QT
π)} ≡ {(s̃t, Q̃, ã)},

where (st,Q)← QLPCP(1
κ), π ← PLPCP(1

κ,x,w), (s̃t, Q̃, stS)← S1(1κ), and ã← S2(stS ,x).3
3This definition separates the simulator SLPCP into a statement-independent algorithm S1 that simulates the query matrix and a
statement-dependent algorithm S2. This separation is important for arguing multi-theorem zero knowledge of our zkSNARKs.
In the multi-theorem setting, the verifier’s query matrix is reused for multiple proofs.
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Linear PCPs for R1CS. The quadratic arithmetic programs (QAPs) introduced by Gennaro et al. [GGPR13]
immediately imply a 4-query linear PCP for R1CS [BCG+13]. Note that Ben-Sasson et al. [BCG+13] de-
scribed the construction as a 5-query linear PCP with statistical HVZK (over large fields); however, it is
straightforward to adapt the construction to obtain a 4-query LPCP with perfect HVZK (over any field).
These changes incur a slight increase in the verification complexity and the knowledge error. We state the
main result below and describe the construction from [BCG+13] and our modifications in Appendix A.

Claim 2.6 (Linear PCPs for R1CS [GGPR13, BCG+13, adapted]). Let CS = {CSκ}κ∈N be a family
of R1CS instances over a finite field F, where CSκ =

(
nκ, Ng,κ, Nw,κ, {ai,κ,bi,κ, ci,κ}i∈[Ng,κ]

)
. We write

n = n(κ) to denote a function where n(κ) = nκ for all κ ∈ N; we define Ng = Ng(κ) and Nw = Nw(κ)
correspondingly. Then, there exists a 4-query linear PCP for CS with knowledge error 2Ng/(|F| −Ng), query
length 4 +Nw +Ng − n, and satisfying perfect HVZK.

Remark 2.7 (Knowledge Amplification for Linear PCPs). Claim 2.6 gives a 4-query linear PCP for any R1CS
system with Ng constraints that has knowledge error ε = 2Ng/(|F| −Ng). To achieve negligible knowledge
error, this necessitates working over a field of super-polynomial size. In our lattice-based instantiation, it is
more efficient to work over smaller fields. To amplify knowledge, we use standard parallel repetition. Namely,
for a k-query LPCP with query length m and knowledge error ε, we can obtain a (kρ)-query LPCP with the
same query length and knowledge error ερ. In more detail, the setup algorithm samples ρ independent sets of
queries Q1, . . . ,Qρ ∈ F

m×k and constructs its query matrix Q as Q = [Q1 | · · · | Qρ] ∈ F
m×kρ. The verifier

accepts a response a = [a1 | · · · | aρ] only if all ρ sets of responses are valid.

2.2 Succinct Non-Interactive Arguments

We recall the definitions of a succinct non-interactive argument of knowledge (SNARK) for R1CS:

Definition 2.8 (Succinct Non-Interactive Argument of Knowledge). Let CS = {CSκ}κ∈N be a family of R1CS
systems over a finite field F, where |CSκ| ≤ s(κ) for some fixed polynomial s(·). A succinct non-interactive
argument (SNARK) in the preprocessing model4 for CS is a tuple ΠSNARK = (Setup,Prove,Verify) with the
following properties:

❼ Setup(1λ, 1κ)→ (crs, st): On input the security parameter λ and the system index κ, the setup algorithm
outputs a common reference string crs and verification state st.

❼ Prove(crs,x,w) → π: On input a common reference string crs, a statement x, and a witness w, the
prove algorithm outputs a proof π.

❼ Verify(st,x, π)→ {0, 1}: On input the verification state st, a statement x and a proof π, the verification
algorithm outputs a bit b ∈ {0, 1}.

Moreover, ΠSNARK should satisfy the following properties:

❼ Completeness: For all security parameters λ ∈ N, system indices κ ∈ N, and instances (x,w) where
CSκ(x,w) = 1,

Pr[Verify(st,x, π) = 1] = 1,

where (crs, st)← Setup(1λ, 1κ), π ← Prove(crs,x,w).

❼ Knowledge: For all polynomial-size provers P∗, there exists a polynomial-size extractor E such that
for all security parameters λ ∈ N, system indices κ ∈ N, and auxiliary inputs z ∈ {0, 1}poly(λ),

Pr[Verify(st,x, π) = 1 ∧ CSκ(x,w) 6= 1] = negl(λ),

where (crs, st)← Setup(1λ, 1κ), (x, π)← P∗(1λ, 1κ, crs; z), and w← E(1λ, 1κ, crs, st,x; z).
4In the preprocessing model, we allow for a statement-independent setup algorithm that runs in time polynomial in the size of
the instance CSκ. In contrast, a “fully-succinct” SNARK also requires that the setup run in time sublinear (or polylogarithmic)
in the size of CSκ. Using recursive composition [BCCT13], it is possible to obtain fully succinct SNARKs from preprocessing
SNARKs.
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❼ Efficiency: There exist a universal polynomial p (independent of CS) such that Setup and Prove run
in time p(λ+ |CSκ|), Verify runs in time p(λ+ |x|+ log |CSκ|), and the proof size is p(λ+ log |CSκ|).

Remark 2.9 (Public Verification vs. Designated Verifier). We say a SNARK is publicly-verifiable if st can
be efficiently computed from crs (i.e., verification only depends on the public common reference string).
Otherwise, the SNARK is designated-verifier (i.e., only the holder of the secret verification state st can check
proofs). In this work, we focus on designated-verifier SNARKs.

Definition 2.10 (Zero Knowledge). A SNARK ΠSNARK = (Setup,Prove,Verify) for an R1CS system CS =
{CSκ}κ∈N is computational zero knowledge (i.e., a zkSNARK) if there exists an efficient simulator SSNARK =
(S1,S2) such that for all κ ∈ N and all efficient and stateful adversaries A, we have that

Pr[ExptZKΠSNARK,A,SSNARK
(1λ, 1κ) = 1] ≤ 1/2 + negl(λ), (2.2)

where the experiment ExptZKΠSNARK,A,SSNARK
(1λ, 1κ) is defined as follows:

1. The challenger samples b
r← {0, 1}. If b = 0, the challenger computes (crs, st)← Setup(1λ, 1κ) and gives

(crs, st) to A. If b = 1, the challenger computes (c̃rs, s̃t, stS)← S1(1λ, 1κ) and gives (c̃rs, s̃t) to A.

2. The adversary A outputs a statement x and a witness w.

3. If CSκ(x,w) 6= 1, then the experiment halts with output 0. Otherwise, the challenger proceeds as
follows:

❼ If b = 0, the challenger replies with π ← Prove(crs,x,w).

❼ If b = 1, the challenger replies with π̃ ← S2(stS ,x).

At the end of the experiment, A outputs a bit b′ ∈ {0, 1}. The output of the experiment is 1 if b′ = b
and is 0 otherwise.

When the probability in Eq. (2.2) is bounded by 1/2 + ε, we say that the scheme satisfies ε-computational
zero knowledge.

3 Lattice-Based Succinct Arguments

In this section, we introduce the main information-theoretic building block (linear PCPs over extension fields)
and the cryptographic compiler (linear-only vector encryption) that underlie our lattice-based zkSNARK.
We then show how to combine these ingredients to obtain our designated-verifier zkSNARK by invoking the
Bitansky et al. [BCI+13, BISW17] compiler (see Section 1.2).

3.1 Linear PCPs over Extension Fields

Claim 2.6 gives a linear PCP for R1CS over any (sufficiently-large) field F. In our work, we consider linear
PCPs over quadratic extensions Fp2 . As discussed in Section 1.2, we consider compilers based on vector
encryption over the extension Fp2 as well as over the base field Fp. For the latter setting, we need to first
transform a linear PCP over Fp2 to a linear PCP over Fp. We describe this transformation here.

Field extensions. Recall that a degree-d field extension Fpd of Fp is a d-dimensional vector space over
Fp. For a field element s ∈ Fpd , we write vs ∈ F

d
p to denote its representation in F

d
p. There is an efficiently-

computable isomorphism between s ∈ Fpd and vs ∈ F
d
p. In particular, this means that for all s, t ∈ Fpd ,

vs + vt = vs+t ∈ F
d
p. We write Ms ∈ F

d×d
p to denote the linear transformation over F

d
p corresponding to

scalar multiplication by s over Fpd . Namely, for all s, t ∈ Fpd , we have that Msvt = vst.
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Construction 3.1 (Fpd-Linear PCP to Fp-Linear PCP). Let Π′
LPCP = (Q′

LPCP,P ′
LPCP,V ′

LPCP) be a k-query
linear PCP for a family of R1CS systems CS = {CSκ}κ∈N over an extension field Fpd with query length ℓ.
We construct a (dk)-query linear PCP ΠLPCP = (QLPCP,PLPCP,VLPCP) for CS with query length dℓ over the
base field Fp:

❼ QLPCP(1
κ): Run (st,Q′) ← Q′

LPCP(1
κ), where Q′ ∈ F

ℓ×k
pd . Let Q ∈ F

dℓ×dk
p be the matrix formed by

taking each component q′i,j ∈ Fpd in Q′ and replacing it with the transpose of the “multiplication-by-q′i,j”

matrix MT
q′
i,j
∈ F

d×d
p . Namely,

Q′ =




q′1,1 · · · q′1,k
...

. . .
...

q′ℓ,1 · · · q′ℓ,k


 ∈ F

ℓ×k
pd and Q =




MT
q′
1,1

· · · MT
q′
1,k

...
. . .

...
MT

q′
ℓ,1
· · · MT

q′
ℓ,k


 ∈ F

dℓ×dk
p .

Output st and Q.

❼ PLPCP(1
κ,x,w): Compute π

′ ← P ′
LPCP(1

κ,x,w) ∈ F
ℓ
pd . Let π ∈ F

dℓ
p be the vector formed by taking

each component π′
i ∈ Fpd in π

′ and replacing it with the vector vπ′

i
∈ F

d
p representing πi. Output the

proof vector π.

❼ VLPCP(st,x,a): First, parse a ∈ F
dk
p as [va′

1
| · · · |va′

k
] for some a′ = (a′1, . . . , a

′
k) ∈ F

k
pd . Output

V ′
LPCP(st,x,a

′).

Theorem 3.2 (Fpd -Linear PCP to Fp-Linear PCP). If Π′
LPCP is complete, perfect HVZK, and has knowledge

error ε, then the same holds for ΠLPCP from Construction 3.1.

Proof. We analyze each property individually:

❼ Completeness: Take any x,w whereR(x,w) = 1, and let (st,Q′)← Q′
LPCP(1

κ), π′ ← P ′
LPCP(1

κ,x,w).
LetQ ∈ F

dℓ×dk
p and π ∈ F

dℓ
p be as specified inQLPCP and PLPCP and let a← QT

π. Write a = [a1, . . . ,ak].
By construction, for all i ∈ [k],

ai =
∑

j∈[ℓ]

Mq′
j,i
vπ′

j
=
∑

j∈[ℓ]

vq′
j,i

π′

j
= v(q′

i
)Tπ′ ∈ F

d
p,

where q′
i ∈ F

ℓ
pd denotes the ith column of Q′. This means that the vector a′ computed by VLPCP satisfies

a′ = (Q′)Tπ′. Completeness now follows by completeness of Π′
LPCP.

❼ Knowledge: Let (st,Q′)← Q′
LPCP(1

κ) and let Q be the matrix QLPCP constructs from Q′. Take any
proof π ∈ F

dℓ
p , and let π′ ∈ F

ℓ
pd be the vector obtained by viewing each contiguous block of d elements of

π as an element of Fpd . By construction, VLPCP(st,x,QT
π) = 1 if and only if V ′

LPCP(st,x, (Q
′)Tπ′) = 1.

The claim now follows by knowledge soundness of Π′
LPCP. Namely, the extractor ELPCP for ΠLPCP simply

invokes the extractor E ′LPCP for Π′
LPCP. Any linear query q′ ∈ F

ℓ
pd that E ′LPCP makes to 〈π′, ·〉 can be

simulated via d linear queries to 〈π, ·〉 by expanding each component in q′ into a matrix over Fd×d
p .

❼ Perfect HVZK: Let S ′LPCP = (S ′LPCP,1,S ′LPCP,2) be the linear PCP simulator for Π′
LPCP. We define

SLPCP = (SLPCP,1,SLPCP,2) for ΠLPCP as follows:

– SLPCP,1(1κ): On input κ ∈ N, run the simulator S ′LPCP,1(1κ) to obtain a pair (st,Q′) where

Q′ ∈ F
ℓ×k
pd . The simulator constructs Q ∈ F

dℓ×dk
p by expanding replacing each component q′i,j of

Q′ with M′T
qi,j (as in QLPCP). It outputs (st,Q).

– SLPCP,2(st,x): On input the simulation state st and a statement x, run S ′LPCP,2(st,x) to obtain

a′ ∈ F
k
pd . Then, compute and output a ∈ F

dk
p by expanding each component π′

i ∈ Fpd as a vector

vπ′

i
∈ F

d
p (as in PLPCP).

Perfect HVZK now follows by perfect HVZK of Π′
LPCP.
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3.2 Linear-Only Vector Encryption

We begin with the definition of a vector encryption scheme (adapted from [BISW17]), and then define the
linear-only [BCI+13, BISW17] property we rely on for our zkSNARK constructions.

Definition 3.3 (Vector Encryption). Let F be a finite field. A secret-key additively-homomorphic vector
encryption scheme over a vector space F

ℓ consists of a tuple of algorithms ΠEnc = (Setup,Encrypt,Decrypt,
Add) with the following properties:

❼ Setup(1λ, 1ℓ)→ (pp, sk): On input the security parameter λ and the plaintext dimension ℓ, the setup
algorithm outputs public parameters pp and a secret key sk.

❼ Encrypt(sk,v)→ ct: On input the secret key sk and a vector v ∈ F
ℓ, the encryption algorithm outputs

a ciphertext ct.

❼ Decrypt(sk, ct)→ v/⊥: On input the secret key sk and a ciphertext ct, the decryption algorithm either
outputs a vector v ∈ F

ℓ or a special symbol ⊥.

❼ Add(pp, {cti}i∈[n], {ci}i∈[n]) → ct∗: On input the public parameters, a collection of ciphertexts
ct1, . . . , ctn and scalars c1, . . . , cn ∈ F, the addition algorithm outputs a new ciphertext ct∗.

Moreover, ΠEnc should satisfy the following properties:

❼ Additive homomorphism: For all security parameters λ ∈ N, vectors v1, . . . ,vk ∈ F
ℓ, and scalars

y1, . . . , yk ∈ F, where k = k(λ),

Pr


Decrypt(sk, ct∗) =

∑

i∈[k]

yivi


 = 1− negl(λ), (3.1)

where (pp, sk)← Setup(1λ, 1ℓ), cti ← Encrypt(sk,vi) for all i ∈ [k], and ct∗ ← Add(pp, {cti}i∈[k], {yi}i∈[k]).

We say that ΠEnc is additively homomorphic with respect to a set S ⊆ Rk
p if Eq. (3.1) holds for all

(y1, . . . , yk) ∈ S. Note that additive homomorphism implies correctness of decryption.

❼ CPA security: For all security parameters λ ∈ N and all efficient adversaries A,

Pr
[
AOb(sk,·,·)(1λ, pp) = b

]
= 1/2 + negl(λ), (3.2)

where (pp, sk) ← Setup(1λ, 1ℓ), b
r← {0, 1}, and oracle Ob takes inputs (sk,v0,v1) and outputs ctb ←

Encrypt(sk,vb). If Eq. (3.2) holds against all efficient adversaries A making at most Q queries to Ob,
then we say ΠEnc is Q-query CPA secure.

Definition 3.4 (Linear-Only Vector Encryption [BCI+13, adapted]). A vector encryption scheme ΠEnc =
(Setup,Encrypt,Decrypt,Add) over Fℓ is strictly linear-only if for all polynomial-size adversaries A, there is a
polynomial-size extractor E such that for all security parameters λ ∈ N, auxiliary inputs z ∈ {0, 1}poly(λ), and
any efficient plaintext generatorM,

Pr[ExptLinearExtΠEnc,A,M,E,z(1
λ) = 1] = negl(λ),

where the experiment ExptLinearExtΠEnc,A,M,E,z(1
λ) is defined as follows:

1. The challenger starts by sampling (pp, sk)← Setup(1λ, 1ℓ) and (v1, . . . ,vm)←M(1λ, pp). It computes
cti ← Encrypt(sk,vi) for each i ∈ [m] and runs A(pp, ct1, . . . , ctm; z) to obtain a tuple (ct′1, . . . , ct

′
k).

2. The challenger computes Π← E(pp, ct1, . . . , ctm; z) and V′ ← Π · [v1 | · · · | vm]T, where Π ∈ F
k×m

and V′ ∈ F
k×ℓ. The experiment outputs 1 if there exists an index i ∈ [k] such that Decrypt(sk, ct′i) 6= ⊥

and Decrypt(sk, ct′i) 6= v′
i, where v′

i ∈ F
ℓ is the ith row of V′. Otherwise, the experiments outputs 0.

14



Remark 3.5 (Linear vs. Affine Strategies). Definition 3.4 requires that all adversarial strategies which
produce a valid ciphertext correspond to taking a linear combination of the given ciphertexts. Previous
definitions [BCI+13, BISW17] considered a weaker requirement that allows the extractor to explain the
adversary’s strategy using an affine function. Indeed, in the public-key setting, the encryption scheme can
at best be affine-only, since the adversary can always encrypt an arbitrary vector v of its choosing (using
the public key) and add it to the ciphertext. However, in the secret-key setting, it is plausible that the
adversary cannot even produce new ciphertexts on messages of its choosing. In this case, we can conjecture
that the only way the adversary can construct valid ciphertexts is by computing linear combinations of
existing ciphertexts. To distinguish between our more stringent notion and the previous notion, we refer to
ours as strict linear-only encryption. Making this stronger linear-only conjecture for a secret-key encryption
scheme enables a direct compiler from a linear PCP with knowledge against linear strategies (as opposed to
linear PCPs with knowledge against affine strategies; see Remark A.3 for further discussion).

Remark 3.6 (Auxiliary Input Distributions). Definition 3.4 requires that the extractor succeed for arbitrary
auxiliary inputs z. While this formulation is convenient for definitional purposes, the requirement may be
too strong in certain settings (e.g., when z encodes a hard cryptographic problem that the extractor must
solve to explain the adversary’s behavior [BCPR14]). In such cases, it suffices to consider a relaxation where
Definition 3.4 holds only for auxiliary inputs sampled from “benign” distributions (e.g., in our applications, it
suffices to consider auxiliary inputs that are uniform). We refer to [BCPR14, BCI+13] for further discussion.

Circuit privacy. In addition to the above properties, we additionally require a circuit privacy prop-
erty [Gen09]. Circuit privacy says that the ciphertext output by Add can be simulated given only the
underlying plaintext value, without knowledge of the linear combination used to construct the ciphertext.
This is important for arguing zero knowledge (see Section 3.4 and Theorem 3.23).

Definition 3.7 (Circuit Privacy). Let ΠEnc = (Setup,Encrypt,Decrypt,Add) be a secret-key vector encryption
scheme over Fℓ. We say that ΠEnc satisfies circuit privacy if for all efficient and stateful adversaries A, there
exists an efficient simulator S such that for all security parameters λ ∈ N,

Pr[ExptCircuitPrivΠEnc,A,S(1
λ) = 1] = 1/2 + negl(λ), (3.3)

where the experiment ExptCircuitPrivΠEnc,A,S(1
λ) is defined as follows:

1. The challenger samples (pp, sk) ← Setup(1λ, 1ℓ) and gives (pp, sk) to the adversary. The adversary
replies with a collection of vectors v1, . . . ,vk ∈ F

ℓ.

2. The challenger constructs ciphertexts cti ← Encrypt(sk,vi) for all i ∈ [k] and gives (ct1, . . . , ctk) to A.
The adversary replies with a collection of coefficients y1, . . . , yk ∈ F.

3. The challenger computes ct∗0 ← Add(pp, {cti}i∈[k], {yi}i∈[k]) and ct∗1 ← S(1λ, pp, sk,
∑

i∈[k] yivi). It also

samples a random bit b
r← {0, 1} and replies to the adversary with ct∗b .

4. The adversary outputs a bit b′ ∈ {0, 1}. The output of the experiment is 1 if b′ = b and 0 otherwise.

In this work, we also consider a weaker notion of circuit privacy where we additionally constrain the adversary
to choosing the coefficients from an a priori specified set S ⊆ F. In this case, we say that ΠEnc satisfies circuit
privacy with respect to S. In addition, when the probability in Eq. (3.3) is bounded by 1/2 + ε, we say that
ΠEnc is ε-circuit private.

Remark 3.8 (Multi-Query Circuit Privacy). We can define a multi-query variant of Definition 3.7 where
the adversary can adaptively choose multiple collections of coefficients y1, . . . , yk ∈ Rp and on each query, the
adversary learns either the homomorphically-evaluated ciphertext (from Add) or the simulated ciphertext
(from S). This multi-query notion is useful to argue multi-theorem zero knowledge when compiling a linear
PCP into a preprocessing SNARG [BCI+13]. Definition 3.7 implies this multi-query variant by a standard
hybrid argument.
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3.3 Candidate Linear-Only Vector Encryption

Our constructions work over the ring R = Z[x]/(xd + 1) where d is a power of 2. We specifically consider the
cases where d = 1 (R = Z) and d = 2 (R = Z[x]/(x2 +1)). For a positive integer p ∈ N, we write Rp = R/pR.
We represent elements of R as a vector of coefficients (i.e., as a vector Zd). For an element r ∈ R, we write
‖r‖∞ to denote the ℓ∞ norm of the vector of coefficients of r. We write γR to denote the expansion constant
where for all r, s ∈ R, we have that ‖rs‖∞ ≤ γR ‖r‖∞ ‖s‖∞. In particular, γR = 1 when d = 1 and γR = 2
when d = 2. Finally, for a vector v ∈ Rn, we write ‖v‖p to denote the ℓp norm ‖v′‖p of the vector v′ ∈ Z

dn

formed by concatenating the vector of coefficients of each element in v.

(Module) learning with errors. Security of our construction relies on the module learning with errors
(MLWE) assumption [BGV12, LS15] (in addition to our linear-only conjecture). We state the MLWE
assumption in “normal form” where the secret is sampled from the error distribution. This form of the
problem is as hard as the version where the secret key is sampled uniformly at random [ACPS09].

Definition 3.9 (Module Learning With Errors (MLWE) [BGV12, LS15]). Fix a security parameter λ, integers
n = n(λ), m = m(λ), q = q(λ), d = d(λ) where d is a power of two. Let R = Z[x]/(xd + 1), Rq = R/qR, and
χ = χ(λ) be an error distribution over Rq. The (decisional) module learning with errors (MLWE) assumption

MLWEn,m,d,q,χ states that for A
r← Rn×m

q , s← χn, e← χm, and u
r← Rm

q , the following two distributions
are computationally indistinguishable:

(A, sTA+ eT) and (A,uT)

Remark 3.10 (Relation to LWE and RLWE). The module LWE assumption generalizes both the classic
learning with errors (LWE) assumption [Reg05] as well as the ring learning with errors (RLWE) assump-
tion [LPR10]. In particular, LWE is MLWE instantiated with d = 1 and RLWE is MLWE instantiated with
n = 1.

Vector encryption construction. We now describe our vector encryption scheme. Our scheme is an
adaptation of the Regev-based [Reg05] scheme of Peikert et al. [PVW08], generalized to modules and with
the following additions/modifications:

❼ Secret-key encryption: Since a secret-key vector encryption suffices for our designated-verifier
zkSNARK,5 we consider a secret-key version of the scheme. This reduces the concrete cost for
encryption (we can substitute a random vector in each ciphertext in place of a matrix-vector product
with the public key). Note that there are still public parameters in our scheme. These are used for
re-randomization of homomorphically-evaluated ciphertexts, and are not used for encryption.

❼ Message encoding: We encode the message in the least significant bits of the ciphertext rather than
the most significant bits. When the plaintext modulus p and ciphertext modulus q are coprime, these
approaches are equivalent up to scaling [AP13]. In our implementation, encoding a value k in the
least significant bits of the ciphertext is more convenient since we avoid the need to compute the value
⌊k · q/p⌉ mod q (which if implemented improperly, can overflow our integer representation).

❼ Ciphertext re-randomization: For zero knowledge, we require an additional circuit privacy property.
Ciphertexts in this scheme consist of pairs of vectors ct = (a, c). Homomorphic operations on
ciphertexts correspond to computing component-wise linear combinations. In our construction, we
include a public MLWE matrix as part of the public parameters to re-randomize the vector a, and we
use standard noise smudging techniques (see Lemma 2.2) to re-randomize the vector c. Previously,
Gennaro et al. [GMNO18] suggest that the first component a is already random by appealing to
the leftover hash lemma; unfortunately, this only applies in the setting where the coefficients of the

5Using a public-key encryption scheme does not imply a publicly-verifiable zkSNARK in this setting. There is no advantage to
using a public-key encryption scheme to instantiate the underlying encryption scheme.
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linear combination have sufficient min-entropy (which is not necessarily the case in the zkSNARK
construction). We show that in our case and under the MLWE assumption,6 our construction provably
satisfies circuit privacy without needing any additional assumption on the choice of linear combination.

❼ Ciphertext sparsification. Our linear-only definition (Definition 3.4) essentially requires that the
only way an efficient adversary can generate a valid ciphertext is by taking linear combinations of
valid ciphertexts. This means that the set of valid ciphertexts must be sparse (to prevent oblivious
sampling of a valid ciphertext). Previous works [GGPR13, BCI+13, BISW17] suggest double encryption
to realize this property. With double encryption, valid ciphertexts ct = (ct1, ct2) are defined as pairs of
ciphertexts that both encrypt identical messages. While this approach is applicable in our setting, it
doubles the length of the ciphertexts.

We propose a similar, but more efficient, approach tailored for vector encryption. Namely, if our
goal is to encrypt elements from a vector space F

ℓ, we enlarge the plaintext space to F
ℓ+τ , where

τ is a sparsification parameter. During setup, we sample a random matrix T
r← F

ℓ×τ which is
included as part of the secret key. Then, to encrypt a vector v ∈ F

ℓ, we instead encrypt the vector
uT = [vT | (Tv)T]. During decryption, after recovering uT = [uT

1 | uT
2 ], the decryption algorithm

outputs ⊥ if u2 6= Tu1. Semantic security of the vector encryption scheme ensures that the secret
transformation T is computationally hidden from the view of the adversary. By setting the sparsification
parameter τ accordingly, we can ensure that for any fixed vector uT = [uT

1 | uT
2 ], the probability that

u2 = Tu1 is negligible (over the randomness of T). We conjecture that our approach also yields an
encryption scheme that satisfies the linear-only assumption. The advantage of this approach is that the
ciphertext size in the underlying vector encryption scheme grows additively with the plaintext dimension
(i.e., the resulting ciphertext size is n+ ℓ+ τ rather than 2(n+ ℓ) as with “encrypting twice”).

We now describe our vector encryption scheme:

Construction 3.11 (Vector Encryption). Let d = d(λ) be a power of two and let R = Z[x]/(xd + 1). Fix
lattice parameters p = p(λ), q = q(λ), n = n(λ) and an error distribution χ = χ(λ) over Rq. We additionally
define the following parameters:

❼ ℓ: the plaintext dimension
❼ τ : the sparsification parameter
❼ B: the noise smudging bound

Let ℓ′ = ℓ+ τ . We construct a secret-key vector encryption scheme ΠEnc = (Setup,Encrypt,Decrypt,Add) over
Rp as follows:

❼ Setup(1λ, 1ℓ): Sample matrices A
r← Rn×n

q , S ← χn×ℓ′ , T
r← Rτ×ℓ

p , and E ← χn×ℓ′ . Compute

D← STA+ pET ∈ Rℓ′×n
q . Output the secret key sk = (S,T) and the public parameters pp = (A,D).

❼ Encrypt(sk,v): On input the secret key sk = (S,T) and a vector v ∈ Rℓ
p, construct the concatenated

vector uT = [vT | (Tv)T] ∈ Rℓ′

p . Sample a
r← Rn

q , e ← χℓ′ and compute c ← STa + pe + u ∈ Rℓ′

q .
Output the ciphertext ct = (a, c).

❼ Add(pp, {cti}i∈[k], {yi}i∈[k]): On input the public parameters pp = (A,D), ciphertexts cti = (ai, ci) for

i ∈ [k], and scalars yi ∈ Rp, sample r← χn, ea ← χn, ec
r← [−B,B]dℓ

′

and output the ciphertext

ct∗ =
(∑

i∈[k]

yiai +Ar+ pea,
∑

i∈[k]

yici +Dr+ pec

)
. (3.4)

❼ Decrypt(sk, ct): On input the secret key sk = (S,T) and a ciphertext ct = (a, c), compute z← c−STa ∈
Rℓ′

q . Compute u = z mod p, and parse uT = [vT
1 | vT

2 ] where v1 ∈ Rℓ
p and v2 ∈ Rτ

p . Output v1 if
v2 = Tv1 ∈ Rτ

p and ⊥ otherwise.
6We could make this step statistical by relying on the leftover hash lemma, but this requires much larger parameters. Instead,
we rely on MLWE and settle for computational circuit privacy (which translates to computational zero knowledge).
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Correctness and security analysis. Below, we state our main theorems on the correctness and security
of Construction 3.11. We defer the formal analysis to Appendix B.1.

Theorem 3.12 (Additive Homomorphism). Let λ be a security parameter and p, q, n, ℓ′, χ,B be as defined
in Construction 3.11. Suppose χ is subgaussian7 with parameter s. If n, ℓ′, s, d, γR = poly(λ), then for
all k = k(λ), there exists q = (pB + kp2) · poly(λ) such that Construction 3.11 is additively homomorphic
with respect to Rk

p. Concretely, let C be a correctness parameter and let B1, B2 be bounds. Define the set

S = {y ∈ Rk
p : ‖y‖1 ≤ B1 and ‖y‖2 ≤ B2}. If ℓ′, n > 8, and

q > 2p(B + γRB2Cs+ γRB1/2 + 2γRnC
2s2) + p, (3.5)

then Eq. (3.1) holds with probability 1− (4n+ 2)dℓ′ exp(−πC2) for all (y1, . . . , yk) ∈ S.

Theorem 3.13 (CPA Security). Fix a security parameter λ and let p, q, n, ℓ′, χ be as defined in Construc-
tion 3.11. Take any Q = poly(λ) and suppose that p, q are coprime. Under the MLWEn,m,d,q,χ assumption
with m = n+Q, Construction 3.11 is Q-query CPA secure.

Theorem 3.14 (Circuit Privacy). Let λ be a security parameter and p, q, n, ℓ′, χ be as defined in Construc-
tion 3.11. Suppose that χ is subgaussian with parameter s. If n, ℓ′, s, d, γR = poly(λ), and B = 2ω(log λ) · kp2,
then under the MLWEn,m,d,q,χ assumption with m = n, Construction 3.11 is circuit private with re-
spect to the set S = Rk

p. Concretely, let C be a correctness parameter and let B1, B2 be bounds. Let

S = {y ∈ Rk
p : ‖y‖1 ≤ B1 and ‖y‖2 ≤ B2}. Then under the MLWEn,m,d,q,χ assumption with m = n, for

every efficient adversary A restricted to strategies in S, there exists an efficient simulator S where

Pr[ExptCircuitPrivΠEnc,A,S(1
λ) = 1] ≤ 1/2 + ε+ negl(λ),

and

ε = (4n+ 2)dℓ′ exp(−πC2) +
dℓ′(γRB2Cs+ γRB1/2 + 2γRnC

2s2)

B
. (3.6)

Conjecture 3.15 (Linear-Only). Fix a security parameter λ and let p, d, τ be defined as in Construction 3.11.
If |Rp|τ = pτd = λω(1), then Construction 3.11 is strictly linear-only (Definition 3.4).

Remark 3.16 (Plausibility of Linear-Only Conjecture). We make a few remarks on the plausibility of
Conjecture 3.15.

❼ Affine strategies: The linear-only definition (Definition 3.4) rules out the possibility of the adversary
implementing affine strategies. In particular, the adversary should not be able to obliviously sample a
valid ciphertext (for a non-zero vector) nor should the adversary be able to craft a valid encryption
of a (non-zero) vector that is not the result of applying a linear function to existing ciphertexts. The
approach we take in Construction 3.11 is to sparsify the ciphertext space by defining valid ciphertexts
to be those that encrypt vectors of the form uT = [vT | (Tv)T], where T is a uniformly random matrix
that is computationally hidden from the view of the adversary.

❼ General homomorphic operations: Regev-based encryption schemes are the basis of many somewhat
and fully homomorphic encryption (FHE) schemes, which are certainly not linear-only. However, all
existing constructions of FHE rely on making some algebraic modifications to either the message
encoding, homomorphic evaluation, or decryption operations. It is not known that vanilla Regev
encryption (like Construction 3.11) supports higher-degree homomorphisms. Evaluating whether
Construction 3.11 supports more general homomorphic operations without modification is an intriguing
open question and has a win-win flavor: either the linear-only conjecture holds and we can use it as the
basis of zkSNARKs, or we discover new homomorphic capabilities on standard Regev encryption.

7When d > 1, we assume that χ is the concatenation of d independent subgaussian distributions over Z, each with parameter at
most s. This is true for discrete Gaussian distributions over a power-of-two cyclotomic ring.
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Remark 3.17 (Higher-Degree Extensions). Construction 3.11 naturally extends to general cyclotomic rings
R = Z[x]/Φm(x), where Φm(x) is the mth cyclotomic polynomial. The prime p can then be chosen so that
Rp is isomorphic to one or more copies of Fpk for some k ≥ 1. This allows us to directly compile linear PCPs
over a higher-degree extension field into preprocessing zkSNARKs.

Much like the case with fully homomorphic encryption based on RLWE [SV10, GHS12a, SV14], when Rp

splits into ℓ copies of Fpk (i.e., when the polynomial Φm(x) splits into ℓ irreducible factors F1(x), . . . , Fℓ(x) of
degree k over Fp), it is possible to pack ℓ sets of queries (for different R1CS systems) into a single ciphertext
(i.e., by associating each R1CS system with an irreducible factor Fi(x)). Likewise, the prover can now
homomorphically compute the encrypted responses to all ℓ R1CS systems. Then, a single ciphertext contains
the packed responses to ℓ different statements across ℓ different (and independent) R1CS systems.

When working with a module R of rank d > 1, homomorphic operations map to polynomial additions and
multiplications over Rq. For efficiency reasons (discussed in Section 4.3), we set the modulus q to be a power
of two. As such, it is more challenging to use fast polynomial multiplication algorithms (i.e., based on fast
Fourier transforms) to implement the homomorphic operations.8 In this work, we focus on modules of rank 1
and 2 where the additional cost of the polynomial arithmetic is small. Extending to modules of higher rank
and taking advantage of batching in a concretely-efficient manner is an interesting direction for future work.

Remark 3.18 (Reducing Coefficient Magnitudes). In Theorems 3.12 and 3.14, the magnitude of q grows with
the ℓ1 and ℓ2 norms of the vector of coefficients in the prover’s linear combination. When R = Z, we can reduce
the magnitude of the individual coefficients in the linear combination over Rp from p to p1/m at the expense of
increasing the length of the linear combination (i.e., the number of ciphertexts) by a factor of m. In particular,
an encryption of a vector v ∈ Rℓ

p consists of encryptions of the vectors v, p1/mv, . . . , p(m−1)/mv ∈ Rℓ
p. To

compute αv, the evaluator then computes
∑

i∈[m] αi−1p
(i−1)/mv, where αm−1 · · ·α1α0 are the “digits” of α

expressed in base p1/m. In this case, a linear combination with k coefficients from Rp translates to a linear
combination of mk elements, each of magnitude p1/m. Then, the ℓ1 norm of the coefficients decreases from
kp to mkp1/m; similarly, the ℓ2 norm decreases from

√
kp to

√
mkp1/m.

Modulus switching. The size of the ciphertext in Construction 3.11 is determined by three main pa-
rameters: the ring dimension d, the module dimension n, and the ciphertext modulus q. According to
Theorem 3.12, the modulus q must be sufficiently large to support the required number of homomorphic
operations. However, the modulus switching technique developed in the context of fully homomorphic
encryption [BV11, BGV12, CNT12, AP14, DM15] provides a way to reduce the size of the ciphertexts after
performing homomorphic operations. Specifically, modulus switching allows one to take a ciphertext over Rq

and convert it to one over Rq′ where q′ < q while preserving the correctness of decryption. This technique
applies to most Regev-based encryption schemes, including Construction 3.11. Reducing the size of the
ciphertexts after homomorphic evaluation translates to a reduction in the proof size of the resulting zkSNARK.
We begin by defining the ciphertext rescaling operation Scale from Brakerski et al. [BGV12]:

❼ Scale(x, q, q′, p)→ x′: On input integers q > q′ > p and a vector x ∈ Rn
q , the scale operation outputs

the vector x′ ∈ Rn
q′ that is closest to (q′/q) · x such that x′ = x (mod p).

We now state the main theorem, adapted from [BGV12]. We provide the proof in Appendix B.1.4.

Theorem 3.19 (Modulus Switching [BGV12, adapted]). Let λ be a security parameter and p, q, n, d, ℓ′, χ
be as defined in Construction 3.11. Let C be a correctness parameter. Suppose that χ is subgaussian with
parameter s. Let q′ < q be a positive integer where q′ = q (mod p). Take any vector a ∈ Rn

q , c ∈ Rℓ′

q , and let

a′ ← Scale(a, q, q′, p), c′ ← Scale(c, q, q′, p). Sample S← χn×ℓ′ . Let z = c− STa ∈ Rℓ′

q and suppose that

‖z‖∞ < q/2− (1 + nγRCs) · (p/2) · (q/q′). (3.7)

8Systems for fully homomorphic encryption that take advantage of batching [GHS12a, HS14] work over a modulus q that splits
into a product of many small primes p1, . . . , pt; the primes pi are moreover chosen so that F

∗
pi

has sufficiently many roots of
unity to invoke standard FFT algorithms for polynomial multiplication. These optimizations do not directly extend to the
setting where q is a power of two.
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Then, with probability 1− 2dnℓ′ exp(−πC2), z = z′ (mod p), where z′ = c′ − STa′ ∈ Rℓ′

q′ .

In our construction, after performing homomorphic operations (via Add), the evaluator takes the final
ciphertext ct = (a, c), computes a′ ← Scale(a, q, q′, p) and c′ ← Scale(c, q, q′, p), and outputs the rescaled
ciphertext ct′ = (a′, c′). In particular, the components of ct′ are elements of Rq′ rather than Rq. We
additionally conjecture that Conjecture 3.15 holds even if we introduce this additional rescaling operation.

3.4 zkSNARKs from Linear-Only Encryption

In this section, we start by recalling the Bitansky et al. [BCI+13] compiler for constructing zkSNARKs from
linear PCPs and linear-only vector encryption. We specifically describe the variant by Boneh et al. [BISW17]
based on linear-only vector encryption.

Construction 3.20 (SNARKs from Linear-Only Vector Encryption [BCI+13, BISW17]). Let CS = {CSκ}κ∈N

be a family of R1CS systems over a finite field F. The construction relies on the following building blocks:

❼ Let ΠLPCP = (QLPCP,PLPCP,VLPCP) be a k-query input-oblivious linear PCP for CS. Let m be the query
length of ΠLPCP.

❼ Let ΠEnc = (SetupEnc,EncryptEnc,DecryptEnc,AddEnc) be a secret-key additively-homomorphic vector
encryption scheme for Fk.

The single-theorem, designated-verifier zkSNARK ΠSNARK = (Setup,Prove,Verify) for RCS is defined as
follows:

❼ Setup(1λ, 1κ)→ (crs, st): On input the security parameter λ and the system index κ, run (stLPCP,Q)←
QLPCP(1

κ) where Q ∈ F
m×k. For each i ∈ [m], let qT

i ∈ F
k denote the ith row of Q. Then sample

(pp, sk)← SetupEnc(1
λ, 1k) and compute cti ← EncryptEnc(sk,q

T
i ) for each i ∈ [m]. Output the common

reference string crs = (κ, pp, ct1, . . . , ctm) and the verification state st = (stLPCP, sk).

❼ Prove(crs,x,w) → π: On input the common reference string crs = (κ, pp, ct1, . . . , ctm), a statement
x, and a witness w, the prover constructs an LPCP proof π ← PLPCP(1

κ,x,w). The prover then
homomorphically computes the linear PCP response ct∗ ← AddEnc(pp, {ct1, . . . , ctm}, {π1, . . . , πm}). It
outputs the proof π = ct∗.

❼ Verify(st,x, π): On input the verification state st = (stLPCP, sk), the statement x, and the proof π = ct∗,
the verifier first decrypts a← DecryptEnc(sk, ct

∗). If a = ⊥, the verifier outputs 0. Otherwise, it outputs
VLPCP(stLPCP,x,a).

Completeness and knowledge soundness. Completeness of Construction 3.20 follows immediately from
correctness of the underlying additively homomorphic encryption scheme and completeness of the linear PCP.
Computational knowledge follows from the linear-only property together with knowledge soundness of the un-
derlying linear PCP. The analysis follows closely from the corresponding analysis from Bitansky et al. [BCI+13]
and Boneh et al. [BISW17], so we simply state the theorem here.

Theorem 3.21 (SNARKs from Linear-Only Vector Encryption [BCI+13, BISW17]). If ΠLPCP is statistically
sound against linear provers and ΠEnc is CPA-secure (for up to m messages) and strictly linear-only, then
ΠSNARK from Construction 3.20 is a designated-verifier succinct argument of knowledge for RCS in the
preprocessing model.

The one difference in Theorem 3.21 and the corresponding statement from the previous works [BCI+13,
BISW17] is that the previous works consider linear-only encryption schemes with support for affine strategies,
and thus, require a linear PCP (or linear interactive proof) that provide knowledge against affine strategies.
In this work, we make the stronger (but still plausible) conjecture that our secret-key vector encryption
scheme is strictly linear-only (without support for affine strategies), which allows us to rely on a simpler
information-theoretic primitive. We do note that it is straightforward to augment our linear PCP to provide
knowledge against affine strategies with small overhead (see Remark A.3).
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Remark 3.22 (Reusability). A limitation of Construction 3.20 is that it only provides one-time knowledge
soundness in the designated-verifier model. A stronger notion is reusable knowledge soundness where knowledge
holds even if the malicious prover has access to the verification oracle. Bitansky et al. [BCI+13] showed that
combining a linear PCP satisfying reusable knowledge (also known as “strong knowledge”) with an encryption
scheme satisfying an interactive linear-only assumption yields a designated-verifier SNARK with reusable
knowledge. Under this stronger security notion, the adversary has access to an oracle that can be used to
check well-formedness of ciphertexts.9 While it is straightforward to realize strong knowledge for the linear
PCP, our vector encryption scheme (Construction 3.11) does not satisfy the stronger linear-only assumption.
In particular, the ciphertext well-formedness oracle enables a key-recovery attack (similar to how a decryption
oracle enables a CCA-1 key-recovery attack on Regev-based encryption schemes [LMSV11, CT14]). A
similar issue arises in the previous lattice-based zkSNARK by Gennaro et al. [GMNO18]. Note though that
single-theorem knowledge (as we consider here) does imply knowledge for logarithmically-many proofs by a
standard hybrid argument.

In cases where the malicious prover does not learn the verifier’s decision, the same CRS can be reused
to check proofs of multiple statements. Even in the setting where the malicious prover has access to the
verification oracle, the “verifier rejection” attack needed to break knowledge is always detectable; namely, to
break knowledge, the malicious prover has to first submit multiple proofs that cause the verifier to reject
(i.e., a super-constant number of invalid proofs). Thus, the zkSNARK still provides covert security [AL07] if
the CRS is reused and the prover can observe the verifier’s decisions. This is sufficient in many practical
applications where there are out-of-band consequences when malicious behavior is detected. Another way to
mitigate the impact of the verifier rejection attack is to have the verifier check multiple proofs and only reveal
a single aggregate decision for all of the proofs in the batch. This reduces the leakage on the secret key from
any single verification query.

Zero knowledge. Bitansky et al. [BCI+13] showed that combining a linear PCP satisfying HVZK with
re-randomizable linear-only encryption yields a zkSNARK. An encryption scheme is re-randomizable if there is
a public procedure that transforms any valid encryption of m into a fresh encryption of m. Our lattice-based
vector encryption does not satisfy this property (due to the variability in the amount of noise in ciphertexts).
Instead, we show that the weaker property of circuit privacy suffices to argue zero knowledge.

At a high-level, the argument goes as follows. First, by HVZK of the linear PCP, the linear PCP responses
can be simulated given only the statement. Circuit privacy then says that the encrypted linear PCP responses
can be simulated given only the simulated LPCP responses. We give the theorem below and defer the proof
to Appendix B.2.

Theorem 3.23 (zkSNARKs via Circuit-Private Linear-Only Encryption). If ΠLPCP satisfies perfect honest-
verifier zero knowledge and ΠEnc is CPA-secure (for up to m messages) and computationally (resp., statistically)
circuit private, then ΠSNARK from Construction 3.20 is computationally (resp., statistically) zero knowledge.
More precisely, if ΠLPCP is perfect HVZK and ΠEnc is ε-circuit private, then ΠSNARK from Construction 3.20
is 2ε-zero-knowledge.

Remark 3.24 (Zero Knowledge without Circuit Privacy). While circuit privacy plays a central role in the
analysis of Theorem 3.23, augmenting our linear-only vector encryption scheme (Construction 3.11) with
circuit privacy incurs a non-trivial concrete cost. As shown in Fig. 4, instantiating the encryption scheme in a
setting without circuit privacy (corresponds to the setting where κ = 0), we can achieve a 30–40% reduction
in prover time and a 45–50% reduction in proof size for the resulting zkSNARK (for verifying R1CS systems
with 220 constraints). A natural question to ask is whether we can still hope to argue zero knowledge for the
resulting zkSNARK without relying on full circuit privacy. Consider a variant of Construction 3.11 where we

9More precisely, the adversary has oracle access to the extractor; that is, on input a ciphertext, the oracle responds with either a
linear combination that explains the adversary’s query or ⊥ if the ciphertext is invalid.
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modify Eq. (3.4) to instead output

ct∗ = (a∗, c∗) =

(
∑

i∈[k]

yiai,
∑

i∈[k]

yici

)
. (3.8)

Namely, we remove all of the re-randomization that the prover applies. Following the same notation and
analysis as in the proof of Theorem 3.12 (see Appendix B.1),

c∗ = STa∗ +
∑

i∈[k]

yiui + p
∑

i∈[k]

yiei ∈ Rℓ′

q ,

In the standard circuit-privacy setting, the simulator is only given
∑

i∈[k] yiui mod p and must be able to
simulate the ciphertext ct∗ given only this information. However, if the circuit privacy simulator is given
additional information about the coefficients yi (namely, the values of

∑
i∈[k] yiai,

∑
i∈[k] yiui, and

∑
i∈[k] yiei

over Rq), then ct∗ can be simulated.
If we now consider a linear PCP where the honest-verifier zero-knowledge simulator can additionally

simulate these additional components, then we can still apply the Bitansky et al. [BCI+13] compiler to obtain
a zkSNARK. We define this property more precisely in Definition 3.25 and state the corresponding version of
Theorem 3.23 in Lemma 3.26. It is interesting to analyze whether the QAP-based linear PCPs we consider in
this work (or a simple adaptation thereof) satisfy HVZK in the presence of this leakage. A positive result
would yield an improvement to the concrete efficiency of our zkSNARK. In our construction, the leakage
on the linear PCP coefficients consists of several linear combinations (over R) of the components of the
linear PCP proof. Importantly, these linear combinations are randomly sampled and not adversarially chosen.
Moreover, the number of such linear combinations is significantly smaller than the length of the linear PCP.

Definition 3.25 (Honest-Verifier Zero Knowledge with Leakage). Let R = Z[x]/f(x) be a polynomial ring
where deg(f) = d. Let p be a prime such that Rp

∼= Fpd is a finite field. Let ΠLPCP = (QLPCP,PLPCP,VLPCP)
be a linear PCP for a family of R1CS systems CS = {CSκ}κ∈N over Rp. Let D be a distribution on matrices
over R and q > p be a modulus. We say that ΠLPCP satisfies honest-verifier zero knowledge with (D, q)-leakage
if there exists an efficient simulator SLPCP = (S1,S2) such that for all κ ∈ N and all instances (x,w) where
CSκ(x,w) = 1,

{(st,Q, [QT
π]q,Z, [Z

T
π]q)}

s≈ {(s̃t, Q̃, ã, Z̃, b̃)}, (3.9)

where (st,Q)← QLPCP(1
κ), Z← D, π ← PLPCP(1

κ,x,w), (s̃t, Q̃, Z̃, stS)← S1(1κ), and (ã, b̃)← S2(stS ,x),
and we write [QT

π]q and [ZT
π]q to denote computations over the ring Rq (i.e., the elements of Rp are first

lifted to R and the value of the matrix-vector product is then reduced modulo q). When the statistical
distance between the two distributions in Eq. (3.9) is δ, we say that ΠLPCP is δ-HVZK with (D, q)-leakage.
Lemma 3.26 (Zero Knowledge without Ciphertext Re-Randomization). Let d = d(λ) and let R = Z[x]/(xd+
1). Let p, q, n be lattice parameters, χ be an error distribution over Rq, and ℓ′ be the plaintext dimension as
defined in Construction 3.11. Let ΠLPCP be a linear PCP for a family of R1CS systems CS = {CSκ}κ∈N over
Rp with query length t. Let D be the following distribution on matrices over R:

❼ Sample A
r← Rt×n

q and E← χt×ℓ′ .

❼ Output the matrix Z = [A | E] ∈ Rt×(n+ℓ′).

If ΠLPCP is δ-HVZK with (D, q)-leakage, then the zkSNARK obtained by instantiating Construction 3.20 with
ΠLPCP and the vector encryption scheme from Construction 3.11 without ciphertext re-randomization (i.e.,
where we replace Eq. (3.4) with Eq. (3.8)) satisfies 2δ-statistical zero knowledge.

4 Implementation and Evaluation

In this section, we provide an overview of our lattice-based zkSNARK implementation (by combining Claim 2.6
with Construction 3.11) and then describe our experimental evaluation.
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4.1 Linear PCP Implementation

The prover’s computation in the zkSNARK from Construction 3.20 consists of two main components:
computing the linear PCP proof (Claim 2.6, Appendix A) and homomorphically computing the encrypted
linear PCP responses. Computing the linear PCP responses (over a finite field F) requires the prover to
compute the coefficients of a polynomial H(z) := (A(z)B(z)− C(z))/Z(z), where A,B,C are polynomials of
degree Ng − 1 (over F) determined by the R1CS system (which has Ng constraints), the statement, and the
witness, and Z is a fixed polynomial. We refer to Appendix A for the full details of this construction.

Ben-Sasson et al. [BCG+13] described an efficient approach to compute the coefficients of H using fast
Fourier transforms (FFTs) over F. To use standard Cooley-Tukey FFTs for powers of two [CT65] (which we
refer to as “radix-2 FFTs”), we require that F contains a multiplicative subgroup of order 2d where 2d > Ng.
Indeed, the construction of Ben-Sasson et al. uses a specially-chosen elliptic curve group whose order is
divisible by a large power of 2. In our setting, we consider linear PCPs over a quadratic extension Fp2 , whose
order is p2 − 1 = (p + 1)(p − 1). In the best case, if p = 2d ± 1, then Fp2 has a subgroup of order 2d+1.
However, if Ng > 2p, the field Fp2 never has a sufficiently large subgroup to directly compute radix-2 FFTs.10

Our approach. When the field F contains a multiplicative subgroup whose order is a moderately large
power of two (e.g., 2d), we can still leverage (multiple) radix-2 FFTs to efficiently implement multipoint
polynomial evaluation and interpolation over a domain D ⊂ F of size |D| = k · 2d for a (small) k > 1. We give
a brief overview of our approach here and defer the full details to Appendix C. Let ω ∈ F be a primitive 2d-th
root of unity and let H = H1 = 〈ω〉 ⊂ F be the subgroup of order 2d generated by ω (corresponding to the
2d-th roots of unity). We define our domain D (for multipoint evaluation and interpolation) to be

⋃
i∈[k] Hi,

where H2, . . . , Hk are pairwise disjoint cosets of H. Polynomial evaluation over D can be implemented
using k degree-2d FFTs (over H1), along with 2d multipoint evaluations of polynomials of degree-k (over a
fixed basis determined by the cosets). An analogous result holds for interpolation. As long as k < 2d, the
smaller evaluation/interpolations can be implemented in k log k time using standard FFTs. In this case, the
running time of our algorithm for evaluating a polynomial on a domain of size 2dk is O(2dk(d+ log k)), which
matches the asymptotic complexity of a standard FFT over a domain of the same size. We give more details
in Appendix C. We use this approach to implement the linear PCP prover when working over fields with
insufficient roots of unity to support a standard radix-2 FFT.

4.2 Lattice-Based zkSNARK Implementation

In this section, we describe our overall zkSNARK implementation. We begin by describing our methodology
for setting the lattice parameters n, q, χ for our lattice-based vector encryption scheme (Construction 3.11).
We then describe a few optimizations to improve the concrete efficiency of the resulting construction.

Lattice parameter selection. In the following description, let Ng denote the number of constraints in the
R1CS system, p denote the plaintext modulus, and κ be a statistical security parameter for zero knowledge.
We set κ = 40 for our primary experiments. We choose the parameters as follows:

❼ The plaintext modulus p is chosen so that F
∗
p2 has a large power-of-two subgroup. In our specific

instantiations, we choose p = 213 − 1 (just large enough so the linear PCP from Construction 3.1
supports R1CS systems with over 220 constraints without needing too many repetitions) and p = 219− 1
(a larger field so F

∗
p2 contains 220-th roots of unity).

❼ The module rank d is chosen based on whether we are working with a linear PCP over Fp2 (d = 2) or if
we are working over a linear PCP over Fp (d = 1). Since we work over R = Z[x]/(xd + 1), γR = 1 if
d = 1 and γR = 2 if d = 2.

10While more general algorithms for FFT can be used for multipoint evaluation and interpolation over a domain whose size is a
prime power [Rad68] or a product of coprime values [Goo58, Tho63], these algorithms are more complex to implement and
worse in terms of concrete efficiency compared to basic radix-2 FFTs. We show how to implement our approach using a small
number of radix-2 FFTs.
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❼ The plaintext dimension ℓ is the query length of the linear PCP for the R1CS system (Claim 2.6
and Remark 2.7). The query length of the linear PCP is chosen to achieve knowledge error at
most 2−128. The linear PCP from Claim 2.6 has 4 queries and when instantiated over Fp2 , has
knowledge error 2Ng/(p

2 −Ng). This is repeated ρ times to amplify knowledge (ρ is chosen such that
(2Ng/(p

2 − Ng))
ρ ≤ 2−128). The total number of queries is then ℓ = 4ρ. In the case where we first

apply Construction 3.1 to obtain a linear PCP over the base field Fp, then ℓ = 8ρ.

❼ The sparsification parameter τ is chosen based on Conjecture 3.15: namely, we choose τ to be the
smallest value where pτd ≤ 2−128.

❼ The noise smudging bound B is chosen so that ε = 2−κ in Eq. (3.6) of Theorem 3.14 (which ensures
roughly κ bits of zero knowledge). We set the constant C = 6, in which case exp(−πC2) < 2−163. We
use an upper bound for the ring dimension n < 212 (the ring dimension will be set (later) based on the
security parameter and the modulus q, and in all of our cases, n < 212).11

In Construction 3.20, the number of homomorphic operations the prover performs is equal to the length
k of the linear PCP query. From Claim 2.6, we set k = 2Ng when considering a linear PCP over Fp2

and k = 4Ng if we first apply Construction 3.1 to obtain a linear PCP over Fp; recall that we set the
number of variables Nw to roughly coincide with the number of constraints Ng in our evaluation. The

coefficients the prover uses are elements from Rp, so we use the bounds B1 = dkp and B2 =
√
dkp. In

Remark 3.18, we describe a trade-off where we replace each Rp coefficient with z coefficients, each of

magnitude p1/z for any constant z > 1. In this case, B1 = dkzp1/z and B2 =
√
dkzp1/z.

The value of ε in Eq. (3.6) is essentially determined by γRB2Cs+ γRB1/2 + 2γRnC
2s2. This term is

effectively dominated by the first two terms γRB2Cs + γRB1/2 = γR(
√
kpCs + pk/2). We take our

noise distribution to be a discrete Gaussian distribution with noise rate s, and we choose s to balance
the terms

√
kpCs and pk/2. Since the security of LWE is determined by the modulus-to-noise ratio,

using a larger noise rate reduces the lattice dimension; balancing these two terms allows us to use a
higher noise rate without needing to increase the modulus size needed for correctness.

❼ We choose the modulus q to be the smallest power of two that satisfies Eq. (3.5). In all the cases we
consider, q ≤ 2128, so a power-of-two modulus allows us to implement all of the arithmetic using 128-bit
integer arithmetic without needing to perform modular reductions after each arithmetic operation. As we
elaborate below, compiler intrinsics on 64-bit architectures enable highly-optimized 128-bit arithmetic
and is important for reducing the prover cost.

❼ As discussed in Section 3.3, we use modulus switching to reduce the ciphertext size after performing
homomorphic operations (i.e., after the prover constructs the proof). We choose the reduced modulus q′

to be the minimum value satisfying Theorem 3.19. Specifically, we bound ‖z‖∞ in Theorem 3.19 using
Eqs. (B.2) and (B.3). In settings where there is very little slack between ‖z‖∞ and q/2 (as required
by Theorem 3.19), we increase the modulus q by 1 bit. This enables a smaller q′. For R1CS systems
with 220 constraints, the reduced modulus q′ is 2.5× to 2.7× smaller than the original modulus q (see
Table 2). This translates to a corresponding reduction in the proof size of the resulting zkSNARK.

❼ Given the modulus q and noise rate s for the discrete Gaussian distribution, we use the LWE Estimator12

by Albrecht et al. [APS15] to determine the smallest ring dimension n that provides 128-bits of security
against the best-known quantum attacks. For our MLWE instantiation, we work under the assumption
here that the best attack on MLWE over (Zq[x]/(x

2 + 1))n coincides with the best attack on LWE on a
lattice of dimension 2n.

11In one of our instantiations we use for comparison purposes (which does not use quadratic extensions), the ring dimension n is
slightly larger than 212. For this setting, we use a larger bound on n when deriving parameters.

12Available here: https://lwe-estimator.readthedocs.io/en/latest/.
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Fields∗ λq λc p (n, d) log q log q′ s ℓ τ

Fp, Fp 128 138 5 · 225 + 1 (4700, 1) 123 49 80 82 5

Fp2 , Fp 128 138 219 − 1 (4050, 1) 107 41 36 71 7

Fp2 , Fp2

128 138 213 − 1 (1815, 2) 98 35 64 109 5
128 138 219 − 1 (2045, 2) 108 41 40 36 4

∗ The first field listed is the base field for the linear PCP ΠLPCP and the second is the
plaintext field for the linear-only vector encryption scheme ΠEnc.

Table 2: Lattice parameters for zkSNARK instantiations obtained by combining the linear PCP ΠLPCP from
Claim 2.6 and Remark 2.7 with the linear-only vector encryption scheme ΠEnc from Construction 3.11. Here,
λq is the estimated number of bits of quantum security, λc is the estimated number bits of classical security,
p is the plaintext modulus, n is the ring dimension, d is the module rank, q is the ciphertext modulus, q′ is
the reduced modulus (after modulus switching), s is the width parameter for the discrete Gaussian noise
distribution, ℓ is the dimension of the plaintext space, and τ is the sparsification parameter. Parameters
shown are based on supporting an R1CS system with 220 constraints. The final two rows correspond to the
“Shorter Proofs” and the “Shorter CRS” instantiations in Table 1, respectively.

We provide some example parameters we use in Table 2 (these include the parameter settings used for
the “Shorter Proofs” and “Shorter CRS” instantiations for R1CS instances of size 220 in Table 1). The
classical hardness estimates are based on the estimated cost of the Chen-Nguyen algorithm [CN11] and the
Becker et al. [BDGL16] algorithm. The quantum hardness estimate is based on the estimated cost of the
quantum sieving algorithm by Laarhoven et al. [LMvdP15]. These estimates are all computed using the LWE
Estimator tool [APS15].

Reducing the CRS size. Like most Regev-based encryption schemes, the ciphertexts in Construction 3.11
have the form ct = (a, c) where a ∈ Rn

q is uniformly random and c ∈ Rℓ′

q encodes the message. For
typical parameter settings, the ring dimension n is much larger than the (extended) plaintext dimension
ℓ′. A heuristic approach to reduce the ciphertext size is to derive the random vector a as the output of a
pseudorandom function (PRF) and include the PRF key in place of the vector a (or alternatively, take them
to be the outputs of a public hash function). Security of these heuristics can be justified in the random
oracle model [Gal13]. We adopt this approach in our implementation. Namely, instead of including the
ciphertexts ct1 = (a1, c1), . . . , ctN = (aN , cN ) in the CRS, the setup algorithm samples a PRF key k and
sets ai ← PRF(k, i). The sequence of ciphertexts in the CRS is then (k, c1, . . . , cN ). In our implementation,
we use AES (in counter mode) as the underlying PRF. Similar approaches for reducing the size of the public
components of lattice-based cryptosystems has been used for both lattice-based key-exchange [BCD+16] as
well as previous lattice-based zkSNARKs [GMNO18].

As a reference point, in our implementation, q ≈ 2100 and each Rn
q element can be represented by roughly

50 KB (see Table 2 for some specific sets of parameters). The number of ciphertexts in the CRS is proportional
to the size of the R1CS system. For a system of 220 constraints, the CRS would contain around 221 ciphertexts;
in this case, the a’s in the CRS would be roughly 100 GB in size. Deriving these components from a PRF (or
random oracle) is necessary to reduce the CRS size.

Noise distribution. We take our noise distribution χ to be a discrete Gaussian distribution χ = χs with
mean 0 and width s (Eq. (2.1)). Note that in the case of the ring R = Z[x]/(x2 + 1), the discrete Gaussian
distribution decomposes into the product of two independent discrete Gaussian distributions over the integers.
To efficiently sample from the discrete Gaussian distribution, we first truncate the distribution to the interval
[−6s, 6s]∩Z; with probability 1− 2−163, a sample from χs will fall into this interval. We then pre-compute a
table of the cumulative density function for the truncated discrete Gaussian distribution χ̃s. We use inversion
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Time (s) Rate (muls/s)

Native (uint64 t) 2.1 4.68 · 109

Compiler Intrinsic ( uint128 t) 6.8 1.47 · 109

Boost Fixed Precision (128-Bit) 6.8 1.47 · 109
Boost Fixed Precision (192-Bit) 53.6 0.19 · 109
Boost Fixed Precision (256-Bit) 61.9 0.16 · 109

GMP Multi-precision (mod 2128) 114.9 0.087 · 109

Table 3: Time and effective rate to compute 1010 multiplications between an n-bit integer (n = 64, 128, 192, 256)
and a 64-bit integer using different big-integer implementations on a 64-bit architecture. This models the
primary cost in the prover’s homomorphic evaluation.

sampling to sample from χ̃s given a uniformly-random 64-bit value. This is similar to the approach used in
lattice-based key-exchange [BCD+16].

Big integer support. In our implementation, the ciphertext modulus q is around 100 bits. We implement
all of the homomorphic operations (over the ring Rq) using 128-bit arithmetic. Since we choose q to be a
power-of-two, we can compute over Z2128 and defer the modular reduction to the end of the computation.
Here, the modular reduction just corresponds to dropping the (128− log q) most significant bits of the input.

We use the compiler intrinsic type uint128 t for 128-bit arithmetic on a 64-bit architecture. Internally,
each 128-bit value is represented by two 64-bit words. Multiplication of a 128-bit value and a 64-bit value (i.e.,
scaling a ciphertext in Rq by a plaintext coefficient in Rp) requires just three x86-64 arithmetic operations
(2 multiplications and 1 addition). Our microbenchmarks for performing multiplications (Table 3) indicate
that using the compiler intrinsic representation for 128-bit arithmetic is over 16× faster than using a general-
purpose multi-precision arithmetic library such as GMP for the same computation. Similarly, there is a large
increase in concrete cost (around 8× to 9×) when going from 128-bit arithmetic to 192-bit or 256-bit fixed
precision arithmetic (implemented in the Boost C++ libraries). Thus, being able to rely solely on 128-bit
arithmetic to implement our scheme confers considerable advantages when working on a standard 64-bit
architecture, and plays an important role for reducing the prover cost.

For instance, based on the cost breakdowns for CRS setup and prover complexity in Fig. 3 and taking into
consideration these microbenchmarks for elementary arithmetic operations, using a modulus even slightly
larger than 2128 would increase the prover computation time by a factor of 3× to 4×.13 An even larger
penalty would be incurred in CRS setup, where for the larger R1CS systems, the query encryption time
(consisting of matrix-vector products over Rq) is over 99% of the overall setup time. Using larger integers
would increase this by at least 8× to 9× based on our microbenchmarks.

4.3 Experimental Evaluation

We now describe our implementation and experimental evaluation of our lattice-based zkSNARK from
Section 3.4.

System implementation. Our implementation is written in C++.14 We use libsnark [SCI21c] and
libfqfft [SCI21a] to implement the linear PCP for R1CS satisfiability (Claim 2.6). In particular, we
use the linear PCP implementation from libsnark (with the minor changes from Appendix A), and the
implementation of the standard radix-2 FFT [CT65] (over a finite field) as well as the Bostan-Schost algorithms

13This penalty is only from the increased cost of arithmetic operations. The actual overhead will be even higher due to the need
for larger lattice parameters to accommodate the larger modulus.

14Available here: https://github.com/lattice-based-zkSNARKs/lattice-zksnark.
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for multipoint evaluation and interpolation on points from a geometric sequence [BS05] from libfqfft. These
building blocks suffice to implement our approach described in Section 4.1 for evaluating the linear PCP.

Metrics and evaluation methodology. Following previous works [BCR+19, COS20, SL20], we measure
the performance of our system on R1CS systems with different number of constraints m (ranging from
m = 210 to m = 220). Like previous works, we keep the number of variables n in each R1CS system to be
roughly m (i.e., n ≈ m), and we consider statements of a fixed length k = 100. The statement length only
has a mild effect on the verification complexity (which is already very fast) and we do not focus on it in our
evaluation.

We run all of our experiments on an Amazon EC2 c5.4xlarge instance running Ubuntu 20.04. The
machine has 16 vCPUs (Intel Xeon Platinum 8124M at 3.0 GHz) and 32 GB of RAM. The processor supports
the AES-NI instruction set. We compile our code using gcc 9.3.0 for a 64-bit x86 architecture (which
supports the uint128 t compiler intrinsic for 128-bit integer arithmetic). All of our measurements are
taken with a single-threaded execution.

General benchmarks. In Fig. 1, we compare the performance of different instantiations of our zkSNARK
on R1CS instances of varying sizes. We consider two instantiations using linear PCPs and vector encryption
over the extension field Fp2 (for p = 213 − 1 and p = 219 − 1), as well as two alternative instantiations
where we use a vector encryption over the base field Fp. For the latter instantiations, we consider both the
instantiation where we first compile a linear PCP over the extension field to a linear PCP over the base field
(Construction 3.1) and a second instantiation where we directly construct a linear PCP over the base field.
Across the board, the verifier time is small so we focus our discussion on the other metrics.

For our main instantiations (working over the extension field), the field size provides a trade-off in CRS
size vs. proof size. Using a larger field decreases the CRS size (fewer repetitions needed for knowledge
amplification at the linear PCP level), but leads to longer proofs (due to larger parameters). Concretely, for
R1CS systems with 220 constraints, increasing the characteristic from p = 213 − 1 to p = 219 − 1 decreases
the CRS size by 2.8× (with a corresponding decrease in setup time), but increases the proof size by 1.2×.
The prover complexity is essentially the same in the two cases.

In the case where we take a linear PCP over Fp2 and first apply Construction 3.1 to obtain a linear PCP
over Fp, the proof size still remains comparable to the case where we work exclusively over Fp2 . However, the
CRS size is doubled since Construction 3.1 increases the query length by the degree of the field extension,
as is the prover complexity. The advantage of this construction is that it is based on standard lattices as
opposed to module lattices, and thus, plausibly has better security.

Finally, if we consider the direct compilation of a linear PCP over the base field Fp, the proof size is 1.4×
to 1.8× longer than the constructions that use the extension field.

Extension field vs. base field. To quantify the concrete performance trade-off enabled by extension
fields, we also compare our zkSNARKs over Fp2 with an instantiation over Fp (i.e., compile the linear PCP
from Claim 2.6 over Fp using the linear-only vector encryption from Construction 3.11 over Fp). The results
are summarized in Fig. 2. We first note that most of the instantiations over Fp require working over a ring Rq

with q > 2128. As discussed in Section 4.2 (and Table 3), this will incur considerable computational overhead
for the big-integer arithmetic. Working over the extension field allows us to consider instantiations over much
larger fields without incurring the cost of big-integer arithmetic.

Fig. 2 shows that working over a quadratic extension field introduces a modest increase in the CRS size
(by a factor of 1.4× to 1.6×) compared to working over a prime-order base field of similar size. In return,
working over the extension field reduces the proof size by 1.7× to 2.4× (specifically, from nearly 70 KB to
under 30 KB when considering a 56-bit field). As discussed in Section 1.2 (see also the formal analysis in
Section 3.3), all of the lattice parameters grow with the field characteristic. Thus, for fields of comparable
size, all of the lattice parameters will be larger if we work over a base field than if we work over an extension
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Figure 1: Performance comparison for different instantiations of our scheme for supporting R1CS instances of
different sizes. The solid lines correspond to our primary instantiations using a linear PCP over Fp2 with
a vector encryption scheme over Fp2 . The dashed lines represent alternative instantiations using a vector
encryption over the base field Fp. In the case where the linear PCP is over the extension field and the vector
encryption is over the base field, we first apply Construction 3.1 to obtain a linear PCP over the base field.
We also consider a direct compilation from a linear PCP over Fp using a vector encryption scheme over Fp.

field (of smaller characteristic). This leads to longer proofs. The size of the CRS is smaller because of the
CRS compression technique from Section 4.2. In particular, each lattice ciphertext in the CRS only consists
of the message-embedding component. In this case, an element in Rq is represented by a pair of integers
when R = Z[X]/(x2 + 1) and by a single integer when R = Z. Moreover, the dimension of the message space
depends only on the field size and thus, is the same regardless of whether we work over a base field or an
extension field.15 As a result, when comparing instantiations over a base field vs. an extension field of similar
size, the CRS in the extension field instantiation is longer.

If we consider the alternative instantiation over Fp from Remark 3.18 where the prover decomposes each

15The dimension (and size) of the full ciphertext is smaller when working over the extension field because the lattice parameters
are smaller. If we only consider the message-embedding component of the ciphertext (which is a small fraction of the full
ciphertext), then the size is smaller when working over a base field compared to working over the extension field.
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Figure 2: CRS size and proof size as a function of the field size |F|, where F is either a quadratic extension
Fp2 or a base field Fp. The characteristic p is chosen so F has the prescribed size. Parameters based on
instantiating Construction 3.20 over F for an R1CS system with 220 constraints. For the F = Fp setting, we
also consider the case where each coefficient in the linear PCP is represented by two digits, each of size

√
p

(see Remark 3.18). Elements with a non-filled marker (and a dotted line) denote parameter settings where
the modulus q exceeds 128 bits.

Fp coefficient in the linear PCP proof into two separate coefficients, each of magnitude
√
p, then we can

support a larger field size (i.e., up to 38 bits) without requiring a modulus q that exceeds 128 bits. The
reduced parameter sizes translate to slightly shorter proofs (1.1×–1.2×) compared to the setting without the
digit decomposition. However, this comes at the drawback of needing a longer CRS that is 1.7×–1.8× longer
(since each component of the CRS is now decomposed into two components). Indeed, in this setting, the CRS
size is comparable to the CRS size for the extension field instantiation; it is slightly worse due to the larger
lattice parameters (some of which still scale based on the field characteristic). Despite the improvements in
proof size obtained via the digit decomposition, the overall proof size is still 1.5×–2× longer than the proof
size obtained from working over extension fields.

Microbenchmarks. For the setup and prover algorithms, we measure the concrete cost of each subcom-
ponent. We show the breakdown for the construction over Fp2 where p = 213 − 1 in Fig. 3 (the breakdown
for other parameter settings are similar). For CRS generation, the cost is dominated by the time needed
to encrypt the linear PCP queries. Namely, for an R1CS system with 220 constraints, linear PCP query
encryption constitutes 99% of the CRS generation time.

For the prover computation, we consider the cost of the linear PCP prover (Claim 2.6 and Appendix A),
the time spent on CRS expansion (i.e., deriving the random ciphertext components a ∈ R

n
q from the PRF

key), and the cost of the homomorphic operations for computing the encrypted linear PCP response. The
microbenchmarks show that about 40% of the time is spent on CRS expansion. For an R1CS instance of
size 220, the expanded CRS is over 80 GB, and CRS expansion takes just under 30 s. Note that the vectors
are generated on the fly and we do not need to store the full CRS in memory. For the larger instances,
the remaining prover computation is evenly split between the homomorphic operations and computing the
coefficients of the linear PCP; specifically, each of these components constitutes roughly 30% of the overall
prover computation. In the case of the linear PCP prover, the computation is dominated by computing FFTs
(see Appendix A). There is a jump in the cost of the FFTs when we switch to our modified FFT procedure
(Section 4.1) for implementing the prover computation (for settings where Fp2 does not have enough primitive
roots of unity to use standard power-of-two FFTs). By extrapolating the performance, our approach is about
7× slower than the basic radix-2 FFT.16 When considering an R1CS system over Fp2 where p = 219 − 1

16When p = 213 − 1, the field Fp2 contains a 214-th root of unity, so we can use standard radix-2 FFTs for R1CS instances
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Figure 3: Cost breakdowns for CRS setup and prover for different R1CS instances. Measurements are
based on instantiating Construction 3.20 with a linear PCP and a vector encryption scheme over Fp2 where
p = 213 − 1.

(where there are sufficient roots of unity to invoke standard FFTs in the linear PCP prover algorithm), the
linear PCP prover, homomorphic operations, and CRS expansion account for 6% (3.1 s), 38% (21.4 s), and
56% (31.8 s) of the total prover cost, respectively.

Zero knowledge. We also measure the concrete performance of our zkSNARKs for different choices of
the zero-knowledge parameter κ. We provide the results in Fig. 4. In particular, when we work over Fp2

with p = 219 − 1, and consider the setting without provable zero knowledge (i.e., setting κ = 0), the prover
time (for an R1CS instance of size 220) is just 34 s. This represents an additional 1.6× speed-up over our
construction with κ = 40 bits of zero knowledge. We see a 1.9× reduction in proof size (from 20.8 KB to
11.1 KB) in this setting. Working over a smaller base field, we can bring the proof size down to just 8 KB.
This is around 20× shorter than previous post-quantum candidates (see Table 1). This reduction in proof
size comes at the expense of a longer CRS (2.7 GB).

Classical vs. post-quantum security. If we instead instantiate our scheme to provide 128-bits of classical
security (instead of post-quantum security), we obtain about a 5% reduction in proof size, setup time, and
prover time. Realizing post-quantum security requires using a larger ring dimension n, but does not affect
the modulus q. As such, the size of the CRS is unaffected (since we are deriving the random component of
each ciphertext from a PRF). We provide more details in Table 4.

Comparison with other schemes. Finally, we compare the performance of our scheme with the most
succinct pairing-based zkSNARK of Groth [Gro16] as well as several recent post-quantum zkSNARKs:
Ligero [AHIV17], Aurora [BCR+19], Fractal [COS20], ethSTARK [BBHR18b, Sta21a], and Gennaro et al. [GMNO18].
With the exception of the lattice-based scheme of Gennaro et al. [GMNO18], we measure the performance of
each scheme on the same system and with a single-threaded execution. We use libsnark [SCI21c] for the

with up to 214 constraints. For instances of size 215, we use the approach from Section 4.1 and Appendix C, but directly
inline the multipoint evaluation and interpolation on two points (this coincides with an existing implementation from
libfqfft [SCI21a]). For instances larger than 215, we use the general Bostan-Schost algorithms [BS05] for the multipoint
evaluation and interpolation. This introduces the 7× overhead in the cost of the FFT.
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Figure 4: Cost breakdowns as a function of the zero-knowledge parameter κ (i.e., the zero-knowledge
distinguishing advantage of any poly(λ) adversary is bounded by 2−κ + negl(λ)). All measurements taken for
an R1CS instance over Fp2 with 220 constraints (and compiled using vector encryption over Fp2).

implementation of Groth’s pairing-based construction [Gro16] and libiop [SCI21b] for the implementations
of Ligero [AHIV17], Aurora [BCR+19], and Fractal [COS20]. We use the ethSTARK library [Sta21b] for the
STARK implementation [Sta21a]. For each scheme, we consider the default implementation provided by
the library. We note that these schemes export different base fields for the R1CS which makes a direct
comparison challenging. With the exception of ethSTARK, we measure the performance of each scheme
over their preferred field for an R1CS system with a fixed number of constraints. In the case of ethSTARK,
the current implementation only supports verifying a hash chain computation (with the Rescue122 hash
function [AAB+20, BGL20]). In our benchmarks, we choose the length of the hash chain so that the size of
the corresponding R1CS system has the prescribed size. Specifically, the Rescue122 hash function consists of
r = 10 rounds and operates over a state with m = 12 field elements. The computation over each round can
be encoded as an R1CS system with 2m = 24 constraints. Thus, each hash computation can be encoded as
an R1CS system with 240 constraints. We summarize our benchmarks in Table 1 and refer to Section 1 for
further discussion.

5 Related Work

There has been a flurry of recent works studying the asymptotic and concrete efficiency of succinct arguments.
We survey several families of constructions here and also include a comparison with several representative
schemes in Table 5. In the following, we use N to denote the size of the NP relation being verified.

Linear PCPs and QAP-based constructions. Gennaro et al. [GGPR13] and Bitansky et al. [BCI+13]
described general frameworks for constructing constant-size zkSNARKs from linear PCPs (specifically,
from quadratic arithmetic programs (QAPs)). Several works have extended these frameworks [DFGK14,
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p Setting Size Time
CRS Proof Setup Prover

213 − 1
Post-Quantum 5.3 GB 16.4 KB 2240 s 68 s

Classical 5.3 GB 15.2 KB 2225 s 69 s

219 − 1
Post-Quantum 1.9 GB 20.8 KB 877 s 56 s

Classical 1.9 GB 19.2 KB 865 s 56 s

Table 4: Performance comparison of zkSNARKs instantiated using parameters for 128-bits of classical vs.
128-bits of post-quantum security. For all measurements, we consider R1CS instances over Fp2 with 220

constraints and compile them to zkSNARKs using linear-only vector encryption over Fp2 .

Gro16, BISW17, GMNO18, BISW18, BIOW20]. These constructions are the basis of numerous systems and
implementations [PHGR13, BCG+13, BFR+13, BCTV14b, BCTV14a, FGP14, WSR+15, BBFR15, CTV15,
DFKP16, FFG+16, BCG+14]. These constructions offer the best succinctness, but this comes at the expense
of needing an expensive, trusted, and language-dependent setup, as well as a quasilinear-time prover.

Interactive oracle proofs. Following the seminal works of Kilian [Kil92] and Micali [Mic00], a recent
line of works [BCGV16, BBC+17, BCF+17, BBHR18b, BBHR18a, BCR+19, CHM+20, COS20, BCG20,
BCL20, LSTW21] have shown how to construct zkSNARKs from short PCPs [BS08], and their generalization,
interactive oracle proofs (IOPs) [BCS16, RRR16]. These constructions rely on the Fiat-Shamir heuristic [FS86]
to obtain a non-interactive argument in the random oracle model. Many IOP constructions have a transparent
(i.e., non-trusted) setup, and moreover, are plausibly post-quantum. Proof sizes for IOP-based constructions
typically range in the hundreds of kilobytes.

Bünz et al. [BFS20] introduced polynomial IOPs, a generalization of linear PCPs to the IOP setting,
where on each round, the verifier has oracle access to a bounded-degree polynomial. Polynomial IOPs can
be compiled into succinct arguments [MBKM19, GWC19, CHM+20, SL20] via polynomial commitments.
These schemes have excellent concrete succinctness (a few hundred bytes to a few kilobytes), a universal or
transparent setup, but generally rely on pre-quantum assumptions.

MPC-in-the-head. Ishai et al. [IKOS07] introduced the “MPC-in-the-head” paradigm for building zero-
knowledge proofs from general multiparty computation. The Ligero system [AHIV17] was the first argument
with

√
N size proofs in this framework. Bhadauria et al. [BFH+20] combined Ligero with IOPs to reduce

the proof size to polylog(N). Both constructions support sublinear verification for structured circuits, but
verification is linear for general circuits.

GKR-constructions. Another line of work starts from the succinct interactive argument for verifying
arithmetic circuits by Goldwasser, Kalai, and Rothblum (GKR) [GKR08] A sequence of works [CMT12,
Tha13, WTS+18, ZGK+17, Set20, XZZ+19, ZXZS20] have built on GKR to obtain efficient non-interactive
arguments for (layered) circuits (and often tailoring to special structures for better concrete efficiency). In
these constructions, the size of the proof (and the verifier complexity) typically scale with the depth of the
circuit. An appealing feature of these constructions is their low prover complexities: namely, the cost of the
prover scale linearly in the size of the NP relation (over large fields). Zhang et al. [ZWZZ20] recently showed
how to leverage GKR to verify general arithmetic circuits while retaining a linear-time prover and sublinear
verification (for structured circuits). The proof size in their construction scales with the depth of the circuit.

Inner product arguments. Building on works by Bayer and Groth [Gro09, BG12], Bootle et al. [BCC+16]
introduced zero-knowledge arguments for arithmetic circuit satisfiability based on inner product arguments.
Bünz et al. [BBB+18] improved the construction to achieve shorter proofs and verification times. While the
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PQ TP PV Proof Size Runtime Crypto.
Asymptotic Concrete Prover Verifier Structure

Groth [Gro16] 1 128 B N logN |x| Pairings
Marlin [CHM+20] 1 704 B N logN |x|+ logN Pairings
Sonic [MBKM19] 1 1.1 KB N logN |x|+ logN Pairings
Xiphos [SL20] logN 61 KB N |x|+ logN Pairings

Spartan [Set20]
√
N 142 KB N |x|+

√
N Groups

Fractal [COS20] log2 N 215 KB† N logN |x|+ log2 N RO
[GMNO18]∗ 1 640 KB‡ N logN |x| Lattices
STARK [BBHR18b] log2 N 127 KB➜ Npolylog(N) |x|+ log2 N RO

This work∗ 1 16 KB N logN |x| Lattices

∗For the asymptotic estimates for the lattice-based constructions, we consider an instantiation over a field of size 2Ω(λ) (i.e.,
similar to the field sizes in the group-based and pairing-based constructions). For concrete efficiency, it is advantageous to
work over smaller fields. When instantiated over a field F, the lattice-based parameters scale with polylog(|F|).
†Proof sizes for Fractal measured using the implementation from libiop [SCI21b] with the default configuration over a
181-bit prime field. The largest R1CS instance we could measure has 219 constraints, so this is the proof size we report here.
‡This number is for a circuit with 216 gates since the paper does not provide measurements for larger circuit sizes.
§This is the proof size for verifying a Rescue122 hash chain [AAB+20, BGL20] of length 4200 using the ethSTARK implementa-
tion [Sta21a, Sta21b]. This computation can be expressed as an R1CS instance with roughly 220 constraints (see Section 4.3).
Since the ethSTARK implementation does not currently support verifying general computations, we do not report performance
metrics for the general setting.

Table 5: Comparison with recent zkSNARKs for verifying an NP relations of size N and statements of length
|x|. For brevity, we focus on schemes that have sublinear proof size and sublinear verification for general
NP relations. Asymptotic running times and parameter sizes are given up to multiplicative poly(λ) factors
(where λ is the security parameter). For the “Concrete Proof Size” column, we report the approximate size of
a proof for verifying an NP relation of size N ≈ 220 at the 128-bit security level (as reported in the respective
works unless noted otherwise). The “PQ” column specifies whether the construction is post-quantum secure
( ) or only classically secure ( ). The “TP” column denotes whether the scheme is transparent ( ), relies on
a trusted setup for a universal CRS ( ), or relies on a trusted sampling of a language-dependent CRS ( ).
The “PV” column specifies whether the argument is publicly-verifiable ( ) or designated-verifier ( ). The
“Crypto. Structure” column describes the primary (algebraic) structure underlying the construction. We
distinguish between pairing groups and pairing-free groups by using “Groups” to denote the latter. We write
“RO” to denote a construction based on random oracles.

proofs are short, the verification time scales linearly with the circuit size and these constructions rely on
pre-quantum assumptions.

Lattice-based constructions. In the lattice-based setting, there have been several instantiations in the
designated-verifier model based on linear PCPs [GMNO18, BISW17, BISW18]. Baum et al. [BBC+18]
gave the first publicly-verifiable argument from standard lattice assumptions with Õ(

√
N)-size proofs.

Bootle et al. [BLNS20] reduced the proof size further to polylog(N). In both these cases, the verifier is not
succinct and runs in linear time.
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A Linear PCP for R1CS

In this section, we describe the linear PCP we use for R1CS. The construction is based on the quadratic
arithmetic programs of Gennaro et al. [GGPR13], and is adapted from the 5-query linear PCP construction
by Ben-Sasson et al. [BCG+13]. There are two minor differences in our construction:

❼ We remove the statement-dependent query and have the verifier introduce the statement-dependent
components during verification. This yields a 4-query linear PCP with shorter query length at the
expense of a slightly more expensive verification step. A similar approach is used implicitly in
[GGPR13, BCTV14b].
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❼ The LPCP query-generation samples the random point from a smaller subset of the field. This introduces
some knowledge error, but enables perfect HVZK. The construction of Ben-Sasson et al. provided
statistical HVZK where the statistical distance was inversely proportional to the field size. The difference
between statistical HVZK and perfect HVZK is negligible for super-polynomial size fields, but not for
the moderate-size fields we use in this work.

For completeness, we provide the full description and analysis below. Our presentation and analysis is adapted
from [BCG+13, Appendix E].

Construction A.1 (Linear PCP for R1CS [GGPR13, BCG+13, adapted]). Let CS = {CSκ}κ∈N be a family
of R1CS instances over a finite field F, where CSκ =

(
nκ, Ng,κ, Nw,κ, {ai,κ,bi,κ, ci,κ}i∈[Ng,κ]

)
, ai,κ,bi,κ, ci,κ ∈

F
Nw,κ+1 (and entries indexed from 0 to Nw,κ). For notational convenience, we write n = n(κ) to denote a

function where n(κ) = nκ for all κ ∈ N. We define Ng = Ng(κ), Nw = Nw(κ), ai = ai(κ), bi = bi(κ) and
ci = ci(κ) similarly. We additionally define the following components:

❼ Let S = {α1, . . . , αNg
} ⊂ F be an arbitrary subset of F.

❼ For each i ∈ {0, . . . , Nw}, let Ai, Bi, Ci : F→ F be the unique polynomial of degree Ng − 1 where for
all j ∈ [Ng],

Ai(αj) = aj,i, Bi(αj) = bj,i, Ci(αj) = cj,i.

❼ Let ZS : F → F be the polynomial ZS(z) :=
∏

j∈[Ng ]
(z − αj). Namely, ZS is the polynomial whose

roots are the elements of S.

The 4-query linear PCP ΠLPCP = (QLPCP,PLPCP,VLPCP) for CS is defined as follows:

❼ QLPCP(1
κ): On input κ ∈ N, sample τ

r← F \ S. Let a = (A1(τ), . . . , An(τ)), b = (B1(τ), . . . , Bn(τ)),
and c = (C1(τ), . . . , Cn(τ)). Output the state st = (A0(τ), B0(τ), C0(τ),a,b, c, ZS(τ)) and the query
matrix

Q =




ZS(τ) 0 0 An+1(τ) · · · ANw
(τ) 0 0 · · · 0

0 ZS(τ) 0 Bn+1(τ) · · · BNw
(τ) 0 0 · · · 0

0 0 ZS(τ) Cn+1(τ) · · · CNw
(τ) 0 0 · · · 0

0 0 0 0 · · · 0 1 τ · · · τNg




T

∈ F
(4+Nw+Ng−n)×4.

(A.1)

❼ PLPCP(1
κ,x,w): On input κ ∈ N and an instance (x,w) where CSκ(x,w) = 1, sample δ1, δ2, δ3

r← F.
Construct polynomials A,B,C : F→ F, each of degree Ng, where

A(z) := δ1ZS(z) +A0(z) +
∑

i∈[Nw]
wiAi(z)

B(z) := δ2ZS(z) +B0(z) +
∑

i∈[Nw]
wiBi(z)

C(z) := δ3ZS(z) + C0(z) +
∑

i∈[Nw]
wiCi(z).

(A.2)

Let H(z) := (A(z)B(z) − C(z))/ZS(z), and let h = (h0, . . . , hNg
) ∈ F

Ng+1 be the coefficients of H.
Parse wT = [xT | w̃T] Output the proof vector π = (δ1, δ2, δ3, w̃,h) ∈ F

4+Nw+Ng−n.

❼ VLPCP(st,x,a): On input st = (a0, b0, c0,a,b, c, z), x ∈ F
n and a ∈ F

4, the verifier computes a′1 =
a1 + a0 + xTa, a′2 = a2 + b0 + xTb, and a′3 = a3 + c0 + xTc. It accepts if

a′1a
′
2 − a′3 − a4z = 0. (A.3)

Theorem A.2 (Linear PCP for QAPs). Construction A.1 is complete, has knowledge error 2Ng/(|F| −Ng),
and is perfect HVZK.
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Proof. Let CS = {CSκ}κ∈N be an R1CS system over F. We consider each property separately:

❼ Completeness: Take any κ ∈ N and (x,w) where CSκ(x,w) = 1. Let (st,Q) ← QLPCP(1
κ), π ←

PLPCP(1
κ,x,w), a← QT

π. Consider the value of VLPCP(st,x,a). Let a′1, a′2, a′3 be the values computed
by VLPCP. By definition,

a′1 = a1 + a0 + xTa

= δ1ZS(τ) +A0(τ) +
∑

i∈[n]

xiAi(τ) +
∑

i∈[Nw−n]

wn+iAn+i(τ)

= δ1ZS(τ) +A0(τ) +
∑

i∈[Nw]

wiAi(τ)

= A(τ).

since wi = xi for i ∈ [n], A is the polynomial in Eq. (A.2), and τ ∈ F \ S is the element sampled by
QLPCP. Similarly, we have that a′2 = B(τ) and a′3 = C(τ). Finally a4 = h0 +

∑
i∈[Ng ]

hiτ
i = H(τ),

where H(z) = (A(z)B(z)− C(z))/ZS(z) is the polynomial constructed by the prover. The verification
procedure now computes

a′1a
′
2 − a′3 − a4z = A(τ)B(τ)− C(τ)−H(τ)ZS(τ) = 0,

by definition of the polynomial H. Completeness follows.

❼ Knowledge: Define E〈π
∗,·〉

LPCP to be the algorithm that on input a statement x and given linear access to
a proof vector π∗ = (δ∗1 , δ

∗
2 , δ

∗
3 , w̃

∗,h∗), outputs wT = [xT | (w̃∗)T] ∈ F
Nw . To show that this extractor

works, take any π
∗ = (δ∗1 , δ

∗
2 , δ

∗
3 , w̃

∗,h∗) where

Pr[VLPCP(st,x,QT
π

∗) = 1 : (st,Q)← QLPCP(1
κ)] >

2Ng

|F| −Ng
.

We use π
∗ and CS to define polynomials A,B,C,H : F→ F:

A(z) = δ∗1ZS(z) +A0(z) +
∑

i∈[n]

xiAi(z) +
∑

i∈[Nw−n]

w̃∗
iAn+i(z)

B(z) = δ∗2ZS(z) +B0(z) +
∑

i∈[n]

xiBi(z) +
∑

i∈[Nw−n]

w̃∗
iBn+i(z)

C(z) = δ∗3ZS(z) + C0(z) +
∑

i∈[n]

xiCi(z) +
∑

i∈[Nw−n]

w̃∗
iCn+i(z)

H(z) = h∗
0 +

∑

i∈[Ng ]

h∗
i z

i

Let Q be the query matrix output by QLPCP, a← QT
π

∗ and a′1, a
′
2, a

′
3 be the components computed

by VLPCP. By construction, a′1 = A(τ), a′2 = B(τ), a′3 = C(τ) and a4 = H(τ). Define the polynomial
P : F→ F where P (z) = A(z)B(z)− C(z)−H(z)ZS(z). By construction, deg(P ) ≤ 2Ng. Next, VLPCP
accepts if a′1a

′
2 − a′3 − a4z = 0, where z = Z(τ), or equivalently, if

0 = A(τ)B(τ)− C(τ)−H(τ)ZS(τ) = P (τ). (A.4)

Suppose Eq. (A.4) holds with probability ε > 2Ng/(|F|−Ng); that is, the verifier accepts with probability
greater than ε. Since QLPCP samples τ uniformly from F \ S and deg(P ) ≤ 2Ng, we conclude by the
Schwartz-Zippel lemma (Lemma 2.1) that P ≡ 0. In particular, this means that for all j ∈ [Ng],

P (αj) = A(αj)B(αj)− C(αj) = 0,

42



since ZS(αj) = 0 for all j ∈ [Ng]. Equivalently, this means that A(αj)B(αj) = C(αj) for all j ∈ [Ng].
By construction of A,B,C, this means that

[1 | ũT]aj · [1 | ũT]bj = [1 | ũT]cj ,

where ũT = [xT | (w̃∗)T]. Since this holds for all j ∈ [Ng], we have that CSκ(x, w̃∗) = 1, as required.

❼ HVZK: We first construct a simulator SLPCP = (SLPCP,1,SLPCP,2):

– SLPCP,1(1κ): The statement-independent algorithm samples (s̃t, Q̃) ← QLPCP(1
κ). It outputs s̃t,

Q̃, and stS = s̃t.

– SLPCP,2(stS ,x): On input the state stS = (ã0, b̃0, c̃0, ã, b̃, c̃, z̃) and the statement x, the statement-

dependent algorithm samples ã1, ã2, ã3
r← F. It computes ã′1 = ã1 + ã0 + xTã, ã′2 = ã2 + b̃0 + xTb̃,

and ã′3 = ã3 + c̃0 + xTc̃. Compute ã4 = z̃−1(ã′1ã
′
2 − ã′3). It outputs ã = (ã1, ã2, ã3, ã4).

To complete the proof, it suffices to show that the simulated distribution is identical to the real
distribution for any (x,w) where CSκ(x,w) = 1. By construction, the verification state and query
matrix (output by SLPCP,1) are identically distributed in the two cases, so it suffices to analyze the
distribution of the responses. Let (st,Q) ← QLPCP(1

κ), π ← PLPCP(1
κ,x,w), and a ← QT

π. Write
st = (a0, b0, c0,a,b, c, z). First, z = ZS(τ) for some τ ∈ F \ S. Since ZS(x) =

∏
α∈S(x− α) and τ /∈ S,

we have that z = ZS(τ) 6= 0. Then the following holds:

– In the real distribution, Eq. (A.3) holds (by completeness). Since z 6= 0, the value of a4 is uniquely
defined given a1, a2, a3 and st. The value of a4 that satisfies Eq. (A.3) precisely coincides with the
value ã4 sampled by SLPCP,2 (for the choice of ã1, ã2, ã3 chosen by the simulator).

– In the real distribution, a1 = δ1ZS(τ) +
∑

i∈[Nw−n] wn+iAn+i(τ), where δ1 is uniform over F and

independent of all other components. Since ZS(τ) 6= 0, this means a1 is uniform over F. A similar
argument holds for a2 and a3 (by appealing to the randomness of δ2 and δ3, respectively). This is
precisely the distribution of ã1, ã2, ã3 in the simulation.

Thus, the simulated response is identically distributed as the real response, and perfect HVZK holds.

Remark A.3 (Knowledge against Affine Strategies). While our compiler only requires a linear PCP with
knowledge against linear strategies (Theorem 3.21), we can easily modify the linear PCP from Construction 3.1
to provide knowledge against affine prover strategies without increasing the query complexity. This means
that we can base security on the weaker conjecture that Construction 3.11 is “affine-only.” Using the modified
linear PCP comes at a very slight increase in the concrete cost of the verifier, and has no effect on the prover
complexity. Since we believe that Conjecture 3.15 holds, we do not use this modified linear PCP in our
concrete implementation; we mainly present the observation below for completeness.

Previously, Bitansky et al. [BCI+13] provide a generic approach that compiles any linear PCP with
soundness (resp., knowledge) against linear strategies into a 2-message linear interactive proof with soundness
(resp., knowledge) against affine strategies. This compiler introduces an extra linearity check: namely, an
additional query that is a random linear combination of the remaining queries. While we can apply this
technique directly to Construction A.1, it increases the number of queries of the linear PCP. Here, we observe
that we can remove the need for an extra query by exploiting the specific structure of the linear PCP in
Construction A.1. We describe the approach generally for any linear PCP whose query matrix QT contains as
one of its columns an elementary basis vector (or a scaled version thereof) and whose verification procedure is
a low-degree algebraic circuit. Both properties hold for Construction A.1. The argument proceeds as follows:

❼ Let m be the query length of the linear PCP, k be the number of queries, and (π,b) be an affine
strategy where π ∈ F

m, b ∈ F
k, In this case, given the query matrix Q ∈ F

m×k, the responses are
computed as a← QT

π + b.
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❼ Suppose that the jth column of QT is a basis vector ei ∈ F
k. In this case, an affine strategy of the form

(π, δei) is equivalent to a linear strategy π
′ where πℓ = π′

ℓ for all ℓ 6= j and π′
j = πj + δ. Since the linear

PCP has knowledge soundness against linear strategies, it must also have knowledge soundness against
affine strategies of the form (π, δei).

❼ To extend such a linear PCP to provide soundness (resp., knowledge) against arbitrary affine strategies,
we embed a random linear combination of the other queries into the ith query. In more detail, let
q1, . . . ,qk be the linear PCP queries sampled by QLPCP (i.e., these are the rows of QT). The modified

query-generation algorithm first samples γℓ
r← F for each ℓ ∈ [k]. It computes q′

i = qi +
∑

ℓ 6=i γℓqℓ

and outputs (q1, . . . ,qi−1,q
′
i,qi+1, . . . ,qk) as its updated set of queries. The coefficients γ1, . . . , γk are

included as part of the verification state st.

❼ Given a set of responses a ∈ F
k, the modified verification algorithm first computes a′i ← ai −

∑
ℓ 6=i γiai.

It then runs the original verification algorithm VLPCP on (a1, . . . , ai−1, a
′
i, ai+1, . . . , ak).

Completeness of the above construction is immediate. To see that it also provides soundness (resp., knowledge)
against arbitrary affine strategies, we use the assumption that the linear PCP has an algebraic verifier. In
this case, the verification procedure can be described by checking whether a multivariate polynomial p in the
responses is nonzero or not.17 Consider an arbitrary affine strategy (π,b), and let a1, . . . , ak be the responses
for the modified linear PCP defined above. In particular, aℓ = qT

ℓ π + bℓ for each ℓ 6= i and ai = (q′
i)

T
π + bi.

The verification relation first computes

a′i = ai −
∑

ℓ 6=i

γℓaℓ = qT
i π + bi −

∑

ℓ 6=i

γℓbℓ.

It then checks the polynomial relation

p(a1, . . . , ai−1, a
′
i, ai+1, . . . , ak)

?
= 0.

Fixing q1, . . . ,qk, π, and b (all of which are independent of the γℓ’s), we can view p as a polynomial in the
variables γ1, . . . , γk for ℓ 6= i. Since QLPCP samples γi uniformly and independently over F, we appeal to the
Schwartz-Zippel lemma and conclude that the probability that the verifier accepts is at most d/ |F|, where
d is the degree of a′i in p. Thus, the only possible strategies (π,b) where the prover can have advantage
better than d/ |F| are those where bℓ = 0 for all ℓ 6= i. But by our second observation above, soundness (resp.,
knowledge) against strategies of the form (π, δei) is implied by soundness (resp., knowledge) against linear
strategies when the query matrix QT contains a basis vector ei as one of its columns.

In the particular case of Construction A.1, we can see by inspection of Eq. (A.1) that one of its columns
of the query matrix QT is an elementary basis vector ei (i = 4 in this case). The degree d of ai in the
verification relation (Eq. (A.3)) is d = 1, so the soundness error (resp., knowledge error) of the modified
construction described above is ε+ 1/ |F|, where ε is the soundness (resp., knowledge) error of the original
construction (see Theorem A.2).

B Linear PCP and zkSNARK Analysis

In this section, we provide the formal analysis of our linear-only vector encryption scheme and resulting
zkSNARKs.

B.1 Analysis of Construction 3.11 (Vector Encryption)

In this section, we provide the formal analysis of our candidate linear-only vector encryption scheme
(Construction 3.11) from Section 3.3.

17The verification procedure may check multiple such polynomial relations (and may more generally be modeled as an arithmetic
circuit over F). The analysis described here directly extends to these settings.
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B.1.1 Proof of Theorem 3.12 (Additive Homomorphism)

We start with the concrete statement. Take any collection of vectors v1, . . . ,vk ∈ Rℓ
p and scalars y1, . . . , yk ∈

Rp. Let (pp, sk) ← Setup(1λ, 1ℓ), cti ← Encrypt(sk,vi) for each i ∈ [k]. Define the ciphertext ct∗ ←
Add(pp, {cti}i∈[k], {yi}i∈[k]). Here, pp = (A,D), sk = (S,T), cti = (ai, ci) and ct∗ = (a∗, c∗). By construction,

D = STA+ pET,

a∗ =
∑

i∈[k]

yiai +Ar+ pea, and c∗ =
∑

i∈[k]

yici +Dr+ pec

For each i ∈ [k], we also have ci = STai + pei + ui, where uT
i = [vT

i | (Tvi)
T]. Thus,

c∗ =
∑

i∈[k]

(
yiS

Tai + yipei + yiui

)
+ STAr+ pETr+ pec. (B.1)

Consider the output of Decrypt(sk, ct∗). The decryption algorithm starts by computing (over Rq)

z∗ = c∗ − STa∗ =
∑

i∈[k]

yiui + p


∑

i∈[k]

yiei +ETr+ ec − STea


 .

We write
∑

i∈[k] yiui = pũ+ ũ′ ∈ Rℓ′ where ũ, ũ′ ∈ Rℓ′ and ‖ũ′‖∞ < p/2. Then,

z∗ =
∑

i∈[k]

yiui mod p+ p


ũ+

∑

i∈[k]

yiei +ETr+ ec − STea




︸ ︷︷ ︸
e′

∈ Rℓ′

q . (B.2)

If e′ satisfies ‖e′‖∞ < q/(2p)−1/2, then Eq. (B.2) holds over R (and not just modulo q). Then, the decryption
algorithm computes

uT =
∑

i∈[k]

yiu
T
i =


∑

i∈[k]

yiv
T
i

∣∣∣∣∣
∑

i∈[k]

yi(Tvi)
T


 ∈ Rℓ′

p ,

and outputs
∑

i∈[k] yivi, as required. Thus, it suffices to argue that ‖e′‖∞ < q/(2p)− 1/2. We analyze each

term in e′ separately.

❼ By definition, ũ = 1/p · (∑i∈[k] yiui−
∑

i∈k yiui mod p). This means that ‖ũ‖∞ ≤ 1/p ·
∥∥∥
∑

i∈[k] yiui

∥∥∥
∞
.

Since ui ∈ Rℓ′

p , this means ‖ui‖∞ ≤ p/2, so ‖ũ‖∞ ≤ γR ‖y‖1 /2.

❼ The entries of ei ∈ Rℓ′

q are sampled from χ, which by assumption, is the product of d independent

subgaussian distributions over Z, each with parameter at most s. Since R = Z[x]/(xd + 1), each
component of

∑
i∈[k] yiei is subgaussian with parameter γR ‖y‖2 s. Thus, the magnitude of each

component of
∑

i∈[k] yiei is bounded by γR ‖y‖2 Cs with probability at least 1− 2 exp(−πC2). By a

union bound,
∥∥∥
∑

i∈[k] yiei

∥∥∥
∞
≤ γR ‖y‖2 Cs with probability at least 1− 2dℓ′ exp(−πC2).

❼ Since the entries of E ∈ Rn×ℓ′

q and r ∈ Rn
q are sampled from χ, the magnitude of each entry in E and r

is bounded by Cs with probability at least 1− 2d exp(−πC2). By a union bound,
∥∥ETr

∥∥
∞
≤ γRnC

2s2

with probability 1− 2dnℓ′ exp(−πC2).

❼ Since ec is sampled from [−B,B]dℓ
′

, ‖ec‖∞ ≤ B.

❼ Since the entries of S ∈ Rn×ℓ′

q and ea ∈ Rn
q are sampled from χ, we have that

∥∥STea
∥∥
∞
≤ γRnC

2s2

with probability at least 1− 2dnℓ′ exp(−πC2).
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Again by a union bound, with probability at least 1− (4n+ 2)dℓ′ exp(−πC2),

‖e′‖∞ ≤ B + γR ‖y‖2 Cs+ γR ‖y‖1 /2 + 2γRnC
2s2. (B.3)

Taking q > 2p ‖e′‖∞ + p thus suffices for correctness. For the asymptotic statement, it suffices to consider
C = ω(log λ).

B.1.2 Proof of Theorem 3.13 (CPA Security)

By a standard hybrid argument, the MLWEn,m,d,q,χ assumption implies that the following two distributions
are computationally indistinguishable:

(
A′,STA′ + (E′)T

)
and

(
A′, (U′)T

)
, (B.4)

where A′ r← Rn×m
q , S ← χn×ℓ′ , E′ ← χm×ℓ′ , and U′ r← Rm×ℓ′

q (for any ℓ′ = poly(λ)). Semantic security
follows immediately from this assumption. Formally, we use a hybrid argument:

❼ Hyb0: This is the real semantic security experiment. Namely, the challenger samples A
r← Rn×n

q ,

S ← χn×ℓ′ , E ← χn×ℓ′ , T
r← Rτ×ℓ

p , b
r← {0, 1}, and computes D ← STA + pET. The challenger

gives the public parameters pp = (A,D) to A. On the ith oracle query (vi,0,vi,1), the challenger

samples ai
r← Rn

q , ei
r← χℓ′ , computes uT

i = [vT
i,b | (Tvi,b)

T], ci ← STai + pei + ui, and replies with
the ciphertext cti = (ai, ci). At the end of the experiment, the adversary outputs a bit b′. The output
of the experiment is 1 if b′ = b and 0 otherwise.

❼ Hyb1: Same as Hyb0, except the challenger samples D
r← Rℓ′×n

q in the public parameters, and for each

of the adversary’s oracle queries, the challenger computes ci ← pri + ui where ri
r← Rℓ′

q .

We first argue that the outputs of Hyb0 and Hyb1 are computationally indistinguishable under theMLWEn,m,d,q,χ

assumption. Let (A′,Z′) be the MLWE challenge and write A′ = [A | a1 | · · · | aQ], where A ∈ Rn×n
q

and a1, . . . ,aQ ∈ Rn
q . Analogously, write Z′ = [Z | z1 | · · · | zQ]. Consider a CPA security experiment

where we set pp = (pA, pZ) and respond to the adversary’s oracle queries (vi,0,vi,1) with the ciphertext

cti = (pai, pzi + ui). In this case, if Z′ = STA′ + (E′)T, then this perfectly simulates Hyb0. If Z
′ r← Rℓ′×m

q ,
this perfectly simulates Hyb1. (In particular, if A is uniform over Rn×n

q , then so is pA since gcd(p, q) = 1,
and likewise for pai for each i ∈ [Q]). Thus, under MLWEn,m,d,q,χ, the outputs of Hyb0 and Hyb1 are
computationally indistinguishable.

To complete the proof, observe that in Hyb1, the distinguishing advantage of every adversary is exactly
1/2 since the challenge ciphertexts perfectly hide the message vi,b (since the ri’s are uniform and independent

over Rℓ′

q and gcd(p, q) = 1).

B.1.3 Proof of Theorem 3.14 (Circuit Privacy)

We first construct a simulator S. On input the security parameter λ, the public parameters pp = (A,D), the
secret key sk = (S,T), and a vector v ∈ Rℓ

p, the simulator proceeds as follows:

1. Sample a
r← Rn

q and ẽ← [−B,B]dℓ
′

.

2. Compute uT = [vT | (Tv)T] ∈ Rℓ′

p and output the ciphertext ct∗ = (a,STa+ pẽ+ u).

We show that the output of the above simulator is computationally indistinguishable from the output of the
Add algorithm. We proceed with a hybrid argument:
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❼ Hyb0: This is the real circuit privacy experiment. Namely, the challenger begins by sampling (pp, sk)←
Setup(1λ, 1ℓ) where pp = (A,D) and sk = (S,T). The challenger gives pp and sk to the adversary
A, which outputs a sequence of vectors v1, . . . ,vk. The challenger computes cti ← Encrypt(sk,vi) for
each i ∈ [k], where each cti can be written as cti = (ai, ci), for ci = STai + pei + ui, ei ∈ Rℓ′

q and

uT
i = [vT

i | (Tvi)
T]. The challenger gives ct1, . . . , ctk to A. Adversary A outputs a set of coefficients

y1, . . . , yk ∈ Rp. The challenger computes ct∗0 and ct∗1 as follows:

– For ct∗0, the challenger uses the Add algorithm. Namely, it samples r ← χn, ea ← χn, ec ←
[−B,B]dℓ

′

, computes a∗0 ←
∑

i∈[k] yiai + Ar + pea and c∗0 ←
∑

i∈[k] yici + Dr + pec, and sets

ct∗0 = (a∗0, c
∗
0).

– For ct∗1, the challenger uses the simulator S. Namely, it samples a∗1
r← Rn

q and ẽ← [−B,B]dℓ
′

and

computes c∗1 ← STa∗1 + pẽ+ u, where uT = [
∑

i∈[k] yiv
T
i |

∑
i∈[k] yi(Tvi)

T] ∈ Rℓ′

p . Finally, it sets

ct∗1 = (a∗1, c
∗
1).

The challenger samples b
r← {0, 1} and gives ct∗b to the adversary. At the end of the experiment, the

adversary outputs a bit b′ ∈ {0, 1}, and the output of the experiment is 1 if b′ = b.

❼ Hyb1: Same as Hyb0, except the challenger computes c∗0 ← STa∗0 + pec + u where

uT =


∑

i∈[k]

yiv
T
i

∣∣∣∣
∑

i∈[k]

yi(Tvi)
T


 ∈ Rℓ′

p .

❼ Hyb2: Same as Hyb1 except the challenger samples a∗0
r← Rn

q .

For an adversary A, we write Hybi(A) to denote the output distribution of Hybi with adversary A. We
argue that the output distribution of each pair of adjacent hybrids are computationally (or statistically)
indistinguishable. Finally, we show that for all adversaries A, Pr[Hyb2(A) = 1] = 1/2.

Lemma B.1. For all adversaries A (restricted to strategies in S), the statistical distance between Hyb0(A)
and Hyb1(A) is ε (see Eq. (3.6)).

Proof. The only difference between Hyb0 and Hyb1 is how c∗0 is constructed. As in the proof of Theorem 3.12
(see Eq. (B.1)), in Hyb0,

c∗0 =
∑

i∈[k]

(
yiS

Tai + yipei + yiui

)
+ STAr+ pETr+ pec

= STa∗0 + p


ũ+

∑

i∈[k]

yiei +ETr− STea + ec


+ u,

where
∑

i∈[k] yiui = pũ+ ũ′ ∈ Rℓ′ , ‖ũ′‖∞ < p/2 and ũ′ = u mod p. Let e′ = ũ+
∑

i∈[k] yiei +ETr− STea.

From the proof of Theorem 3.12, with probability at least 1− (4n+ 2)dℓ′ exp(−πC2),

‖e′‖∞ ≤ γR ‖y‖2 Cs+ γR ‖y‖1 /2 + 2γRnC
2s2.

In Hyb1, c
∗
0 = STa∗0 + pec + u. By Lemma 2.2 and a union bound, the statistical distance between the

distributions of ec and e′ + ec is at most dℓ′ ‖e′‖∞ /B. The claim follows.

Lemma B.2. Suppose that p, q are coprime. Under the MLWEn,m,d,q,χ assumption with m = n, for all
efficient adversaries A, Hyb1(A) and Hyb2(A) are computationally indistinguishable.
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Proof. The only difference between Hyb1 and Hyb2 is that in Hyb1, a
∗
0 ←

∑
i∈[k] yiai +Ar + pea while in

Hyb2, a
∗
0

r← Rn
q . This follows from the MLWE assumption. To see this, suppose there is an adversary A where

|Pr[Hyb1(A) = 1]− Pr[Hyb2(A) = 1]| ≥ ε′. We use A to construct an algorithm B for MLWE. Let (A, z) be
the MLWE challenge where A ∈ Rn×n

q and z ∈ Rn
q . Algorithm B simulates an execution of Hyb1 or Hyb2 as

follows:

❼ Sample S← χn×ℓ′ , E← χn×ℓ′ and T
r← Rτ×ℓ

p . Let D← ST(pAT) + pET, and set pp = (pAT,D) and

sk = (S,T). Since A is uniform and gcd(p, q) = 1, the matrix pAT is also uniform.

❼ Let a∗0 ←
∑

i∈[k] yiai + pz. Construct the remaining components c∗0, a
∗
1, and c∗1 as in Hyb1 and Hyb2.

❼ Sample b
r← {0, 1} and give ct∗b to A. Let b′ ∈ {0, 1} be the adversary’s output. Output 1 if b′ = b and

0 otherwise.

If zT = sTA + eT, then a∗0 =
∑

i∈[k] yiai + pATs + pe where s ← χn and e ← χn. This is precisely the

distribution in Hyb1. Conversely, if z
r← Rn

q , then a∗0 is uniform (since gcd(p, q) = 1 and z is uniform and
independent of the yi and ai). This is precisely the distribution in Hyb2. Thus, B breaks MLWE with
advantage ε′.

To conclude the proof, observe that ct∗0 and ct∗1 are identically distributed in Hyb2. Thus, for all adversaries
A, Pr[Hyb2(A) = 1] = 1/2. Together with Lemmas B.1 and B.2, this means that for all efficient adversaries A,
Pr[Hyb0(A) = 1] ≤ 1/2+ε+negl(λ). For the asymptotic statement, we set C = ω(log λ) and B1, B2 = kp.

B.1.4 Proof of Theorem 3.19 (Modulus Switching)

Since z = c − STa (mod q), we can write z = c − STa + qṽ ∈ Rℓ′ , where ṽ ∈ Rℓ′ . Define the vector
z̃ = c′ − STa′ + q′ṽ ∈ Rℓ′ . Then,

‖z̃‖∞ =
∥∥c′ − STa′ + q′ṽ

∥∥
∞

=
∥∥c′ − STa′ + q′ṽ + (q′/q)(c− STa+ qṽ − c+ STa− qṽ)

∥∥
∞

≤ ‖c′ − (q′/q) · c‖∞ +
∥∥∥ST

(
a′ − (q′/q) · a

)∥∥∥
∞

+ (q′/q) · ‖z‖∞ .

We analyze each term separately:

❼ Since c′ ← Scale(c, q, q′, p), by definition of the Scale operation, ‖c′ − (q′/q) · c‖∞ ≤ p/2.

❼ Similarly, since a′ = Scale(a, q′, q, p), we have that ‖a′ − (q′/q) · a‖∞ ≤ p/2. The entries of S ∈ Rn×ℓ′

q

are sampled from χ. Since χ is subgaussian with parameter s, the magnitude of each entry in S is
bounded by Cs with probability at least 1− 2d exp(−πC2). By a union bound over the components of

S, we have that
∥∥∥ST

(
a′ − (q′/q) · a

)∥∥∥
∞
≤ γRnCs(p/2) with probability 1− 2dnℓ′ exp(−πC2).

❼ By assumption, ‖z‖∞ < q/2− (1 + nγRCs) · (p/2) · (q/q′). Thus,

(q′/q) · ‖z‖∞ < q′/2− (1 + nγRCs) · (p/2).

Thus, with probability 1 − 2dnℓ′ exp(−πC2), ‖z̃‖∞ < q′/2. Now, z′ = c′ − STa′ = z̃ (mod q′). But if the
entries of z̃ are all bounded by q′/2, then it must be the case that z′ = c′ − STa′ + q′ṽ = z̃ ∈ R. Here, the
relation is taken over the ring and not modulo q′. Working now modulo p, we have the following:

z′ = c′ − STa′ + q′ṽ = c− STa+ qṽ = z (mod p),

since c = c′ (mod p), a = a′ (mod p), and q′ = q (mod p) by construction or by assumption.
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B.2 Proof of Theorem 3.23 (Zero Knowledge)

Let SLPCP = (SLPCP,1,SLPCP,2) be the simulator for ΠLPCP, and SEnc be the circuit privacy simulator for ΠEnc.
We use SLPCP and SEnc to construct a simulator SSNARK = (SSNARK,1,SSNARK,2) for ΠSNARK:

❼ SSNARK,1(1λ, 1κ): On input the security parameter λ and the system index κ, run (s̃tLPCP, Q̃, stLPCP,S)←
SLPCP,1(1κ), where Q̃ ∈ F

m×k. Sample (p̃p, s̃k)← SetupEnc(1
λ, 1k) and compute c̃ti ← EncryptEnc(s̃k, q̃

T
i )

for each i ∈ [m]. Output the common reference string c̃rs = (κ, p̃p, c̃t1, . . . , c̃tm), verification state

s̃t = (s̃tLPCP, s̃k), and the simulation state stS = (stLPCP,S , p̃p, s̃k).

❼ SSNARK,2(stS ,x): On input stS = (stLPCP,S , p̃p, s̃k) and the statement x, compute ã← SLPCP,2(stLPCP,S ,x)
and output the simulated proof π̃ = SEnc(1λ, p̃p, s̃k, ã).

To complete the proof, we argue that the real distribution and the simulated distributions are computationally
indistinguishable. This follows by a simple hybrid argument:

❼ Hyb0: This is the real game. Namely, the challenger first samples a bit b
r← {0, 1}, (crs, st) ←

Setup(1λ, 1κ), and (c̃rs, s̃t, stLPCP,S) ← S1(1λ, 1κ). If b = 0, it gives (crs, st) to the adversary, and
otherwise, it gives (c̃rs, s̃t) to the adversary. After the adversary outputs a statement x and witness w,
the challenger first checks that CSκ(x,w) = 1 (aborting the experiment otherwise), and then computes
π ← Prove(crs,x,w) and π̃ ← SSNARK,2(stS ,x). It gives π to A if b = 0 and π̃ if b = 1. At the end of
the experiment, the adversary outputs a bit b′ ∈ {0, 1}, and the output of the experiment is 1 if b′ = b.

❼ Hyb1: Same as Hyb0 except the challenger constructs π using the circuit privacy simulator (in place
of Prove(crs,x,w)). Let Q ∈ F

m×k be the query matrix the challenger sampled to construct crs =
(κ, pp, ct1, . . . , ctm) and let st = (stLPCP, sk) be the corresponding verification state. To construct
π, the challenger now computes π ← PLPCP(1

κ,x,w) and sets π ← SEnc(1λ, pp, sk,a), where a =∑
i∈[m] πiq

T
i = QT

π and qT
i denotes the ith row of Q.

❼ Hyb2: Same as Hyb1, except the challenger uses the linear PCP simulator to construct the CRS
and the proof. Specifically, instead of running QLPCP to obtain stLPCP and Q, the challenger instead
samples (stLPCP,Q, stLPCP,S)← SLPCP,1(1κ). When constructing the proof, the challenger substitutes
the simulated response a← SLPCP,2(stLPCP,S ,x) in place of the value a = QT

π from Hyb1.

Let Hybi(A) be the output of an execution of experiment Hybi. We now analyze the distribution of each pair
of adjacent hybrid distributions as well as the distribution in Hyb2:

❼ By design, the only difference between Hyb0 and Hyb1 is the challenger computes π using the simulator
SEnc (with target value a = QT

π) instead of using AddEnc(pp, {ct1, . . . , ctm}, {π1, . . . , πm}), where each
cti is an encryption of qT

i (in which case
∑

i∈[m] πiq
T
i = QT

π). If ΠEnc is ε-circuit private, then

|Pr[Hyb0(A) = 1]− Pr[Hyb1(A) = 1]| ≤ 2ε.

❼ The only difference between Hyb1 and Hyb2 is the challenger uses the linear PCP simulator SLPCPto
sample the queries Q, the verification state st, and the responses a instead of using QLPCP and PLPCP.
If ΠLPCP is perfect HVZK, then

Pr[Hyb1(A) = 1] = Pr[Hyb2(A) = 1].

❼ Finally, in Hyb2, the behavior of the challenger is the same regardless of the bit b (i.e., the challenger
computes crs, st, and π according to the specification of SSNARK). This means that for all adversaries
A, Pr[Hyb2(A) = 1] = 1/2, and the claim follows.
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C Linear PCP Implementation Details

In this section, we provide a more detailed description of our multipoint evaluation and interpolation approach
outlined in Section 4.1. Following [BCG+13], for a polynomial A(z) of degree less than |D|, we write
FFTD(A(z)) to denote the vector of evaluations (A(α))α∈D. Similarly, we write FFT−1

D ((A′(α))α∈D) to
denote the coefficients of the polynomial A (of degree less than |D|) where A(α) = A′(α) for all α ∈ D.

Let ω ∈ F be a primitive 2d-th root of unity and H = H1 = 〈ω〉 ⊂ F be the subgroup of order 2d

generated by ω (consisting of the 2d-th roots of unity). Let ξ1 = 1 and take ξ2, . . . , ξi ∈ F
∗ \H1 such that the

cosets Hi = ξiH1 are all pairwise disjoint. We define the domain to be D =
⋃

i∈[k] Hi. For a set S ⊂ F, let

VS ∈ F
|D|×|D| be the Vandermonde matrix associated with evaluating a polynomial of degree up to |D| − 1

on the points in D. Let V̂H ∈ F
2d×2d be the Vandermonde matrix associated with evaluation a polynomial

of degree up to 2d on H (i.e., the roots of unity). Then, we have that

VS =




V̂H V̂H · · · V̂H

V̂H · Ξ2 V̂H · ξ2
d

2 Ξ2 · · · V̂H · ξ(k−1)2d

2 Ξ2

...
...

. . .
...

V̂H · Ξk V̂H · ξ2
d

k Ξk · · · V̂H · ξ(k−1)2d

k Ξk



,

where Ξi = diag(1, ξi, ξ
2
i , . . . , ξ

2d−1
i ). Take any input a ∈ F

k·2d , and for i ∈ [k], let âi = (a(i−1)2d+1, . . . , ai·2d) ∈
F
2d . We describe an algorithm to compute a′ = VSa:

❼ Let â′i =
(
a′(i−1)2d+1, . . . , a

′
i·2d

)
. By construction,

â′i = V̂H ·


∑

j∈[k]

ξ
(j−1)2d

i Ξiâj


 .

Let b̂i =
∑

j∈[k] ξ
(j−1)2d

i Ξiâj ∈ F
2d . Given b̂i, computing âi = V̂H b̂i can be done using a standard

radix-2 FFT in O(d · 2d) time.

❼ Näıvely, we can compute b̂i in O(k · 2d) time, so computing all of the entries in b =
[
b̂T
1 | · · · | b̂T

k

]T ∈
F
k·2d requires O(2dk2) time. However we can do so more efficiently as follows. By definition,

b̂i,j =
∑

ℓ∈[k]

ξ
(ℓ−1)2d

i ξj−1
i âℓ,j .

Now, define b̃j = (b̂1,j , . . . , b̂k,j) ∈ F
k, and similarly, let ãj = (â1,j , . . . , âk,j) ∈ F

k. Then,

b̃j = diag(ξj−1
1 , . . . , ξj−1

k )




1 ξ2
d

1 · · · ξ
2d(k−1)
1

...
...

. . .
...

1 ξ2
d

k · · · ξ
2d(k−1)
k




︸ ︷︷ ︸
Ξ′

ãj .

Observe now that Ξ′ ∈ F
k×k is itself a Vandermonde matrix corresponding to evaluating a degree (k−1)

polynomial on the points ξ2
d

1 , . . . , ξ2
d

k . While ξ2
d

1 , . . . , ξ2
d

k are not roots of unity (so standard FFTs
cannot be used here), we can still solve this problem efficiently if ξ1, . . . , ξk form a geometric sequence
(i.e., ξi = αξi−1 for some fixed α ∈ F) [BS05]. In particular, using the Bostan-Schost algorithms,
multipoint evaluation on k values in a geometric sequence requires computing 2 degree-k polynomial
multiplications and O(k) additional work. In the case where k < 2d−1, we can use standard radix-2
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FFTs to implement the degree-k polynomial multiplications in O(k log k) time. Thus, computing each
b̃j can be done in just O(k log k) time. Repeating this for all j ∈ [2d] yields an algorithm to compute b
in O(2dk log k) time.

The overall running time of this algorithm is O(2dk(d+ log k)), which matches the running time of a standard
FFT over a domain of size k · 2d. While the concrete efficiency of the algorithm is worse than a standard
radix-2 FFT, in fields where there are insufficient roots of unity (such as the ones we consider), this provides
an efficient algorithm to implement the linear PCP prover. In all of our experiments, k ≤ 64.

In our implementation, we set ξi = g2(i−1)ω for i ∈ [k], where g is a multiplicative generator of F∗. This
enables efficient implementation of multipoint evaluation over the set D as well as the set gD = {gh | h ∈ D}
(needed for efficient implementation of the linear PCP prover algorithm; see [BCG+13] for further details).

Lagrange interpolation and inverse FFTs. In addition to computing FFTD, the linear PCP prover
needs to compute the inverse operation FFT−1

D . This follows immediately from our algorithm above by
inverting each of the steps (i.e., replace both sets of FFTs with their corresponding inverse FFTs).

The query-generation algorithm QLPCP in Claim 2.6 (Construction A.1) essentially reduces to multiple
Lagrange polynomial evaluations (with basis D) at a random field element. Ben-Sasson et al. [BCG+13]
described an efficient implementation of this when the domain D is the roots of unity. In our setting (of
working over a field with insufficient roots of unity), we augment D with cosets of the roots of unity. The
Ben-Sasson et al. algorithm directly generalizes to this setting and we refer to [BCG+13, Appendix E] for
the details.

D The Power Diffie-Hellman Assumption over Small Fields

In this section, we briefly recall the q-power Diffie-Hellman assumption introduced by Groth [Gro10] and
subsequently used as the basis for both pairing-based SNARKs [GGPR13, PHGR13] as well as lattice-based
SNARKs [GMNO18]. Following [GMNO18], we formulate the assumption with respect to a linear encoding
scheme, which captures both the pairing-based instantiation as well as the lattice-based instantiation.

Definition D.1 (Linear Encoding Scheme). A (secret-key) linear encoding scheme ΠEnc over a finite field F

is a tuple of algorithms ΠEnc = (Setup,Encode,Add) with the following properties:

❼ Setup(1λ)→ (pk, sk): On input the security parameter λ, the setup algorithm outputs a public evaluation
key pk and a secret encoding key sk.

❼ Encode(sk, x)→ encx: On input the secret key sk and an element x ∈ F, the encoding algorithm outputs
an encoding encx of x.

❼ Add(pk, (enc1, . . . , encd), (α1, . . . , αd))→ enc′: On input the public key pk, encodings enc1, . . . , encd and
coefficients α1, . . . , αd ∈ F, the add algorithm outputs a new encoding enc′.

The encoding scheme is d-linear if for all values k ≤ d, values x1, . . . , xk ∈ F, scalars α1, . . . , αk ∈ F
d, and

sampling (pk, sk)← Setup(1λ), enci ← Encode(sk, xi) for all i ∈ [k], we have that

Pr[Add(pk, (enc1, . . . , enck), (α1, . . . , αk)) ∈ S] = 1− negl(λ),

where S denotes the support of Encode(sk,
∑

i∈[k] αixi).

Definition D.2 (q-Power Diffie-Hellman Assumption [Gro10, GMNO18]). Fix a parameter q ∈ N. A linear
encoding scheme ΠEnc = (Setup,Encode,Add) over a field F satisfies the q-power Diffie-Hellman assumption

(q-PDH) if for all efficient adversaries A, and sampling (pk, sk)← Setup(1λ), s
r← F, enci ← Encode(sk, si) for

all i ∈ {0, . . . , 2q}, σ ← (pk, enc0, . . . , encq, encq+2, . . . , enc2q), we have that

Pr[A(1λ, σ) ∈ S] = negl(λ),

where S is the set of encodings in the support of Encode(sk, sq+1).
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Lemma D.3 (q-PDH Assumption over Small F). Let ΠEnc = (Setup,Encode,Add) be a d-linear encoding
scheme over a finite field F. If d ≥ 2q, there exists an adversary that runs in time poly(q, log |F|) and wins
the q-PDH security game for ΠEnc with advantage 2q/ |F|.

Proof. The adversary A starts by choosing 2q distinct points z1, . . . , z2q ∈ F, and forms the polynomial

f(x) =
∏

i∈[2q](x− zi). Write this as f(x) =
∑2q

i=0 αix
i. Then, for all i ∈ [2q], zq+1

i = −α−1
q+1

∑
j 6=q+1 αjz

j
i .

Let (pk, enc0, . . . , encq, encq+2, . . . , enc2q) be the q-PDH challenge. Here, enci is an encoding of si, where
s ∈ F is sampled by the q-PDH challenger at the beginning of the experiment. Since d ≥ 2q, the adversary
can homomorphically compute an encoding of −α−1

q+1

∑
i 6=q+1 αis

i. By the above analysis, if s ∈ {z1, . . . , z2q},
then this quantity is exactly sq+1. Since s is uniform and independent of z1, . . . , z2q, the probability that
s ∈ {z1, . . . , z2q} is exactly 2q/ |F|, which proves the claim.

Remark D.4 (q-Power Diffie-Hellman Assumption over Small F). When the q-PDH assumption is used
for constructing pairing-based zkSNARKs [Gro10, PHGR13, GGPR13], the size of the underlying field F is
super-polynomial (i.e., |F| = 2Ω(λ)). In this case, the attack in Lemma D.3 has negligible advantage. Indeed,
the q-PDH assumption plausibly holds over standard pairing-based groups, and holds unconditionally in the
generic (bilinear) group model [Gro10].

In the lattice-based zkSNARK of Gennaro et al. [GMNO18], they consider fields of polynomial size.
Unfortunately, Lemma D.3 shows that the q-PDH assumption does not hold for encoding schemes over fields
of polynomial size. For the specific instantiation proposed by Gennaro et al., q ≈ 216 and |F| ≈ 232, so
Lemma D.3 gives an attack on q-PDH with advantage 2q/ |F| = 2−15. Since their zkSNARK relies on hardness
of the q-PDH assumption for soundness, this means that their suggested parameters provide at best 15 bits
of provable soundness. To obtain 128-bits of soundness, it would be necessary to either apply soundness
amplification (which increases all parameters by a factor of 128/15 ≈ 8.5) or instantiate the Regev-based
encoding scheme over a super-polynomial size field (which would also incur additional overhead).

In this work, we work over small (polynomial-size) fields and use parallel repetition (at the linear PCP
level) for soundness amplification (see Remark 2.7). This increases the number of linear PCP queries, but
since we encrypt vectors of queries, the overhead for parallel amplification is additive rather than multiplicative
in the number of repetitions. This yields a much more efficient construction over small fields compared to the
Gennaro et al. construction (see Table 1).
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