
CRYPTGPU: Fast Privacy-Preserving Machine Learning on the GPU

Sijun Tan∗, Brian Knott†, Yuan Tian∗, and David J. Wu∗

∗University of Virginia
{st8eu, yuant, dwu4}@virginia.edu

†Facebook AI Research
brianknott@fb.com

Abstract—We introduce CRYPTGPU, a system for privacy-
preserving machine learning that implements all operations on
the GPU (graphics processing unit). Just as GPUs played a pivotal
role in the success of modern deep learning, they are also essential
for realizing scalable privacy-preserving deep learning. In this
work, we start by introducing a new interface to losslessly embed
cryptographic operations over secret-shared values (in a discrete
domain) into floating-point operations that can be processed
by highly-optimized CUDA kernels for linear algebra. We then
identify a sequence of “GPU-friendly” cryptographic protocols
to enable privacy-preserving evaluation of both linear and non-
linear operations on the GPU. Our microbenchmarks indicate
that our private GPU-based convolution protocol is over 150×
faster than the analogous CPU-based protocol; for non-linear
operations like the ReLU activation function, our GPU-based
protocol is around 10× faster than its CPU analog.

With CRYPTGPU, we support private inference and private
training on convolutional neural networks with over 60 million
parameters as well as handle large datasets like ImageNet.
Compared to the previous state-of-the-art, when considering
large models and datasets, our protocols achieve a 2× to 8×
improvement in private inference and a 6× to 36× improvement
for private training. Our work not only showcases the viability
of performing secure multiparty computation (MPC) entirely on
the GPU to enable fast privacy-preserving machine learning, but
also highlights the importance of designing new MPC primitives
that can take full advantage of the GPU’s computing capabilities.

I. INTRODUCTION

Deep learning has enabled numerous applications in the form

of digital voice assistants, video monitoring and surveillance

systems, and even systems for disease diagnosis and treatment

planning. But these new and exciting applications raise challeng-

ing questions regarding user privacy. After all, modern machine

learning algorithms are largely data-driven and training image

recognition, speech recognition, or disease predictor systems

all rely on aggregating and analyzing sensitive user data. Even

model inference raises privacy concerns as increasingly often,

voice or video recordings from a mobile or IoT device are

outsourced to the cloud for analysis.

To address some of the privacy challenges associated with

the widespread deployment of deep learning technologies, a

number of works [1, 2, 3, 4, 5, 6] in the last few years have in-

troduced cryptographic frameworks based on secure multiparty

computation (MPC) [7, 8] to enable privacy-preserving deep

learning (see Section V for a more comprehensive survey). At

a high level, MPC protocols allow a set of mutually-distrusting

parties to compute an arbitrary function over secret inputs such

that at the end of the computation, the parties only learn the

output of their computation, and nothing more. In particular, all

information about other parties’ inputs are completely hidden

(up to what could be inferred based on the output1).

While there have been considerable advances in the con-

crete efficiency of MPC protocols, current approaches remain

computationally expensive and do not scale well to the types

of neural networks typically used in modern machine learning

systems. Until recently, cryptographic protocols for private

inference over deep neural networks have been limited to small

datasets such as MNIST [11] or CIFAR [12]. In contrast, the

current baseline for object recognition is ImageNet [13], a

dataset that is over 1000× larger than CIFAR/MNIST and

contains 1000 different classes (compared to just 10 classes for

MNIST and CIFAR). Similarly, state-of-the-art deep learning

models for computer vision such as ResNet-152 [14] contain

over 150 layers and over 60 million parameters. In contrast,

most protocols for privacy-preserving machine learning have

been constrained to relatively shallow networks with just tens

of layers and a few hundred thousand parameters.

Recently, two systems FALCON [6] and CRYPTFLOW [5]

have made considerable headway towards scalable privacy-

preserving machine learning. For the first time, they demon-

strate the ability to perform privacy-preserving machine learn-

ing at the scale of ImageNet (or Tiny ImageNet [15] in the case

of FALCON) and with much larger models (e.g., AlexNet [16],

VGG-16 [17], and the ResNet family of models [14]). In spite

of these advances, there still remains considerable overhead:

for example, private training of AlexNet on Tiny ImageNet is

estimated to still take over a year using FALCON. CRYPTFLOW

currently only supports private inference and not private

training. Both works argue that hardware acceleration with

graphics processing units (GPUs) will be essential for scaling

up privacy-preserving deep learning, especially in the case of

private training.

The importance of GPU acceleration. GPUs and hardware

acceleration have played a critical role in the evolution of

modern deep learning. Today, convolutional neural networks

(CNNs) have become a staple for modern computer vision.

However, in the immediate years following their introduction

1There are settings where even learning the exact output is problematic and can
reveal compromising information about other parties’ inputs. Techniques like
differential privacy [9, 10] provide a defense against these types of attacks.
We discuss this in greater detail in Section V.

in the seminal work of LeCun et al. [18], CNNs did not

see widespread adoption. This was in large part due to the

high computational costs of the backpropagation training

algorithm. Starting the mid-2000s, several works [19, 20]

showed that CNN training could be greatly accelerated through

the use of graphics processing units (GPUs). This culminated

with the breakthrough moment when Krizhevsky et al. [16]

introduced “AlexNet” and won the ImageNet Large Scale

Visual Recognition Challenge in 2012 using a large CNN

trained entirely on the GPU. Since AlexNet, CNNs have

become a mainstay of computer vision. Modern machine

learning frameworks like PyTorch [21] and TensorFlow [22] all

support and rely heavily on not only GPUs, but even custom-

designed application-specific integrated circuits (ASICs) such

as Google’s tensor processing unit [23].

Privacy-preserving machine learning on the GPU. Hard-

ware acceleration has become a core component for evaluating

and training deep learning models. Given that MPC protocols

necessarily incur a non-zero overhead on top of the plaintext

computation, it is essential for cryptographic protocols to be

able to leverage GPU acceleration in order to have any chance

of scaling up to support training and inference over deep models.

After all, if we are bound to CPU-based computations (as nearly

all existing MPC frameworks have), then it is infeasible to

even run the machine learning algorithm on plaintext data.

A. Our Contributions

In this work, we introduce CRYPTGPU, a new cryptographic

MPC framework built on top of PyTorch and CRYPTEN [24]

where all of the cryptographic operations (both linear and non-

linear) are implemented on the GPU. CRYPTGPU operates in

the standard 3-party setting where we assume that all inputs are

secret-shared across three non-colluding servers who execute

the MPC protocol. The inputs are secret shared using a 2-out-

of-3 replicated secret sharing scheme [25, 26] (see Section III

for the full details). Our system provides security against a

single semi-honest corruption. We describe our threat model

formally in Section III-A.

CRYPTGPU can perform private inference over modern

computer vision models such as ResNet-152 on ImageNet

images in just over 25s (2.3× faster than the previous state-of-

the-art CRYPTFLOW [5]). For smaller networks like AlexNet,

private inference over ImageNet requires just 1.5s.

Further improvements to the costs of private training are

possible if we consider batch inference, which also benefits

from GPU parallelism. For example, batch inference over

ResNet-152 reduces the cost of private inference from 25s

for a single image to 13.2s per image when amortized over a

batch of 8 images.

For private training (which has a greater potential to benefit

from GPU acceleration), we demonstrate a 36× speed-up for

private training of AlexNet on the Tiny ImageNet database

compared to FALCON. Whereas it would have taken over a

year to privately train FALCON on Tiny ImageNet, our GPU-

accelerated system would be able to do so in just over a week

(see Section IV-B). Beyond these performance results, our

work highlights the potential of leveraging GPUs to accelerate

privacy-preserving deep learning in much the same way GPUs

have dramatically accelerated standard deep learning. Our work

also highlights the importance of developing new types of

cryptographic protocols that are “GPU-friendly” and can take

advantage of the parallelism provided by GPUs.

Cryptography on the GPU. While NVIDIA’s CUDA (Com-

pute Unified Device Architecture) platform [27] supports

general-purpose computations on the GPU, directly translating

code written for the CPU onto the GPU is unlikely to translate

to immediate performance gains. The architectural differences

between the CPU and the GPU introduce several additional

hurdles that must be overcome in order to have an efficient

implementation:

• Leveraging existing CUDA kernels. The first challenge is

that highly optimized CUDA kernels for computing deep

learning primitives (i.e., convolutions, pooling, matrix multi-

plication) are designed to operate on floating-point inputs,

and there does not currently exist kernels for computing on

integer values. In MPC, we typically compute over discrete

objects (i.e., ring or field elements). To leverage optimized

kernels for these basic primitives, we need a way to embed

the integer-valued cryptographic operations into (64-bit)

floating-point arithmetic that can in turn be operated on

by these kernels. CRYPTGPU enables this by introducing

a new abstraction called a CUDALongTensor that models

tensors (i.e., multi-dimensional arrays) of integer values,

but seamlessly translates the integer-valued computations

into a corresponding set of floating-point computations. We

describe our construction in Section II-B. The DELPHI

system encountered a similar challenge, but as we discuss

in Remark II.3, their solution does not extend well to our

setting. A critical difference is that DELPHI considers private

inference where the model is public while in this work, we

assume that the model is also hidden (i.e., secret-shared).

• “GPU-friendly” cryptography. The GPU architecture is

optimized for performing a large number of simple com-

putations on blocks of values. This means that operations

like component-wise addition and multiplication of vec-

tors/matrices are fast while operations that involve large

numbers of conditional statements are slower. While there

is support for integer addition and multiplication, operations

like computing a modular reduction by a prime incurs consid-

erably more overhead [27]; for instance, we observed a 40×
difference in the running time of point-wise addition vs. point-

wise modular reduction. Thus, when choosing and designing

cryptographic protocols for the GPU, one must carefully

calibrate them for the architecture. Protocols like Yao’s

garbled circuits [28] are less well-suited for taking advantage

of GPU parallelism compared to a vectorized secret-sharing-

based protocol. Similarly, protocols that require extensive

finite field arithmetic (and thus, require modular reductions)

will incur more overhead on the GPU compared to protocols

that only rely on arithmetic modulo a power of 2. We

2

also design protocols for common non-linear functions (e.g.,

exponentiation and division) that are specifically optimized

for our particular setting. We describe the cryptographic

protocols we use in Section III.

Systematic evaluation of GPU-based MPC. We present a

comprehensive and systematic evaluation of CRYPTGPU to

quantify the advantages of a GPU-based MPC protocol and

compare against previous protocols for privacy-preserving

machine learning. We specifically measure the performance of

our private training and inference protocols on a wide range

of object recognition models (e.g., LeNet [18], AlexNet [16],

and the ResNet family of networks [14]) and datasets (e.g.,

MNIST [11], CIFAR-10 [12], and ImageNet [13]). We describe

our experimental methodology and measurements in Section IV.

We also collect fine-grained measurements to understand

how the computational costs are split across the different

layers of a network. For instance, in CPU-based systems like

FALCON [6], the linear layers account for 86% to 99% of

the overall computational costs of private training.2 On the

same model/datasets, our GPU-based approach evaluates the

same linear layers with a 25× to 72× speed-up; this is a major

source of the performance advantage of CRYPTGPU compared

to previous systems. Consequently, the costs of our private

training protocol is more evenly split between evaluating linear

layers and non-linear layers. We provide the full details in

Section IV-B and Table V.

In Section IV-C, we report microbenchmarks to quantify

the performance advantages of using the GPU to execute all

of the MPC protocols. For instance, we show that evaluating

convolutions on secret-shared data (with secret-shared kernels)

on the GPU is over 150× faster than the corresponding

protocol on the CPU. Even for non-linear operations like the

ReLU (rectified linear unit) function, using a GPU-based MPC

protocol still yields a 10× speed-up over the same underlying

CPU-based protocol.

Finally, since our MPC protocol represents real-valued inputs

using a fixed-point encoding, and moreover, some of our

protocols rely on approximations to non-linear functions, we

also compare the accuracy of our private inference and private

training algorithms to the analogous plaintext algorithms. As

we show in Section IV-D, for the models and datasets we

consider in this work, the behavior of our privacy-preserving

algorithms closely matches their plaintext analogs.

An ML-friendly approach. One of the guiding principles

behind our system design is to make it friendly for machine

learning researchers to use. We build our system on top of

CRYPTEN [24], which is itself built on top of the popular

machine learning framework PyTorch [21]. Effectively, our

work (much like CRYPTEN) provides a new cryptographic

back end that supports computations on secret-shared values

while retaining a similar front end as PyTorch. In fact, we note

that our work on developing the CUDALongTensor module

2While linear layers are simpler to evaluate from a cryptographic perspective
(in comparison to non-linear layers), the size of the linear layers is typically
much larger than that of the non-linear layers.

has already been integrated as part of CRYPTEN to support

privacy-preserving GPU computations [24].

II. SYSTEM OVERVIEW

Similar to previous works on constructing efficient protocols

for privacy-preserving machine learning [2, 3, 6, 5, 29, 30]

(see also Section V), we assume that the data and model

are (arbitrarily) partitioned across three parties. For example,

the three parties could be three independent organizations

seeking to collaboratively train a model on their joint data

without revealing their inputs to each other. Our system is also

applicable in the “server-aided” setting [31], where a group

of (arbitrarily-many) clients seek to train a joint model on

their data (or evaluate a secret-shared model on private inputs).

In the server-aided setting, the clients first secret share their

inputs to three independent cloud-service providers, who in

turn run the cryptographic protocol on the secret-shared inputs.

We design our protocols to provide security against a single

semi-honest corruption. We provide a formal description of

our threat model in Section III-A.

A. Background

Our starting point in this work is the CRYPTEN privacy-

preserving machine learning framework [24]. CRYPTEN is

built on top of the widely-used machine-learning framework

PyTorch [21]. We adapt the basic architecture of CRYPTEN,

and make modifications to support three-party protocols based

on replicated secret sharing. We describe the main system

architecture below.

GPU architecture. GPUs, and more recently, ASICs like

Google’s tensor processing units [23], have played a critical role

in scaling up modern deep learning. These specialized hardware

platforms support massive parallelism, making them well-suited

for performing standard linear algebraic operations (e.g., con-

volutions or average pooling) as well as point-wise evaluation

of functions on large blocks of neurons (e.g., evaluating an

activation function or performing batch normalization). Popular

frameworks for deep learning frameworks such as PyTorch [21]

and TensorFlow [22] natively support computations on both

the CPU and GPU.

CUDA is a parallel computing platform developed by

NVIDIA for general-purpose computing on GPUs [27].

For deep learning in particular, CUDA libraries such as

cuBLAS [32] and cuDNN [33] provide highly-optimized

implementation for a wide-range of standard primitives such

as convolutions, pooling, activation functions, and more. These

libraries are designed for floating-point computations and do

not support integer-valued analogs of these operations. Since

cryptographic protocols typically operate over discrete spaces

(e.g., a 64-bit ring) where the underlying algebra is implemented

using integer-valued computations, one cannot directly translate

an existing protocol to the GPU.

PyTorch. PyTorch [21] is a popular open-source machine

learning framework designed for prototyping, implementing,

and deploying deep neural networks. The PyTorch front end

3

supports many standard neural network layers (e.g., convolu-

tions, pooling, activation functions, etc.) as well as features

such as automatic differentiation and gradient computation. The

PyTorch back end natively supports computation on both CPUs

as well as GPUs. This flexibility enables users to train complex

models without needing to worry about the finer details of

backpropagation. It also allows users to take advantage of GPU

acceleration without needing to interface with low-level CUDA

kernels. PyTorch also provides library support for distributing

computations across multiple devices and/or GPUs.

Data in PyTorch is organized around tensors, which pro-

vide a general abstraction for n-dimensional arrays. PyTorch

provides an expressive API for computing on and applying

transformations to tensors. Especially importantly in our case,

the PyTorch back end natively and seamlessly leverages GPU

acceleration for tensor computations.

CRYPTEN. CRYPTEN [24] is a recent framework built on top

of PyTorch for privacy-preserving machine learning. CRYPTEN

provide a secure computing back end for PyTorch while still

preserving the PyTorch front end APIs that enables rapid

prototyping and experimentation with deep neural networks.

The main data abstraction in CRYPTEN is the MPCTensor,

which functions like a standard PyTorch tensor, except the

values are secret shared across multiple machines. Internally,

CRYPTEN uses n-out-of-n additive secret sharing. For bilinear

operations such as convolutions and matrix multiplications,

CRYPTEN uses arithmetic secret sharing over a large ring

(e.g., Z264), while for evaluating non-linear operations like an

activation function, it uses Boolean secret sharing. CRYPTEN

uses the ABY share-conversion techniques [34] to convert

between arithmetic shares and Boolean shares.

CRYPTEN supports general n-party computation and pro-

vides security against a single semi-honest corruption. At

the cryptographic level, elementary arithmetic operations are

handled using Beaver multiplication triples [35], Boolean

circuit evaluation is implemented using the Goldreich-Micali-

Wigderson (GMW) protocol [7], and low-degree polynomial

approximations are used for most non-linear operations. We

note that while our system builds on CRYPTEN, we work in a

3-party model where parties compute using replicated secret

shares (as in [26]). We describe this in Section III.

B. System Design and Architecture

The design of CRYPTGPU is centered around the following

principles:

• Leverage existing CUDA kernels for linear algebra. As

mentioned in Section II-A, highly-optimized CUDA kernels

exist for most linear algebra operations encountered in deep

learning. However, these kernels only support computations

on floating-point values and are not directly applicable for

computing on discrete structures common in cryptographic

protocols. Thus, we seek a way to keep all of the computation

on the GPU itself.

• Keep all computations on the GPU. While some previous

works on private machine learning [36, 4] show how to

leverage the GPU for computing linear and bilinear functions,

they then move the data out of the GPU to evaluate non-

linear functions. In this work, we seek to keep all of the

computations on the GPU, and as we show in Section IV-C,

even computing non-linear functions can benefit greatly

from GPU acceleration, provided that they are implemented

using “GPU-friendly” cryptographic protocols (i.e., protocols

that primarily rely on point-wise or component-wise vector

operations).

Floating point computations. The cryptographic core of

CRYPTGPU relies on (additive) replicated secret sharing over

the 64-bit ring Z264 . Computing bilinear functions such as

convolutions over secret-shared values essentially correspond

to the parties running an analogous local operation on their

shares, followed by a communication step (see Section III).

Our goal is to take advantage of the GPU to accelerate each

party’s local computation on their individual shares. As noted

in Section II-A, existing GPU libraries for linear algebra only

support computation over 64-bit floating point values. Thus, to

take advantage of GPU support for these operations, we need

to embed the ring operations over Z264 (or equivalently, 64-bit

integer operations) into 64-bit floating point operations.

Integer operations using floating-point arithmetic. Our

approach for embedding 64-integer operations into 64-bit

floating point operations relies on the following observations:

• Exact computation for small values. First, 64-bit floating

point values have 52 bits of precision and can exactly

represent all integers in the interval [−252, 252]. This means

that for all integers a, b ∈ Z ∩ [−226, 226], we can compute

the product ab using their floating-point representations and

still recover the correct value over the integers.

• Bilinearity. Operations like matrix multiplication and con-

volutions are bilinear. This means that for any choice of

inputs A1,A2,B1,B2,

(A1 +A2) ◦ (B1 +B2) =

A1 ◦B1 +A2 ◦B1 +A2 ◦B1 +A2 ◦B2,

where ◦ denotes an arbitrary bilinear operation. Suppose

now that we rewrite an input as an expansion in a smaller

base; for example, we might write A = A0 + 216A1 and

B = B0 + 216B1. Bilinearity ensures that A ◦ B can be

expressed as a linear combination of the pairwise products

A0 ◦ B0, A0 ◦ B1, A1 ◦ B0, and A1 ◦ B1. Computing

A◦B from the pairwise products only requires element-wise

additions and scalar multiplications.

• CUDA kernels for element-wise operations. To complete

the puzzle, we note that there are optimized CUDA kernels

for performing component-wise addition and scalar multipli-

cation on 64-bit integer values.

To evaluate a bilinear operation ◦ like matrix multiplication or

convolution (which do not have integer kernels), CRYPTGPU

first decomposes each of the inputs A,B ∈ Z
n×m
264 into

smaller inputs A1, . . . ,Ak,B1, . . . ,Bk ∈ Z
n×m
2w where A =

∑k
i=1 2

(i−1)wAi. Then, it computes the k2 products Ai ◦Bj

4

using floating-point arithmetic on the GPU. As long as the

entries of Ai ◦ Bj do not exceed 252 in magnitude, all of

these pairwise products are computed exactly. Finally, each

component of the pairwise product is re-interpreted as a 64-bit

integer. Computing A ◦B from the pairwise products AiBj

amounts to evaluating a linear combination of tensors, which

can be done efficiently using existing CUDA kernels for 64-bit

integer operations. Note that since the final operations are taken

modulo 264, it suffices to compute only the products AiBj

where w(i+ j − 2) < 64.

When performing computations using floating-point kernels,

CRYPTGPU decomposes each input into k = 4 blocks, where

the values in each block are represented by a w = 16-bit

value. For this choice of parameters, each bilinear operation is

expanded into 10 pairwise products.

Remark II.1 (Smaller Number of Blocks). While it may

be tempting to decompose 64-bit values into k = 3 blocks,

where each block consists of 22-bit values, this compromises

correctness of our approach. Namely, correctness of the

computation is guaranteed only if the entries in each of the

intermediate pairwise products Ai ◦Bj do not exceed the 52-

bits of available floating-point precision. If the entries of Ai

and Bj are 22 bits, then the entries in a single multiplication

between an element in Ai and Bj will already be 44 bits.

If we are evaluating a convolution (or matrix multiplication)

where each output component is a sum of 28 = 256 values,

this exceeds the available precision and triggers an arithmetic

overflow. This is problematic for larger networks. Using 16-bit

blocks, we can handle bilinear operations involving up to 220

intermediate products, which is sufficient for our applications.

Remark II.2 (Overhead of Block-wise Decomposition).

While decomposing each bilinear operation on integer val-

ues into O(k2) floating-point operations on same-sized in-

puts can appear costly, CRYPTGPU takes advantage of

GPU parallelism to mitigate the computational overhead.

Namely, for convolutions, CRYPTGPU uses group convo-

lution (cudnnConvolutionForward) to compute the

convolutions in parallel. Similarly, for matrix multiplica-

tions, CRYPTGPU uses a batch matrix multiplicative kernel

(cublasSgemm) to multiply matrices in parallel. We observe

that for small inputs (e.g., 64× 64 inputs), this approach only

incurs a modest 2× overhead (compared with evaluating a

single convolution of the same size) and increases to roughly

9× for larger 224× 224 inputs.

While the computational overhead of our embedding is

partially mitigated through parallelism, this approach does

increase the memory requirements of our protocol. This does

not have a significant effect on privacy-preserving inference,

but it does limit the batch size we can handle during privacy-

preserving training (recall that during training, a single iteration

of the optimization algorithm processes a batch of instances).

Scaling up to support larger batch sizes during privacy-

preserving training would likely necessitate distributing the

computation across multiple GPUs rather than a single GPU

(as is also the case for training deep models in the clear).

Remark II.3 (Comparison with DELPHI). The DELPHI

system [4] leverage GPUs for evaluating convolutions on

secret-shared inputs in their private inference system. In their

setting, the parameters are chosen so that the outputs of the

convolution are always within the interval [2−52, 252], and as

such, the existing floating-point kernels for convolution can be

used without incurring any floating-point precision issues. In

particular, DELPHI uses a 32-bit ring and 15 bits of fixed-point

precision. The system works in the setting where the model

parameters are assumed to be public: namely, the convolution

kernels are not secret-shared. In this way, convolutions are

evaluated between a plaintext value and a secret-shared value,

which ensures that the resulting outputs are bounded. In our

setting, both the model and the inputs are secret-shared so

we cannot directly embed the integer-valued operations into

64-bit floating-point computations. In fact, as we discuss in

Section IV-C, to have sufficient precision when scaling up to

deeper models and larger datasets, it is often necessary to use a

larger ring (i.e., a 64-bit ring) for the arithmetic secret sharing.

The CUDALongTensor abstraction. CRYPTGPU provides

a new abstraction called a CUDALongTensor for embed-

ding 64-bit integer-valued operations into 64-bit floating-

point arithmetic. Similar to CRYPTEN’s MPCTensor, the

CUDALongTensor abstractly represents a secret-shared ten-

sor of 64-bit integers and is backed by a standard PyTorch

tensor of 64-bit integers. In the back end, whenever an

elementary operation needs to be evaluated on the underlying

tensor, CRYPTGPU proceeds as follows:

• If optimized CUDA kernels exist for evaluating the chosen

operation on integer-valued tensors (e.g., point-wise addition

or point-wise multiplication), then the corresponding CUDA

kernel is directly invoked.

• For bilinear operations where optimized CUDA kernels only

exist for computations on floating-point inputs (e.g., con-

volutions, matrix multiplications), then CRYPTGPU applies

the above technique of first decomposing the input into

k = 4 tensors of 16-bit values, computing all necessary

O(k2) pairwise products of the resulting blocks (using the

floating point kernel), and re-combines the pairwise products

to obtain the final output.

III. THREAT MODEL AND CRYPTOGRAPHIC DESIGN

In this section, we provide a formal specification of our

threat model and a description of the private inference and

training functionalities we develop. We then describe the

cryptographic sub-protocols we use to construct our privacy-

preserving training and inference protocols.

We begin by introducing the notation we use in this work.

For a finite set S, we write x
R←− S to denote that x is drawn

uniform at random from S. We use boldface letters (e.g., x,y)

to denote vectors and use non-boldface letters (e.g., xi, yi)
to denote their components. We denote our three parties by

P1, P2, P3. To simplify notation, whenever we use an index

i ∈ {1, 2, 3} to denote a party (or a share), we write i − 1

5

and i+ 1 to denote the “previous” party and the “next” party,

respectively. For example, P3+1 refers to P1.

We say that a function f is negligible in a parameter λ if

f(λ) = o(λ−c) for all c ∈ N. We say an algorithm is efficient if

it runs in probabilistic polynomial-time in the length of its input.

We say that two families of distributions D1 = {D1,λ}λ∈N and

D2 = {D2,λ}λ∈N are computationally indistinguishable (i.e.,

D1
c≈ D2) if no efficient adversary can distinguish samples

from D1 and D2 except with negligible probability.

A. Threat Model

Similar to several recent 3-party protocols [26, 37, 2, 6], we

design our system in the honest-majority model. Moreover, we

focus on semi-honest adversaries. Namely, we assume that each

of the three computing parties follow the protocol, but may

individually try to learn information about other parties’ inputs.

Formally, we consider the standard simulation-based notion of

security in the presence of semi-honest adversaries [38, 39]:

Definition III.1 (Semi-Honest Security). Let f : ({0, 1}n)3 →
({0, 1}m)3 be a randomized functionality and let π be a

protocol. We say that π securely computes f in the presence

of a single semi-honest corruption if there exists an efficient

simulator S such that for every corrupted party i ∈ {1, 2, 3}
and every input x ∈ ({0, 1}n)3,

{outputπ(x), viewπ
i (x)}

c≈ {f(x),S(i, xi, fi(x))}
where viewπ

i (x) is the view of party i in an execution of π on

input x, outputπ(x) is the output of all parties in an execution

of π on input x, and fi(x) denotes the ith output of f(x).

Computing on secret-shared values. In this work, we con-

sider two main settings: private inference and private training

on secret-shared inputs. We use standard 3-out-of-3 additive

secret sharing as well as 2-out-of-3 replicated secret sharing.

Abstractly, we model both types of secret sharing as a pair of

algorithms (Share,Reconstruct) with the following properties:

• On input x ∈ {0, 1}n, the share algorithm Share(x) outputs

a tuple of three shares (x1, x2, x3).
• The reconstruction algorithm Reconstruct(S) takes a set of

shares T and outputs a value x ∈ {0, 1}n if successful and

⊥ if not.

Correctness of a threshold secret sharing scheme with threshold

t says that for any subset of shares T ⊆ Share(x) of size at

least t, Reconstruct(T) = x. Perfect security says that there

exists a probabilistic polynomial-time simulator S such that

for every subset T ⊆ {1, 2, 3} where |T | < t and every input

x ∈ {0, 1}n,

{(x1, x2, x3)← Share(x) : (xi)i∈T } ≡ {S(1n, T)}.
We now formally define our notion of private inference and

private training on secret-shared inputs:

• Private inference: Inference is the problem of evaluating

a trained model M on an input x. We denote this

operation as Eval(M,x). In private inference, the ideal

functionality f maps secret shares of an input x and a

model M to a secret share of the output Eval(M,x).
Namely, on input ((M1, x1), (M2, x2), (M3, x3)),
the ideal functionality outputs Share(Eval(M,x))
where M ← Reconstruct({M1,M2,M3}) and

x ← Reconstruct({x1, x2, x3}). In particular, a private

inference protocol ensures privacy for the model M , the

input x, and the output Eval(M,x).
• Private training: In private training, the goal is to run a

training algorithm Train on some dataset D. In this case,

the ideal functionality f maps secret shares of the dataset

(D1, D2, D3) to a secret share of the model Share(Train(D))
where D ← Reconstruct(D1, D2, D3). In this case, each

party individually learn nothing about the input dataset D
or the resulting learned model Train(D).

B. Cryptographic Building Blocks for Private Inference

We now describe the main MPC building blocks we use for

private inference on deep neural networks. First, we decompose

the neural network inference algorithm into a sequence of

elementary operations: linear/pooling/convolution layers and

activation function evaluation (ReLU). To obtain our protocol

π for computing the ideal functionality for private inference,

we sequentially compose the semi-honest secure protocols

for realizing each of the elementary operations. Correctness

and semi-honest security of the overall protocol then follows

by correctness and security of the underlying sub-protocols

together with the sequential composition theorem [38].

“GPU-friendly” cryptography. As alluded to in Sections I-A

and II-B, we seek cryptographic protocols that are particularly

amenable to GPU acceleration. For example, protocols that

involve conditionals (such as garbled circuits [28]) or require

extensive finite field arithmetic are more challenging to support

efficiently on the GPU. For this reason, we focus primarily

on secret-sharing based protocols and work over a ring with a

power-of-two modulus. In the following description, we elect

to use cryptographic protocols where the underlying imple-

mentations vectorize and whose evaluation can be expressed

primarily in terms of point-wise or component-wise operation

on blocks of data.

Secret sharing. We work over the ring Zn where n = 2k

is a power of 2. In our specific implementation, k = 64. To

secret share a value x ∈ Zn, sample shares x1, x2, x3
R←− Zn

such that x1 + x2 + x3 = x. Following Araki et al. [26], our

default sharing is a 2-out-of-3 “replicated secret sharing” [25]

where each party holds a pair of shares: P1 has (x1, x2), P2

has (x2, x3), and P3 has (x3, x1). We denote this by JxKn =
(x1, x2, x3). In some cases, we will also consider a 3-out-of-3

additive secret sharing scheme where party Pi holds xi (but

none of the other shares).

Fixed point representation. Machine learning algorithms na-

tively operate on real (i.e., floating-point) values while the most

efficient cryptographic protocols are restricted to computations

over discrete domains such as rings and finite fields. Following

previous work, we use a fixed-point encoding of all values

6

occurring in the computation, and then embed the integer-

valued fixed-point operations in the ring Zn. Specifically, if

we consider a fixed-point encoding with t bits of precision, a

real value x ∈ R is represented by the integer ⌊x · 2t⌉ (i.e.,

the nearest integer to x · 2t). The ring modulus n is chosen to

ensure no overflow of the integer-valued fixed-point operations.

CRYPTGPU sets n = 64; we discuss this choice in detail in

Section IV-D.

Protocol initialization. In the following description, we as-

sume that the parties have many independent secret shares

of 0. This will be used for “re-randomization” during the

protocol execution. We implement this using the approach of

Araki et al. [26]. Specifically, let F be a pseudorandom function

(PRF). At the beginning of the protocol, each party Pi samples

a PRF key ki and sends ki to party Pi+1. The jth secret share

of 0 is the triple (z1, z2, z3) where zi = F (ki, j)−F (ki−1, j).

Linear operations. Linear operations on secret-shared data

only require local computation. Namely, if α, β, γ ∈ Zn are

public constants and JxKn, JyKn are secret-shared values, then

Jαx + βy + γKn = (αx1 + βy1 + γ, αx2 + βy2, αx3 + βy3).
Each of the parties can compute their respective shares of

Jαx+ βy + γKn from their shares of JxKn and JyKn and the

public coefficients α, β, γ.

Multiplication. To multiply two secret-shared values JxKn =
(x1, x2, x3), JyK

n = (y1, y2, y3), each party Pi locally com-

putes zi = xiyi + xi+1yi + xiyi+1. By construction, z1 + z2 +
z3 = xy ∈ Zn. This yields a 3-out-of-3 additive sharing of z.

To obtain replicated shares of z, party Pi sends Pi+1 a blinded

share zi + αi, where (α1, α2, α3) is a fresh secret-sharing of

0 (derived from the PRF as described above).

Since x, y are fixed-point encodings, the parties additionally

need to rescale z after computing the product (i.e., divide it

by the scaling factor 2t). In this work, we use the truncation

protocol Πtrunc1 from ABY3 [2] to implement this procedure.

We note that Mohassel and Rindal propose two versions of

the share truncation protocol: a two-round protocol Πtrunc1

that only relies on elementary arithmetic operations and a one-

round protocol Πtrunc2 that relies on precomputed “truncation

tuples”. While generating the truncation tuples can be done

in a separate offline phase, doing so requires implementing

a Boolean bit extraction circuit over secret-shared values. In

contrast, Πtrunc1 relies exclusively on arithmetic operations, and

naturally extends to our tensor-based computing model. For

this reason, we use the two-round truncation protocol Πtrunc1

in our implementation. This has the added advantage that we

avoid a separate (and potentially expensive) preprocessing step.

Both of these share-truncation protocols are not exact and

may introduce 1 bit of error in the least significant bit of the

secret-shared value (i.e., with t bits of fixed-point precision, the

error introduced is bounded by 2−t). We provide an empirical

assessment of the error (and resulting model accuracy) in

Section IV-D.

Convolutions and matrix multiplication. The above proto-

cols for computing linear functions as well as products of secret-

shared values directly vectorize to yield protocols for computing

linear functions on tensors as well as bilinear operations like

matrix multiplication and convolution. Linear functions on

secret-shared tensors only require local computation. Bilinear

operations on secret-shared tensors like matrix multiplications

and convolutions are implemented by computing three separate

products (as described in the multiplication protocol above).

These computations over secret-shared tensors directly map

to analogous computations on local shares, so we can take

advantage of existing highly-optimized CUDA kernels for

evaluating these operations via the technique from Section II-B.

As in several previous systems (e.g., [1, 2, 5]), when we

compute products of secret-shared tensors, we only apply the

truncation protocol to the result of the product and not after

each individual multiplication. This has a significant impact on

the performance of the protocol for two reasons: (1) we can

use existing CUDA kernels optimized for matrix products and

convolutions without needing to modify how the elementary

multiplications are performed; and (2) the total communication

in the protocol is proportional to the size of the output rather

than the number of intermediate element-wise multiplications.

Most significant bit. Several of our protocols rely on a

protocol for computing the most significant bit Jmsb(x)Kn

of a secret-shared value JxKn. In our fixed-point represen-

tation, this corresponds to computing the sign of x. For

this, we adopt the general approach from ABY3. Namely,

given an arithmetic secret sharing JxKn = (x1, x2, x3) of

x, the parties re-interpret it as three binary shares of values

Jx1K
2 = (x1, 0, 0), Jx2K

2 = (0, x2, 0), and Jx3K
2 = (0, 0, x3).

The parties now evaluate an addition circuit on the binary shares

Jx1K
2, Jx2K

2, Jx3K
2 to compute binary shares of the sum JxK2,

which in particular, yields a binary share of Jmsb(x)K2. Finally,

to recover arithmetic shares of JReLU(x)Kn from JxKn and

Jmsb(x)K2, we use the bit injection protocol from ABY3 [2,

§5.4], which only requires simple arithmetic operations.

The majority of this computation is the evaluation of the

addition circuit over binary shares on the GPU. Evaluating

a Boolean addition circuit on secret-shared binary values

decomposes into a sequence of bitwise AND and XOR op-

erations (along with communication for the AND gates), which

can be computed using efficient GPU kernels. We provide

microbenchmarks in Section IV-C.

ReLU activation function. The standard activation function

we consider in our networks is the rectified linear unit

(ReLU) [40, 16]: ReLU(x) := max(x, 0). To compute the

ReLU function, it suffices to construct a protocol for testing

whether the fixed-point value x is positive or not. This

corresponds to computing the most significant bit msb(x) of

x, which we evaluate using the protocol described above.

C. Additional Building Blocks for Private Training

To support private training, we need to augment our existing

toolkit with several additional protocols. Here, we consider

a standard backpropagation setting with a softmax/cross-

entropy loss function optimized using (minibatch) stochastic

7

gradient descent (SGD) [41]. As with private inference, we

decompose the backpropagation algorithm into a sequence of

elementary operations and build our private training protocol by

sequentially composing protocols for the elementary operations.

In this work, we consider classification tasks with d target

classes. Each iteration of SGD takes an input x ∈ R
m and a

one-hot encoding of the target vector y ∈ {0, 1}d (i.e., yi = 1
if x belongs to class i and yi = 0 otherwise) and computes

the cross-entropy loss:3

ℓCE(x;y) := −
∑

i∈[d]

yi log z̃i, (III.1)

where z̃← softmax(z), z← Eval(M,x), and M is the current

model. For a vector x ∈ R
d, the softmax function

softmaxi(x) := exi/
∑

i∈[d]

exi . (III.2)

The gradient of ℓCE for the output layer z is then

∇zℓCE = softmax(z)− y.

We can use the private inference protocol from Section III-B

to compute JzKn from JxKn and JMKn. To compute J∇zℓCEK
n,

we need a protocol to compute softmax on secret-shared values.

For the ReLU layers, the gradient computation reduces to

evaluating the derivative of the ReLU function. The gradients

for the linear/convolution layers are themselves linear functions

of the gradients from the preceding layer, and thus, can be

handled using the protocols from Section III-B. In the following,

we describe our protocols for evaluating the softmax and the

derivative of the ReLU function on secret-shared values. Note

that backpropagation does not require computing the value of

the loss function (Eq. (III.1)), so we do not need a protocol

for computing logarithms on secret-shared values.

Softmax. To avoid numeric imprecision from evaluating the ex-

ponential function in the softmax function (Eq. (III.2)) on very

large or very small inputs, a standard technique is to evaluate

the softmax on the “normalized” vector (x −maxi xi) [41].

A simple calculation shows that softmax(x − maxi xi) =
softmax(x). This has the advantage that all inputs to the

exponential function in Eq. (III.2) are at most 0, and the

denominator is contained in the interval [1, d]. In the following,

we describe protocols for evaluating the exponential function,

division, and computing the maximum over a vector of secret-

shared values. Together, this yields a protocol for computing a

softmax on secret-shared values.

Exponentiation. We approximate the exponential function ex

needed to compute softmax with its limit characterization fm:

fm(x) :=
(

1 +
x

m

)m

. (III.3)

3Technically, in minibatch SGD, each iteration takes a batch of N inputs and
the loss function is the average of the loss function for all N inputs in the
batch. For ease of exposition, we describe the setup for a single input, but
everything generalizes naturally to the minibatch setting.

Using a Taylor expansion for the function ln(1 + x) and

assuming that |x| < m,

fm(x)

ex
=

em ln(1+x/m)

ex
= e−O(x2/m).

Thus, the degree-m approximation fm provides a good ap-

proximation ex on an interval of size O(
√
m) centered at 0.

A common alternative approximation is to use Taylor series to

approximate the exponential function. The advantage of using

a Taylor series approximation of degree m is that it provides

a good estimate in an interval of size O(m) (as opposed to

O(
√
m) using the approximation fm). However, using a Taylor

series approximation has several drawbacks:

• Evaluating a degree-m Taylor approximation requires m
multiplications over O(logm) rounds. Computing fm, in

comparison, only requires logm multiplications. For a fixed

degree m, the cost of computing the fm approximation is

exponentially smaller than computing the degree-m Taylor

series approximation.

• The size of the smallest coefficient in the Taylor series of

degree m is 1/m!. In a fixed-point encoding scheme with

t bits of precision, values less than 2−t−1 round to 0. This

gives an upper bound on the degree of the Taylor expansion

we can feasibly support. Alternatively, we could compute the

terms xm/m! in the Taylor expansion as
∏

i∈[m]
x
i , but this

now requires O(m) rounds of multiplications to compute.

• In our setting, the inputs to the exponential function are

drawn from the interval (−∞, 0]. The approximation fm(x)
has the appealing property that as x → −∞, f(x) → 0,

which matches the behavior of ex. In contrast, the Taylor

approximation diverges as x → −∞. This can introduce

significant errors in the computation (unless we use a Taylor

approximation of sufficiently high degree). For the models

and inputs we consider in Section IV-A, most inputs to the

exponential function lie in the interval [−45, 0]. Ensuring

that the Taylor approximation does not diverge for all inputs

in this interval would require a high-degree approximation.

Thus, compared to a Taylor approximation, the limit-based

approximation fm is more efficient to evaluate (in terms of

the number of multiplications) and more robust for handling

large negative inputs that may arise in the computation.

Division. Computing the softmax function requires computing

a quotient Jx/yKn on secret-shared values JxKn and JyKn

and where 1 ≤ y ≤ Y , for some bound Y . It suffices to

compute the reciprocal J1/yKn and compute the quotient using

share multiplication. Similar to previous works [6], we use

the iterative Newton-Raphson algorithm to approximate the

value of 1/y. Very briefly, the Newton-Raphson algorithm

for approximating 1/y starts with an initial “guess” z0 and

iteratively computes zi ← 2zi−1− yz2i−1. In this work, we use

a fixed initialization z0 = 1/Y . This provides a highly-accurate

estimate for 1/y for all y ∈ [1, Y] using O(log Y) iterations

of Newton’s algorithm. To see this, let

errori = |1/y − zi| =
1

y
|1− ziy| ≤ εi,

8

where εi = |1 − ziy|. Substituting in the Newton-Raphson

updates, εi = ε2i−1, so the maximum error after i iterations is

(1− 1/Y)2
i ≤ e−2i/Y .

We note that using a more accurate initialization for Newton-

Raphson will allow convergence in fewer iterations. However,

methods for computing a more accurate estimate [6] for

the initialization typically rely on binary-valued operations

(e.g., comparisons) and are more costly than using a fixed

initialization and increasing the number of iterations. Note that

a fixed initialization is possible in our setting because we are

guaranteed that the values y lies in a fixed interval (due to the

normalization in the softmax computation).

Maximum. The last ingredient we require for computing the

softmax function is computing the maximum value Jmaxi xiK
n

from a secret-shared vector JxKn where x ∈ R
m. We implement

this using m invocations of a comparison protocol. To reduce

the round complexity to logm, we use a tree of comparisons

where pairs of elements are compared each round, and the

larger value in each pair advances to the next round. Comparing

two secret-shared fixed-point values JxKn, JyKn is equivalent

to computing the most significant bit of their difference (i.e.,

Jmsb(x− y)Kn). We implement this using the protocol from

Section III-B.

Derivative of ReLU. During backpropagation, we also need

to compute the derivative of the ReLU function ReLU′(x),
which is 0 if x < 0 and 1 if x > 0. This again corresponds to

computing the most significant bit of the fixed-point encoding of

x, which we implement using the protocol from Section III-B.

IV. SYSTEM IMPLEMENTATION AND EVALUATION

We build CRYPTGPU on top of CRYPTEN, which itself

builds on PyTorch. First, we introduce the CUDALongTensor

data type that represents a PyTorch tensor for 64-bit integer

values (see Section II-B). Our design enables us to take

advantage of optimized CUDA kernels for evaluating bilinear

operations such as convolutions and matrix multiplications on

secret-shared tensors. This suffices for evaluating arithmetic

circuits on secret-shared tensors. Using these elementary

building blocks, we then implement protocols for each of

the operations described in Section III (i.e., the truncation

protocol for fixed-point multiplication, ReLU computation, and

the softmax function). Through composing these individual

protocols together, we obtain an end-to-end system for private

inference and private training.

Point-to-point communication. We leverage PyTorch’s

torch.distributed package for point-to-point communi-

cation between parties. The default communication mode in

PyTorch is a “broadcast” mode where every message sent

by a party is sent to all peers. To emulate point-to-point

channels (as required by our protocol), we initialize a separate

communication back end between each pair of parties. In

this case, a “broadcast” channel between each pair of parties

functions as a point-to-point channel between the parties.

Pseudorandom generators on the GPU. We use AES as

the PRF in our protocol (used for share re-randomization in

the truncation protocol). We use the torchcsprng PyTorch

C++/CUDA extension [42] (based on the Salmon et al.

protocol [43]) which enables AES evaluation on the GPU.

A. Experimental Setup for System Evaluation

We now describe our experimental setup for evaluating

CRYPTGPU as well as the specific parameters we use to

instantiate our cryptographic protocols from Section III.

Deep learning datasets. We evaluate CRYPTGPU on the

following standard datasets for object recognition:

• MNIST [11]. MNIST is a dataset for handwritten digit

recognition. The training set has 60,000 images and the test

set has 10,000 images. Each digit is a grayscale (i.e., single-

channel) 28× 28 image. Due to its relatively small size, it

is widely used as a benchmark in many privacy-preserving

ML systems [1, 2, 5, 6].

• CIFAR-10 [12]. CIFAR-10 is a dataset with 60,000 32× 32
RGB images split evenly across 10 classes.

• Tiny ImageNet [15]. Tiny ImageNet is a modified subset

of the ImageNet dataset. It contains 100,000 64× 64 RGB

training images and 10,000 testing images split across 200

classes. Compared to CIFAR-10, Tiny ImageNet is much

more challenging: each image is 4× larger and there are

20× more classes.

• ImageNet [13]. ImageNet is a large-scale visual recognition

dataset with more than 1,000,000 training images. It is

the standard benchmark for evaluating the classification

performance of computer vision models. ImageNet has 1000

classes, and each example is a center-cropped 224 × 224
RGB image. The only prior system for privacy-preserving

machine learning that demonstrates performance at the scale

of ImageNet is CRYPTFLOW [5].

Deep learning models. For our experimental evaluation,

we measure the cost of our private training and private

inference protocols on several representative CNN architectures

developed for object recognition. Each of these networks can

be represented as a composition of a collection of standard

layers: convolution, pooling, activation, batch normalization,

softmax, and fully-connected layers.

• LeNet [44]. LeNet was proposed by LeCun et al. for

handwritten digit recognition. It is a shallow network with

2 convolutional layers, 2 average pooling layers, and 2 fully

connected layers. The network uses the hyperbolic tangent

(tanh) as its activation function.

• AlexNet [16]. AlexNet was the winner of 2012 ImageNet

Large Scale Visual Recognition Challenge (ILSVRC-2012)

competition. It has 5 convolutional layers, 3 max pooling

layers, and 2 fully connected layers for a total of 61 million

parameters. AlexNet uses ReLU as its activation function.

• VGG-16 [17]. VGG-16 is the runner-up of the ILSVRC-

2014 competition. It uses 16 layers consisting of convolution,

ReLU, max pooling, and fully-connected layers. VGG-16

has a total of 138 million parameters.

9

• ResNet [14]. ResNet is the winner of ILSVRC-2015

competition. It introduces skip-connections that addresses

the vanishing gradient problem when training deep neu-

ral network models. ResNet consists of convolution, max

pooling, average pooling, batch normalization, and fully

connected layers. Since their inception, the ResNet family of

models have enjoyed wide adoption in the computer vision

community. We evaluate the performance of ResNet-50,

ResNet-101, and ResNet-152 on ImageNet. These networks

respectively have 23, 44, and 60 million parameters and 50,

101, and 152 layers.

Architecture adjustments. We use the standard architecture of

each of these networks, except with the following modifications:

• AlexNet and VGG-16 on small datasets. Since AlexNet

and VGG-16 were designed for ImageNet, they are not

directly compatible with smaller inputs (i.e., those from

CIFAR-10 or Tiny ImageNet). Thus, when using AlexNet or

VGG-16 with smaller inputs, we have to modify the network

architecture. For AlexNet, we drop the final max pooling

layer for CIFAR-10, and adjust the number of neurons in the

fully-connected classification layers to 256-256-10 and 1024-

1024-200 for CIFAR-10 and Tiny ImageNet, respectively.

For VGG-16, we adjust the number of neurons in the

fully-connected classification layers to 256-256-10 and 512-

512-200 for CIFAR-10 and Tiny ImageNet, respectively.4

When evaluating AlexNet on ImageNet, we use the original

architecture [16]. In the case of VGG-16, we add a 2x2

average pooling layer to reduce the input dimension of the

first fully connected layer from 18432 to 4608; this is due

to memory limitations on the GPU. When we compare

our system to the FALCON system on these models and

datasets, we make the same adaptations. We provide the full

specification of the AlexNet and VGG-16 model architectures

we use in Appendix A.

• Activation functions. All networks we consider except

LeNet use the ReLU function as the activation function.

In contrast, LeNet uses the hyperbolic tangent function tanh
as the underlying activation function. Since CRYPTGPU

does not support evaluating the tanh function and modern

networks primarily use ReLU as their activation function,

we replace tanh with ReLU in our experiments with LeNet.

• Average pooling. Pooling is a standard way to down-sample

the outputs of the convolutional layers in a CNN. Specifically,

a pooling layer accumulates the output of the convolutional

layers by replacing each (small) window of the feature map

(from the convolutional layer) with the average of the values

(i.e., average pooling) or the max of the values (i.e., max

pooling). Earlier networks such as AlexNet and VGG-16 used

max pooling throughout, while more recent deep networks

such as the ResNets primarily use average pooling (with a

single max pooling layer at the beginning). While the choice

of pooling function does not make a significant difference in

the computational costs of plaintext training, this is not the

4Previous systems like FALCON [6] made similar adjustments when evaluating
AlexNet and VGG-16 on smaller datasets.

case in private training. The difference is due to the fact that

average pooling is a linear operation while max pooling is

a highly non-linear operation. To reduce the computational

overhead of our system, we replace all the max pooling

layers in the above networks with average pooling. This

reduces the complexity at the cryptographic level and allows

us to take better advantage of GPU parallelism.

We show in Section IV-B that in existing systems, the

pooling layer is not the bottleneck, and the performance

improvements of our protocol relative to past works is not

due to our substitution of average pooling in place of max

pooling. We additionally show in Section IV-D that using

average pooling in place of max pooling does not significantly

affect the accuracy of the models we consider.

Protocol instantiation. We instantiate our protocols from

Section III using the following parameter settings:

• Fixed-point precision. We consider secret-sharing schemes

over the 64-bit ring Z264 , and encode inputs using a fixed-

point representation with t = 20 bits of fractional precision

(i.e., an input x ∈ R is encoded as ⌊x ·220⌉. In Section IV-D,

we analyze the effect the number of bits of precision has on

the accuracy of our protocols.

• Exponentiation. We use the function fm from Eq. (III.3) to

approximate the exponential function. In this work, we take

m = 29 = 512, so evaluating fm requires logm = 9 rounds

of multiplication. With t = 20 bits of fixed-point precision,

we measure the maximum error of our approximation on all

inputs x ≤ 0 to be at most 6 · 10−4.

• Division. As described in Section III-C, we require a private

division protocol to compute J1/yKn where y ∈ [1, Y], and

Y is the number of classes in the classification problem. For

all of the datasets we consider for private training, Y ≤ 200.

In our implementation, we use 13 iterations of Newton-

Raphson (with 1/Y as the initialization). With t = 20 bits

of fixed-point precision, we measure the maximum absolute

difference between the approximate value and the true value

for inputs in the interval [1, Y] to be ≈ 10−4 (and ≈ 10−9

using floating-point evaluation).

B. Benchmarks for Private Training and Inference

We run our experiments on three Amazon EC2 instances op-

timized for GPU computation (p3.2xlarge). Each instance

has a single NVIDIA Tesla V100 GPU with 16 GB of GPU

memory. All of the instances run Ubuntu 18.4 and have 8 Intel

Xeon E5-2686 v4 (2.3 GHz) CPUs and 61 GB of RAM. We

consider a local area network (LAN) environment and place all

three servers in the us-east-1 (Northern Virginia) region. In

this case, we measure the network bandwidth to be 1.25GB/s

with an average latency of 0.2ms. For each model/dataset

pair we consider in our evaluation, we measure the end-to-end

protocol execution time and the total amount of communication.

Comparisons with prior work. We compare the performance

of CRYPTGPU against FALCON [6] and CRYPTFLOW [5]. To

our knowledge, these are the only privacy-preserving machine-

learning frameworks that have demonstrated the ability to

10

handle neural networks at the scale of AlexNet on large datasets.

Since our primary focus is on the scalability of our approach

and not on the performance on shallow networks (where GPUs

are unlikely to shine compared to optimized CPU protocols),

we focus our comparisons with FALCON and CRYPTFLOW.

• For CRYPTFLOW (which supports private inference for

ResNet), we use the performance numbers reported in their

paper (which also operate in a LAN environment).

• For FALCON (which supports private inference and private

training for LeNet, AlexNet, and VGG-16), we collect bench-

marks using their provided reference implementation [45].

We run the FALCON system on three compute-optimized

AWS instances (c4.8xlarge) in the Northern Virginia

region.5 Each instance runs Ubuntu 18.4 and has 36 Xeon

E5-2666 v3 (2.9 GHz) CPUs and 60 GB of RAM. We

measure the network bandwidth between machines to be

1.16GB/s with an average latency of 0.2ms.

For the main benchmarks, we also measure the computational

cost using PyTorch on plaintext data (with GPU acceleration).

Private inference. Table I summarizes the performance of

CRYPTGPU’s private inference protocol on the models and

datasets described in Section IV-A. For shallow networks and

small datasets (e.g., LeNet on MNIST or AlexNet on CIFAR),

FALCON outperforms CRYPTGPU. However, as we scale to

progressively larger datasets and deeper models (e.g., VGG-

16 on Tiny ImageNet), then CRYPTGPU is faster (3.7× on

VGG-16). The performance on small datasets is not unexpected;

after all, if the computation is sufficiently simple, then the

extra parallelism provided by the GPU is unlikely to benefit.

Moreover, the use of more efficient cryptographic building

blocks (which may not be “GPU-friendly”) can allow a CPU-

based approach to enjoy superior performance.

The setting where we would expect the GPU-based approach

to perform well is in the setting of large datasets and deeper

models. For instance, at the scale of ImageNet, CRYPTGPU is

able to perform private inference over the ResNet-152 network

(containing over 150 layers and over 60 million parameters)

in just over 25 seconds. This is about 2.2× faster than

CRYPTFLOW, which to our knowledge, is the only protocol for

private inference that has demonstrated support for the ResNet

family of networks on the ImageNet dataset. For the ResNet

family of networks, the running time of CRYPTGPU scales

linearly with the depth of the network.

Compared to plaintext inference on the GPU, there still

remains a significant 1000× gap in performance. This un-

derscores the importance of designing more GPU-friendly

cryptographic primitives to bridge this gap in performance.

Batch private inference. We can also leverage GPU paral-

lelism to process a batch of images. This allows us to amortize

the cost of private inference. Table II shows the time and

communication needed for private inference over a batch of

5Note that we use different instances for our comparison because CRYPTGPU
is GPU-based while FALCON is CPU-based.

64 images on the CIFAR-10 dataset. Here, the amortized cost

of private inference on a single image using AlexNet drops

from 0.91s to 0.017s (a 53× reduction). With VGG-16, batch

processing reduces the per-image cost from 2.14s to 0.18s (a

12× reduction).

Table III shows the time and communication needed for

private inference on ImageNet using the ResNet networks

with a batch of 8 images. Here, we see a 1.9× reduction in

the amortized per-image private inference cost for each of

ResNet-50, ResNet-101, and ResNet-152. The cost reduction

compared to those on the CIFAR-10 dataset (Table II) is smaller.

This is likely due to the smaller batch sizes in play here (8 vs.

64). Supporting larger batch sizes is possible by either using

multiple GPUs or using GPUs with more available memory.

Nonetheless, irrespective of the model/input size, we observe

that batch private inference allows us to amortize the cost of

private inference protocol. Communication in all cases scales

linearly with the batch size.

Private training. We expect GPUs to have a larger advantage

in the setting of private training (just like modern deep learning,

training is much more challenging than inference and thus, more

reliant on hardware acceleration). We measure the time needed

for a single iteration of private backpropagation (Section III-C)

on a batch size of 128 images for several dataset/model

configurations and summarize our results in Table IV (together

with measurements for the equivalent plaintext protocol). We

only compare with FALCON because CRYPTFLOW does not

support private training. We note that the public implementation

of the FALCON system [45] does not include support for

computing the cross-entropy loss function for backpropagation.

However, given the gradients for the output layer, the provided

implementation supports gradient computation for intermediate

layers. Thus, our measurements for the FALCON system only

includes the cost of computing the gradients for intermediate

layers and not for the output layer; this provides a lower bound

on the running time of using FALCON for private training. Our

system supports the full backpropagation training algorithm.

Our system achieves a considerable speedup over FALCON

in multiple settings, especially over larger models and datasets.

For instance, to train AlexNet on Tiny ImageNet, a single

iteration of (private) backpropagation completes in 11.30s with

CRYPTGPU and 6.9 minutes using FALCON. For context, pri-

vately training AlexNet on Tiny ImageNet (100,000 examples)

would just take over a week (≈ 10 days) using CRYPTGPU

while it would take over a year (≈ 375 days) using FALCON

(assuming 100 epochs over the training set).

On the larger VGG-16 network, our system is constrained

by the amount of available GPU memory. Our system currently

supports a maximum batch size of 32 when training VGG-16

on CIFAR-10 and a maximum batch size of 8 when training on

Tiny ImageNet. To establish a fair comparison when comparing

our system against FALCON for privately training VGG-16, we

11

LeNet (MNIST) AlexNet (CIFAR) VGG-16 (CIFAR) AlexNet (TI) VGG-16 (TI)

Time Comm. (MB) Time Comm. (MB) Time Comm. (MB) Time Comm. (MB) Time Comm. (MB)

FALCON 0.038 2.29 0.11 4.02 1.44 40.45 0.34 16.23 8.61 161.71

CRYPTGPU 0.38 3.00 0.91 2.43 2.14 56.2 0.95 13.97 2.30 224.5

Plaintext 0.0007 — 0.0012 — 0.0024 — 0.0012 — 0.0024 —

AlexNet (ImageNet) VGG (ImageNet) ResNet-50 (ImageNet) ResNet-101 (ImageNet) ResNet-152 (ImageNet)

Time Comm. (GB) Time Comm. (GB) Time Comm. (GB) Time Comm. (GB) Time Comm. (GB)

CRYPTFLOW — — — — 25.9 6.9 40* 10.5* 60* 14.5*

CRYPTGPU 1.52 0.24 9.44 2.75 9.31 3.08 17.62 4.64 25.77 6.56

Plaintext 0.0013 — 0.0024 — 0.011 — 0.021 — 0.031 —

*Value estimated from [5, Fig. 10]

TABLE I: Running time (in seconds) and total communication of private inference for different models, datasets, and systems

in a LAN setting. The “TI” dataset refers to the Tiny ImageNet dataset [15]. The plaintext measurements correspond to the

cost of inference on plaintext data on the GPU (using PyTorch). Performance numbers for CRYPTFLOW are taken from [5].

Performance numbers for FALCON are obtained by running its reference implementation [45] on three compute-optimized

AWS instances in a LAN environment (see Section IV-B). As discussed in Section IV-A, when testing the performance of

CRYPTGPU, we replace max pooling with average pooling in all of the networks.

k = 1 k = 64

Time Comm. Time Comm.

AlexNet 0.91 0.002 1.09 0.16
VGG-16 2.14 0.056 11.76 3.60

TABLE II: Running time (in seconds) and total communication

(in GB) for batch private inference on CIFAR-10 using a batch

size of k.

k = 1 k = 8

Time Comm. Time Comm.

ResNet-50 9.31 3.08 42.99 24.7
ResNet-101 17.62 4.64 72.99 37.2
ResNet-152 25.77 6.56 105.20 52.5

TABLE III: Running time (in seconds) and total communication

(in GB) for batch private inference on ImageNet using a batch

size of k.

apply the same batch size adjustment. As shown in Table IV,

when training VGG-16, our system is 30× faster when training

on CIFAR-10 and 26× when training on Tiny ImageNet.

Reducing the memory overhead of our protocol and augmenting

it with support for multiple GPUs (as is standard for modern

deep learning) will enable better scalability. We leave this as

an interesting direction for future work.

Like the setting of private inference, there still remains

a large gap (roughly 2000×) between the costs of private

training and plaintext training (on the GPU). Designing new

cryptographic protocols that can take even better advantage of

GPU parallelism will be important for closing this gap.

Private training breakdown. In Table V, we provide a fine-

grained breakdown of the costs of processing the different

layers in a single iteration of private training. Not surprisingly,

the primary advantage of our GPU-based protocol compared to

the CPU-based protocol of FALCON is in the computation of

the linear layers. In the settings we consider, evaluation of the

linear layers is between 25× and 70× faster with our system.

The linear layers are the primary bottleneck in FALCON, and

account for 86% to 99% of the overall computational cost. In

CRYPTGPU, the computational costs are more evenly split

between the linear layers and the non-linear layers.

For the pooling layers, the performance difference between

CRYPTGPU and FALCON can be partially attributed to the

the fact that FALCON uses max pooling rather than average

pooling. As discussed in Section IV-A, average pooling is a

linear function and simpler to evaluate privately. However, our

measurements show that CRYPTGPU maintains a (significant)

performance edge even if we exclude the cost of the pooling

layers from the running time of FALCON.

Finally, for the ReLU layers, the CPU-based protocol in

FALCON compares very favorably with the ReLU protocol in

CRYPTGPU, and even outperforms our protocol on the smaller

models and datasets. Having a ReLU protocol that can better

take advantage of GPU parallelism will likely improve the

performance of our protocol. As described in Section III-B,

our ReLU protocol relies on an arithmetic-to-binary share

conversion, which is less GPU-friendly compared to bilinear

operations. The ReLU protocol from FALCON relies on different

techniques and it is interesting whether their approach can be

adapted to be efficiently computed on the GPU.

Avenues for improvement. Compared to FALCON, our private

training protocol is more communication-intensive. FALCON

develops a number of specialized cryptographic protocols to

substantially reduce the communication in their protocols. We

believe it is an interesting question to study whether the

protocols developed in FALCON are “GPU-friendly” and can

benefit from GPU acceleration.

CRYPTGPU does not currently support batch normalization

during private training, so we do not report private training

12

LeNet (MNIST) AlexNet (CIFAR-10) VGG-16 (CIFAR-10) AlexNet (TI) VGG-16 (TI)

Time Comm. Time Comm. Time Comm. Time Comm. Time Comm.

FALCON* 14.90 0.346 62.37 0.621 360.83† 1.78† 415.67 2.35 359.60‡ 1.78‡

CRYPTGPU 2.21 1.14 2.91 1.37 12.14† 7.55† 11.30 6.98 13.89‡ 7.59‡

Plaintext 0.0025 — 0.0049 — 0.0089 — 0.0099 — 0.0086 —

*The provided implementation of FALCON does not support computing the gradients for the output layer, so the FALCON measurements only include the time
for computing the gradients for intermediate layers. All measurements for FALCON are taken without batch normalization.

†Using a smaller batch size of 32 images per iteration (due to GPU memory limitations). We make the same batch size adjustment for FALCON.
‡Using a smaller batch size of 8 images per iteration (due to GPU memory limitations). We make the same batch size adjustment for FALCON.

TABLE IV: Running time (in seconds) and total communication (in GB) for a single iteration of private training with a batch

size of 128 images for different models, datasets, and systems in a LAN setting. The “TI” dataset refers to the Tiny ImageNet

dataset [15]. The plaintext measurements correspond to the cost of training on plaintext data on the GPU. Performance numbers

for FALCON are obtained by running its reference implementation [45] on three compute-optimized AWS instances in a LAN

environment (see Section IV-B). As discussed in Section IV-A, when testing the performance of CRYPTGPU, we replace max

pooling with average pooling in all of the networks.

benchmarks on the ResNet-family of models.6 Developing a

GPU-friendly protocol for batch normalization is an interesting

avenue for further work and an important step towards

supporting private training of the ResNet family of models.

We are not aware of any system that currently supports private

training over ResNet.

C. Microbenchmarks

To quantify the advantage of keeping all of the computation

on the GPU, we compare the running time of the MPC protocols

for evaluating convolutions (i.e., the linear layers) and for

evaluating ReLU (i.e., the primary non-linear layer) on the

CPU vs. the GPU. For convolutions, we study the effect of

both the input dimension as well as the batch size. We use the

same experimental setup described in Section IV-A for all of

the experiments in this section.

Private convolution: GPU vs. CPU. For convolutions, we

consider two types of convolutions: (1) convolutions with a

large receptive field (filter size) but a relatively small number

of input/output channels; and (2) convolutions with a small

receptive field, but a large number of input/output channels.

Convolutions of the first type are generally used in the initial

layers of the CNN while filters of the second type are used

in the later layers of the CNN. Note that when implementing

convolutions on the CPU, we do not break up the 64-bit secret-

shared tensor into 16-bit blocks (as we do in the GPU setting;

see Section II-B). We provide the microbenchmarks in Fig. 1.

From Figs. 1a and 1c, we see that for small inputs, the

computational cost of the private convolution protocol is

comparable on both the GPU and the GPU. While there is only

a 10× speed-up for convolutions between a small 32× 32× 3
input with a stack of 64 filters, the gap grows quickly as the

input size increases; for instance, increasing the input size to

6Note that we can still perform private inference for a model that is trained using
batch normalization. Namely, the normalization parameters are secret-shared
(as part of the model) and applying batch normalization just corresponds to
an affine transformation.

that of a Tiny ImageNet instance (64×64×3), the GPU-based

protocol is nearly 40× faster. Scaling to a 512×512×3 image,

the GPU-based protocol is 174× faster than the CPU-based

protocol (from 23.9s on the CPU to 0.14s on the GPU). An

analogous trend holds when we consider convolutions with a

large number of input/output channels: for small inputs, the

running times of the CPU- and GPU-based protocols are quite

comparable, but for large inputs (e.g., a 64× 64× 512 input),

the GPU-based protocol is 168× faster (from 543s on the CPU

to just 3.2s on the GPU).

We additionally note that for small instances, the protocol

running time on the GPU is essentially constant—this is due

to the parallelism. Only after the input becomes sufficiently

large do we start seeing increases in the running time based

on the size of the input. In contrast, the CPU running time

always scales with the size of the input.

Similar speedups are present when we consider convolutions

on batches of inputs (this is important for training and for

batch inference). For a fixed input size (32 × 32 × 3) and

kernel size (11× 11), we observe a 10× speed-up for running

the private convolution protocol on a single input using the

GPU, but a 40× to 60× speed-up when we consider a batch

of anywhere from 32 to 512 inputs. As an example, to evaluate

a convolution over a batch of 512 inputs with this set of

parameters, we require 11.6s on the CPU and only 0.27s on

the GPU. We refer to Fig. 1b for the full comparison.

Private ReLU: GPU vs. CPU. Previous privacy-preserving

ML systems like DELPHI [4] leveraged GPUs to accelerate

convolutions, but still executed the non-linear steps (e.g.,

ReLU computations) on the CPU. Here, we argue that with a

carefully-chosen set of cryptographic protocols, we can also

take advantage of GPU parallelism to accelerate the non-linear

computations. To illustrate this, we compare the running time

of our private ReLU protocol on the CPU vs. the GPU. As

described in Section III-B, private ReLU evaluation of ReLU on

a large block of neurons (e.g., output by the convolutional layer)

13

Linear Pooling ReLU Softmax

FALCON CRYPTGPU FALCON CRYPTGPU FALCON CRYPTGPU FALCON CRYPTGPU

LeNet (MNIST) 13.07 0.49 1.34 0.076 0.47 1.00 — 0.53
AlexNet (CIFAR) 59.23 0.86 2.65 0.077 0.41 1.33 — 0.55
VGG-16 (CIFAR)* 355.16 6.33 2.86 0.21 5.40 4.74 — 0.53
AlexNet (TI) 402.45 5.60 10.20 0.37 1.92 4.16 — 1.04

VGG-16 (TI)† 355.84 7.61 2.87 0.32 5.37 4.73 — 0.98

*Using a smaller batch size 32 images per iteration (due to GPU memory limitations). We make the same batch size adjustment for FALCON.
†Using a smaller batch size 8 images per iteration (due to GPU memory limitations). We make the same batch size adjustment for FALCON.

TABLE V: Runtime (in seconds) of FALCON [6] and CRYPTGPU for evaluating the linear, pooling, ReLU, and softmax layers

for different models and datasets during private training. The “linear” layers include the convolution and the fully-connected

layers. The “pooling” layer refers to max pooling in FALCON, and average pooling in CRYPTGPU. The implementation of

FALCON [45] does not currently support softmax evaluation (and correspondingly, gradient computation for the output layer).

Performance numbers for FALCON are obtained by running its reference implementation [45] on three compute-optimized AWS

instances in a LAN environment (see Section IV-B).

32 64 128 256 512

0.01

0.1

1

10

100

Input Dimension n

E
v
al

u
at

io
n

T
im

e
(s

) CPU

GPU

(a) Convolution on an n×n×3 input with an
11× 11 kernel, 64 output channels, 4× 4

stride, and 2× 2 padding.

32 64 128 256 512

0.01

0.1

1

10

100

Batch Size k

E
v
al

u
at

io
n

T
im

e
(s

) CPU

GPU

(b) Convolution on batch of k 32 × 32 × 3

inputs with an 11× 11 kernel, 64 output
channels, 4× 4 stride, and 2× 2 padding.

1 2 4 8 16 32 64

0.1

1

10

100

1,000

Input Dimension n

E
v
al

u
at

io
n

T
im

e
(s

) CPU

GPU

(c) Convolution on an n×n×512 input with
a 3× 3 kernel, 512 output channels, 1× 1

stride, and 1× 1 padding.

Fig. 1: Comparison of total protocol execution time (in a LAN setting) for privately evaluating convolutions on the CPU and the

GPU. Parameters for convolution kernels are chosen based on parameters in AlexNet [16]. The stride and padding parameters

specify how the filter is applied to the input. All of the figures are log-log plots.

corresponds to evaluating a large number of point-wise Boolean

operations on secret-shared binary tensors. Such operations

naturally benefit from GPU parallelism.

We measure the time it takes to privately-evaluate ReLU on

different numbers of secret-shared inputs (ranging from 50,000

to 32,000,000). The full results are shown in Fig. 2. For ReLU

evaluation, we see a 16× speedup when evaluating ReLU on

a block of 256,000 inputs (from 2s on the CPU to 0.12s on

the GPU). As we scale up to a block with 32 million inputs

(250 MB of data), there is a 9× speedup on the GPU, with

the absolute running time dropping from 149s on the CPU to

just 16.3s on the GPU.

D. Accuracy of Privacy-Preserving Protocols

Several of the underlying protocols in CRYPTGPU are not

exact and can introduce a small amount of error: using fixed-

point encodings to approximate floating-point arithmetic, the

share-truncation protocol from ABY3, and the approximation

to the softmax function. While we have chosen our parameters

(e.g., the fixed-point precision) to reduce the likelihood of

errors, we validate our parameter choices with an empirical

0 4 8 12 16 20 24 28 32

0.1

1

10

100

Input Size (millions of elements)

E
v
al

u
at

io
n

T
im

e
(s

)

CPU

GPU

Fig. 2: Comparison of total protocol execution time (in a LAN

setting) on the CPU vs. the GPU for point-wise evaluation of

the private ReLU protocol on different-sized inputs.

analysis. In the following, we will often measure the difference

between an output zpriv computed using CRYPTGPU with the

output zplain of a plaintext version of the same computation

(using 64-bit floating-point values). We define the absolute

error between zpriv and zplain as |zpriv − zplain| and the relative

error to be |zpriv − zplain|/zplain.

Fixed point precision. As discussed at the beginning of Sec-

tion IV, CRYPTGPU emulates floating-point computations by

14

encoding values using a fixed-point representation using t = 20
bits of fractional precision. The fixed-point computations over

the integers are embedded into operations on secret-shared

values over the ring Zn. The modulus n must be large enough

to support multiplication (and more generally, convolution and

matrix multiplication) of plaintext values without triggering

a modular reduction. In CRYPTGPU, n = 264, so shares are

represented by 64-bit integers.

Previous privacy-preserving protocols like FALCON [6] and

DELPHI [4] use a smaller number of bits of fixed-point

precision (e.g., 13 bits and 15 bits, respectively). In turn,

they are able to work with arithmetic shares over a 32-bit

ring as opposed to a 64-bit ring. This reduces communication

(since shares are half as large) and in our model, also saves

computation (recall from Section II-B that we need to split up

tensors of 64-bit integers into 4 tensors of 16-bit integers in

order to use existing CUDA kernels for deep learning).

Using fewer number of bits of precision reduces the accuracy

of the protocol outputs, especially when scaling to deep

architectures and large inputs. To analyze the effect the number

of bits of fixed-point precision t has on the accuracy of the

outputs of our system (i.e., the values of the output layer), we

compute the average relative error between the output values

output by CRYPTGPU to those computed using the plaintext

inference protocol on a small example (AlexNet over CIFAR-

10) as well as a large example (ResNet-50 on ImageNet). Our

results are summarized in Fig. 3.

Fig. 3 shows that for a relatively shallow model like AlexNet

on the CIFAR-10 dataset, it is sufficient to use 12 to 14 bits of

fixed-point precision (e.g., the parameter setting in [6]). The

relative error in this case between the outputs computed by

the private inference protocol and the plaintext computation

is around 1%. However, when we scale up to a model like

ResNet-50 on ImageNet, the average relative error in the model

outputs increases 5× to almost 5%. We further remark that we

are only measuring the relative error in a single forward pass

over the network (inference). Larger errors would be expected

in the case of private training when the protocol needs to run

multiple forward and backward passes. In this work, we use

t = 20 bits of fixed-point precision which ensures that the

average relative error for private inference over ResNet-50 on

ImageNet is under 0.02%. Our analysis indicates that scaling up

to deeper architectures and operating over larger datasets will

require a greater number of bits of precision in the underlying

fixed-point representation. For instance, to keep the average

relative error under 1% for ResNet-50 on ImageNet, we require

at least 15 bits of fixed-point precision. As such, to prevent

overflows in the arithmetic evaluation over secret-shared data

for deep networks, a 32-bit ring is no longer sufficient.

Privacy-preserving inference. To evaluate the accuracy of our

private inference protocol, we compare the average relative

error between the outputs of our private inference protocol

using ResNet-50, ResNet-101, and ResNet-152 on ImageNet

and compare those against the values obtained from plaintext

10 12 14 16 18 20

0.01

0.1

1

10

100

Bits of Fixed-Point Precision t

A
v
er

ag
e

R
el

at
iv

e
E

rr
o
r

(%
)

AlexNet, CIFAR-10

ResNet-50, ImageNet

Fig. 3: Average relative error between the model outputs

computed using the private inference protocol in CRYPTGPU

with t bits of fixed-point precision (i.e., an integer x ∈ R is

represented as the nearest integer to x · 2t) and the output

computed using plaintext floating-point inference. Analysis

based on evaluating AlexNet on CIFAR-10 and ResNet-50 on

ImageNet, and averaged over 10 randomly-chosen instances.

ResNet-50 ResNet-101 ResNet-152

Average Relative Error 0.015% 0.020% 0.021%

Top-1 Acc. (CRYPTGPU) 78% 82% 79%
Top-1 Acc. (Plaintext) 78% 82% 79%

Top-5 Acc. (CRYPTGPU) 92% 90% 93%
Top-5 Acc. (Plaintext) 92% 90% 93%

TABLE VI: Comparison of outputs of CRYPTGPU’s private

inference protocol on ImageNet with the ResNet models with

those of the plaintext algorithm (using PyTorch). The average

relative error is computed between the outputs of the private

inference protocol and those of the plaintext execution (on the

same input). The Top-1 and Top-5 accuracies for both settings

are computed based on the outputs of model inference with

respect to the ground truth label. The measurements are taken

over a random set of 100 examples drawn from the ImageNet

validation set.

evaluation. We additionally compute the accuracy of the

predictions (using the standard metrics of Top-1 and Top-5

accuracy—i.e., the model succeeds if the actual class of an

example coincides with the most likely class predicted by the

model or among the top 5 most likely classes predicted by the

model). The results are summarized in Table VI. In particular,

for our chosen set of parameters, we observe that the average

relative error in the classifier output is at most 0.021%, and

in all cases we tested (100 randomly-chosen images from the

ImageNet test set), both the Top-1 accuracy and the Top-5

accuracy exactly match that of the plaintext model.

Privacy-preserving training. We perform a similar set of

experiments to evaluate the accuracy of our private training

protocol. In Fig. 4, we plot the value of the cross-entropy

loss function for a model trained using the private training

15

0 600 1,200 1,800 2,400
0.0

0.5

1.0

1.5

2.0

2.5

Number of Iterations

C
ro

ss
E

n
tr

o
p
y

L
o
ss

CRYPTGPU

Plaintext

(a) LeNet on MNIST (trained for 5 epochs
with a batch size of 128).

0 400 800 1,200 1,600

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Number of Iterations

C
ro

ss
E

n
tr

o
p
y

L
o
ss

CRYPTGPU

Plaintext

(b) AlexNet on CIFAR-10 (trained for 1 epoch
with a batch size of 32).

0 800 1,600 2,400 3,200

3.5

4.0

4.5

5.0

5.5

Number of Iterations

C
ro

ss
E

n
tr

o
p
y

L
o
ss

CRYPTGPU

Plaintext

(c) AlexNet on Tiny ImageNet (trained for 1
epoch on a batch size of 32).

Fig. 4: Moving average of the cross-entropy loss as a function of the number of training iterations using CRYPTGPU and

using a plaintext protocol for different models and datasets. In each setting, we use the same initialization and learning

rate (for stochastic gradient descent) for both private and plaintext training. For LeNet, we use a random initialization. For

the AlexNet experiments, we use PyTorch’s default AlexNet architecture [46] for both the plaintext training and the private

training experiments (which is a variant of the standard AlexNet architecture described in [16]). We use PyTorch’s pre-trained

initialization for AlexNet as our initialization. The moving average is computed over a window of size 20 (i.e., the value

reported for iteration i is the average of the cross entropy loss on iterations i− 10, . . . , i+ 9).

Baseline CRYPTGPU Plaintext

LeNet, MNIST* 10% 93.97% 93.34%

AlexNet, CIFAR-10† 10% 59.60% 59.77%

AlexNet, Tiny ImageNet‡ 2% 17.82% 17.51%

*Trained for 5 epochs (2345 iterations) with a batch size of 128.
†Trained for 1 epoch (1563 iterations) with a batch size of 32.
‡Trained for 1 epoch (3125 iterations) with a batch size of 32.

TABLE VII: Validation set accuracy for different models

trained using CRYPTGPU and the plaintext training algorithm.

For each configuration, both training approaches use the

same initialization and learning rate (for stochastic gradient

descent). For LeNet, we use a random initialization. For

the AlexNet experiments, we use PyTorch’s default AlexNet

architecture [46] for both the plaintext training and the private

training experiments. Here, we use PyTorch’s pre-trained

weights for AlexNet to speed up convergence. We also report

the baseline accuracy for each configuration (i.e., accuracy

of the “random-guess” algorithm). Note that training for

more iterations will increase the accuracy; the intent of this

comparison is to demonstrate a close similarity in model

accuracies for the the model output by the private training

protocol with the model output by plaintext training after a

few thousand iterations of stochastic gradient descent.

protocol of CRYPTGPU as well as for a model trained using

the plaintext training algorithm (using the same initialization

and learning rate for the underlying stochastic gradient descent

optimizer). Fig. 4 shows that the value of the loss function

is slightly higher initially for private training, but the overall

progression closely follows that of plaintext training.

In addition to comparing the evolution of the loss function,

we also compare the model accuracies (as measured on the

validation set) for the models trained using CRYPTGPU and

using the plaintext training algorithm (again with same initial-

ization and learning rate as above). Our results are summarized

in Table VII. On all of the models/datasets we considered, the

accuracy of the model output by CRYPTGPU closely matches

that of the plaintext evaluation. These experiments indicate

that CRYPTGPU efficiently and accurately supports end-to-end

private training for models like AlexNet over moderately-large

datasets like Tiny ImageNet.

Average pooling vs. max pooling. As discussed in Sec-

tion IV-A, we use average pooling in place of max pooling

in the models we consider. To evaluate whether the choice of

pooling makes a significant difference on model performance,

we use PyTorch to train the AlexNet and VGG-16 networks

over the CIFAR-10 dataset where we replace all of the max

pooling layers with average pooling layers. The resulting model

accuracy on the CIFAR-10 test set is shown in Table VIII. In

particular, we observed a 3% drop in accuracy (from 76% to

73%) for AlexNet and a 1% increase in accuracy with VGG-16

(from 82% to 83%). This indicates that using average pooling in

place of max pooling does not lead to a significant degradation

of model performance. We note also that in contrast to AlexNet

and VGG-16 which use max pooling exclusively, the more

recent ResNets use average pooling in all but the initial layer.

V. RELATED WORK

Privacy-preserving machine learning is a special case of

secure computation and can be solved via general cryptographic

approaches such as secure 2-party computation (2PC) [28],

secure multiparty computation [7, 8] or fully homomorphic

encryption [47]. While powerful, these general approaches

16

Max Pooling Average Pooling

AlexNet 76.15% 73.35%
VGG-16 82.37% 83.17%

TABLE VIII: Validation set accuracy for plaintext training of

AlexNet and VGG-16 over the CIFAR-10 dataset using max

pooling vs. average pooling. All networks were trained using

50 epochs using a standard stochastic gradient descent (SGD)

optimizer in PyTorch.

incur significant overhead, and much of the work in developing

concretely-efficient protocols for scalable privacy-preserving

machine learning have focused on more specialized approaches

(that still rely on the general building blocks for designing

sub-protocols). We survey some of these techniques here.

Privacy-preserving inference. Many recent works have devel-

oped specific protocols for the problem of private inference for

deep learning models (c.f., [48, 1, 49, 50, 2, 51, 52, 3, 29, 53, 4,

5, 54, 30, 55, 56, 24, 57, 6] and the references therein). These

works operate in a variety of different models and architectures:

some works consider a 2-party setting (e.g., [1, 51, 52, 4]),

others consider a 3-party (e.g., [2, 3, 6, 5, 29, 30]) or a 4-

party setting (e.g., [55, 56]). Some frameworks assume that the

model is held in the clear (e.g., [52, 4]) while others (including

this work) support secret-shared models (e.g., [6, 5]). With

the recent exceptions of FALCON [6] and CRYPTFLOW [5],

these existing approaches only consider privacy-preserving

inference using shallow neural networks (e.g., less than 10

layers) on relatively small datasets (at the scale of MNIST [11]

or CIFAR [12]). Our focus in this work is designing privacy-

preserving machine learning protocols that are able to support

inference over modern deep learning models (which typically

contain tens of millions of parameters and over a hundred

layers) on large datasets (i.e., at the scale of ImageNet [13],

one of the de facto standards for state-of-the art computer

vision). As shown in Section IV-B, our system outperforms

both FALCON and CRYPTFLOW for inference over sufficiently-

large models and datasets.

Privacy-preserving training. Compared to private inference,

privacy-preserving training of deep neural networks is a

considerably more challenging and computationally-intensive

problem and has received comparably less attention. Of the

aforementioned works, only a few [1, 2, 29, 3, 55, 30, 56, 6]

support privacy-preserving training. Among these systems, the

only one that scales beyond MNIST/CIFAR is FALCON [6],

which is the first system (to our knowledge) that supports

privacy-preserving training at the scale of (Tiny) ImageNet and

for models as large as AlexNet [16] and VGG-16 [17]. Our

work is the first framework to leverage GPUs to demonstrate

significantly better scalability to privately train deep networks

over large datasets.

Privacy-preserving machine learning using GPUs. Most of

the works on privacy-preserving machine learning are CPU-

based and do not leverage GPU acceleration. We discuss some

notable exceptions. Some works [58, 57] use GPUs to accelerate

homomorphic evaluation of convolutional neural networks on

MNIST. DELPHI [4] uses GPUs to compute linear layers (i.e.,

convolutions) to support private inference; however, they still

perform non-linear operations (e.g., ReLU evaluation) on the

CPU and moreover, their scheme assumes the model to be

public (and only the input is hidden). Our design philosophy in

this work is to keep all of the computations on the GPU through

a careful choice of “GPU-friendly” cryptographic protocols.

Slalom [36] shows how to integrate a trusted computing base

(e.g., Intel SGX) with GPUs to enable fast private inference of

neural networks (by offloading convolutions to the GPU and

performing non-linear operations within the trusted enclave).

Recent works proposing scalable private training and inference

protocols highlight the use of GPUs as an important way for

further scalability [6, 5]. Our system is the first to support

private training and inference entirely on the GPU.

Model stealing and inversion attacks. We note that MPC

protocols can only hide the inputs to the computation (e.g., the

model or the dataset) up to what can be inferred from the output.

Several recent works [59, 60, 61, 62, 63] have shown how

black-box access to a model (in the case of an private inference

service) can allow an adversary to learn information about the

model or even recover its training data. Differentially-private

training algorithms [9, 10] provide one defense against certain

types of these attacks. Our focus in this work is on protecting

the computation itself and ensure that there is no additional

leakage about the inputs other than through the output. It is

an interesting question to design a private training/inference

protocol that also provides robustness against specific classes

of model stealing/inversion attacks.

VI. CONCLUSION

In this paper, we introduce CRYPTGPU, a new MPC

framework that implements all of the cryptographic operations

(both linear and non-linear) on the GPU. CRYPTGPU is

built on top of PyTorch [21] and CRYPTEN [24] to make

it easy to use for machine learning developers and researchers.

Our experiments show that leveraging GPUs can significantly

accelerate the private training and inference for modern deep

learning and make it practical to run privacy-preserving deep

learning at the scale of ImageNet and with complex networks.

In addition, our systematic analysis of different cryptographic

protocols provides new insights for designing “GPU-friendly”

cryptographic protocols for deep learning. This will be an

important step towards bridging the roughly 1000× gap that

still remains between private machine learning and plaintext

machine learning (on the GPU).

ACKNOWLEDGMENTS

We thank Pavel Belevich, Shubho Sengupta, and Laurens van

der Maaten for their feedback on system design and providing

helpful pointers. D. J. Wu is supported by NSF CNS-1917414.

17

REFERENCES

[1] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in IEEE Symposium on Security and

Privacy, pp. 19–38, 2017.

[2] P. Mohassel and P. Rindal, “ABY3: A mixed protocol framework for
machine learning,” in ACM CCS, pp. 35–52, 2018.

[3] S. Wagh, D. Gupta, and N. Chandran, “SecureNN: 3-party secure
computation for neural network training,” Proc. Priv. Enhancing Technol.,
vol. 2019, no. 3, pp. 26–49, 2019.

[4] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference service for neural networks,” in
USENIX Security, pp. 2505–2522, 2020.

[5] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and R. Sharma,
“CrypTFlow: Secure tensorflow inference,” in IEEE Symposium on

Security and Privacy, pp. 336–353, 2020.

[6] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and T. Rabin,
“FALCON: honest-majority maliciously secure framework for private
deep learning,” Proc. Priv. Enhancing Technol., vol. 2021, 2021.

[7] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game or A completeness theorem for protocols with honest majority,” in
STOC, pp. 218–229, 1987.

[8] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract),” in STOC, pp. 1–10, 1988.

[9] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in ACM

CCS, pp. 1310–1321, 2015.

[10] M. Abadi, A. Chu, I. J. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in
ACM CCS, pp. 308–318, 2016.

[11] Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST database.” http:
//yann.lecun.com/exdb/mnist/.

[12] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
2009.

[13] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, and F. Li, “Imagenet
large scale visual recognition challenge,” Int. J. Comput. Vis., vol. 115,
no. 3, pp. 211–252, 2015.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, pp. 770–778, 2016.

[15] F.-F. Li, A. Karpathy, and J. Johnson, “Tiny ImageNet visual recognition
challenge,” 2017.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NeurIPS, pp. 1106–1114,
2012.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in ICLR, 2015.

[18] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E.
Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten zip
code recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, 1989.

[19] K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional
neural networks for document processing,” 2006.

[20] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep,
big, simple neural nets for handwritten digit recognition,” Neural Comput.,
vol. 22, no. 12, pp. 3207–3220, 2010.

[21] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-
performance deep learning library,” in NeurIPS, pp. 8024–8035, 2019.

[22] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Józefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. G. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. A. Tucker,
V. Vanhoucke, V. Vasudevan, F. B. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: Large-
scale machine learning on heterogeneous distributed systems,” CoRR,
vol. abs/1603.04467, 2016.

[23] “Cloud tensor processing units (tpus).” https://cloud.google.com/tpu/docs/
tpus.

[24] B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, and
L. van der Maaten, “CrypTen: Secure multi-party computation meets

machine learning,” in Proceedings of the NeurIPS Workshop on Privacy-

Preserving Machine Learning, 2020.

[25] M. Ito, A. Saito, and T. Nishizeki, “Secret sharing scheme realizing
general access structure,” Electronics and Communications in Japan

(Part III: Fundamental Electronic Science), vol. 72, no. 9, pp. 56–64,
1989.

[26] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara, “High-throughput
semi-honest secure three-party computation with an honest majority,” in
ACM CCS, pp. 805–817, 2016.

[27] “CUDA libraries documentation.” https://docs.nvidia.com/cuda-libraries/
index.html.

[28] A. C. Yao, “How to generate and exchange secrets (extended abstract),”
in FOCS, pp. 162–167, 1986.

[29] H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh, “ASTRA: high
throughput 3pc over rings with application to secure prediction,” in ACM

CCS, pp. 81–92, 2019.

[30] A. Patra and A. Suresh, “BLAZE: blazing fast privacy-preserving machine
learning,” in NDSS, 2020.

[31] S. Kamara, P. Mohassel, and M. Raykova, “Outsourcing multi-party
computation,” IACR Cryptol. ePrint Arch., vol. 2011, p. 272, 2011.

[32] “cuBLAS.” https://docs.nvidia.com/cuda/cublas/index.html.

[33] “cuDNN.” https://docs.nvidia.com/deeplearning/cudnn/developer-guide/
index.html.

[34] D. Demmler, T. Schneider, and M. Zohner, “ABY - A framework for
efficient mixed-protocol secure two-party computation,” in NDSS, 2015.

[35] D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in CRYPTO, pp. 420–432, 1991.

[36] F. Tramèr and D. Boneh, “Slalom: Fast, verifiable and private execution
of neural networks in trusted hardware,” in ICLR, 2019.

[37] J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein, “High-throughput
secure three-party computation for malicious adversaries and an honest
majority,” in EUROCRYPT, pp. 225–255, 2017.

[38] R. Canetti, “Security and composition of multiparty cryptographic
protocols,” J. Cryptol., vol. 13, no. 1, pp. 143–202, 2000.

[39] O. Goldreich, The Foundations of Cryptography - Volume 2: Basic

Applications. Cambridge University Press, 2004.

[40] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in ICML, pp. 807–814, 2010.

[41] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[42] “PyTorch/CSPRNG.” https://github.com/pytorch/csprng.

[43] J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw, “Parallel
random numbers: as easy as 1, 2, 3,” in Conference on High Performance

Computing Networking, Storage and Analysis, SC, pp. 16:1–16:12, 2011.

[44] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[45] Sameer Wagh and Shruti Tople and Fabrice Benhamouda and Eyal
Kushilevitz and Prateek Mittal and Tal Rabin, “Falcon: Honest-majority
maliciously secure framework for private deep learning.” Available at
https://github.com/snwagh/falcon-public.

[46] P. Team, “Alexnet.” https://pytorch.org/hub/pytorch vision alexnet/.

[47] C. Gentry, A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009. crypto.stanford.edu/craig.

[48] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in ICML, pp. 201–210, 2016.

[49] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via minionn transformations,” in ACM CCS, pp. 619–631,
2017.

[50] N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and S. Tripathi, “Ezpc:
Programmable, efficient, and scalable secure two-party computation for
machine learning.” Cryptology ePrint Archive, Report 2017/1109, 2017.
https://eprint.iacr.org/2017/1109.

[51] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider,
and F. Koushanfar, “Chameleon: A hybrid secure computation framework
for machine learning applications,” in ACM CCS, pp. 707–721, 2018.

[52] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE: A
low latency framework for secure neural network inference,” in USENIX

Security Symposium, pp. 1651–1669, 2018.

[53] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. E. Lauter, and
F. Koushanfar, “XONN: xnor-based oblivious deep neural network
inference,” in USENIX Security Symposium, pp. 1501–1518, 2019.

18

[54] A. P. K. Dalskov, D. Escudero, and M. Keller, “Secure evaluation of
quantized neural networks,” Proc. Priv. Enhancing Technol., vol. 2020,
no. 4, pp. 355–375, 2020.

[55] M. Byali, H. Chaudhari, A. Patra, and A. Suresh, “FLASH: fast and
robust framework for privacy-preserving machine learning,” Proc. Priv.

Enhancing Technol., vol. 2020, no. 2, pp. 459–480, 2020.
[56] H. Chaudhari, R. Rachuri, and A. Suresh, “Trident: Efficient 4pc

framework for privacy preserving machine learning,” in NDSS, 2020.
[57] A. A. Badawi, J. Chao, J. Lin, C. F. Mun, S. J. Jie, B. H. M. Tan, X. Nan,

A. M. M. Khin, and V. Chandrasekhar, “Towards the alexnet moment
for homomorphic encryption: HCNN, the first homomorphic cnn on
encrypted data with gpus,” IEEE Transactions on Emerging Topics in

Computing, 2020.
[58] A. A. Badawi, B. Veeravalli, C. F. Mun, and K. M. M. Aung, “High-

performance FV somewhat homomorphic encryption on gpus: An
implementation using CUDA,” IACR Trans. Cryptogr. Hardw. Embed.

Syst., vol. 2018, no. 2, pp. 70–95, 2018.
[59] G. Ateniese, L. V. Mancini, A. Spognardi, A. Villani, D. Vitali,

and G. Felici, “Hacking smart machines with smarter ones: How to
extract meaningful data from machine learning classifiers,” Int. J. Secur.

Networks, vol. 10, no. 3, pp. 137–150, 2015.
[60] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that

exploit confidence information and basic countermeasures,” in ACM CCS,
pp. 1322–1333, 2015.

[61] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction apis,” in USENIX Security

Symposium, pp. 601–618, 2016.
[62] B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “DeepSecure: Scalable

provably-secure deep learning,” in Annual Design Automation Conference,
pp. 1–6, 2018.

[63] M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, and N. Papernot, “High-
fidelity extraction of neural network models,” CoRR, vol. abs/1909.01838,
2019.

APPENDIX A

NETWORK ARCHITECTURE

As discussed in Section IV-A, some of the models we

consider (e.g., AlexNet and VGG-16) were designed for

ImageNet, and are not directly compatible with smaller datasets

such as CIFAR-10 and Tiny ImageNet. As such, when training

or running inference with these models on the smaller datasets,

we make adjustments to their “head architecture” (i.e., the

fully-connected classification layers at the top of the network).

In all settings, we keep the same “base architecture” (adapted

from their description in the original papers [16, 17]). We

describe the base AlexNet architecture we use in Fig. 5 and

the head architectures for the different datasets in Fig. 6. We

describe the base VGG-16 architecture we use in Fig. 7 and

the head architectures for the different datasets in Fig. 8.

19

Layer Input Dimension Description Output Dimension

Convolution 32× 32× 3 11× 11 kernel, 9× 9 padding, 4× 4 stride 10× 10× 96
ReLU 10× 10× 96 ReLU(·) on each input 10× 10× 96
Average Pooling 10× 10× 96 3× 3 kernel, 2× 2 stride 4× 4× 96

Convolution 4× 4× 96 5× 5 kernel, 1× 1 padding, 1× 1 stride 2× 2× 256
ReLU 2× 2× 256 ReLU(·) on each input 2× 2× 256
Average Pooling 2× 2× 256 2× 2 kernel, 1× 1 stride 1× 1× 256

Convolution 1× 1× 256 3× 3 kernel, 1× 1 padding, 1× 1 stride 1× 1× 384
ReLU 1× 1× 384 ReLU(·) on each input 1× 1× 384

Convolution 1× 1× 384 3× 3 kernel, 1× 1 padding, 1× 1 stride 1× 1× 384
ReLU 1× 1× 384 ReLU(·) on each input 1× 1× 384

Convolution 1× 1× 384 3× 3 kernel, 1× 1 padding, 1× 1 stride 1× 1× 256
ReLU 1× 1× 256 ReLU(·) on each input 1× 1× 256

Fig. 5: AlexNet [16] base architecture on CIFAR-10. The same architecture is also used for Tiny ImageNet and ImageNet, but

applied to different input dimensions (64× 64× 3 for Tiny ImageNet and 224× 224× 3 for ImageNet). The head architectures

(classification layers) for CIFAR-10, Tiny ImageNet, and ImageNet vary (as a function of the input size and number of output

classes) and are shown in Fig. 6.

20

Layer Input Dimension Description Output Dimension

Flatten 1× 1× 256 Flatten input into a single dimension 256

Fully Connected 256 256× 256 matrix multiplication 256

ReLU 256 ReLU(·) on each input 256

Fully Connected 256 256× 256 matrix multiplication 256

ReLU 256 ReLU(·) on each input 256

Fully Connected 256 256× 10 matrix multiplication 10

(a) Head architecture for CIFAR-10

Layer Input Dimension Description Output Dimension

Average Pooling 4× 4× 256 2× 2 kernel, 2× 2 stride 2× 2× 256
Flatten 2× 2× 256 Flatten input into a single dimension 1024

Fully Connected 1024 1024× 1024 matrix multiplication 1024

ReLU 1024 ReLU(·) on each input 1024

Fully Connected 1024 1024× 1024 matrix multiplication 1024

ReLU 1024 ReLU(·) on each input 1024

Fully Connected 1024 1024× 200 matrix multiplication 200

(b) Head architecture for Tiny ImageNet

Layer Input Dimension Description Output Dimension

Average Pooling 24× 24× 256 4× 4 kernel, 4× 4 stride 6× 6× 256
Flatten 6× 6× 256 Flatten input into a single dimension 9216

Fully Connected 9216 9216× 4096 matrix multiplication 4096

ReLU 4096 ReLU(·) on each input 4096

Fully Connected 4096 4096× 4096 matrix multiplication 4096

ReLU 4096 ReLU(·) on each input 4096

Fully Connected 4096 4096× 1000 matrix multiplication 1000

(c) Head architecture for ImageNet

Fig. 6: Head architecture of AlexNet for CIFAR-10, Tiny ImageNet, and ImageNet.

21

Layer Input Dimension Description Output Dimension

Convolution 32× 32× 3 3× 3 kernel, 1× 1 padding, 1× 1 stride 32× 32× 64
ReLU 32× 32× 64 ReLU(·) on each input 32× 32× 64

Convolution 32× 32× 64 3× 3 kernel, 1× 1 padding, 1× 1 stride 32× 32× 64
ReLU 32× 32× 64 ReLU(·) on each input 32× 32× 64
Average Pooling 32× 32× 64 2× 2 kernel, 2× 2 stride 16× 16× 64

Convolution 16× 16× 64 3× 3 kernel, 1× 1 padding, 1× 1 stride 16× 16× 128
ReLU 16× 16× 128 ReLU(·) on each input 16× 16× 128

Convolution 16× 16× 128 3× 3 kernel, 1× 1 padding, 1× 1 stride 16× 16× 128
ReLU 16× 16× 128 ReLU(·) on each input 16× 16× 128
Average Pooling 16× 16× 128 2× 2 kernel, 2× 2 stride 8× 8× 128

Convolution 8× 8× 128 3× 3 kernel, 1× 1 padding, 1× 1 stride 8× 8× 256
ReLU 8× 8× 256 ReLU(·) on each input 8× 8× 256

Convolution 8× 8× 256 3× 3 kernel, 1× 1 padding, 1× 1 stride 8× 8× 256
ReLU 8× 8× 256 ReLU(·) on each input 8× 8× 256

Convolution 8× 8× 256 3× 3 kernel, 1× 1 padding, 1× 1 stride 8× 8× 256
ReLU 8× 8× 256 ReLU(·) on each input 8× 8× 256
Average Pooling 8× 8× 256 2× 2 kernel, 2× 2 stride 4× 4× 256

Convolution 4× 4× 256 3× 3 kernel, 1× 1 padding, 1× 1 stride 4× 4× 512
ReLU 4× 4× 512 ReLU(·) on each input 4× 4× 512

Convolution 4× 4× 512 3× 3 kernel, 1× 1 padding, 1× 1 stride 4× 4× 512
ReLU 4× 4× 512 ReLU(·) on each input 4× 4× 512

Convolution 4× 4× 512 3× 3 kernel, 1× 1 padding, 1× 1 stride 4× 4× 512
ReLU 4× 4× 512 ReLU(·) on each input 4× 4× 512
Average Pooling 4× 4× 512 2× 2 kernel, 2× 2 stride 2× 2× 512

Convolution 2× 2× 512 3× 3 kernel, 1× 1 padding, 1× 1 stride 2× 2× 512
ReLU 2× 2× 512 ReLU(·) on each input 2× 2× 512

Convolution 2× 2× 512 3× 3 kernel, 1× 1 padding, 1× 1 stride 2× 2× 512
ReLU 2× 2× 512 ReLU(·) on each input 2× 2× 512

Convolution 2× 2× 512 3× 3 kernel, 1× 1 padding, 1× 1 stride 2× 2× 512
ReLU 2× 2× 512 ReLU(·) on each input 2× 2× 512
Average Pooling 2× 2× 512 2× 2 kernel, 2× 2 stride 1× 1× 512

Fig. 7: VGG-16 [17] base architecture for CIFAR-10 inputs. The same architecture is also used for Tiny ImageNet and

ImageNet, but applied to different input dimensions (64× 64× 3 for Tiny ImageNet and 224× 224× 3 for ImageNet). The

head architectures (classification layers) for CIFAR-10, Tiny ImageNet, and ImageNet vary (as a function of the input size and

number of output classes) and are shown in Fig. 8.

22

Layer Input Dimension Description Output Dimension

Flatten 1× 1× 512 Flatten input into a single dimension 512

Fully Connected 512 512× 256 matrix multiplication 256

ReLU 256 ReLU(·) on each input 256

Fully Connected 256 256× 256 matrix multiplication 256

ReLU 256 ReLU(·) on each input 256

Fully Connected 256 256× 10 matrix multiplication 10

(a) Head architecture for CIFAR-10.

Layer Input Dimension Description Output Dimension

Average Pooling 2× 2× 512 2× 2 kernel, 2× 2 stride 1× 1× 512
Flatten 1× 1× 512 Flatten input into a single dimension 512

Fully Connected 512 512× 512 matrix multiplication 512

ReLU 512 ReLU(·) on each input 512

Fully Connected 512 512× 512 matrix multiplication 512

ReLU 512 ReLU(·) on each input 512

Fully Connected 512 512× 200 matrix multiplication 200

(b) Head architecture for Tiny ImageNet.

Layer Input Dimension Description Output Dimension

Average Pooling 6× 6× 512 2× 2 kernel, 2× 2 stride 3× 3× 512
Flatten 3× 3× 512 Flatten input into a single dimension 4608

Fully Connected 4608 4608× 4096 matrix 4096

ReLU 4096 ReLU(·) on each input 4096

Fully Connected 4096 4096× 4096 matrix 4096

ReLU 4096 ReLU(·) on each input 4096

Fully Connected 4096 4096× 1000 matrix 1000

(c) Head architecture for ImageNet.

Fig. 8: Head architecture of VGG-16 for CIFAR-10, Tiny ImageNet, and ImageNet.

23

