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Abstract. Data from surveys administered after Hurricane Sandy pro-
vide a wealth of information that can be used to develop models of
evacuation decision-making. We use a model based on survey data for
predicting whether or not a family will evacuate. The model uses 26 fea-
tures for each household including its neighborhood characteristics. We
augment a 1.7 million node household-level synthetic social network of
Miami, Florida with public data for the requisite model features so that
our population is consistent with the survey-based model. Results show
that household features that drive hurricane evacuations dominate the
effects of specifying large numbers of families as “early evacuators” in a
contagion process, and also dominate effects of peer influence to evacu-
ate. There is a strong network-based evacuation suppression effect from
the fear of looting. We also study spatial factors affecting evacuation
rates as well as policy interventions to encourage evacuation.

Keywords: hurricane survey data, survey-based modeling, evacuation
decision-making, social networks, agent-based simulation

1 Introduction

1.1 Background and Motivation

Many factors affect the decision of whether to evacuate in the face of an oncoming
hurricane. These include past evacuation/hurricane experience; risk perceptions
(household and human safety, storm threat, concern for looting); storm char-
acteristics such as wind speed, rainfall, and flooding; receiving an evacuation
notice; traffic gridlock; presence of children, elderly, and infirm family members;
pets; the household’s education level; property protection and insurance; eco-
nomic factors (household income, availability of resources); work duties; race;
and having somewhere to stay [2, 4, 5, 12,13,16].
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No modeling work on evacuation decision-making, during hurricanes, takes
all of these factors into account. Most papers include only a few or handful of
factors, e.g., [15, 17]. Some use conventional threshold models [10, 17], such as
Granovetter’s [3,6]. A few have used synthetic data (i.e., digital twin data [1]) to
represent the population over which evacuation decisions are made [17]; most use
stylized networks to some extent [8, 10, 12, 17]. Furthermore, most populations
are relatively small, with at most on the order of 10,000 families [10, 15]; an
exception is [17] with 35,064 families.

There is very limited data on actual behaviors, and complex factors are at
play during disaster events. Therefore, the combination of data from surveys with
agent based models provides a systematic approach for understanding evacua-
tion behavior. In this paper, we take the first steps towards this goal by (i) using
a statistical evacuation decision model with 26 features, including household and
social network features; and (ii) using synthetic population data to augment a
1.7 million family-based representation of a Miami, FL social contact network.
However, there are numerous modeling challenges in this process (e.g., the sur-
vey data are for the overall event, and not for daily decisions), and a better
understanding of the phase space of the associated dynamical system (e.g., sen-
sitivity analysis) can help in improving such models. In another paper in this
conference [9], we undertake such a study using a stylized behavioral model, but
a realistic contact network. Thus, these two works are complementary.

1.2 Our Contributions

First, we augment a synthetic population and social contact network of Mi-
ami, FL, developed in [9], where nodes are families and edges are communica-
tions between pairs of families. Specifically, we augment the 1.7 million families
with additional properties from the American Community Survey (ACS) such
as whether they have flood insurance, internet access, and household members
that are elderly or disabled. These 26 features are required because our model of
hurricane evacuation—originally presented in [12]—uses these parameter values
to compute a family’s daily probability of evacuation. The probability depends
on both household characteristics and neighborhood (peer) effects.

Second, we perform agent-based simulations of hurricane evacuation decision-
making for Miami, FL. These simulations include baseline behaviors and effects
of model parameters and seeding conditions. To operationalize survey data show-
ing that there are neighborhood effects in the social contact network on a fam-
ily’s evacuation decision, we introduce two thresholds cu and cd that control
the fraction of neighbors evacuating at which peer-influence for evacuating and
for looting, respectively, become important. These two phenomena have oppos-
ing effects: small cu values enhance evacuation from peer influence and small
cd values suppress evacuation due to looting concerns. The probability of evac-
uation model includes two dominant contributions: (i) those from household
characteristics (a term denoted ghh below), such as education level of the head
of household, whether elderly people are family members, and whether a family
has home insurance, and (ii) those from network neighbor effects (denoted gnet
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below). The model is detailed in Section 2. These factors interact. For example,
an interesting result that comes from simulations is that the household term ghh
dominates the effect of seeding of randomly selected families as early evacuators
and also dominates the effect of cu. This is explained in Section 3 below. Geo-
graphically, we find that the evacuation rates across Miami are all non-zero, and
vary spatially across the city, but that these variations are not extreme.

Third, we also conduct simulation-based intervention studies to address peo-
ple’s concerns over looting. We model police allaying these concerns by visiting
residential areas to tell residents that law enforcement will monitor their homes
while they are evacuated. We study this effect for different patterns of police
visitations to different geographic regions and for different levels of effectiveness
of these interactions. We find that geographic visitation patterns can increase
evacuation fractions from 0.24 to 0.42 of families, a 75% increase. This is purely
a network effect. Changing the effectiveness of visits can increase the fraction of
evacuating families from 0.35 to 0.42.

2 Models and Results

2.1 Network Model

We perform simulations on a human social contact network of Miami, FL. We
build this network using the procedures in [1]. Briefly, a collection of synthetic
humans is generated that match distributions of age and gender in Miami, FL.
These individuals are grouped into households (a household may contain one
person). Households are assigned home locations with (lat, long), i.e., latitude
and longitude, coordinates. Each person in each household is assigned a set of
activities such as work and school. Each activity has a start/end time and an
associated geolocation where it takes place. In this way, people can be co-located
(i.e., at the same location with overlapping visit times). Two people (that are
nodes in the human contact network) who are co-located have an edge between
them in the network. See [1] for further details.

Because families choose to evacuate (or not), rather than individuals, we
convert the individual-based social contact network into a family-based social
network G(V,E), with node set V and edge set E, as follows. Since we are
concerned with communication that influences evacuation decisions, we consider
only those persons between the ages of 18 and 70, inclusive, as decision-makers
or having the ability to influence decision-makers. Nodes vi ∈ V are families.
Suppose person hi is a member of family vi and person hj is a member of family
vj . If hi and hj are colocated, then there is an edge between the respective fami-
lies, i.e., eij = {vi, vj} ∈ E of G. The graph is a simple graph, so there is at most
one edge between two families. As part of this current work, we augment the
network nodes (families in Miami) with attributes from the American Commu-
nity Survey (ACS) to include the properties required for the evacuation model,
as described in Section 2.2 and Table 1 below, so that simulations (Section 3)
can use these properties with the model.
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The resulting family-based network has 1,702,038 nodes and 42,789,880 edges.
The average degree is 50.3 and the maximum degree is 760. The average clus-
tering coefficient is 0.045 and the graph diameter is nine.

2.2 Family Behavior Model

Each family vi in a network is either in state si = 0, the not-evacuating state,
or state si = 1, the evacuating state. Once a family decides to evacuate, they
stick with that decision. If a family is in state 0, then a model is needed to quan-
tify under what conditions it transitions to state 1. We quantify this transition
of state, 0 → 1, for a particular family vi using a state transition evacuation
probability pi,evac, as described next.

Our behavioral model of hurricane evacuation was developed from survey
data gathered for 1,212 respondents who experienced Hurricane Sandy in 2012 [7].
To build the model, variables that correlate with families’ evacuation decisions
were identified using a Binomial Logit model; the resulting variables are provided
in Table 1. A logistic regression was performed to construct the probability pi,evac
of family vi evacuating, as a function of these variables, given by

pi,evac = 1/(1 + [1/ exp(−0.835045 + ghh + gnet)]) (1)

with

ghh = Σni
i=1c

hh
i ρi and gnet = Σnn

j=1c
net
j ρj , (2)

where ghh represents the household-related (i.e., within-node) term whose vari-
ables ρi and coefficients ci are given on the left in Table 1 and gnet represents the
network (i.e., peer-effect) term whose variables ρj and coefficients cj are given
on the right in Table 1. For example, one summand of ghh is chhi = −0.165 for
ρi = khh. Since male is the reference, khh = 0 if the head of household is male
and khh = 1 if the head of household is female.

To estimate network effects for the term gnet, additional statistical analyses
were conducted to infer the parameters given on the right side of Table 1. For
all families in Miami, an evacuation vector ηi,evac = (0, ηsi, ηi, ηvi) and a looting
vector `i,loot = (0, `si, `i, `vi) were determined by logistic regression, using a
subset of independent variables on the left in Table 1. Details are omitted here
for lack of space; see [12] for details.

Figure 1 contains representative plots of probability values pi,evac from the
survey model of Equation 1, for different conditions. These data are illustrative,
to give a sense of the probability magnitudes and their changes across conditions.
For example, in Figure 1c, if looting is not important, then all of ηsi, ηi, and ηvi
are zero, but if looting is somewhat important, then ηsi = 1 and the other two
variables are zero for gnet in Equation 2. From the plot, when the fear of looting
is somewhat important, pi,evac = 0.0778, a decrease from 0.1379, when looting
is not a concern (i.e., bar “all= 0”).
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Table 1: Logistic regression results: dependent variable pi,evac. The variables ρi
and ρj in Equation 2 are given in the tables on the left and right, respectively.
Similarly, coefficients are the chhi (left) and cnetj (right) in Equation 2. p-values
for parameters are given in [12]; variables significant at the 0.05 level are shown
in italics.

Parameters and coefficients for house-
hold terms ghh.
Independent Variable Coeff.

Age (in years), ahoh −0.00017

Female (Ref: Male), khh −0.165

Race (Ref: Black)

White, irw −0.301

Hispanic, irh 0.436

Other, iro −0.423

Mixed, imr −1.163

Education (Ref: High school or less)

Some college, esc 0.353

Bachelor or higher, ealb 0.397

Employment status, hmw 0.073

Household size, ihs −0.231

No. of HH members who
are disabled, imd

0.066

No. of HH members who
are elderly, ime

0.279

Household is owned, iio −0.386

Living in a mobile home,
imh

−0.0718

HH has access to the inter-
net, iia

−1.446

HH Income, ihi 0.015

No. of vehicles owned by
HH, rc

0.056

Age of house, ahhs −0.0025

HH has home insurance,
ifi

1.853

Parameters and coefficients for net-
work terms gnet.
Independent Variable Coeff.

Evacuation decision made by
neighbors ηi,evac (Ref: not important)

Somewhat important,
ηsi

0.125

Important, ηi 0.523

Very important, ηvi 0.478

Concerns about crime such as
looting `i,loot (Ref: not important)

Somewhat important, `si −0.640

Important, `i −1.284

Very important, `vi −1.263

Interaction (neighbor and
looting), βel

0.053

2.3 Agent-Based Model for Simulation

To produce a temporal agent-based model (ABM) for agent-based simulation
(ABS) of evacuation behavior, modifications are required of Equation 1. First,
pi,evac from survey data is a single probability over the entire hurricane event.
For ABS, we seek a daily probability to simulate temporal decision making by
families in Miami, FL. The daily probability pdailyi,evac uses the geometric mean

given by pdailyi,evac = 1 − (1 − pi,evac)
1/tmax , where tmax = 10 days because we

simulate the evacuation behavior ten days before (i.e., leading up to) hurricane
arrival, as shown in Section 3.
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(a) education esc (b) race (c) looting l

(d) home ownership iio (e) internet access iia (f) home insurance ifi

Fig. 1: Probabilities of evacuation, over the entire duration of a hurricane event,
from the model of Equation 1 for education (esc), race, looting (l), house-owned
(iio), internet-access (iia), and home-insurance (ifi) in Table 1.

Second, the peer (network) effects of evacuating and looting in the right of
Table 1 require further model constructs. This is because the vectors ηi,evac and
`i,loot, which are also derived from the survey data, cannot be operationalized.
For example, if for some family, neighbor influence is “important,” then the
question naturally arises in how to quantify this effect (i.e., discriminate this
effect) if the family has two, or eight, or 12 neighboring families evacuating. To
address this ambiguity, we introduce two new parameters cu and cd, which are
thresholds, with meanings as follows. If for family vi, the fraction of neighbors
evacuated is ≥ cu, then evacuation effects are activated, meaning that the appro-
priate term from the vector ηi,evac is included in Equation 2 for gnet; otherwise
the “not important” variable is used. Similarly, if for family vi, the fraction of
neighbors evacuated is ≥ cd, then looting effects are activated, meaning that
the appropriate term from the vector `i,loot is included in Equation 2 for gnet;
otherwise the “not important” variable is used. Parameters cu and cd are studied
in the simulations.

3 Simulations and Results

3.1 Simulation Description and Parameters

A simulation instance consists of a set of seed nodes vj that are in state
sj(t) = 1 at time t = 0. Time progresses forward in integer time steps (each
representing one day), and at each time, each node (family) vi in state si(t) = 0

computes pdailyi,evac per Section 2 and performs a Bernoulli trial, in parallel, to
determine its next state, i.e., si(t + 1). If si(t) = 1, then si(t + 1) = 1 for all
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t. Simulations are run in the interval t ∈ [0..9] to produce si(1) through si(10)
for all 1 ≤ i ≤ n. A simulation consists of a group of simulation instances or
replicates; here, we run 100 replicates, each having a different seed node set but
otherwise the replicates are identical. All results are reported based on the mean
and standard deviation of the 100 replicates at each t. Simulation parameters
are listed in Table 2.

Table 2: Summary of the parameters and their values used in the simulations.

Parameter Description

Network Miami, FL.

Number of
seed nodes, ns.

Values are 0 and 10 to 105, by powers of 10. Seed nodes are chosen
uniformly at random.

Family
characteristics

Vary by family in family social contact network. See Table 1.

Peer effect
values cu, cd.

Each varies from 0 to 1, in increments of 0.2.

Subregions of
Miami.

Miami is discretized into 24 equi-sized blocks for intervention studies.

3.2 Simulation Results

Cumulative evacuation time history results. Figure 2 provides time his-
tories for the fraction of families evacuating (Frac. Evac) as a function of time,
for the ten days leading up to hurricane arrival (hurricane impact is on day 10).
The results show a nonlinear evacuation fraction in time.
Effect of seeding. Each plot in Figure 2 has numbers ns of seed nodes ranging
from 0 to 105 families. For ns ≤ 104, the effect of seeding is insignificant. A
pronounced effect of ns is only realized when ns = 105, which is approximately
6% of nodes. This is because our model is not a pure social influence model, akin
to those of Granovetter and others [3,6,14] that rely on contagion spreading from
seeded nodes. In our model, families can transition to the evacuating state on
their own accord, without social influence, owing to family features (see left of
Table 1). This is not to say that social influence is not a factor, as we address
below.
Effect of peer influence thresholds cu and cd. The four plots in Figure 2
show results for different combinations of (cu, cd), each taking values of 0 and
1. These values are applied uniformly to all families. Figure 2a is the reference
case where cu = cd = 0. These conditions mean that families account for peer
effects in both evacuating and in concern for looting, for those families where
peer evacuation and peer looting effects are somewhat important, important, or
very important in the right of Table 1. That is, influence for each vi to evacuate
exists for all fractions η1 of neighbors evacuating that are η1 ≥ cu = 0. Similarly,
influence for each vi to remain behind (i.e., not evacuate) exists for all fractions
η1 of neighbors evacuating that are η1 ≥ cd = 0.

In Figure 2b, cd is increased to 1.0. This means that looting does not become
a concern for each family until all of its neighbors (i.e., a fraction of neighbors
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(a) cu = 0, cd = 0 (b) cu = 0, cd = 1.0

(c) cu = 1.0, cd = 0 (d) cu = 1.0, cd = 1.0

Fig. 2: Simulation results of the fraction of evacuating families in Miami, FL
(Frac. Evac.) as a function of time leading up to the hurricane arrival. We are
always modeling the 10 days leading up to the arrival of a hurricane. Day 10 is
the arrival of the hurricane. Time zero is the start of the simulation, which is
ten days prior to hurricane landfall. In the plots, cu, and cd values are either 0
or 1.0.

equal to cd = 1) are evacuating. Since looting is not a concern, more families
evacuate in Figure 2b than in Figure 2a.

Figure 2c is an initially surprising case. Based on the previous reasoning, one
might conclude that fewer families evacuate than in the reference case (Figure 2a)
because the influence to evacuate is essentially non-existent because cu = 1.
However, families generate their own driving force to evacuate through the ghh
term in Equation 2, so reference evacuation rates are maintained.

Figure 2d is consistent with the reasoning for the other three cases. The
larger cd = 1 means that fear of looting is suppressed, irrespective of what a
family’s neighbors choose to do, and hence evacuation rates increase.

Spatial evacuation rates. Figure 3 shows three heatmaps. In all maps, there
are 98 cells in the horizontal direction and 200 cells in the vertical direction,
producing 19,600 grid cells over Miami. (Only about 1/3 of these cells contain
landmass in Miami, owing to the spatial extent of the city.) Figure 3a shows
population spatial density. Since all families have home geo-locations, each family
is mapped to one grid cell. Families are counted in each cell, and the logarithm
(base 10) is applied to these counts, to make density variations more distinctive.
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Figures 3b and 3c show the probabilities of evacuation at the end of days 6
and 10. They are generated as follows. Each simulation is composed of 100
simulation instances. For each family, we determine the fraction of these 100
instances in which it evacuates. The families within each grid cell are collected,
and these fractions are averaged to obtain an average evacuation probability for
that cell. These averages are plotted. Results indicate that while there is spatial
variation in evacuation rates, these variations are not large.

(a) population density (b) end day 6 (c) end day 10

Fig. 3: Heatmaps for Miami, FL. The gradation is 98×200 cells in the horizontal
and vertical directions, for a total of 19,600 grid cells. (a) Population density per
cell (log base 10 scale). (b) Evacuation rates at the end of day 6. (c) Evacuation
rates at the end of day 10. For (b) and (c), the simulation inputs are cu = cd = 0.2
and ns = 500 families.

Policy-based interventions. A simulation-based intervention is executed as
follows. The map of Miami is overlaid with a 6× 4 grid of equal-sized blocks so
that there are 24 grid cells or blocks. The police are sent to each block, in turn,
to alleviate citizens’ concerns over looting (e.g., by telling families of regular
patrols of their residential areas by police). This is modeled as an increase in
cd, i.e., families’ concerns over looting only materialize when a larger fraction
of their neighbors evacuate. The police blanket the city in each of four different
ways: (i) group 1: start at northwest-most block and traverse west to east across
the first of the six rows, then go south to the next row of blocks and travel west
to east again, and so on for each row. (ii) group 2: start at southwest-most block
and traverse west to east across the first of the six rows, then go north to the next
row of blocks and travel west to east again, and so on for each row. (iii) group 3:
start at northwest-most block and traverse north to south down the first of the
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four columns, then go east to the top of the next column of blocks and travel
south again, and so on for each column. (iv) group 4: start at northeast-most
block and traverse north to south down the first of the four columns, then go
west to the top of the next column of blocks and travel south again, and so on
for each column. Figure 4 shows the fraction of Miami families visited per block
by the police in visiting the total of 24 blocks. Note that Figures 4a and 4a
are essentially mirror images and that Figures 4c and 4d are essentially mirror
images. The order of visitation of high population density regions clearly changes
with group number.

(a) Group 1 (b) Group 2 (c) Group 3 (d) Group 4

Fig. 4: Fractions of households in each of 24 equi-sized zones within the bound-
ing box of Miami, FL. The different curves represent different traversals of the
blocks by police in assuaging people’s fears of looting. Households that have been
reassured by police have cd increased to 0.2 (or 0.4), from the baseline condition
of 0; increasing cd dampens a family’s concern over looting. Police traversals:
(a) group 1, (b) group 2, (c) group 3, and (d) group 4.

Figure 5 shows the effect of the police allaying people’s concerns over loot-
ing. Each plot shows curves for the final fraction of families evacuating (i.e.,
at day 10), for each of the four traversal groups. The plots from left to right
have increasing values of cd, from 0.2 to 0.4. First, evacuation rates increase
as cd increases, as expected. Second, there are two large steps for the curves
in Figure 5 for groups 3 and 4, corresponding to the two broader peaks in the
family density plots of Figures 4c and 4d. But the green curves rise faster than
the orange curves because the large population blocks are visited earlier in the
traversal group 4. Third, by comparison, the traversal groups 1 and 2 are less
steep (i.e., are more spread out) because the higher density zones in Figures 4a
and 4b are more spread out. Nonetheless, the stair-stepped nature of the curves
is still apparent. Fourth, the curves in Figure 5 for groups 1 and 2 are closer
because the family density plots are more similar.

The point of this case study is to demonstrate that we can quantitatively
evaluate the effects of different visitation strategies. Since the order of blocks
visited on the x-axis of these plots is a proxy for time, this case study shows
that the group 4 visitation strategy results in more people evacuating sooner.
This is one example of how counterfactual analyses may be simulated to assist
policy makers in their planning.
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(a) (b)

Fig. 5: Final fractions of the Miami, FL population evacuating as a function
of the cumulative number of blocks visited by police to reassure families that
they will monitor property to dissuade looting. Police visit the blocks in the
orders dictated by the groups in Figure 4. The visits result in families’ cd values
increasing from 0 to: (a) cd = 0.2 and (b) cd = 0.4. In both plots, cu = 0 and
ns = 100 seeds.

3.3 Policy Implications of Results

We examine policy implications from the standpoint of encouraging more evacu-
ations to better safeguard human life. We highlight two issues. First, in Figure 1,
home insurance is an important factor in evacuations, which is also seen with the
large positive coefficient at the bottom left in Table 1. This suggests, not surpris-
ingly, that financial issues are important to families. Hence, governments might
offer vouchers to offset expenses of evacuating or consider providing incentives
to home owners for better insurance coverage. Second, allaying citizens’ fears
about looting, for example through greater police patrolling before, during, and
after hurricanes, or through crowd-sourced citizen watches, might increase evac-
uations. Our experiments illustrate issues and parameters that are important
and relevant for designing interventions.

4 CONCLUSIONS

We motivated our problem in Section 1.1, and our contributions are summarized
in Section 1.2. Selected policy implications are in Section 3.3. This study also
illustrates how survey data can be used to model scenarios that are beyond the
conditions of a particular hurricane. A limitation of our work is that we only
address human contact networks, and do not include the effects of social media,
or virtual connections. This effect is hard to predict without computations: on
one hand, spreading should be faster because there are more types of pathways
(face-to-face and virtual), but this model uses relative thresholds so the increased
node degrees will inhibit contagion transmission. Also, we do not include storm-
specific variables, such as hurricane path, wind speed, storm surge, etc. which
may produce spatially heterogeneous evacuation rates. Future work also includes
model validation. Based on the parameters and process we study, we believe these
results are also applicable to other disaster events such as evacuations caused by
wildfires and chemical spills [11].
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