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Establishing a nearly closed cycling transition in a polyatomic molecule
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We study optical cycling in the polar free radical calcium monohydroxide (CaOH) and establish an experi-
mental path towards scattering ∼104 photons. We report rovibronic branching ratio measurements with precision
at the ∼10−4 level and observe weak symmetry-forbidden decays to bending modes with nonzero vibrational
angular momentum. Calculations are in excellent agreement with these measurements and predict additional
decay pathways. Additionally, we perform high-resolution spectroscopy of the X̃ 2�+(1200) and X̃ 2�+(1220)
hybrid vibrational states of CaOH. These advances establish a path towards radiative slowing, three-dimensional
magneto-optical trapping, and sub-Doppler cooling of CaOH.

DOI: 10.1103/PhysRevA.103.043111

I. INTRODUCTION

Laser cooling, one of the cornerstones of atomic, molec-
ular, and optical physics [1,2], has enabled wide-ranging
scientific applications including ultraprecise clocks [3], quan-
tum simulation of many body systems [4], and novel quantum
computation platforms [5–7]. Extension of laser cooling tech-
niques to polyatomic molecules is at the forefront of efforts
to produce ultracold samples of polyatomic species. Ultracold
polyatomic molecules have been proposed for a wide range of
multidisciplinary applications, including quantum simulation
[8,9] and computation [10], quantum chemistry and collisions
[11,12], and tests of fundamental physics, including searches
for the electron electric dipole moment (eEDM) [13], ultra-
light dark matter [14], and fundamental parity violation [15].

In the past several years, enormous strides have been made
in direct laser cooling of polyatomic molecules, with molec-
ular beams of SrOH [16,17], YbOH [18], CaOH [19], and
CaOCH3 [20] all cooled near or below 1 mK in one transverse
dimension. The ability to rapidly scatter a large number of
photons is at the heart of these cooling techniques, which
typically require an estimated 104 scattered photons for suc-
cessful confinement in a magneto-optical trap (MOT). Thus
far, experimental efforts have successfully enabled scattering
up to ∼103 photons in polyatomic molecules [18,19].

To establish a path to a MOT, vibrational branching ratios
(VBRs) need to be determined with accuracy at, or exceed-
ing, the 10−4 level. Measurements of VBRs have previously
been performed in polyatomic molecules using dispersed laser
fluorescence [21–23]. However, previously reported measure-
ments of CaOH using this technique [21] do not provide
sufficient sensitivity to identify the loss channels needed to
scatter 104 photons.

*louisbaum@g.harvard.edu

In this work, we describe a measurement of VBRs in
CaOH by detecting accumulated population in excited rota-
tional and vibrational levels after hundreds of photons are
scattered. Cycling multiple photons enhances the measure-
ment sensitivity, probing VBRs at the 10−4 level. Several
weak, symmetry-forbidden decays are observed. We describe
and benchmark calculations of branching ratios that include
vibronic perturbations not considered in previous work. Us-
ing these calculations, we propose a photon cycling scheme
with the predicted capability to scatter an average of ∼104

photons per molecule. Finally, we perform high-resolution
spectroscopy of the X̃ 2�+(1200) and X̃ 2�+(1220) hybrid
vibrational modes. It is expected that repumping one or both
of these states will be necessary to enable radiative slowing,
trapping, and sub-Doppler cooling of CaOH.

II. VIBRATIONAL BRANCHING OVERVIEW
AND MEASUREMENTS

In order to create a sustained cycling transition in CaOH, it
is necessary to close loss channels due to both vibration and
rotation. The relative probability of spontaneous decay to dif-
ferent vibrational states is described by vibrational branching
ratios (VBRs). These are closely related to the Franck-Condon
factors (FCFs) of the molecule, defined by the overlap integral
between vibrational wavefunctions in the ground and excited
states (see Sec. III). CaOH is an example of a broad class of
polyatomic molecules that have been identified as amenable
to laser cooling due to strong electronic transitions and near-
diagonal FCFs [21,24,25].

The main laser cooling transition in CaOH is the
X̃ 2�+(000) → Ã 2�1/2(000) transition. Vibrational states
are labeled with the quantum numbers (v1, v2�, v3), where v1,
v2, and v3 are the numbers of quanta in the symmetric (pre-
dominantly Ca–O) stretching, bending, and antisymmetric
(predominantly O–H) stretching modes, respectively. � labels
the nuclear orbital angular momentum in the bending mode
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FIG. 1. Vibrational structure of CaOH and laser cooling scheme
experimentally considered in this work.

[26]. The highly diagonal FCFs of the Ã 2�1/2(000) state sup-
press spontaneous decay to excited vibrational states during
each scattering event; nonetheless, some excited vibrational
states must be repumped due to significant optical pumping
after many photons are scattered. In this work, we experi-
mentally characterize the photon cycling scheme depicted in
Fig. 1 and show that it is capable of scattering∼1000 photons.
Note that multiple excited electronic states are used to cycle
photons, which must be taken into account when comparing
measured and calculated VBRs as discussed in Sec. III.

For states with � = 0, rotational losses are prevented by
driving the P1 (N ′′ = 1) and PQ12 (N ′′ = 1) transitions [27].
In the ground electronic state of CaOH (X̃ 2�+), the N ′′ = 1
manifold is split by the spin-rotation interaction into J ′′ = 1/2
and J ′′ = 3/2 components separated by 52 MHz. Both com-
ponents are addressed by using an acousto-optic modulator
(AOM) to add a frequency-shifted sideband to the laser light.
All hyperfine splittings are below the natural linewidth of
the optical transition [Fig. 2(a)]. For states with � �= 0, parity
doubling additionally enables decay to N ′′ = 2, which must
be addressed to achieve full rotational closure [Figs. 2(b) and
2(c)].

CaOHmolecules are produced using a cryogenic buffer gas
source described in previous work [19] and depicted in Fig. 3.
Densities of ∼1010 cm−3 in a single rotational state (N ′′ = 1)
are routinely achieved. CaOH molecules are extracted from
a two-stage buffer gas cell and form a cryogenic buffer-gas
beam (CBGB) [29]. The CBGB is collimated by a 3 × 3 mm
aperture to ensure that all molecules are addressed with the
applied laser light.

We use a combination of two measurements to deter-
mine the VBRs of CaOH. First, we determine VBRs from
Ã 2�1/2(000) to the X̃ 2�+(000) and X̃ 2�+(100) states by
measuring relative population accumulation in the (100) level

FIG. 2. Allowed rotational transitions for Ã 2�1/2 ← X̃ 2�+

CaOH laser cooling. (a) All nondegenerate ground states of 2�+

symmetry [e.g., (000), (100), (0200)] have only two allowed ro-
tational components split by ∼50 MHz. Hyperfine splittings of
1.5 MHz and 7 kHz in the J ′′ = 3

2 and J ′′ = 1
2 states, respectively

[28], are not shown. (b) Because of parity doubling in states of 2�

symmetry [e.g., (0110)], additional decay is allowed to the N ′′ = 2
rotational level. This must be repumped using an additional laser
frequency ∼40 GHz away from the N ′′ = 1 transition. (c) States
with 2� symmetry [e.g., (0220), (1220)] have no N ′′ = 1 component,
so only the OP12 line must be addressed. Note that decay from
Ã 2�1/2(000) to the � �= 0 states in (b) and (c) is symmetry forbidden,
and only occurs due to vibronic perturbations in the excited state
(Sec. III).

after optically pumping molecules out of the (000) ground
state. This measurement is combined with previously pub-
lished results [21] to more precisely quantify the vibrational
branching ratios. Second, we determine VBRs to other excited
vibrational states in the X̃ manifold by optically pumping
molecules out of X̃ 2�+(000) and X̃ 2�+(100) and then mea-
suring the population increase in these other vibrational levels.
Relative measurements of recovered populations, combined
with measurements of the total population lost to unaddressed
levels, can be used to reconstruct the vibrational branching
ratios of this laser cooling scheme.

A. Vibrational branching ratios to ˜X (000) and (100)

In the first measurement, the X̃ 2�+(000) → Ã 2�1/2(000)
laser is retroreflected through the interaction region as de-
picted in Fig. 3(a). Molecules interact with this light field,
cycling photons until >95% of the molecular population has
decayed to a dark vibrational state. The increase in molec-
ular population in each excited vibrational state is directly
proportional to the vibrational branching ratio to that state.
A laser addressing the X̃ 2�+(100) → B̃ 2�+(000) transition
recovers population lost to the X̃ 2�+(100) state. Molecules
are detected with lasers addressing the X̃ 2�+(000) →
B̃ 2�+(000) and X̃ 2�+(100) → B̃ 2�+(000) transitions, and
the resulting laser-induced fluorescence is imaged onto an
electron multiplying charged coupled device (EMCCD) cam-
era. Absolute population drifts due to ablation fluctuations
are mitigated by normalizing the recovered population with
interleaved measurements of the total population taken with
the light in the interaction region blocked. The results of this

043111-2



ESTABLISHING A NEARLY CLOSED CYCLING … PHYSICAL REVIEW A 103, 043111 (2021)

FIG. 3. (a) Experimental configuration used to measure vibrational branching ratios (VBRs) from Ã 2�1/2(000) to X̃ 2�+(000) and (100).
(b) Experimental configuration used to measure VBRs to higher vibrational states. Colors indicate which transitions are addressed in each
optically accessible region. Grey and dotted lines indicate that the specific transition used depends on the vibrational state targeted in a
particular measurement.

measurement are presented in Fig. 4(a), where the fractional
population recovered is Prec = 85.2(6)%.

We model this process as a discrete Markov chain with two
absorbing states as indicated in Fig. 4(b). Each discrete step
corresponds to a spontaneous emission event which causes the
population to evolve according to the expression⎡

⎢⎣
Pn+1
(000)

Pn+1
(100)

Pn+1
other

⎤
⎥⎦ =

⎡
⎢⎣
Ta 0 0

Tb 1 0

Tc 0 1

⎤
⎥⎦

⎡
⎢⎣
Pn
(000)

Pn
(100)

Pn
other

⎤
⎥⎦. (1)

In this expression the parameters Ta, Tb, and Tc correspond
to the vibrational branching ratios from Ã(000) to X̃ (000),
X̃ (100), and all other loss channels, respectively. Pn

(000), P
n
(100),

and Pn
other are the molecular populations in X̃ (000), X̃ (100),

and all other states, respectively, after n spontaneous decay
events. This formula can be recursively applied with the re-
sulting population at any step (n) described by the expression

−→
P n =

⎡
⎢⎣
Ta 0 0

Tb 1 0

Tc 0 1

⎤
⎥⎦

n

−→
P 0. (2)

−→
P 0 is a vector that represents the initial distribution of molec-
ular population and is experimentally determined. In this first
measurement, we do not measure the final population Pn

other,
and as a result our model is insensitive to this quantity. We
represent

−→
P 0 as

−→
P 0 =

⎡
⎢⎣
P0
(000)

P0
(100)

P0
other

⎤
⎥⎦ =

⎡
⎢⎣
0.92(1)

0.08(1)

0

⎤
⎥⎦,

where P0
(000) and P0

(100) are experimentally determined and
P0
other is set to zero to reflect the insensitivity of the model. As

photons are scattered, the percentage of molecular population
in excited vibrational states converges to an asymptotic limit.
Previous measurements of vibrational branching in Ref. [21]
have measured the VBRs to X̃ (000) and X̃ (100): Ta =
0.957(2) and Tb = 0.043(2). However, these values sum to
1, which is nonphysical given the known decay to higher
vibrational states. To account for this, we use these measure-
ments to constrain the ratio Ta/Tb = 0.957(2)

0.043(2) = 22.3(1.0). In
addition, conservation of probability demands that Ta + Tb +
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FIG. 4. (a) Recovered population as a function of scattered pho-
tons given by the discrete Markov chain model. The black line
depicts the molecular population in both X̃ (000) and X̃ (100) vibra-
tional states. The 1σ uncertainly in the ratio of Ta/Tb is indicated
by the grey dashed lines. Experimental measurements are plotted
separately as the number of scattered photons is poorly defined;
however, depletion measurements confirm that these data points are
within the asymptotic limit (>70 scattered photons). The 12 black
points indicate individual measurements, each averaging over 75 ex-
perimental cycles. The scatter in these measurements is due primarily
to fluctuations in background level caused by scattered light. The
mean of these experimental measurements is given by the blue line,
where the shaded blue region denotes the standard error in the mean.
The results indicate that the combined VBR to both the X̃ (000) and
X̃ (100) states in this laser cooling scheme is 0.9918(8). (b) Dia-
grammatic representation of the Markov chain model. Population
evolves between three states representing X̃ (000), X̃ (100), and all
other vibrational states. For each spontaneous emission event the
molecular population evolves as shown by the black arrows with the
probabilities listed. For this measurement the interaction lasers only
address the (000) state. Both (100) and “Other” are absorbing states
as indicated by the unit probability of remaining in the same state.
Spontaneous vibrational decay is negligible over the experimental
timescale.

Tc = 1. These two constraints, combined with the experimen-
tal measurement of Prec described above, allow the ratio of
Tb/Tc to be uniquely determined. The values of Ta, Tb, and Tc
are extracted from the model, and the combined vibrational
branching ratio from Ã(000) to X̃ (000) and X̃ (100) is found
to be Ta + Tb = 0.9918(8). The uncertainty in this value is
obtained by allowing each of Prec and Ta/Tb to vary by up to
1 standard error in the model, computing the corresponding
Ta + Tb value, and taking one half the maximum difference
found.

B. Vibrational branching ratios to ˜X (200), (0200), (0220),
and (0110)

In order to measure the VBRs to higher-lying vibra-
tional states, we deplete population from the X̃ (000) and

TABLE I. Comparison of calculated and observed rovibronic
branching ratios from the combined Ã 2�1/2(000) ← X̃ 2�+(000) +
B̃ 2�+(000) ← X̃ 2�+(100) photon cycling scheme used in this
work. Branching ratio calculations based on unperturbed harmonic
wave-function overlap fail to adequately capture decay to the
X̃ 2�+(0200), (0220), and (0110) bending modes. These discrepan-
cies are resolved by including Fermi resonance and Renner-Teller
interactions. All measured and calculated branching ratios are ro-
tationally resolved, with listed decays from J ′ = 1/2, (+) parity
excited states to X̃ 2�+(v1v�

2v3), N
′′ = 1, (−) parity ground states.

Decay Harmonic Correcteda Observed

(000) 0.957 0.955 0.9492(27)
(100) 0.042 0.038 0.0426(19)
(200) 0.6 × 10−3 0.4 × 10−3 2.5(3) × 10−3

(0200) 1.6 × 10−4 4.6 × 10−3 3.3(4) × 10−3

(0220) 0 1.0 × 10−3 8.2(1.3) × 10−4

(0110), N ′′ = 1 0 4.3 × 10−4 6.4(1.1) × 10−4

Other 1.0 × 10−4 6.3 × 10−4 1.1(1) × 10−3

aCorrections due to Renner-Teller and Fermi resonance couplings, as
described in the text.

X̃ (100) states and directly measure the accumulation of
molecules in other excited vibrational levels. In the interac-
tion region [see Fig. 3(b)], photon cycling lasers address-
ing the X̃ 2�+(000) → Ã 2�1/2(000) and X̃ 2�+(100) →
B̃ 2�+(000) transitions are retroreflected between two mirrors
for a total of ∼12 cm of interaction distance. This inter-
action length is sufficient to optically pump ∼90% of the
population to higher vibrational states, which corresponds
to >250 scattered photons. Cycling multiple photons is cru-
cial to this measurement as it allows for substantial optical
pumping (10% level population transfer) through small decay
pathways. We selectively recover population from the states
of interest by applying appropriate repumping lasers in the
clean-up region.

The total loss probability must sum to 1 and the measured
VBR to X̃ (000) and X̃ (100) accounts for 0.9918(8) of this
total. The remaining decay probability to higher vibrational
levels is assigned according to the fraction of population re-
covered from each state following the depletion and revival
process. During these measurements we monitor both the total
depletion from X̃ (000) and X̃ (100) as well as the natural
population in the excited vibrational states of interest, both
of which are accounted for in post-analysis as described in
detail in Appendix A. The results are summarized in Table I.
The measured VBRs are in agreement with previous results
[21]. While addressing the five decay pathways listed in
Table I, 13(1)% of the depleted population is not recovered.
We attribute this loss to yet higher-lying states and assign a
corresponding VBR to all vibrational states not addressed in
the laser cooling scheme in Fig. 1.

III. CALCULATED BRANCHING RATIOS

The strength of generic, dipole-allowed rovibronic decays
is governed by the Einstein A coefficient [30]

AJ ′→J ′′ = 16π3ν3|〈μ〉|2
3ε0hc3(2J ′ + 1)

, (3)
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TABLE II. Degeneracy-weighted rotational line strengths,
SJ

′
J ′′ (ζ ′, ζ ′′), calculated for transitions from J ′ = 1/2, (+) parity ex-
cited states. The same factors hold for other vibrational levels of
the X̃ 2�+ ground state with similar vibronic symmetry. All ground
states listed have (−) parity. Calculations make use of dipole matrix
elements found, e.g., in Ref. [31].

Excited Ground N ′′ = 1 N ′′ = 1 N ′′ = 2
state state J ′′ = 1/2 J ′′ = 3/2 J ′′ = 3/2

Ã(000)2�1/2 → X̃ (000)2�+ 2/3 1/3
B̃(000)2�+ → X̃ (000)2�+ 1/3 2/3
Ã(010)μ2� (+) → X̃ (0110)2� 0.108 0.826 0.066
Ã(010)κ2� (+) → X̃ (0110)2� 0.559 0.007 0.434
B̃(0110)2� → X̃ (0110)2� 1/3 1/6 1/2
Ã(0220)2�1/2 → X̃ (0220)2� 1

where |〈μ〉|2 = ∑
M ′M ′′ |〈η′, v′, J ′M ′|μ|η′′, v′′, J ′′M ′′〉|2 is the

degeneracy-weighted line strength of the electric dipole tran-
sition and ν is the transition frequency. The rovibronic states
are |η, v, JM〉 and consist of electronic, |η〉, vibrational, |v〉,
and rotational, |JM〉, components. The line strength may be
approximately separated as follows:

|〈μ〉|2 ≈ qv′−v′′ |Re|2SJ ′
J ′′ (ζ ′, ζ ′′), (4)

where |Re|2 is the electronic transition dipole moment and

qv′−v′′ = |〈v′′|v′〉|2 (5)

is the Franck-Condon factor (FCF). SJ
′

J ′′ (ζ ′, ζ ′′) is the Hönl-
London (HL) factor, which characterizes the rotational line
strength but depends in general on the vibronic states in-
volved, labeled |ζ 〉 ≡ |η, v〉 for notational convenience. Some
relevant HL factors are given in Table II.

Both the FCFs and the HL factors may be calculated for
CaOH using empirical methods. The transition dipole moment
|Re|2, meanwhile, is treated as constant for all rovibronic tran-
sitions in an electronic band, and may be factored out. This
approximation is justified by the good agreement of calcu-
lated VBRs with experimental results (Sec. III D), and by the
practical value of calculations grounded solely in empirical
parameters (determination of |Re|2 would necessarily require
some reference to ab initio methods). Under this approxima-
tion, the branching ratio from an excited state |ζ ′, J ′〉 to a
ground state |ζ ′′, J ′′〉 is

P|ζ ′,J ′〉→|ζ ′′,J ′′〉 ≡ ν3qv′−v′′SJ
′

J ′′ (ζ ′, ζ ′′)
N

, (6)

where

N =
∑
i

ν3
i qv′−v′′

i
SJ

′
J ′′
i
(ζ ′, ζ ′′

i ) (7)

is a normalization factor. The sum is over all ground states
|ζ ′′

i , J ′′
i 〉 to which the initial state may decay.

In Sec. III A below, we determine FCFs for CaOH by eval-
uating Eq. (5) in the harmonic approximation. In Secs. III B
and III C we consider vibronic mixing due to Renner-Teller
perturbations and Fermi resonance that significantly alters the
results obtained from harmonic FCFs alone. In Sec. III D we
combine these effects to estimate VBRs for CaOH.

A. FCF calculations in the harmonic approximation

Within the harmonic approximation, Eq. (5) may be evalu-
ated analytically using empirically measured force constants,
bond lengths, and vibrational frequencies for CaOH. We eval-
uate these integrals by first performing a classical Wilson
GF-matrix analysis of the normal modes [32], then evaluating
the overlap integrals (including Duschinsky rotations) using
the formalism of Sharp and Rosenstock [33,34]. This method
is the same as the one used in Ref. [21] and is described in
more detail in Appendix D. The resulting VBRs, accounting
for the frequency and Hönl-London scaling factors [Eq. (6)],
are shown in the first column of Table I. While this calculation
accurately reproduces observed decays to the Ca–O stretch-
ing modes, it underestimates the observed (0200) bending
mode decay by an order of magnitude and also fails to ex-
plain �� �= 0 transition strength. A more accurate description
of these discrepancies requires consideration of additional
perturbations.

B. Renner-Teller perturbation

Vibrational branching to the X̃ (0110) and X̃ (0220) states
is suppressed due to the nominal selection rule �� = 0
due to the Born-Oppenheimer (BO) approximation. How-
ever, BO approximation breakdown at the level of a few
parts per thousand is not unexpected. Transitions with |��| =
1 have been previously observed in SrOH [35,36], BaOH
[37], and CaOH [38,39]. In this work, we consider two
decays in which |��| �= 0: Ã 2�1/2(000) → X̃ 2�+(0110)
and Ã 2�1/2(000) → X̃ 2�+(0220). These decays are due to
Renner-Teller (RT) induced vibronic coupling. The Renner-
Teller Hamiltonian has been covered in depth elsewhere
[31,40–45] and is described in Appendix E.

There are three RT-induced vibronic coupling pathways
relevant to this work: (1) direct RT mixing between Ã(000)
and B̃(0110); (2) second-order coupling between Ã(000) and
Ã(0110); and (3) direct RT mixing between Ã(000) and
Ã(0220). Each of these contributions is discussed in more
detail below.

˜A 2�1/2(000) → ˜X 2�+(0110) decay

The |��| = 1 transition has been previously observed in
several alkaline-earth monohydroxides [35–39]. This tran-
sition could gain strength due to direct vibronic coupling
between B̃ 2�+(0110) and Ã 2�1/2(000), or through a second-
order spin-orbit vibronic coupling [46]. Previous authors have
favored the latter explanation based on the observation that
the intensity grows with atomic spin-orbit constant [35,36,38].
In this work we find that both contributions are necessary
to satisfactorily explain the observed |��| = 1 branching in
CaOH.

The direct vibronic mixing between Ã(000) and B̃(0110)
may be evaluated in perturbation theory as

|〈B̃(0110)2�|Ã(000)2�1/2〉|2

≈ |〈B̃|HRT|Ã〉|2
(�EAB − ω2)2

≈ gK

ω2
(
1 − ω2

�EAB

)2
≈ 1.2 × 10−3, (8)
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TABLE III. Compiled spectroscopic parameters, as defined in
the text, used in the branching ratio calculations in this work.

Parameter Value (cm−1) Ref.

ASO 66.8181 [39]
gK 0.5937 [39]
ω2 366.435 [47]
εω2 −36.5641 [47]
�EAB −2024.14 [39,48]
�E(020) −702.051 [39,47]
g22 7.5314 [47]

where �EAB = E (Ã) − E (B̃) is the splitting between the Ã
and B̃ state energy origins, ω2 is the bending vibrational fre-
quency, and the strength of the relevant RT interaction is con-
tained in the spectroscopic parameter gK (see Appendix E).
A bar is used to specify unperturbed basis states, which are
eigenstates of the molecular Hamiltonian absent the pertur-
bations considered here. All spectroscopic quantities were
measured in Refs. [39,47,48] and are compiled in Table III.

Vibronic mixing between Ã(000) and Ã(0110) is induced
by the HRT × HSO interaction, where HSO is the spin-orbit
Hamiltonian. This second-order interaction proceeds via both
the B̃(000)2�+ and the B̃(0110)2� states, and the fractional
mixing is given by (see Appendix E)

|〈Ã(010)2�|Ã(000)2�1/2〉|2 ≈ 2

∣∣∣∣2〈Ã|HSO|B̃〉〈B̃|HRT|Ã〉
ω2�EAB

∣∣∣∣
2

≈ 4gKA2
SO

ω3
2

≈ 2.2 × 10−4, (9)

where ASO is the spin-orbit constant in the Ã 2� state. The
factor of 2 in the numerator of the first line accounts for
contributions via the B̃(000) and B̃(0110) states, which con-
structively interfere. An additional, overall factor of 2 arises
due to the presence of two distinct vibronic components of
the Ã 2�(010) vibrational manifold (see Appendices B and
E). These components—labeled μ2�(+) and κ2�(−) [39],
where μ and κ denote the lower- and higher-energy states,
respectively—are split via the RT and spin-orbit interactions
and both mix with Ã(000)2�, approximately doubling the
total Ã(000)-Ã(0110) admixture. Though this second-order
Ã(000)-Ã(0110) mixing is still a factor of ∼5 weaker than
direct Ã(000)-B̃(0110) mixing in CaOH, it is expected to dom-
inate for the heavier alkaline earth monohydroxides, which
have weaker vibronic coupling but a significantly stronger
spin-orbit interaction [36,37].

Applying the scaling factors of Eq. (6), for the N ′′ = 1 ro-
tational component of X̃ 2�+(0110), we arrive at a branching
ratio of

P(000)−(0110) ≈ ν3

N

∑
N ′′ = 1

J ′′ = 1/2, 3/2

×
∣∣∣∣∑

ζ ′
〈Ã(000)2�1/2|ζ ′〉〈ζ ′|X̃ (010)〉〈μ〉ζ ′

N ′′,J ′′

∣∣∣∣2

≈ 3.4 × 10−4 (10)

where the second sum is over the excited vibronic states
ζ ′ = Ã(010)μ, Ã(010)κ , and B̃(010) (other states with � �= 1
are symmetry forbidden). Each term is the product of a vi-
bronic mixing amplitude 〈Ã(000)2�1/2|ζ ′〉, a harmonic FCF
〈ζ ′|X̃ (010)〉, and a rotational factor 〈μ〉ζ ′

N ′′,J ′′ . The relative ro-
tational transition intensities are given by the Hönl-London
factors, SJ

′
J ′′ (ζ ′, ζ ′′) ≡ |〈μ〉ζ ′

N ′′,J ′′ |2, shown in Table II. The VBR
is less than the sum of the mixing probabilities in Eqs. (8)
and (9) because only decay to N ′′ = 1 is considered (N ′′ = 2
contributes another ∼3 × 10−4), and because interference be-
tween terms in the summation of Eq. (10) reduces the total.

Performing similar calculations for the B̃ 2�+(000) state
of CaOH, we determine VBRs (dominated by direct RT
mixing with the Ã(010)2� states) of 2.5 × 10−3 to N ′′ = 1
and 3.6 × 10−4 to N ′′ = 2. This agrees very well with the
measured (rotationally unresolved) VBR of 3 × 10−3 from
previous dispersed-fluorescence experiments [21]. Because
∼4.3% of the total photons scattered in the experimental cy-
cling scheme (Sec. II) are from B̃(000), we therefore calculate
an “effective” VBR for X̃ (0110),N ′′ = 1 decay of 0.957 ×
(3.4 × 10−4) + 0.043 × (2.5 × 10−3) ≈ 4.3 × 10−4.

˜A 2�1/2(000) → ˜X 2�+(0220) decay

The |��| = 2 transition gains transition strength due to
mixing of the Ã 2�1/2(000) state with the Ã 2�1/2(0220) state
by the Renner-Teller Hamiltonian. The quadrupolar term in
HRT can couple states according to the selection rules �� =
±2, �� = ∓2, �� = 0. This term therefore mixes certain
components of the Ã 2�(000) and Ã 2�(020) states at first or-
der. (The dipolar term of HRT also contributes at second order
to this mixing [45].) A very similar interaction has previously
been observed between Ã 2�(0110) and Ã 2�(0330) in CaOH
[39].

The relevant interactions are parametrized by the quantity
εω2, where ε is the Renner parameter. The matrix element
connecting the Ã(000) and Ã(0220) states is εω2/

√
2 [39], and

the resulting admixture is

|〈Ã(0220)2�1/2|Ã(000)2�1/2〉|2

≈ (εω2/
√
2)2

(�E(020) − 4g22)2
≈ 1.2 × 10−3, (11)

where �E(020) = E(000) − E(020) is the difference between the
Ã(000) and Ã(0200) origin energies, and g22�2 is the energy
shift of a state with vibrational angular momentum � �= 0.

Applying Eq. (6), the VBR for decay from Ã(000)2�1/2 →
X̃ (0220)2� is therefore

P(000)−(0220) ≈ ν3

N
|〈Ã(0220)2�1/2|Ã(000)2�1/2〉|2

× S1/23/2 (Ã(02
20), X̃ (0220))q(0220)−(0220)

≈ 1.0 × 10−3, (12)

where q(0220)−(0220) ≈ 0.95 is the harmonic FCF defined in
Eq. (5), and all decay is to the (N ′′ = 2, J ′′ = 3/2,−) rota-
tional level.
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C. Fermi resonance

Because the Ca–O stretching frequency is approximately
double that of the Ca–O–H bending frequency in CaOH
[47], vibrational states differing by �v1 = ±1, �v2 = ∓2
come in closely spaced groups, e.g., (100)–(020) and
(200)–(120)–(040) (see Fig. 8 in Appendix B). States of
the same vibronic symmetry within these polyads are mixed
by a cubic term in the potential energy surface of the form
VF = k122Q1Q2

2 [49,50], where Q1 and Q2 are normal coordi-
nates associated with Ca–O stretching and Ca–O–H bending,
respectively. This leads to intensity borrowing which can sig-
nificantly affect the magnitude of vibronic decay channels
including X̃ 2�+(0200) and X̃ 2�+(1200). This effect is well
understood, and is known as the Fermi resonance interaction
[49,50].

The Fermi resonance interaction is quantified by a pa-
rameter W , which is proportional to k122 and parametrizes
the strength of the cubic mixing (see Appendix F). It is es-
timated that W ≈ −10.7 cm−1 in the X̃ 2�+ state based on
prior measurements in CaOH (see Appendix F). Including this
off-diagonal coupling within the X̃ (100)–(0200) Fermi dyad
leads to the following mixing amplitudes:

|X̃ (100)〉 = 0.96|X̃ (100)〉 + 0.28|X̃ (0200)〉,
|X̃ (0200)〉 = −0.28|X̃ (100)〉 + 0.96|X̃ (0200)〉. (13)

where a bar is used to denote the unperturbed harmonic
oscillator basis states. The VBR from Ã 2�1/2(000) →
X̃ 2�+(0200) is then given by

P(000)−(0200)

≈ ∣∣0.96〈X̃ (0200)|Ã(000)〉 − 0.28〈X̃ (100)|Ã(000)〉∣∣2
× ν3

(
S1/23/2 + S1/21/2

)
N

≈ 4.6 × 10−3, (14)

where each inner product on the right-hand side is a harmonic
overlap integral that can be evaluated using the methods
of Sec. III A, and the Hönl-London factors are those for
� = 0 states in Table II. A similar expression applies to the
X̃ 2�+(100) branching ratio. The Fermi resonance mixing
therefore increases the branching ratio to X̃ (0200) by an order
of magnitude compared to the purely harmonic result.

Fermi mixing between X̃ (200) and X̃ (1200) is also ex-
pected to cause significant branching to the X̃ 2�+(1200)
state. This is predicted to be one of the primary loss channels
from the photon cycling scheme in Fig. 1.

D. Calculation results

Table I compares calculated branching ratios with the
experimental results of Sec. II. The calculations generally ex-
hibit good agreement with measured branching ratios. While
branching to the Ca–O stretching modes (000), (100), and
(200) is dominated by harmonic wave-function overlap, de-
cay to the bending modes arises predominantly from other
mechanisms. Branching to X̃ 2�+(0200) occurs primarily due
to Fermi resonance mixing with the X̃ 2�+(100) state, while
decay to the � �= 0 bending modes (0220) and (0110) arises
from vibronic perturbations in the Ã and B̃ states, as described

in Sec. III B. The largest remaining disagreement is in decay
to the (200) stretching mode, which is likely enhanced due to
anharmonic terms in the potential energy surface not included
in these calculations [51]. All other values agree within a
factor of 2 with their experimental counterparts and may be
regarded as useful predictors of the relative significance of
vibrational branching pathways.

For most states the Ã → X̃ VBR is a good approximation
to the observed branching out of the experimental cycling
scheme, which employs both X̃ 2�+(000) → Ã 2�1/2(000)
and X̃ 2�+(100) → B̃ 2�+(000) transitions. One notable ex-
ception, however, is the X̃ (0110) state, which experiences
significant decay from B̃(000) with a VBR of 3(1) × 10−3

[21]. To account for this, we scale the separately calculated
Ã → X̃ and B̃ → X̃ VBRs by the relative number of photon
scattering events through each excited state [21]. The effective
branching ratio out of the experimental cycling scheme is
therefore approximately

Peff ≈ 0.957PÃ→X̃ + 0.043P̃B→X̃ (15)

since on average ∼95.7% (∼4.3%) of the surviving molecular
population is excited from X̃ (000) [X̃ (100)] based on the
measured branching ratios. This correction is significant only
for the X̃ (0110) state, though makes small contributions to the
other VBRs included in Table I.

The final row of Table I compares the calculated and
measured total branching ratio to states not addressed by the
photon cycling scheme of Fig. 1. We may use the calculations
to make qualitative predictions about the states that must be
addressed to cycle up to ∼104 photons in CaOH. The calcu-
lated loss is dominated by decay to the unaddressed N ′′ = 2
component of X̃ (0110) at the ∼3 × 10−4 level; and by loss to
X̃ 2�+(1200) at ∼1.5 × 10−4 due to Fermi resonance mixing
with X̃ (200). In anticipation of the need to repump the latter
state, high resolution spectroscopy of the (120) manifold was
performed (see Appendix C).

Additional loss channels may be more significant than
these calculations indicate, gaining strength through pertur-
bations neglected in the analysis. Specifically, though decay
to X̃ (300) is predicted to occur at the ∼10−6 level based on
harmonic calculations, it is likely that anharmonicity in the
potential energy surface will significantly enhance loss to this
state. Preliminary experimental measurements indeed suggest
that the VBR to X̃ (300) may be as large as ∼1 × 10−4.
Finally, decay to the O–H stretching mode may be significant
at this level, as experimental uncertainty in the O–H bond
length makes calculations for this state unreliable.

Taken together, these calculations predict that 2–3 ad-
ditional repumping lasers, in addition to remixing of the
X̃ (0110)(N ′′ = 1, 2) levels via microwave radiation or laser
frequency modulation, will be necessary to scatter ∼5000
photons in CaOH before significant population loss to dark
states. One proposed cycling scheme is illustrated in Fig. 5.
The calculations presented above predict that it should be pos-
sible to scatter 4700 photons per molecule on average with this
combination of repumping lasers. This should be sufficient
to enable radiative slowing and magneto-optical trapping of
CaOH molecules if loss of some molecules to dark states is
tolerated.
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FIG. 5. Photon cycling scheme and vibrational structure of
CaOH to achieve scattering of ∼5000 photons. All arrows represent
transitions coupled by laser light. The N ′′ = 1 and N ′′ = 2 rotational
components of the X̃ 2�+(0110) state may either be coupled by
40 GHz microwave radiation or directly addressed by frequency
modulation of the laser radiation.

IV. CONCLUSION

This work establishes a vibrational repumping scheme en-
abling deep laser cooling and control of CaOH despite its
complex internal structure. Our experimental measurements
validate calculations used to estimate higher-order decay path-
ways. Using these experimentally validated predictions, we
propose a laser cooling scheme (shown in Fig. 5) capable
of scattering on the order of ∼5000 photons per molecule
on average, which should enable experimental efforts to im-
plement radiative slowing, three-dimensional magneto-optical
trapping, and, ultimately, deep laser cooling into the ultracold
regime. The spectroscopy presented in Appendix C estab-
lishes a clear path towards the experimental implementation
of this laser cooling scheme. While the measurements pre-
sented here are unique to CaOH, the experimental methods
and calculations outline a general framework that could be
used to predict and confirm branching ratios in other molec-
ular candidates for direct laser cooling. The insights gained
here for CaOH can be generalized to support recent proposals
extending laser cooling to symmetric and asymmetric top
molecules [20,24,25,52,53] and even molecules with multiple
cycling centers [54–57].

ACKNOWLEDGMENTS

We would like to thank L. Anderegg and Z. Lasner for
insightful discussions. This work was supported by the NSF,
AFOSR, and ARO. N.B.V. acknowledges funding from the
NDSEG fellowship, and B.L.A. from the NSF GRFP.

APPENDIX A: EXPERIMENTAL SEQUENCE FOR SEC. IIB

The experimental sequence for these measurements inter-
leaves experimental conditions to normalize against fluctua-

(a
rb

. u
ni

ts
)

FIG. 6. Molecular signal under the four experimental configu-
rations to determine the repump fraction of X̃ (0110). This depicts
how substantial fractions of molecular population may be optically
pumped via small decay pathways during repeated photon cycling.

tions in molecular number that are common for ablation-based
production. This sequence also determines the non-negligible
natural population present in the excited vibrational modes
and the results of imperfect optical pumping. Collecting data
in four different experimental conditions allowed us to mea-
sure and correct for these factors and extract the percentage
of recovered population (Prec). These conditions are indicated
below, where “interaction,” “cleanup,” and “detection” refer
to the regions of optical access depicted in Fig. 3(b):

A detection light only
B detection light and cleanup light
C interaction light and detection light
D interaction, cleanup, and detection lights
These four measurement configurations allow us to ex-

tract the population optically pumped into higher vibrational
states (A − C), the natural population in higher vibrational
states (B − A), and the population recovered from excited
vibrational states [D − C − (B − A)], all while normalizing
against ablation fluctuations. The recovered population, Prec,
is the percentage of depleted population that is recovered
upon repumping one (or many) excited vibrational states and
calculated as

Prec = D − C − (B − A)

A − C
. (A1)

An example of the data collected from this experimental
sequence is given in Fig. 6, where each of the experimental
conditions is indicated.

APPENDIX B: SUPPLEMENTARY LEVEL DIAGRAMS

Level diagrams illustrating the Renner-Teller and Fermi
resonance mixings discussed in the text are provided in Figs. 7
and 8.
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FIG. 7. Illustration of the processes leading to vibronic mixing
of Ã 2�(000) with states of � = 1 character. First-order mixing
due to the dipolar term of HRT directly connects Ã(000)2�1/2 and
B̃(0110)2�. Additionally, second-order mixing between the Ã(000)
and Ã(0110) vibrational manifolds occurs when the spin-orbit inter-
action, HSO, is also considered. This second-order process occurs via
the B̃(0110)2� state, as well as through B̃ 2�+(000) via an analogous
process (not pictured). Admixtures of both the μ2� (+) and κ2� (−)

[39,58] components of the Ã(010) vibronic manifold appear due to
this process. Energies are not shown to scale.

APPENDIX C: SPECTROSCOPY OF COMBINATION
BANDS

While high-resolution spectroscopy exists for the (300),
(400), and (0110) vibrational manifolds of the X̃ 2�+ state
[39,59], there are no such data for the (120) manifold required
to achieve a MOT of CaOH.1 Therefore, high-resolution spec-
troscopy of the X̃ (1200) and X̃ (1220) repumping transitions
was performed here.

Population of the X̃ (1200) [X̃ (1220)] state was enhanced
via off-diagonal vibronic decay after exciting molecules on
the X̃ (000) → Ã(0200) [X̃ (000) → Ã(0220)] P11 (J ′′ = 3/2)
and PQ12 (J ′′ = 1/2) transitions.2 This ensured that only
the (N ′′ = 1, J ′′ = 1/2, 3/2) rotational states relevant to laser
cooling would be populated. A cw dye laser was then scanned
over the repumping transition of interest. Several rovibronic
transitions were observed; the absolute frequency of these
transitions is reported in Table IV. The relative frequency of
the excitation laser was referenced to a High Finesse WS7
wave meter. Empirically, the relative accuracy of the wave
meter has been verified to <1 MHz when continuously cal-
ibrated with an atomic reference [61]. The absolute frequency
was obtained by referencing the observed calcium 4s2 1S0 →
4s4p 3P1 intercombination line to the accepted literature value
[62]. The frequency offset (relative frequency minus absolute

1This manifold was, however, observed at low resolution in
Ref. [60].
2For notational clarity, we label the Ã state vibrational levels

by their dominant character. Specifically, the correspondence is
Ã(0200) → Ã(020)μ2�1/2 and Ã(0220) → Ã(020)κ2�1/2 in the no-
tation of Ref. [47].

FIG. 8. Low-lying vibrational levels of the X̃ 2�+ state of CaOH.
Groups of near-degenerate states with significant Fermi resonance
mixing considered in this work are indicated by gray boxes. Note
that Fermi resonance between (1110) and (0310) may also occur but
is not considered here.

frequency) is assumed to be constant, and this constant correc-
tion is applied to the transitions reported in Table IV. Several
other known atomic and molecular transitions have been
observed using this frequency reference, and the standard
deviation of the frequency offsets from these measurements
is ∼150 MHz. Rotational assignments were verified by se-
lectively populating only specific rotational ground states as
described above, and by confirming that the observed rota-
tional spacings and spin-orbit splittings were consistent with
the assignments.

TABLE IV. Transitions observed during this work, reported in
units of THz. The uncertainty in absolute frequency (∼150 MHz)
is estimated by comparing several measured transitions to accepted
literature values, and applying a constant frequency correction to
compensate. The remaining error is due to variation in these offsets
as a function of wavelength, and is expected to manifest itself as an
additional uniform shift of all frequencies reported here. The error
in relative frequency (∼10 MHz) is limited by the fit to the Doppler
broadened line shape.

Ã(100) ← X̃ (1200)
J P11

PQ12 Q11
QR12

1/2 458.789969 458.818297
3/2 458.789916 458.818244

Ã(0200) ← X̃ (1200)
J P11

PQ12

1/2 460.679181
3/2 460.679123

Ã(100) ← X̃ (1220)
J OP12

PQ12

3/2 458.180549 458.208878

Ã(0200) ← X̃ (1220)
J OP12

3/2 460.069796
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APPENDIX D: FCF CALCULATIONS

The vibrational overlap integrals of Eq. (5) are calculated
by assuming harmonic oscillator wave functions. The cal-
culation employs the Wilson GF normal coordinate analysis
and the Sharp-Rosenstock method, as described in detail else-
where [21,32–34].

Briefly, we begin by constructing the Wilson force and
kinetic energy-related matrices F and G, which are related to
the vibrational potential energy V and kinetic energy K by

2V = (
S)TF
S, 2K = ( 
̇S)TG−1 
̇S (D1)

where 
S is a vector of 3N − 5 internal molecular coordinates
and [· · · ]T denotes the vector transpose. For CaOH, we define
the internal coordinates so that S1 = �r31, S2 = �r32, and
S3 = (r31r32)1/2�φ, where r31 and r32 are the equilibrium
Ca–O and O–H bond lengths, respectively, �r31 and �r32
give the change in bond length, and �φ is the change in the
bending angle. From geometrical arguments the G matrix can
be expressed as [32]

G =

⎛
⎜⎝

μ1 + μ3 −μ3 0

−μ3 μ2 + μ3 0

0 0 G33

⎞
⎟⎠,

G33 = μ1
r32
r31

+ μ2
r31
r32

+ μ3
(r31 + r32)2

r31r32
, (D2)

where μ1 = 1/mCa, μ2 = 1/mH, μ3 = 1/mO.
The Fmatrix consists of second derivatives of the potential

energy surface with respect to the internal coordinates. Be-
cause there is at most only very weak coupling between the
stretching and bending vibrations, we write F as

F =

⎛
⎜⎝
F11 F12 0

F21 F22 0

0 0 F33

⎞
⎟⎠. (D3)

Diagonalizing the matrix product GF is equivalent to solving
the secular equation, and its eigenvalues and eigenvectors are
the frequencies and coordinates of the normal modes of vi-
bration. In particular, properly normalized eigenvectors ofGF
form the columns of the L matrix, which transforms normal
coordinates 
Q into internal coordinates 
S = L 
Q.

For the Ã → X̃ transition, we use measured vibrational
frequencies and bond lengths from Ref. [47] to solve for the
force constants Fi j . This calculation makes use of equations
given in Refs. [39,47]. For the B̃ → X̃ transition we use the
measured bond lengths from Ref. [63], in conjunction with
vibrational frequency calculations from Ref. [64]. There is
insufficient data on the B̃ state to extract the off-diagonal force
constants (these require data from CaOD as well), so we make
the approximation that F21 = F12 = 0 for the B̃ state. We find
that this has little impact on the final result.

After solving for the normal modes using the GF matrix
approach, harmonic overlap integrals may be factored as

〈v′′|v′〉 =
∏
i

∫
ψ∗

v′′
i
ψv′

i
dQi, (D4)

where ψvi is a harmonic oscillator eigenfunction and Qi

is a normal coordinate. Eq. (D4) may be evaluated by

transforming the normal coordinates 
Q′′ of the final state to
those of the initial state 
Q′ via a Duschinsky rotation,


Q′ = J 
Q′′ + 
K . (D5)

The method employed here, due to Sharp and Rosenstock,
relates J and 
K to the transformation matrices L′′, L′ of the
ground and excited states, as well as their equilibrium geome-
tries. The solution makes use of generating functions, and the
results may be calculated using standard computational tools
[33,34].

In the case where the vibrational eigenstates are mixed by
perturbations to the potential energy surface (as in the Renner-
Teller and Fermi resonance interactions discussed above),
FCFs may still be computed using the harmonic calculations
described here. For example, if the ground and excited state
vibrational wave functions are given by

|v′〉 = a|v′
a〉 + b|v′

b〉, |v′′〉 = c|v′′
a 〉 + d|v′′

b 〉,
where the horizontal bar denotes a harmonic oscillator eigen-
state, the FCF is

qv′−v′′ = |〈v′′|v′〉|2 = |ac∗〈v′′
a |v′

a〉 + ad∗〈v′′
a |v′

b〉 + · · · |2,
where each term on the right-hand side is a harmonic over-
lap integral [Eq. (D4)] and can be computed by the means
described above.

APPENDIX E: DETAILS OF RENNER-TELLER
CALCULATIONS

The Renner-Teller (RT) Hamiltonian may be written as
[31,36,45,46,65,66]

HRT = V11
2

(q+L− + q−L+) + V22
2

(q2+L
2
− + q2−L

2
+) + · · · ,

(E1)
where L± and q± are ladder operators in the electronic angu-
lar momentum � and the vibrational angular momentum �,
respectively. The matrix elements of q± are [41,46,66]

〈v2 + 1, � ± 1|q±|v2, �〉 = 1√
2
(v2 + 2 ± �)1/2,

〈v2 − 1, � ± 1|q±|v2, �〉 = 1√
2
(v2 ∓ �)1/2, (E2)

while L± connects states satisfying L±|�〉 ∝ |� ± 1〉. The
first, dipolar term of HRT therefore has matrix elements
only between different electronic states, while the second,
quadrupolar term supports matrix elements within a single �

state.
The direct vibronic mixing between Ã(000) and B̃(0110)

[Eq. (8) of the main text] may be derived using the definition
(in the unique perturber approximation) of the spectroscopic
parameter gK [45,66]:

gK ≈ ω2|〈B̃|V11L+|Ã〉|2
4�E2

AB

. (E3)

This parameter appears as an energy offset gK (� + �) in the
effective Hamiltonian for vibronically perturbed levels of a �

electronic state, and was previously fit for CaOH [39,47]. The
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above definition may be used to evaluate

〈B̃(0110)2�|Ã(000)2�1/2〉 ≈ 〈B̃|V11L+|Ã〉/2
�EAB−ω2

⇒ |〈B̃(0110)2�|Ã(000)2�1/2〉|2 ≈ gK

ω2

(
1− ω2

�EAB

)2 ,

which is Eq. (8) of the main text.
We now consider the HRT × HSO perturbation in more de-

tail. The spin-orbit Hamiltonian is

HSO = ASOLzSz + 1
2ASO(L+S− + L−S+), (E4)

where Sz, S± are angular momentum operators acting on the
electronic spin state |S, �〉. Their matrix elements are defined
as usual,

〈S, � ± 1|S±|S, �〉 = [S(S + 1) − �(� ± 1)]2. (E5)

The Ã 2�(010) state is split into several vibronic com-
ponents due to Renner-Teller and spin-orbit interactions,
as shown in Fig. 7 of Appendix B [39,58]. Both the
Ã(010)μ2�(+) and Ã(010)κ2�(−) components are mixed with
Ã(000)2�1/2 and contribute to vibronic decay. The second-
order mixing amplitudes of these states due to the HRT × HSO

perturbation are [46]

〈Ã(010)μ2�(+)|Ã(000)2�1/2〉

≈ 2
〈Ã|ASOL−|B̃〉〈B̃|V11L+|Ã〉

4ω2�EAB
× (cosβ − sin β ), (E6)

〈Ã(010)κ2�(+)|Ã(000)2�1/2〉

≈ 2
〈Ã|ASOL−|B̃〉〈B̃|V11L+|Ã〉

4ω2�EAB
× (cosβ + sin β ), (E7)

where the prefactor of 2 comes from the two contributions via
B̃(000) and B̃(0110), respectively. The mixing angle β defines
the vibronic character of the μ and κ states [31,58],

β = 1

2
arcsin

⎛
⎝ 2εω2√

(2εω2)2 + A2
SO

⎞
⎠, (E8)

where ε is the Renner parameter.
The common factor in Eqs. (E6) and (E7) may be evaluated

using the pure precession approximation, 〈Ã| 12ASOL−|B̃〉 ≈
ASO/

√
2, which holds well in CaOH [48,67]. The result is

∣∣∣∣ 〈Ã|ASOL−|B̃〉〈B̃|V11L+|Ã〉
2ω2�EAB

∣∣∣∣
2

≈ 2gKA2
SO

ω3
2

, (E9)

which may be used to find the mixing probabilities,

|〈Ã(010)μ2�(+)|Ã(000)2�1/2〉|2 ≈ 1.9 × 10−4,

|〈Ã(010)κ2�(+)|Ã(000)2�1/2〉|2 ≈ 3 × 10−5. (E10)

The sum of these contributions is double the mixing frac-
tion that would be calculated if the vibronic structure of the
Ã 2�(0110) manifold were ignored.

The Renner parameter used to quantify �� = ±2 mixing
is ε ≈ ε (1) + ε (2), where the first-order contribution,

ε (1) ≈ 〈Ã|V22L2
−|Ã〉/ω2, (E11)

quantifies direct quadrupolar mixing within the Ã state. The
second-order contribution is

ε (2) ≈ −|〈Ã|V11L−|B̃〉|2
2ω2�EAB

≈ −2gK�EAB

ω2
2

, (E12)

and arises due to dipolar mixing via the B̃ state [31,45].

APPENDIX F: FERMI RESONANCE MATRIX ELEMENTS

The nonzero matrix elements of the Fermi resonance op-
erator VF = k122Q1Q2

2 for a nondegenerate vibronic state are
[50]

〈v1 + 1, v2, v3; l|VF |v1, v2 + 2, v3; l〉
= W [(v1 + 1)(v2 + 2 − l )(v2 + 2 + l )]1/2, (F1a)

〈v1 + 1, v2, v3; l|VF |v1, v2, v3; l〉
= 2W (v1 + 1)1/2(v2 + 1), (F1b)

where

W = k122

2
√
2

(
h̄

2πcω2

)(
h̄

2πcω1

)1/2

(F2)

is the Fermi resonance parameter and depends on only the
force constant k122, the Ca–O stretching frequency ω1, and
the Ca–O–H bending frequency ω2. Here c is the speed of
light and ω1,2 have units of cm−1. Because the second matrix
element [Eq. (F1b)] connects states separated by a relatively
large energy, its effects are neglected in this work. We note,
however, that matrix elements of this sort generically arise
from other anharmonic terms in the potential energy function
as well. These couplings may contribute to higher-order decay
channels, though a full analysis of such effects is beyond the
scope of this work.

While the Fermi resonance parameterW has not been mea-
sured for the X̃ 2�+ state of CaOH, it has been fit in the Ã 2�

state from an analysis of the (100)–(020) Fermi dyad [47]. As-
suming that k122 is unchanged between the X̃ and Ã states, and
using measured vibrational frequencies ω1,2 [47], we estimate
a Fermi resonance parameter |WX | ≈ 10.7 cm−1 in the X̃ 2�+
state by scaling the Ã state measurement by the appropriate
factors in Eq. (F2). This is in good agreement with a sepa-
rate estimate |WX | ≈ 11.1 cm−1, found using a deperturbative
analysis (similar to one in Ref. [47]) of the experimen-
tally observed splittings between the X̃ (0200)-X̃ (0220) and
X̃ (1200)-X̃ (1220) (Ref. [59] and Appendix C of the main
text). While the sign ofW was not determined experimentally
in Ref. [47], by relatingW to other measured constants it was
deduced in that work thatW < 0.
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