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Abstract: Finite mixtures are a flexible modeling tool for irregularly
shaped densities and samples from heterogeneous populations. When mod-
eling with mixtures using an exchangeable prior on the component features,
the component labels are arbitrary and are indistinguishable in posterior
analysis. This makes it impossible to attribute any meaningful interpreta-
tion to the marginal posterior distributions of the component features. We
propose a model in which a small number of observations are assumed to
arise from some of the labeled component densities. The resulting model
is not exchangeable, allowing inference on the component features without
post-processing. Our method assigns meaning to the component labels at
the modeling stage and can be justified as a data-dependent informative
prior on the labelings. We show that our method produces interpretable
results, often (but not always) similar to those resulting from relabeling
algorithms, with the added benefit that the marginal inferences originate
directly from a well specified probability model rather than a post hoc ma-
nipulation. We provide asymptotic results leading to practical guidelines for
model selection that are motivated by maximizing prior information about
the class labels and demonstrate our method on real and simulated data.
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1. Introduction

Finite mixture models are flexible tools that are often applied to data from het-
erogeneous populations or from distributions with irregularly-shaped densities.
In these context, they can produce useful approximations to the unknown den-
sity functions in both univariate and multivariate settings [Frühwirth-Schnatter,
2006, Marin and Robert, 2014, Rossi, 2014]. Results concerning the accuracy
and consistency of the approximations (as the number of components increases
at an appropriate rate) have been established both in the frequentist and in
the Bayesian settings [Roeder and Wasserman, 1997, Genovese and Wasserman,
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2000, Norets and Pelenis, 2012]. In many situations, if the true density is well-
behaved in the tails, satisfactory approximations can be obtained using a small
or moderate number of mixture components.

When mixture distributions are used to model heterogeneous populations,
the mixture components are thought to represent clusters of similar units. Such
analyses are found in areas such as medicine, the social sciences, and genet-
ics, where identifying subgroups of similar individuals may help to generate
hypotheses for future research. When subgroup identification is an important
goal, as it is in this paper, the parameters of the component distributions provide
population-level information about the features of groups, which can elucidate
the overarching patterns of heterogeneity within a population. Therefore, ac-
curate estimates of component-specific parameters, with attendant measures of
uncertainty, become a vital element of inference. Further, the mixture model
allows estimation of a probabilistic clustering structure from the data.

Adopting standard notation [e.g., Frühwirth-Schnatter, 2006], we represent
the likelihood for a k-component finite mixture model for a response y =
(y1, . . . , yn) as

f(y|γ,η) =
n∏

i=1

k∑
j=1

ηjp(yi|γj), (1)

where p(·|γj) denotes the jth component density. The model is parameterized
by η = (η1, . . . , ηk), the vector of mixture proportions whose elements sum to
one, and γ = (γ1, . . . , γk), the vector of features of the component densities. It
is often helpful to write the model (1) hierarchically, using latent variables S =
{S1, . . . , Sn}, Si ∈ {1, . . . , k}, i = 1, . . . , n, to indicate component membership.
The resulting likelihood is

f(y|s,γ) =
n∏

i=1

p(yi|γsi), where P (Si = j|η) = ηj , j = 1, . . . , k, i = 1, . . . , n. (2)

If the population comprises well-understood groups, it is appropriate to incor-
porate information regarding the groups’ relative locations and scales into the
prior on (γ,η). Often, however, little is known about these groups ahead of time,
and it is natural to assume prior exchangeability of component features. Let q
index the k! possible permutations of the integers 1, . . . , k and let ρq(·) relabel
its argument according to the qth permutation. We will use the same symbol
ρq(·) to denote the action of the qth permutation on a given index between 1 and
k and on the elements of a vector argument. For example, if the qth permutation
of (1, 2, 3, 4) is (1, 3, 4, 2), then ρq(3) = 4 and ρq(a1, a2, a3, a4) = (a1, a3, a4, a2).

An exchangeable prior with density π satisfies π(γ,η) = π(ρq(γ,η)), q =
1, . . . , k!. This specification produces a posterior distribution that inherits the
same label invariance; that is, letting pE(·|y) denote the posterior density of
(γ,η) under the exchangeable model,

pE(γ,η|y) = pE(ρq(γ,η)|y), q = 1, . . . , k!. (3)

The posterior density is symmetric with respect to the k! labelings of the com-
ponents, often producing k! modal regions in the parameter space. The marginal
distributions of the component-specific parameters are identical. When Markov
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Chain Monte Carlo methods are used to sample from the posterior distribution
of (γ,η), a well-mixing chain will jump from one possible labeling to another,
a phenomenon referred to as “label-switching.”

The posterior symmetry and accompanying label-switching in no way hinders
the model’s predictive performance, nor does it preclude meaningful inference on
objects that do not depend on the component labels. When label-switching oc-
curs, however, ergodic averages cannot be used for inference on the component-
specific features, making it impossible to use labeled parameters to learn about
distinctions among the mixture components. Much work has been devoted to
either preventing or reversing label-switching by placing prior constraints on
the parameter space or by post-processing posterior samples in a way that al-
lows only one possible labeling of the mixture components. These approaches,
particularly the post-processing approach, are popular in practice.

Prior identifiability constraints create a non-exchangeable prior by requiring
(γ,η) to lie in some sub-region of the parameter space that is compatible with
only one possible labeling. For example, one could require that η1 < . . . < ηk
with probability 1, or establish similar ordering constraints among the compo-
nent feature parameters. The limitations of these approaches are addressed in
detail by, among others, Celeux, Hurn and Robert [2000] and Jasra, Holmes
and Stephens [2005]. They are often considered too informative in their strict
restrictions of the parameter space and may not effectively isolate a single modal
region of the posterior density. It is not always obvious, a priori, what choice of
constraint is appropriate for a problem.

Relabeling algorithms, such as those presented by Stephens [2000], Celeux,
Hurn and Robert [2000], Marin, Mengersen and Robert [2005], Papastamoulis
and Iliopoulos [2010], Bardenet et al. [2012], Rodriguez and Walker [2014], and
Li and Fan [2016], tend to be preferred. These algorithms specify a loss function
and find the labeling that minimizes the loss function for each posterior sam-
ple of (γ,η) and, if sampled, s. Upon convergence, each unique value of (γ,η)
is restricted to only one possible labeling. For this reason, Jasra, Holmes and
Stephens [2005] have described this strategy as a way of automatically apply-
ing an identifiability constraint. Relabeling algorithms often appear to perform
“better” than prior constraints, in that they produce relabeled posterior sam-
ples that have unimodal and well-separated marginal densities. In contrast to
methods based on prior constraints, however, it is not straightforward to ob-
tain expressions for the joint or marginal distributions of the elements of (γ,η)
corresponding to a relabeling method. The constrained region of the parameter
space is the solution to the iterative minimization of the chosen loss function,
and, as such, cannot be described concisely as a component of the probabil-
ity model. Because its constraints are not the result of a clearly defined prior
specification, it is difficult to evaluate rigorously the underlying structure that
the relabeling algorithm imposes upon a problem. It is not obvious whether
this approach can be justified as a basis for making inferential claims about the
posterior distribution of the component-specific parameters.

We introduce a modification to the standard finite mixture model, the anchor
model, in which a small number of observations are assumed to be drawn from
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known component densities. This breaks the model’s label invariance in a data-
dependent manner while avoiding the strong, subjective restrictions imposed by
prior identifiability constraints. The anchor model provides an appropriate basis
upon which to interpret the component-specific feature parameters by assigning
meaning a priori to their labels. The proposed modeling framework requires a
modest amount of pre-processing to identify the pre-classified observations but
avoids the computational burden of post-processing.

The rest of the paper is organized as follows. In Section 2 we describe our
proposed anchored mixture model and its basic properties. We also examine the
implications of its asymptotic behavior on the identifiability of the component-
specific feature parameters. In Section 3 we outline practical strategies for model
specification. In Sections 4 and 5 we present data analysis examples that make
use of our proposed methodology. In Section 6 we present concluding remarks
and discuss directions for possible future developments. Supplemental materials
are presented in Appendices A–F.

2. Anchor models

The idea of assuming known labels for some observations has been considered
by Chung, Loken and Schafer [2004], who present this as a way of specifying
an informative prior, and, more recently, by Egidi et al. [2018], who propose
a post-processing strategy that assigns labels to observations with zero poste-
rior probability of being allocated to the same mixture component. Related
approaches that disallow specific allocations of the observations to the various
mixture components have been suggested as a means of guaranteeing propriety
of the posterior distribution if improper priors are specified [Diebolt and Robert,
1994, Wasserman, 2000]. We build on these ideas by formalizing this strategy
as a modeling procedure that requires no post-processing of an MCMC sample.
A careful assignment of a small number of observations to specific components
yields a well-defined mixture model whose components can accurately reflect
homogeneous subgroups in the population. We define the anchor model and
describe several of its basic properties in the following sections.

2.1. Definition of an anchor model

The anchor model modifies the finite mixture likelihood by selecting a small
number of observations whose component labels are assumed to be known.
These observations will be called anchor points. The resulting model can be
fully described using k index sets Aj , j = 1, . . . , k, where Aj contains the in-
dices of those observations in the data set that are to be “anchored” to the jth
component and A = {A1, . . . , Ak} is the set of indices of all anchor points. The
likelihood in (1) is replaced by

fA(yi|γ,η) =
{∑k

j=1 ηjp(yi|γj), i /∈ A,

p(yi|γj), i ∈ Aj , j = 1, . . . , k.
(4)
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We use mj to denote the number of points anchored to the jth component

and m =
∑k

j=1 mj to denote the total number of anchor points. Some of the
Aj may be empty and the number of components that contain one or more
anchor points is denoted by k0 ≤ k. The anchor model can equivalently be
represented using latent allocations: if i is the index of an anchored observation,
P (Si = j) = 1 for one prespecified component j. This restricts the support of
S so that a subset of the possible allocation vectors has prior probability of 0.
The hierarchical representation of the probability density for yi under anchor
model A is f(yi|Si = si,γ) = p(yi|γsi), where

PA(Si = j|η) =

⎧⎪⎨⎪⎩
ηj , i /∈ A,

1, i ∈ Aj ,

0, i ∈ Aj′ , with j′ ∈ {1, . . . , k} \ {j},
(5)

Since an observation can be anchored to at most one component, we require Aj∩
Ah = ∅ for j = 1, . . . , k0 − 1 and h = j + 1, . . . , k0. To impose a unique labeling
on each anchor model, we will further require that Aj �= ∅ for j = 1, . . . , k0, (if
any components have no anchor points, they will be labeled k0 + 1, . . . , k) and
that mini(A1) < mini(A2) < . . . < mini(Ak0). We will denote the values of the
anchor points by x = (x1, . . . ,xk), where xj = {yi : i ∈ Aj}.

For the remainder of this paper, we consider the anchored Gaussian mixture
model, in which p(·|γj) is a p-variate Normal distribution with density denoted
by φp(·;γj) and γj = (θj ,Σj), where θj and Σj are the mean vector and covari-
ance matrix of the jth component density, respectively. We assume that η and
γ are a priori independent and that their distributions satisfy two conditions:

C.1: The prior on the mixture proportions, η1, . . . , ηk, is a Dirichlet distribution
with concentration parameter α1k, where 1k is a vector of k ones and
α > 0.

C.2: The prior on γ = (γ1, . . . , γk) has the form
∏k

j=1 π(γj |ξ), for some con-
tinuous density π with (possibly unknown) hyperparameters ξ, and π is
positive on an open subset of the parameter space.
For ease of notation, we will suppress ξ from notation and refer to the
prior density of γj using π(γj).

2.2. Basic properties

In this section, we discuss some features of an anchor model which may be
readily understood via the latent allocation representation in (5). The notation
S will denote the set of all kn possible allocation vectors of length n, the sample
space of the latent variable S under the exchangeable model. Each allocation
vector separates the data into k or fewer groups of observations and we will refer
to each unique grouping as a “partition” of the data. All allocation vectors that
are equal up to a relabeling of the component labels induce the same partition
of the data; e.g., we will say that the allocations (1, 2, 2, 2, 3) and (2, 1, 1, 1, 3)
induce the same partition.
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Let SA be the subset of allocations that have nonzero probability under
A = {A1, . . . , Ak}, an anchor model with m anchor points. Then SA contains
kn−m elements and A assigns probability zero to every allocation that satisfies
si = si′ , for some i ∈ Aj and i′ ∈ Aj′ , j �= j′. Consequently, all partitions which
assign i and i′ to the same group have probability zero. This is a key difference
between anchor models and relabeling methods that also restrict the set of
allocations such as those of Papastamoulis and Iliopoulos [2010] and Rodriguez
and Walker [2014]. The relabeling in those references creates a restricted set of
allocations that includes exactly one labeling for each partition but does not
eliminate any partitions.

Under mild conditions, the anchor model admits no labeling ambiguity, thus
eliminating the symmetry of the exchangeable model. The following proposition
is a direct consequence of the definition of the anchor models and is proved in
the Appendix.

Proposition 1. The following two statements hold under conditions C.1 and
C.2.

1. An anchor model A = {A1, . . . , Ak} imposes a unique labeling on each
partition that has nonzero probability if and only if A1, . . . , Ak−1 are non-
empty; that is, k0 ≥ k − 1.

2. For any j ≤ k0, j �= j′, the marginal posterior density of γj is distinct
from the marginal posterior density of γj′ with probability 1.

To get an intuition of why the second statement of Proposition 1 holds, notice
that the observations anchored to component j contribute to the updating of
the distribution of γj with probability 1, but never contribute to the updating
of γj′ . Any anchor model satisfying the conditions in Proposition 1 produces
distinct posterior distributions for the component-specific features. The next
two sections describe properties that aid in evaluating which anchor models are
most effective at separating distinct groups in the sample.

2.3. Model evidence

One key advantage of the anchor model is that each set of anchor points results in
a unique, well-defined probability model, making it possible to compare different
anchor models using standard model selection criteria. The goodness-of-fit of an
anchor model A may be evaluated using the model marginal likelihood, defined
as mA(y) =

∫
fA(y|γ,η)π(γ)π(η)d(γ,η). This expression can be expressed in

terms of the latent allocations as

mA(y) =
∑
s∈SA

m(y|s)pA(s), (6)

where we define m(y|s) =
∫
f(y|γ, s)π(γ)dγ and pA(s) =

∫
pA(s|η)π(η)dη.

Based on Equation (6), the goodness of fit of an anchor model A will be deter-
mined by a weighted average of the values m(y|s) over all allocations in SA. The
terms m(y|s) describe the fit of the model conditional on the partition induced
by s: broadly, well-fitting anchor models will be those for which the elements of
SA induce partitions that are supported by the data.
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A closed-form expression for m(y|s) is available for some models, which can
provide heuristic, generalizable insight into which points should be anchored.
For example, consider a univariate location mixture model with σ2 known, so
that the component-specific parameter γj is simply the mean of the jth Gaussian

component. Under the Gaussian prior π(γ) =
∏k

j=1 φ1(γj ;μ, τ
2) with μ and τ2

known, the conditional marginal likelihood satisfies the condition

m(y|s) ∝ exp

(
−1

2

k∑
j=1

( ∑
i:si=j

(yi − ȳj [s])
2

σ2
+

μ2τ−2(1 + σ2)− nj (ȳj [s]− μ)2

(njτ2 + σ2)

))
k∏

j=1

√
njτ2 + σ2

σ2
, (7)

where nj =
∑n

i=1 I(si = j), and ȳj [s] = n−1
j

∑
i:si=j yi.

From Equation (7) we see that, when τ2 is large relative to σ2, the magni-

tude of m(y|s) is determined primarily by the term
∑k

j=1

∑
i:si=j (yi − ȳj [s])

2
,

the within-group sum of squares, for the partition induced by s. This obser-
vation suggests a heuristic notion: well-fitting anchor models will be those for
which SA contains many allocations that produce well-separated groups in the
data. The marginal likelihood on its own is impractical for model selection be-
cause the large cardinality of SA makes exact computation of the expression
in (6) impossible even for moderate values of n and/or k. Consideration of this
expression, nonetheless, suggests that, in specifying anchor models, we should
promote separation among the mixture components. In Section 3, we propose
a computationally feasible method for specifying anchor models that encourage
separation and will tend to fit well.

2.4. Anchoring as an informative prior on γ, η

Replacing the exchangeable model with the anchor model (4) can be viewed as
creating a data-dependent, non-exchangeable prior on the component-specific
parameters.

An anchor model with anchor points x1, . . . ,xk0 produces a posterior density
of γ,η that satisfies

pA(γ,η|y) ∝ π(η)

(
k0∏
j=1

π(γj)φp(xj ;γj)

)⎛⎝ k∏
j=k0+1

π(γj)

⎞⎠(∏
i/∈A

k∑
j=1

ηjφp(yi;γj)

)

= π(η)

(
k0∏
j=1

Cjp(γj |xj)

)⎛⎝ k∏
j=k0+1

π(γj)

⎞⎠(∏
i/∈A

k∑
j=1

ηjφp(yi;γj)

)
(8)

where Cj =
∫
π(w)φp(xj ;w)dw and p(γj |xj) denotes the posterior density that

results from updating the distribution of γj with the anchor points xj . Because
Cj does not depend on γj , the following proposition holds.
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Proposition 2. The anchor model described in this section produces the same
posterior distribution on (γ,η) as a model whose likelihood is a Gaussian mixture
on the n−m unanchored observations and whose prior is equal to

π(η)

k0∏
j=1

p(γj |xj)

k∏
j=k0+1

π(γj),

where p(γj |xj) is the posterior density of γj given the anchor points xj .

Proposition 2 provides a basis for asymptotic results to be discussed in the
next section.

2.5. Large sample properties and quasi-consistency

In this section we establish the asymptotic properties of an anchor model and
define a derived notion of quasi-consistency that enables us to quantify prob-
abilistically the degree of component-specific parameter identifiability attained
by an anchor model.

2.5.1. Limiting behavior of the posterior distribution

To characterize the limiting behavior of an anchor model, we rely on a result
from Cooley and MacEachern [1999] which describes the large sample properties
of the posterior distribution of the model parameters (γ,η) in a mixture model
in the setting where prior information, possibly from pre-labeled samples, is
available. Applying results of Berk [1966], they derived statements that, assum-
ing appropriate regularity conditions, hold with probability one with respect to
the product measure Fγ0,η0

on the space of sample paths of the data-generating
process with true model parameters (γ0,η0).

In addition to C.1 and C.2 on page 3873, the subsequent results require an
additional assumption on the prior density π(γ). The additional assumption
asks that

C.3: π(ρq(γ0)) > 0, for some q ∈ {1, . . . , k!},
that is, the prior density is positive at some relabeling of the true parameter
value. Define also Γ0 = {ρq(γ0,η0), q = 1, . . . , k!}, the set containing all possi-
ble labelings of (γ0,η0). Under C.1-C.3, the results in Cooley and MacEachern
[1999] give the following. Let U denote an arbitrary open neighborhood of Γ0.
Then,

lim
n→∞

Π(U | y1, . . . , yn) = 1, a.s.− Fγ0,η0
, (9)

where Π(· | y1, . . . , yn) is the posterior probability measure on the parameter
space, given a random sample y1, . . . , yn of size n. In addition, let Nε(γ,η)
denote an open ball of radius ε > 0 centered at (γ,η). Consider the qth relabeling
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ρq(γ0,η0) of the true model parameters, and assume that ε is small enough for⋂k!
h=1 Nε(ρh(γ0,η0)) = ∅ to hold. Then,

lim
n→∞

Π(Nε (ρq(γ0,η0)) | y1, . . . , yn) =
π(ρq(γ0,η0))

k!∑
h=1

π(ρh(γ0,η0))

, a.s.− Fγ0,η0
, (10)

where π is the prior density of (γ,η). Combined, results (9) and (10) indicate
that the posterior distribution concentrates on Γ0 and, in the limit, the relative
posterior mass given to the qth element of Γ0 is determined solely by its prior
density.

It is natural to interpret the limiting values in (10) as defining a discrete
asymptotic probability distribution on the k! elements of Γ0, where the proba-
bilities are determined solely by the prior. Under the exchangeable model, π(·)
is equal for all elements of Γ0, and we obtain a discrete uniform distribution on
its k! elements: no matter how much additional data accumulate, all relabelings
of the true parameter remain equally likely.

For an anchor model, we can use the data-dependent prior given in Propo-
sition 2 to determine the limiting values in (10). The probability of the qth
relabeling of (γ0,η0) is in fact determined by the anchor points: it is pro-

portional to
∏k0

j=1 p(γ0ρq(j)|xj). (See the proof of Proposition 3. In particu-
lar, the expression does not depend on η0 because the anchor points provide
no information about the mixture proportions.) For this reason, we will use
Px(γ0) = {pq, q = 1, . . . , k!} to denote the asymptotic distribution on Γ0 in-
duced by a set of anchor points x, or Px when there is no ambiguity. It is
straightforward to derive expressions for the elements of Px, which depend only
on the Gaussian densities of the anchor points at γ0, as stated in the ensuing
proposition which is proved in Appendix A.

Proposition 3. The qth element of Px(γ0), pq, is equal to

k0∏
j=1

φp

(
xj ;γ0ρq(j)

)/
k!∑

h=1

k0∏
j=1

φp

(
xj ;γ0ρh(j)

)
. (11)

2.5.2. Quantifying parameter identifiability

The result in (9) states that, as the sample size goes to infinity, the posterior
mass concentrates on arbitrarily small neighborhoods of the k! relabelings of the
true value (γ0,η0). Thus, for both the exchangeable model and the anchored
model, the asymptotic distributions concentrate on the elements of Γ0. The
influence of the anchor points does not disappear in large samples, however; they
determine, through Px, the relative posterior mass given to the k! modal regions
that are treated symmetrically under the exchangeable model. If the distribution
Px assigns high probability to one relabeling, then for large samples, the density
pA(γ,η|y) will approximate, up to a constant factor, the density pE(γ,η|y)
around one of the modal regions and will tend to be flat elsewhere.
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The anchor points play a crucial role in disambiguating between class labels
and determining the degree with which the anchor model isolates one posterior
mode. Anchor models for which Px places high probability on only one relabel-
ing of (γ0,η0) should be preferred. This motivates the following definition.

Definition 1. Let Px(γ0) = {pq, q = 1, . . . , k!} be the limiting probability
defined above for an anchor model with anchor points x. We say that the anchor
model is α quasi-consistent if maxq∈{1,...,k!} pq = α.

The ideal value of α is one; this is not attainable in practice because all prob-
abilities in (30) are positive, but, for a good anchor model, α will be near one
and we can report α as an objective measure of the quality of an anchor model.
Note that α = α(γ0) depends on the true, unknown, component-specific param-
eters γ0. In practice, the latter will be replaced by an estimate γ̂0 (typically a
maximum a posteriori or MAP estimate under the exchangeable model), and
we would report the value α̂ = α̂(γ̂0).

A related measure of how effectively the anchor points can resolve, asymp-
totically, the labeling ambiguity is given by the entropy of Px, En(Px,γ0) =

−
∑k!

q=1 pq log(pq), where we define log(0) = 0 in the expression. Lower entropy
values are preferred. As in the calculation of α̂ above, we can obtain a plug-in
estimate of the entropy by substituting an estimate γ̂0 of γ0 into the expression.
In Section 4, we also demonstrate a modeling strategy in which we select anchor
points to minimize the entropy.

The following proposition gives two interesting results in which it can be
shown analytically that certain choices of anchor points minimize En(Px,γ0)
in a univariate mixture in which γj = (θj , σ

2
j ), the mean and variance of the

jth Gaussian component.

Proposition 4. Suppose that k = 2 and that mj = m observations (with 1 ≤
m ≤ n/2) are to be anchored to component j, j = 1, 2. The following results
hold:

1. (Location mixture.) If σ2
1 = σ2

2 = σ2 and θ1 < θ2, then the optimal anchor-
ing sets x1 = (y(1), . . . , y(m)), x2 = (y(n−m+1), y(n)), where y(l) denotes
the lth order statistic.

2. (Scale mixture.) If θ1 = θ2 = θ and σ2
1 < σ2

2, then the optimal anchoring
sets x1 equal to the points that minimize

∑m
i=1(yi − θ)2 and x2 equal to

the points that maximize
∑m

i=1(yi − θ)2.

Proposition 4 is proved in Appendix A and provides some intuition regard-
ing which anchor models most effectively alleviate the labeling ambiguity: the
minimum-entropy anchor model arises from choosing points that are as dissim-
ilar as possible in location and/or in scale.

3. Model specification

We now address two fundamental issues: how many and which points to an-
chor.
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3.1. Choosing the number of anchor points

Strengthening assumption C.1 by requiring equal mixture proportions (and,
as a consequence, equal probabilities on all allocation vectors), the following
proposition states that the marginal likelihood of an anchor model can always
be increased by introducing additional anchor points. The proposition is proved
in Appendix A.

Proposition 5. Assume that ηj = 1/k, j = 1, . . . , k. Let A1
∗, . . . , A

n
∗ be a

sequence of anchor models where Am
∗ has the highest marginal likelihood among

all anchor models with m anchor points. The marginal likelihoods of the models
satisfy mA1

∗
(y) ≤ . . . ≤ mAn

∗ (y).

This result indicates that based on goodness-of-fit alone, it is best to specify a
larger number of optimally-anchored points. However, increasing the number of
anchor points strengthens the degree of prior information built into the model
and may increase bias in finite samples. Intuition suggests that limiting the
number of anchor points might be desirable to ensure satisfactory out-of-sample
predictive performance. To assess the trade-off between goodness of fit and out-
of-sample predictive performance, we conducted two small simulation studies.
The details of the studies and their results are presented in Appendix B. In
simulation 1, we drew data from a two-component location mixture and fit the
optimal anchor model with varied values of m. In simulation 2, we drew data
from several univariate location-scale mixtures and fit, for varied values of m,
anchor models whose anchor points are chosen using the EM strategy to be
described in Section 3.2.

In agreement with our intuition, the simulation findings show that, in cases
of mixture components that are not well-separated, the out-of-sample predic-
tive ability of the model suffers when too many anchor points are chosen. It is
difficult to select a large number anchor points that accurately represent the
true densities and they introduce bias in parameter estimation. Further, we
found that little benefit accrues from anchoring more than one or two points
to each component if the components are well-separated. These results support
the recommendation to anchor either one or two points to each component. One
anchor point per component will provide unique labeling for all components, as
given in Proposition 1. If instead each component has two anchor points, im-
proper priors may be used for the component-specific features of the Gaussian
mixture components, a specification that is impossible under the exchangeable
model. The next section proposes a method for selecting which points to an-
chor.

3.2. Anchored EM algorithm for selecting anchor points

We propose selecting anchor points by formulating the optimal anchor model as
a solution to a modified Bayesian expectation-maximization (EM) algorithm for
maximum a posteriori estimation. The method proceeds by computing a lower
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bound on the log posterior density of (γ,η) and iteratively updating the param-
eter values and an anchored posterior distribution on the latent allocations to
maximize this lower bound. Intuitively, a good anchor model should concentrate
its posterior mass in the vicinity of one of the modal regions of the exchangeable
model. Thus, we select as the optimal anchor points those that produce the best
approximation (as measured by the lower bound) to the exchangeable posterior
density pE(γ,η|y) near one of the symmetric local modes.

The method draws on the formulation of Neal and Hinton [1998] of the EM
algorithm, which makes use of the following lower bound on the log posterior
density of (γ,η):

log (pE(γ,η|y)) ≥
∑
s∈S

q(s) log

(
p(s,γ,η|y)

q(s)

)
. (12)

This bound holds for any distribution q on the latent allocations by Jensen’s
inequality. The expression on the right-hand side of (12) is a function of (γ,η)
and q and will be denoted by F (γ,η, q). Neal and Hinton [1998] show that the
EM algorithm may be seen as an iterative maximization of the lower bound,
F , with respect to γ (M step) and q (E step). At iteration t, conditional on
the current parameter value (γt−1,ηt−1), the distribution qt∗ that maximizes
F (γt−1,ηt−1, ·) is the posterior distribution on the latent variables. For a Gaus-

sian mixture, q∗ has the form q∗(S = (s1, . . . , sn)|y,γ,η) =
∏n

i=1

∏k
j=1 r

I(si=j)
ij ,

where

rij =
ηjφp(yi;γj)∑k
l=1 ηlφp(yi;γl)

, j = 1, . . . , k, i = 1, . . . , n. (13)

When qt is set equal to qt∗ = q∗(·|y,γt−1,ηt−1) in the E step of the algorithm, the
inequality in (12) is an equality for (γ,η) = (γt−1,ηt−1) and the lower bound
is equal to the log posterior density at that point. Further, Neal and Hinton
[1998] state that the value of (γ,η) that maximizes F (·, qt∗) also maximizes the
log posterior density.

Ganchev, Taskar and Gama [2008] have modified this EM formulation for
settings where q∗ cannot arise as the distribution of S because the model im-
poses certain restrictions on the latent variables. Because the lower bound on
log(pE(γ,η|y)) holds for any valid probability distribution q, the E-step may
be modified so that qt is chosen to maximize F (γt−1,ηt−1, ·), subject to the
problem-specific constraints. It is straightforward to verify that the lower bound
on log(pE(γ,η|y)) satisfies

F (γ,η, q) = log(pE(γ,η|y))−DKL(q||q∗), (14)

where DKL(q||q∗) =
∑

s q(s) log (q(s)/q∗(s)) is the Kullback-Leibler (KL) di-
vergence of q∗ from q, and q∗ is the optimal posterior distribution given in (13).
For a given (γ,η), the lower bound F will be largest when q is as close as
possible to q∗, in terms of KL divergence.
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An anchor model imposes constraints on the distribution of S and fits neatly
into this framework. In fact, Neal and Hinton [1998] and Lücke [2016] have
suggested using such EM modifications in closely related clustering problems
based on Gaussian mixtures. For an anchor model, the posterior distribution
of S satisfies qt(S|y,γt−1,ηt−1) =

∏n
i=1 q

t(Si = si|y,γt−1,ηt−1), where qt is
constrained to satisfy

qt(Si = j|y,γt−1,ηt−1) =

⎧⎪⎨⎪⎩
r̃tij , i /∈ A,

1, i ∈ Aj ,

0, i ∈ Aj′ , j′ �= j.

(15)

Here, the sets Aj have cardinality |Aj | = mj for j = 1 . . . k0, and the r̃tij are

probabilities such that
∑k

j=1 r̃
t
ij = 1 for all i �∈ A. Subject to these require-

ments, the form of the optimal anchor model corresponding to a constrained
distribution q that minimizes the KL divergence appearing in (14) is described
in the following proposition, which is proved in Appendix A.

Proposition 6. Let q be the posterior distribution of the allocations under an
anchor model, subject to the restrictions in (15). The KL divergence of q∗ from
q, evaluated at a fixed value of (γ,η), is minimized when the sets Aj are chosen

to maximize
∑k0

j=1

∑
i∈Aj

rij and when r̃ij = rij for all i �∈ A.

The modified EM algorithm will, in the E step, hold (γt−1,ηt−1) constant and
update qt to correspond to a valid anchor model with the optimal anchor points
identified in Proposition 6. This amounts to including i in Aj if rij is among
the mj largest allocation probabilities to component j, except in the case when
i satisfies this condition for some other j′ �= j. Details on selecting the anchor
points is this case are given in Appendix C. (In our experience, this case rarely
occurs in real data applications if m is small relative to the sample size.) In the
subsequent M step, (γt,ηt) is updated to maximize the lower bound, holding
qt fixed at its current value. As in the standard EM algorithm, the M step
can be accomplished by maximizing E(log(p(γ,η, s,y)), where the expectation
is taken with respect to qt. This maximization is computationally tractable
because E(log(p(γ,η, s,y)) can be expressed as a summation of k×n addenda,
by an argument analogous to the one used in the proof of Proposition 6. For the
models considered in the examples of Sections 4 and 5 the maximizer can be
derived in closed form. The steps of this “anchored EM Algorithm” are detailed
in Appendix C.

As discussed by Ganchev, Taskar and Gama [2008] for related approaches,
the anchored EM algorithm maximizes a penalized version of the log posterior
density, where the penalty is given by the KL divergence of the distribution q∗
corresponding to the exchangeable model from the distribution q corresponding
to the anchored model. Each EM iteration updates both the parameters and the
distribution q in order to increase the lower bound on the log posterior density,
yielding an optimal approximation to a local mode of the exchangeable posterior
distribution.
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3.3. Other strategies for model specification

We propose the anchored EM method as one potential default method for au-
tomatically selecting anchor points. The anchor modeling framework admits
alternative strategies based on various modeling considerations and, if avail-
able, prior information. For example, the large-sample properties outlined in
Section 2.5 motivate choosing anchor points that minimize the entropy of the
asymptotic distribution on the relabelings, a strategy which we demonstrate in
Section 4. In a recent case study, Kunkel and Peruggia [2019] develop a method
that uses diagnostic information from a base model to choose anchor points
for a mixture of regressions model. Existing classification and clustering tools
can also be used to identify anchor points as representative points from the k
components. Particularly applicable are a type of semi-supervised algorithms
that propose strategies for introducing artificial labels to points in classifica-
tion problems. For example, the Yarowsky “self-training” algorithm [Yarowsky,
1995, Abney, 2004] and variants thereof use allocation probabilities to assign
artificial labels iteratively until a stopping criterion is reached.

4. Univariate examples

In this section we present several examples of the anchor modeling approach
applied to univariate data sets.

4.1. Sampling

In the following examples, we specify a conditionally conjugate prior and use a
Gibbs sampler to obtain samples from the posterior distribution. Sampling is a
well-known challenge in the exchangeable mixture model due to the k! symmetric
regions of the posterior [see, e.g., Celeux, Hurn and Robert, 2000, Jasra, Holmes
and Stephens, 2005, Geweke, 2007]. A sampler which fully explores the posterior
parameter space is, in fact, one in which perfect label switching is observed; each
symmetric region must be visited with equal frequency and ergodic averages of
the component-specific parameters should be equal. Label switching, then, is a
requisite for convergence of the sampling algorithm, but it is difficult to ensure
this behavior, particularly in a model with well-separated components. Celeux,
Hurn and Robert [2000] recommend replacing the Gibbs sampler with a sim-
ulated tempering scheme that promotes swift movement across modal regions
of the parameter space. Other strategies leverage the symmetry of the poste-
rior to improve mixing: Frühwirth-Schnatter [2001] presents a sampler that, for
each sampled value of the vector of component-specific parameters, proposes a
random permutation of the component labels that is accepted with probability
one. A similar approach of Geweke [2007] augments each sampled value with
every possible relabeling of the value.

We adopted the random permutation strategy recommended by Frühwirth-
Schnatter [2001]. The resulting algorithm is a modification of a standard Gibbs
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algorithm for sampling draws from the posterior distribution of (γ,η, s). A stan-
dard Gibbs sampler would alternate between updates of (γ,η) sampled from
the conditional distribution of (γ,η) given (s,y) and updates of s sampled
from the conditional distribution of s given (γ,η,y). The modified sampler
includes an additional step after the update of (γ,η) conditional on (s,y).
Precisely, at iteration t, a value (γ̃t, η̃t) is generated conditional on (st−1,y).
Then, a random permutation ρq of the component labels is selected accord-
ing to the probabilities described in the following paragraph and (γt,ηt) is
set equal to ρq(γ̃

t, η̃t) before proceeding to the update of st−1. The interme-
diate sample (γ̃t, η̃t) is discarded and only (γt,ηt) is retained as part of the
chain.

Under the exchangeable model, each random permutation has equal proba-
bility of being sampled. Under the anchor model, the asymmetry of the posterior
density requires the permutations to be accepted with probabilities proportional
to the values of the posterior density pA(ρq(γ̃

t, η̃t)|y) at the various relabelings.
Simple algebraic manipulations show that, at iteration t, permutation q is se-
lected with probability wtq, for q = 1, . . . , k!, where wtq is equal to

wtq =

∏k
j=1

∏
i∈Aj

φ(yi; γ̃
t
ρq(j))∑k!

h=1

∏k
j=1

∏
i∈Aj

φ(yi; γ̃
t
ρh(j)

)
, q = 1, . . . , k!. (16)

We prove in Appendix D that the accepted permuted draw (γt,ηt) is in fact
a draw from the distribution of (γ,η) conditional on (st−1,y). Therefore this
procedure results in an algorithm whose invariant distribution is the same as
that of the standard algorithm.

In each of the following examples, we used a Gibbs sampler with the ran-
dom permutation step. We ran 50 chains initialized at different random starting
points, discarding the first 1,000 iterations of each chain as burn-in and thin-
ning the chains every 100-th draw to obtain a total of 15,000 retained posterior
samples. We estimated standard errors of the computed estimates using the
overlapping batch means estimator implemented in the R package mcmcse [Fle-
gal et al., 2020].

4.2. Galaxies

Our first example demonstrates the anchoring method using the galaxies data
set from Roeder [1990], now a benchmarking staple of the mixture literature.
Each of the 82 measurements gives the velocity of a galaxy sampled from the
Corona Borealis region of space. Previous analyses have indicated that between
three and seven Gaussian components are appropriate for these data; we chose
to set k = 6, the value given the highest posterior probability in the well-known
analysis of Richardson and Green [1997] and used in subsequent analyses by
Stephens [2000] and Rodriguez and Walker [2014]. We specify the following
priors and hyperparameters following the recommendations of Richardson and
Green [1997]: the parameters γj = (θj , σ

2
j ) are a priori mutually independent.
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The θj are normal with mean μ and variance 1/κ, the precisions, σ−2
j , have

a Gamma(a0, b0) distribution, where the Gamma distribution is parameterized
to have a mean of b0/a0, and η has a Dirichlet(1k) distribution, where 1k is a
vector of k ones. The hyperparameters were set as μ = 21.7255, the midpoint of
the data,

√
κ = 1/52, and a0 = 2. We specified a Gamma(0.2, 0.016) distribution

for b0.
We used two methods to specify anchor models with one anchor point per

component. The first model used anchor points selected by the anchored EM
method described in Section 3.2. We ran the anchored EM algorithm from 50
random starting positions and selected the anchor points that corresponded to
the highest value of the lower bound in (14).

The second set of anchor points were selected to minimize the estimated
entropy of the asymptotic probability distribution on the class relabelings as
given by (30). To do this, we treated En(Px, γ̂0) as a continuous function of
x, where γ̂0 is a maximum a posteriori estimate of γ0 under the exchangeable
model, and found a value x∗ that minimizes this continuous function. The value
x∗ was identified using the optim function in R with the BFGS method and the
tolerance parameter set equal to 10−10. We then chose the anchor points to be
the observations closest to x∗.

We used a Gibbs sampler to fit the two anchor models and the exchange-
able model using the random permutation strategy described in Section 4.1.
We applied two popular relabeling algorithms to the samples from the ex-
changeable model: the KL method [Stephens, 2000] and data-based (DB) re-
labeling [Rodriguez and Walker, 2014]. Both methods are implemented in the R
label.switching package [Papastamoulis, 2016]. Lastly, we applied an ordering
constraint that required θ1 < . . . < θ6 with probability 1.

The left panel of Figure 1 shows the locations of the minimum-entropy anchor
points and the anchored EM points. The EM anchor points are close to the
minimum-entropy anchor points for most components except for component 5,
where the minimum-entropy point falls in a cluster of high velocity near that of
component 6. Using the maximum a posteriori estimate of γ0, we calculated the
estimated coefficients of quasi-consistency of Definition 1, α̂, to be greater than
0.9999 for both of the anchor models, indicating a high degree of asymptotic
identifiability of the component labels.

The middle and right panels of Figure 1 display Monte Carlo estimates of the
scaled component densities. The scaled component density for j is ηjφp(·, γj);
as noted by [Rodriguez and Walker, 2014], accurate posterior inference on this
quantity is tantamount to inference on the posterior classification probability to
component j. For components 1, 3, 4, and 6, all methods produce unimodal den-
sities that are similar in location. The estimated density of component 2 has an
irregular shape for all methods: the density is skewed under the anchored models
and KL relabeling and it is bimodal under the ordering constraint. The location
of component 5 differs between the two anchor models, with the minimum-
entropy model placing the component in the right-hand cluster in the data.
The relabeling methods estimate a more symmetric density with a mode shifted
towards the left.
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Fig 1. Left: kernel density estimate of the galaxies data with the EM and minimum-entropy
anchor points. Middle: estimated scaled component densities under the two anchor models.
Right: estimated scaled component densities under the two relabeling methods.

Table 1

Posterior means (standard errors) of the component-specific parameters for the galaxies
data.

θ1 θ2 θ3 θ4 θ5 θ6 time(s)

anchored EM 9.713 (0.0022) 16.798 (0.0129) 19.845 (0.0018) 22.803 (0.0038) 25.408 (0.0130) 33.018 (0.0058) 11.91
min-entropy 9.713 (0.0022) 17.289 (0.0214) 19.815 (0.0021) 22.927 (0.0036) 31.512 (0.0181) 33.672 (0.0148) 58.62

KL 9.711 (0.0024) 18.522 (0.0887) 19.847 (0.0169) 22.625 (0.0057) 23.419 (0.0802) 32.795 (0.0223) 183.46
DB 9.711 (0.0024) 18.177 (0.0853) 20.049 (0.0205) 22.222 (0.0130) 23.963 (0.0817) 32.797 (0.0195) 9.04

constraint 8.099 (0.0529) 16.437 (0.0264) 19.878 (0.0118) 22.248 (0.0119) 25.631 (0.0288) 34.625 (0.0553) N/A

σ1 σ2 σ3 σ4 σ5 σ6

anchored EM 0.685 (0.0018) 1.104 (0.0058) 0.756 (0.0013) 1.110 (0.0024) 1.289 (0.0050) 1.097 (0.0038)
min-entropy 0.682 (0.0018) 1.253 (0.0083) 0.755 (0.0017) 1.490 (0.0031) 1.214 (0.0076) 1.134 (0.0069)

KL 0.708 (0.0037) 1.131 (0.0048) 0.794 (0.0031) 1.610 (0.0020) 1.315 (0.0045) 1.171 (0.0031)
DB 0.709 (0.0020) 1.080 (0.0055) 0.825 (0.0030) 1.741 (0.0065) 1.197 (0.0048) 1.178 (0.0051)

constraint 0.749 (0.0031) 0.987 (0.0047) 1.078 (0.0058) 1.369 (0.0056) 1.359 (0.0048) 1.185 (0.0056)

η1 η2 η3 η4 η5 η6
anchored EM 0.090 (0.0002) 0.055 (0.0005) 0.374 (0.0007) 0.330 (0.0009) 0.105 (0.0008) 0.046 (0.0002)
min-entropy 0.091 (0.0002) 0.078 (0.0011) 0.348 (0.0007) 0.415 (0.0011) 0.038 (0.0003) 0.029 (0.0002)

KL 0.090 (0.0002) 0.041 (0.0003) 0.323 (0.0009) 0.404 (0.0011) 0.097 (0.0007) 0.045 (0.0002)
DB 0.090 (0.0002) 0.052 (0.0005) 0.312 (0.0009) 0.376 (0.0013) 0.124 (0.0010) 0.046 (0.0002)

constraint 0.082 (0.0003) 0.103 (0.0010) 0.294 (0.0013) 0.301 (0.0013) 0.178 (0.0014) 0.042 (0.0002)

The posterior means of the component-specific parameters are given in Ta-
ble 1. The anchored models and relabeling methods produce similar estimates
for θ1, θ3, and θ4. For component 4, however, the estimated standard deviations
lie somewhat between those of the anchor models and relabeling methods, with
the estimated values of σ4 higher under the relabeling methods than the EM an-
chor model. Both anchor models estimate a greater degree of separation among
the means of components 2, 3, 4, and 5 than either of the relabeling methods,
which reflects the influence of the separation among the anchor points. Lastly,
the parameter estimates for components 5 and 6 under the minimum-entropy
model reflect the proximity of the anchor points assigned to these components:
both components describe the distinct modal region between 30 and 35, whereas
component 5 overlaps with components in the middle region under the other
methods. The estimated η values are fairly consistent across methods, except
for a very low estimate of η5 under the minimum-entropy model and a tendency
for the ordering constraint to produce estimates closer to 1/k than the other
methods.
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Table 2

Model parameters used in the simulations.

Model 1 Model 2 Model 3
θ (0, 0) (−3,−1, 1, 3) (19, 19, 23, 29, 33)
σ (1.5, 0.5) (1, 1, 1, 1) (2.236, 1, 1, 0.707, 1.414)
η (0.35, 0.65) (0.25, 0.25, 0.25, 0.25) (0.2, 0.2, 0.25, 0.2, 0.15)

Table 1 also reports the CPU times for implementing each method using an
Intel Core i7-8700 processor. For the anchor models, these times are the pre-
processing times required to select anchor points. For the relabeling methods,
the reported times are for post-processing of the posterior samples and are thus
dependent on the number of posterior samples retained for the analysis. None
of the reported times includes the time required to sample from the posterior
distributions.

4.3. Simulated data

We next fit anchor models to data generated from three univariate Gaussian
mixtures with the parameters given in Table 2.

The density functions of models 1, 2, and 3 are shown in the left panels of
Figures 2, 3, and 4, respectively. Model 1 is a scale mixture whose two com-
ponents have identical locations. Models 2 and 3 have been studied previously
by [Papastamoulis and Iliopoulos, 2010] (model 3) and [Rodriguez and Walker,
2014] (models 2 and 3) to assess performance of relabeling algorithms. We drew
samples of size n = 200 from Models 1 and 2 and n = 600 from model 3. Follow-
ing the approach of Rodriguez and Walker [2014], we used “perfect samples,”
evenly-spaced quantiles of the mixture distribution as evaluated using the R
package nor1mix [Maechler, 2019], to eliminate sampling variability.

For each model, we fit three anchor models using the anchored EM method
and the minimum-entropy method described in Section 4.2. The third anchor
model is an “oracle” model, in which the anchor points are selected to be the
observations closest to predetermined quantiles of each true component density.
Such information about the true densities would not be available in practice,
but we present these results as an illustration of the model’s performance when
anchor points represent known features of the true mixture components. For the
anchor models, we report the value of α evaluated at the true γ0. Finally, we
fit the exchangeable model and applied the KL and DB relabeling methods and
prior ordering constraints.

The following priors and hyperparameters were specified for each example,
adhering to the recommendations of Richardson and Green [1997]: θj has a
Normal distribution with mean μ and variance 1/κ, σ−2

j has a Gamma(a0, b0)
distribution, j = 1, . . . , k, and η has a Dirichlet(1k) distribution. Letting R =
y(n) − y(1), where y(h) denotes the hth order statistic, the hyperparameters
were set as: μ = ȳ, κ = 1/R2, a0 = 2, b0 ∼ Gamma(g0, h0), g0 = 0.2, and
h0 = 10/R2.
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Fig 2. Left panel: mixture density, anchor points, and true scaled component densities for
model 1. Middle panel: estimated scaled component densities for the anchor models. Right
panel: estimated scaled component densities for the relabeling methods.

Table 3

Posterior means (standard errors) of the component-specific parameters for model 1.

θ1 θ2 error time (s)

true 0 0 N/A
oracle anchors 0.0010 (0.0010) −0.0010 (0.0010) 0.0020 N/A
anchored EM −0.0027 (0.0014) −0.0009 (0.0005) 0.0036 1.03
min-entropy −0.0003 (0.0014) −0.0006 (0.0005) 0.0009 0.50

KL 0.0007 (0.0013) 0.0005 (0.0005) 0.0012 584.25
DB 0.0010 (0.0013) 0.0002 (0.0006) 0.0012 574.00

constraint 0.0011 (0.0013) 0.0001 (0.0006) 0.0012 N/A

σ1 σ2 error

true 1.5 0.5 N/A
oracle anchors 0.867 (0.0035) 0.866 (0.0035) 0.9988
anchored EM 1.320 (0.0013) 0.467 (0.0006) 0.2125
min-entropy 1.320 (0.0013) 0.468 (0.0006) 0.2122

KL 1.309 (0.0013) 0.464 (0.0006) 0.2272
DB 1.309 (0.0013) 0.464 (0.0006) 0.2272

constraint 1.309 (0.0013) 0.464 (0.0006) 0.2272

η1 η2 error

true 0.35 0.65 N/A
oracle anchors 0.501 (0.0009) 0.499 (0.0009) 0.302
anchored EM 0.430 (0.0009) 0.570 (0.0009) 0.1594
min-entropy 0.428 (0.0009) 0.572 (0.0009) 0.1568

KL 0.438 (0.0009) 0.562 (0.0009) 0.1766
DB 0.439 (0.0009) 0.561 (0.0009) 0.1772

constraint 0.439 (0.0009) 0.561 (0.0009) 0.1771

The following results use mj = 1, j = 1, . . . , k (one anchor point per compo-
nent) for the three anchor models. The oracle anchor points are the observations
closest to the median of each component. Appendix E presents results from using
two anchor points per component.
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4.3.1. Model 1

Model 1 is a scale mixture whose two components both have means of zero.
The oracle anchors are nearly identical points at the median of the distribu-
tion. The anchored EM and minimum-entropy methods select the same anchor
points in this example: the maximum observation is anchored to component 1
while the observation closest to the sample mean is anchored to component 2.
These two anchor models have α values of 1.000, while the oracle anchor model
has an α value of 0.500. Figure 2 shows the anchor points and the estimated
scaled component densities, and Table 3 gives the estimated posterior means
of the component-specific parameters and the total absolute errors, calculated
as

∑k
j=1 |aj − âj | for a parameter aj having posterior mean equal to âj . For

this example, in the model with prior ordering constraints, the component stan-
dard deviations were assumed to satisfy the condition σ1 > σ2. The estimates
are very similar across the methods for these data, with the exception of the
oracle anchor model. The oracle model performs poorly, producing identical
parameter estimates for both components, because the anchor points provide
no information about the scale difference between the components. None of
the methods accurately capture the difference between η1 and η2, with the
anchored EM and minimum-entropy models coming the closest of the six meth-
ods.

4.3.2. Model 2

The component densities of model 2 overlap substantially, with equal variances
and evenly-spaced means. In the model with prior ordering constraints, the
component means were assumed to satisfy the condition θ1 < . . . < θ4. The true
model and estimated anchor points are shown in the left panel of Figure 3, with
α values of 0.947, 0.972, and 0.996 for the oracle, anchored EM, and minimum-
entropy models, respectively. The EM and minimum-entropy method both select
the minimum and maximum observations to be anchored to components 1 and 4,
respectively. For components 2 and 3, the anchored EM points fall near the true
component means of −1 and 1, while the minimum-entropy points fall closer
to −2 and 2, respectively. The effect of these differences is seen in the middle
panel of Figure 3. The estimated scaled densities for components 2 and 3 are
approximately symmetric under the EM anchor model. Under the minimum
entropy model, however, these densities are skewed, with excess mass near the
anchor points, and the posterior means of θ2 and θ3, shown in Table 4, are poor
estimates of the true component means. Both of the relabeling methods produce
estimated component means that are biased towards zero, most substantially
for components 2 and 3, and severely overestimate η2 while underestimating η3.
The oracle and the EM anchor models produce relatively accurate estimates of
all model parameters.
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Fig 3. Left panel: mixture density, anchor points, and true scaled component densities for
model 2. Middle panel: estimated scaled component densities for the anchor models. Right
panel: estimated scaled component densities for the relabeling methods.

Table 4

Posterior means (standard errors) of the component-specific parameters for model 2.

θ1 θ2 θ3 θ4 error time (s)

true −3 −1 1 3
oracle anchors −2.819 (0.0049) −0.960 (0.0072) 0.956 (0.0072) 2.818 (0.0049) 0.448 N/A
anchored EM −2.983 (0.0069) −0.960 (0.0073) 0.997 (0.0073) 2.997 (0.0068) 0.063 24.87
min-entropy −2.967 (0.0116) −1.653 (0.0095) 1.965 (0.0088) 2.864 (0.0134) 1.786 10.37

KL −1.773 (0.0344) −1.529 (0.0084) 1.194 (0.0339) 2.074 (0.0069) 2.876 7031.77
DB −2.556 (0.0142) −0.250 (0.0384) 0.260 (0.0143) 2.513 (0.0196) 2.421 169.71

constraint −3.483 (0.0231) −1.038 (0.0121) 1.034 (0.0124) 3.453 (0.0231) 1.008 N/A

σ1 σ2 σ3 σ4 error

true 1 1 1 1
oracle anchors 1.024 (0.0026) 1.067 (0.0041) 1.063 (0.0039) 1.026 (0.0025) 0.1805
anchored EM 1.074 (0.0025) 0.984 (0.0031) 0.984 (0.0032) 1.069 (0.0025) 0.1752
min-entropy 1.121 (0.0040) 1.089 (0.0036) 1.042 (0.0034) 1.168 (0.0043) 0.4192

KL 0.749 (0.0067) 1.449 (0.0023) 0.715 (0.0069) 1.304 (0.0031) 1.2890
DB 1.077 (0.0033) 0.698 (0.0028) 1.455 (0.0051) 0.987 (0.0032) 0.8471

constraint 0.984 (0.0038) 1.124 (0.0047) 1.122 (0.0047) 0.988 (0.0038) 0.2733

η1 η2 η3 η4 error

true 0.25 0.25 0.25 0.25
oracle anchors 0.247 (0.0011) 0.252 (0.0013) 0.251 (0.0013) 0.250 (0.0010) 0.0059
anchored EM 0.255 (0.0012) 0.247 (0.0012) 0.247 (0.0012) 0.251 (0.0012) 0.0124
min-entropy 0.222 (0.0016) 0.283 (0.0016) 0.263 (0.0014) 0.232 (0.0018) 0.0923

KL 0.100 (0.0007) 0.439 (0.0016) 0.082 (0.0006) 0.379 (0.0015) 0.6357
DB 0.275 (0.0015) 0.078 (0.0007) 0.418 (0.0022) 0.230 (0.0014) 0.3844

constraint 0.224 (0.0017) 0.275 (0.0020) 0.274 (0.0019) 0.226 (0.0017) 0.0992

4.3.3. Model 3

Model 3 is a five-component mixture in which the components have varying
locations, scales, and weights. The true scaled component densities and anchor
points are shown in Figure 4 and the posterior parameter estimates are given
in Table 5. The α values for the oracle, anchored EM, and minimum-entropy
models are 0.500, 1.000, and 0.978, respectively. The anchored EM points are
offset from the true component means but still tend to fall in regions to which
their component’s true density assigns sizable mass. This model produces accu-
rate estimates of θ2 − θ5, but incorrectly estimates a substantial location shift
between components 1 and 2. Its estimates of the component standard devia-
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Fig 4. Left panel: mixture density, anchor points, and true scaled component densities for
model 3. Middle panel: estimated scaled component densities for the anchor models. Right
panel: estimated scaled component densities for the relabeling methods.

Table 5

Posterior means (standard errors) of the component-specific parameters for model 3.

θ1 θ2 θ3 θ4 θ5 error time (s)

true 19 19 23 29 33
oracle anchors 18.955 (0.0049) 18.958 (0.0049) 23.030 (0.0014) 29.006 (0.0006) 32.990 (0.0016) 0.135 N/A
anchored EM 17.273 (0.0290) 19.049 (0.0019) 22.975 (0.0014) 29.006 (0.0006) 32.991 (0.0016) 1.816 16.60
min-entropy 18.948 (0.0014) 23.011 (0.0010) 29.006 (0.0006) 33.031 (0.0056) 33.838 (0.0100) 14.94 10.56

KL 19.080 (0.0028) 20.037 (0.0876) 23.029 (0.0016) 29.006 (0.0007) 32.993 (0.0018) 1.159 1106.45
DB 20.376 (0.0698) 18.732 (0.0417) 23.035 (0.0018) 29.007 (0.0007) 32.995 (0.0018) 1.691 287.54

constraint 17.808 (0.0288) 20.061 (0.0299) 23.847 (0.0360) 29.262 (0.0122) 33.167 (0.0146) 3.529 N/A

σ1 σ2 σ3 σ4 σ5 error

true 2.236 1 1 0.7071 1.414
oracle anchors 1.371 (0.0048) 1.380 (0.0048) 0.973 (0.0010) 0.719 (0.0005) 1.364 (0.0012) 1.334
anchored EM 1.490 (0.0081) 1.073 (0.0042) 1.011 (0.0009) 0.719 (0.0005) 1.363 (0.0012) 0.892
min-entropy 1.606 (0.0010) 1.011 (0.0007) 0.718 (0.0005) 1.067 (0.0025) 1.134 (0.0037) 1.563

KL 1.582 (0.0047) 0.976 (0.0051) 0.974 (0.0011) 0.716 (0.0005) 1.358 (0.0013) 0.769
DB 1.538 (0.0080) 1.020 (0.0053) 0.974 (0.0011) 0.716 (0.0005) 1.358 (0.0013) 0.810

constraint 1.325 (0.0050) 1.265 (0.0061) 0.934 (0.0022) 0.745 (0.0018) 1.337 (0.0019) 1.356

η1 η2 η3 η4 η5 error

true 0.2 0.2 0.25 0.2 0.15
oracle anchors 0.201 (0.0008) 0.204 (0.0008) 0.245 (0.0003) 0.201 (0.0001) 0.149 (0.0001) 0.0127
anchored EM 0.132 (0.0021) 0.255 (0.0019) 0.264 (0.0003) 0.201 (0.0001) 0.149 (0.0001) 0.1387
min-entropy 0.392 (0.0002) 0.255 (0.0002) 0.200 (0.0002) 0.088 (0.0004) 0.064 (0.0004) 0.4954

KL 0.335 (0.0010) 0.073 (0.0008) 0.246 (0.0005) 0.198 (0.0002) 0.147 (0.0002) 0.2691
DB 0.257 (0.0015) 0.151 (0.0018) 0.246 (0.0005) 0.198 (0.0002) 0.147 (0.0002) 0.1146

constraint 0.191 (0.0023) 0.252 (0.0012) 0.228 (0.0010) 0.186 (0.0007) 0.143 (0.0003) 0.1034

tions are close to their true values, except that of σ1, which is underestimated
as it is by all other methods. The KL and DB relabeling methods accurately
estimate the means and standard deviations of all components, and the DB
method also produces accurate estimates of η. Under the prior ordering con-
straint θ1 < . . . < θ5, the estimated scaled densities of components 2 and 3 are
multimodal and the estimates of θ are comparatively inaccurate, reflecting the
inadequacy of this constraint to describe overlapping components.

The minimum entropy model performs poorly for these data: the anchor
points are located at the periphery of plausible regions under their respective
component densities, with no points near regions of high density around the
mean of component 3. As a result, the mass at this peak is split between com-
ponents 2 and 3 and the estimated scaled component densities for components 2
and 3 appear bimodal. A similar phenomenon produces bimodality in compo-
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nent 4. Table 5 shows that this model produces the least accurate estimates of
all of the methods, especially for the component means.

In each of these univariate examples, the anchored EM algorithm has se-
lected anchor points that result in comparatively accurate estimates of the
component-specific parameters. In terms of absolute relative error, it outper-
forms the minimum-entropy anchor model in all cases and tends to have com-
parable or superior performance to the relabeling methods. Interestingly, the
anchored EM model occasionally performs better than the oracle model, due to
the anchor points’ ability to provide information about both the locations and
the relative scales of the components. The estimates produced by the minimum
entropy model are less accurate because this method tends to select points in
low-density areas where adjacent component begin to overlap. Although these
points maximize the model’s estimated asymptotic identifiability, their influ-
ence introduces bias in finite samples. It is evident that anchor points must
fall in areas with non-negligible density of the components to which they be-
long.

5. A multivariate example: fall detection data

We now apply the anchored modeling framework to a data set called SisFall
[Sucerquia, López and Vargas-Bonilla, 2017], one of a growing body of fall data
sets that are being used to develop systems that detect falls automatically using
wearable devices, cameras, and/or microphones. Experimental data are obtained
from volunteer subjects who simulate falls and various activities of daily living
(ADLs) and analyzed with the goal of characterizing the distinguishing features
of falls compared to ADLs and detecting falls with high accuracy.

Common practices in analyzing these types of data include thresholding
[Bourke and Lyons, 2008], in which lower- or upper-thresholds for one vari-
able are set, and a fall is determined to have occurred if the variable exceeds the
threshold during a trial. More recent analyses have used supervised classifica-
tion algorithms on extracted features of the data [Albert et al., 2012, Casilari,
Santoyo-Ramón and Cano-Garćıa, 2017]. Our approach uses a finite Gaussian
mixture model to cluster activities into similar subgroups and to provide a char-
acterization of the features of each group. Analyzing these data in a mixture
framework makes it possible to identify groups of experimental activities that
share similar features and to describe, with an accompanying appraisal of uncer-
tainty, the typical features of each group. Using this model for classification can
provide further insight about which types of ADLs are difficult to distinguish
from falls.

The subjects of the SisFall experiments performed 15 types of falls and 19
types of ADLs, repeating 5 trials for most of the activities, while wearing two
accelerometers and one gyroscope. We analyzed the data recorded by one of
the two accelerometers worn by one subject (“Subject 9”, a 24-year-old male)
in the SisFall data set. A time series of three-dimensional acceleration vectors
(xt, yt, zt) is available for each of the 154 trials. Following common practice in
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Fig 5. The data and selected anchor points for the SisFall data example.

the fall detection literature, we summarized the acceleration at each time point
t via the Signal Magnitude Vector (SMV), defined as SMVt =

√
x2
t + y2t + z2t .

We further summarized the SMV series for each trial using the logarithm of
three extracted features arranged in a three-dimensional vector. These features,
previously used by Casilari, Santoyo-Ramón and Cano-Garćıa [2017] in analyz-
ing several similar fall data sets, are: log (maxt SMVt), log (mint SMVt), and
log (maxt |SMVt − SMVt−1|). Ultimately, the resulting data set contained 154
three-dimensional vectors of extracted log-features.

We fit a multivariate Gaussian mixture model with k = 5 components. We
selected the number of components based on the Bayesian information criterion
(BIC) evaluated at MAP estimates of the exchangeable model parameters. We
specified a N3(μ,Σj/κ) prior on θj with μ = Ȳ , the sample mean vector of
the data, and κ = 0.01. We specified a Wishart (ν,A) distribution on Σ−1

j

with ν = 6 degrees of freedom and prior scale A = 5I3, where Ip denotes
the p × p identity matrix. Finally, we specified a Dirichlet(13) prior for η. We
used the anchored EM algorithm to select two anchor points per component.
The data and selected anchor points are shown in Figure 5. The coefficient
of quasi-consistency was estimated as α̂ > 0.9999. Qualitatively, the selected
anchor points identify well-separated sites on the periphery of the data cloud,
as we would expect in a location problem by generalizing the intuition provided
by Proposition 4. The high value of α̂ indicates that we can expect our anchor
points to produce high posterior concentration on the true parameter values in
large samples. We fit the model using a Gibbs sampler with 200 parallel chains.
We thinned the chains after 5, 000 burn-in iterations to obtain M = 50, 000
samples from the posterior distribution.

Posterior density estimates of θ are shown in Figure 6. Table 6 lists the av-
erage posterior allocation probabilities for selected activities, where each trial’s
probability of allocation to component j is the relative frequency that smi = j,
calculated from the Monte Carlo posterior samples of sm, m = 1, . . . ,M . The
table gives these probabilities averaged over the repeated trials for each activity.
The legend of Figure 6 also displays the proportion of falls among the observa-
tions classified to each component, if each trial is classified to its most probable
component.
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Fig 6. 2D density estimates of the marginal posterior distributions of θj , j = 1, . . . , k = 5,
for the SisFall data set.

Table 6

Posterior allocation probabilities for selected activities in the SisFall data set.

Activity Component
1 2 3 4 5

D03 Jogging slowly 0.000 0.000 1.000 0.000 0.000

D06 Walking upstairs and downstairs quickly 0.000 0.796 0.188 0.000 0.016

D07 Slowly sit in a half height chair, wait a moment, and up slowly 0.981 0.000 0.000 0.006 0.013

D09 Slowly sit in a low height chair, wait a moment, and up slowly 0.245 0.050 0.000 0.575 0.131

D10 Quickly sit in a low height chair, wait a moment, and up quickly 0.001 0.042 0.001 0.148 0.808

D11 Sitting a moment, trying to get up, and collapse into a chair 0.000 0.541 0.003 0.454 0.002

D18 Stumble while walking 0.000 0.957 0.003 0.040 0.000

D19 Gently jump without falling (trying to reach a high object) 0.000 0.308 0.033 0.000 0.658

F02 Fall backward while walking caused by a slip 0.000 0.302 0.001 0.697 0.000

F04 Fall forward while walking caused by a trip 0.000 0.938 0.001 0.061 0.000

F09 Lateral fall when trying to get up 0.000 0.074 0.000 0.926 0.000

F10 Fall forward when trying to sit down 0.000 0.609 0.001 0.390 0.000

Component 1, whose mean is located in a far corner of the posterior param-
eter space, is characterized by low values of maximum SMV and high values of
minimum SMV throughout the trial. It is unsurprising that no activities classi-
fied to this component are falls because falls are expected to be associated with
large changes in acceleration. Component 5 describes activities with slightly
higher values of maximum difference in SMV, and, unlike component 1, is esti-
mated to contain a small number of falls. Table 6 indicates that quick vertical
movements, such as quickly sitting and standing (D10), are likely to be classified
to this component.

Components 2 and 4 both exhibit high values of maximum SMV and maxi-
mum difference in SMV. The majority of activities classified to these components
are falls, with a few ADLs such as moving up and down stairs (D06), or trying to
get up but collapsing into a chair (D11). The forward falls tend to be classified
into component 2, whose SMV values are higher, while falls in other directions
are classified into component 4. Component 3, like component 2, describes ac-
tivities with very high values of maximum SMV and maximum difference, but
unlike component 2 its average value of minimum SMV is low. This component
contains only 25% falls, suggesting that minimum SMV is a feature that is able
to distinguish ADLs from falls.
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Table 6 indicates that certain types of ADLs, such as sitting slowly (D07),
are unlikely to be confused with falls as indicated by their high probability of
allocation to component 1. The small maximum change in (log) acceleration
associated with this component, is a feature that is likely to be highly predic-
tive of certain ADLs. Other ADLs, such as going upstairs quickly (D06), share
the high-acceleration features that many falls exhibit. The similarities between
ADLs that involve fast movement and forward falls suggest that additional mea-
surements, perhaps some including a directional component, may aid in better
distinguishing falls in these difficult cases.

6. Discussion

The proposed anchored Bayesian mixture model offers a model-based resolution
to label-switching that eliminates prior and posterior exchangeability without
imposing highly restrictive identifiability constraints. In Section 2.5 we intro-
duced a notion of quasi-consistency which guarantees that, in large samples, a
well-specified anchor model places high posterior probability on one relabeling of
the true component-specific parameters. Our anchored EM strategy for selecting
optimal anchor points requires several pre-processing steps, but eliminates the
need for post-processing of MCMC samples, often resulting in computational
savings. A carefully-specified anchor model will produce component-specific pa-
rameter estimates that reflect homogeneous subgroups in the population and
arise directly from the specified model.

The examples presented in this paper have demonstrated that one or two
anchor points per component are often sufficient to eliminate posterior mul-
timodality and produce accurate parameter estimates. The optimal number of
anchor points may, in some situations, be higher, and may depend on the method
used to select the points. Future work will investigate this question in a variety
of univariate and multivariate settings.

Non-Gaussian components The anchor model methodology is readily ap-
plicable to non-Gaussian component distributions. The model properties that
we presented in this paper do not, in general, rely on Gaussian components. An-
choring always eliminates the model’s posterior exchangeability and a minimal
number of anchor points will typically produce distinct distributions for the γj ,
as outlined in Proposition 2, when the component distributions are continuous
in y and γ. Proposition 5, which stated that the anchor model’s fit improves
with the addition of more anchor points, is also true for non-Gaussian mixtures
under fairly general conditions. The asymptotic result in Section 2.5 does de-
pend on several regularity conditions on the component likelihoods and priors,
which may not hold for all choices of component distributions. The anchored
EM algorithm of Section 3 can be implemented in models from other families.
Our own applied work [Kunkel and Peruggia, 2019] has demonstrated the use
of this strategy in a Gaussian mixture of regressions model. Different compo-
nent distributions will motivate new approaches to specifying anchor points and
these are interesting directions of future research.
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Other extensions Future work will explore ways to quantify the sensitivity
of analyses to changes in the specification of the anchor points and the number
of anchor points. An interesting feature of anchor models is that they admit the
possibility of using improper priors for the component-specific parameters. Sen-
sitivity to proper priors is a well-known issue in mixture modeling [Richardson
and Green, 1997, Frühwirth-Schnatter, 2006] but non-informative priors are dif-
ficult to derive because they tend to be improper, leading to improper posteriors
[Grazian and Robert, 2018]. An anchor model can restrict the space of latent
allocations to prevent empty components, similarly to the methods proposed
by Diebolt and Robert [1994] and Wasserman [2000], and this possibility allows
investigation of the model’s behavior under a wider class of priors.

From an applied modeling perspective, we plan to extend the anchored mix-
ture methodology to the case of hierarchical mixture models fit to grouped data
collected on many experimental units, as in the case, for example, of the entire
SisFall data set. Assuming a mixture model with a fixed number of components
for the data collected on each of the experimental units, with component specific
parameters tied together in a hierarchical structure, several challenging model-
ing questions will need an answer. Decisions will have to be made concerning
the number of components needed to describe the data for each experimental
unit. A simple approach would employ the same number (possibly random) of
components for each subject. A more refined approach would allow for vary-
ing numbers of components across units. With specific regard to the anchored
methodology, we plan to investigate different approaches to the specification of
the anchor points. These include selecting anchor points using independent fits
to the data for each unit and strategies that account for existing dependencies
in the data. We will also consider approaches where only a subset of the units
will have anchored observations.

Software

An R package implementing the algorithms described in the paper is available
at https://github.com/kunkeldeborah/anchormix.

Appendix A: Proofs of the propositions

This section presents proofs of Propositions 1 and 3–6. When necessary, refer-
ences to expressions in the main manuscript will be preceded by M, so that, for
example, (M2) refers to Equation (2) in the main manuscript.

Proposition 1. The following two statements hold under conditions C.1 and
C.2.

1. An anchor model A = {A1, . . . , Ak} imposes a unique labeling on each
partition that has nonzero probability if and only if A1, . . . , Ak−1 are non-
empty; that is, k0 ≥ k − 1.

https://github.com/kunkeldeborah/anchormix
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2. For any j ≤ k0, j �= j′, the marginal posterior density of γj is distinct
from the marginal posterior density of γj′ with probability 1.

Proof of part a. Suppose Ak−1 and Ak are empty so that at least two com-
ponents have no points anchored to them. Choose an allocation s∗ from SA

such that s∗ has at least one element equal to k − 1, so that s∗ has induced a
partition of the data under which one group is labeled k − 1. The set SA also
contains the allocation obtained by permuting the label k and k−1 in s∗, which
induces the same partition but a different labeling. In contrast, if A1, . . . , Ak−1

each contain at least one point, any allocation from SA induces a partition that
cannot be relabeled without relabeling an anchor point.

Proof of part b. Assume that component j has at least one anchor point;
that is, Aj �= ∅, and that xh denotes the anchor points for component h. Use
γ−(h) to denote γ = (γ1, . . . ,γh−1,γh+1, . . . ,γk) and Γ to denote the parameter

space of γh. The posterior density of γj , denoted by pj(γj |y), satisfies

pj(γj |y) ∝
∫

γ−(j)

∫
η

p(γ1, . . . ,γk,η,y)dηdγ−(j) (17)

=

∫
γ−(j)

∫
η

π(η)

k0∏
h=1

φp(xh;γh)

k∏
h=1

π(γh)
∏
i �∈A

k∑
h=1

ηhφp(yi;γh)dηdγ−(j). (18)

Case 1: Aj′ �= ∅. Define c(γj ,γj′) to be equal to the following function:

c(γj ,γj′) =∫
γ−(j,j′)

k0∏
h �=j,j′

φp(xh;γh)
k∏

h �=j,j′

π(γh)

∫
η

π(η)
∏
i �∈A

k∑
h=1

ηhφp(yi;γh)dηdγ−(j,j′), (19)

noting that the label-invariance of the mixture likelihood gives

c(u,w) = c(w,u). (20)

The expression (18) can be written as

pj(γj |y) ∝π(γj)φp(xj ;γj)

∫
w

π(w)φp(xj′ ;w)c(w,γj)dw. (21)

Further, define

c2(γj ,xj′) =

∫
u
π(u)φp(xj′ ;u)c(γj ,u)du, (22)

yielding

pj(γj |y) ∝π(γj)φp(xj ;γj)c2(γj ,xj′). (23)
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For component j′, we have

pj′(γj′ |y) ∝ π(γj′)φp(xj′ ;γj′)

∫
w

π(w)φp(xj ;w)c(w,γj′)dw (24)

= π(γj′)φp(xj′ ;γj′)c2(γj′ ,xj), (25)

where the equality follows from (20). Assumption C.2 ensures that there is some
open set W ⊂ Γ such that π(w) > 0 for all w ∈ W . Then for w ∈ W , we have
the posterior density of γj satisfying

pj(w|y) ∝π(w)φp(xj ;w)c2(w,xj′), (26)

while the posterior density of γj′ satisfies

pj′(w|y) ∝π(w)φp(xj′ ;w)c2(w,xj). (27)

With probability 1, xj �= xj′ , and so pj(w|y) �= pj′(w|y) for all w ∈ W .

Case 2 If Aj′ = ∅, then

pj(γj |y) ∝π(γj)φp(xj ;γj)

∫
w

π(w)c(w,γj)dw (28)

while

pj′(γj′ |y) ∝π(γj′)c2(γj′ ,xj). (29)

For w ∈ W , is it clear that pj(w|y) �= pj′(w|y).

Proposition 3. The qth element of Px(γ0), pq, is equal to

k0∏
j=1

φp

(
xj ;γ0ρq(j)

)/
k!∑

h=1

k0∏
j=1

φp

(
xj ;γ0ρh(j)

)
. (30)

Proof. The data dependent prior of (γ,η) under model A is proportional to

π(η)

k0∏
j=1

p(γj |xj)
k∏

j=k0+1

π(γj).

The probability of the qth class label under the anchor model is

pq =
π(ρq(η0))

∏k0

j=1 p(γ0ρq(j)|xρq(j))
∏k

j=k0+1 π(γ0ρq(j))∑k!
h=1 π(ρh(η0))

∏k0

j=1 p(γ0ρh(j)
|xj)

∏k
j=k0+1 π(γ0ρh(j)

)
(31)

=

∏k0

j=1 p(γ0j |xj)
∏k

j=k0+1 π(γ0ρq(j))∑k!
h=1

∏k0

j=1 p(γ0ρh(j)
|xj)

∏k
j=k0+1 π(γ0ρh(j)

)
, (32)
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where the terms π(ρq(η0)) are invariant to label permutation and are factored
out in (32). For any q, we have

k0∏
j=1

p(γ0ρq(j))|xj) =

k0∏
j=1

π(γ0ρq(j))φp(xj ;γ0ρq(j))C
−1
j . (33)

As in Section 2.4 of the manuscript, Cj is defined to be

Cj =

∫
π(w)φp(xj ;w)dw

and does not depend on the permutation of the label of γj . Further,∏k
j=1 π(γρq(j)) is equal to

∏k
j=1 π(γρq′ (j)

) for any q and q′. The only term

in (32) that depends on the qth permutation is
∏k0

j=1 φp(xj ;γρq(j)). Thus the
qth element of Px(γ0) is equal to

pq =

∏k0

j=1 φp(xj ;γ0ρq(j))∑k!
h=1

∏k0

j=1 φp(xj ;γ0ρh(j)
)
,

for q = 1, . . . , k!.

Proposition 4. Suppose that p = 1, k = 2, and that mj = m observations
(with 1 ≤ m ≤ n/2) are to be anchored to component j, j = 1, 2. The following
results hold:

1. If σ2
1 = σ2

2 = σ2 and θ1 < θ2, then the optimal anchoring sets x1 =
(y(1), . . . , y(m)) and x2 = (y(n−m+1), y(n)), where y(l) denotes the lth order
statistic.

2. If θ1 = θ2 = θ and σ2
1 < σ2

2, then the optimal anchoring sets x1 equal
to the points that minimize

∑m
i=1(yi − θ)2 and x2 equal to the points that

maximize
∑m

i=1(yi − θ)2.

Proof. When k = 2, Px has only two elements and maximizing p1 will mini-
mize its entropy. Thus, it is sufficient to maximize the ratio p1/p2. In the location
problem (case 1), p1/p2 equals

φ(x1; θ1, σ
2)φ(x2; θ2, σ

2)

φ(x1; θ2, σ2)φ(x2; θ1, σ2)
= exp

(m

σ2
(θ2 − θ1)(x̄2 − x̄1)

)
,

where x̄1 and x̄2 are the sample means of x1 and x2. Because we assume θ1 < θ2,
this expression is increasing in (x̄2 − x̄1). In case 2, p1/p2 is equal to

φ(x1; θ, σ
2
1)φ(x2; θ, σ

2
2)

φ(x1; θ, σ2
2)φ(x2; θ, σ2

1)
=exp

((
1

2σ2
1

− 1

2σ2
2

)(
m∑
i=1

(x2i−θ)2 −
m∑
i=1

(x1i − θ)2

))
.

Because σ2
1 < σ2

2 , the ratio is increasing in
∑m

i=1(x2i − θ)2 and decreasing in∑m
i=1(x1i − θ)2. This concludes the proof.
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The proof of Proposition 5 below relies on the result stated in the following
lemma.

Lemma 1. For any anchor model Am, m ≥ 1, it is possible to form a se-
quence of anchor models Am, . . . , An satisfying Am ⊂ Am+1 ⊂ . . . An such that
mAm(y) ≤ . . . ≤ mAn(y).

Proof. Given an anchor model Am with m anchor points and some i /∈ Am,
let Am+1

i,j denote the anchor model obtained from Am by adding the additional
anchor point with index i to component j. We will show that for some j, the
marginal likelihood for Am+1

i,j is greater than or equal to that of Am.

Let SAm

denote the restricted set of allocation vectors for the anchor model
Am. It is possible to write SAm

as ∪k
j=1SAm+1

i,j for any i. The marginal likelihood
for Am can be written as

mAm(y) =
∑
SAm

m(y|s)pAm(s)

=
1

kn−m

∑
SAm

m(y|s) (34)

=
1

k

k∑
j=1

1

kn−m−1

∑
SA

m+1
i,j

m(y|s). (35)

Expression (34) follows from the fact that pAm(s) = k−(n−m) for all s ∈ SAm

under the assumption that ηj = k−1, j = 1, . . . , k. Expression (35) shows that
the marginal likelihood for Am is the average of the marginal likelihoods for
Am+1

i,j , j = 1, . . . , k. Thus,

mAm(y) =
1

k

k∑
j=1

1

kn−m−1

∑
SA

m+1
i,j

m(y|s)

≤ max
j

1

kn−m−1

∑
SA

m+1
i,j

m(y|s)

= mAm
i,j∗

(y), (36)

where j∗ is the component to which observation i can be anchored to maximize
the marginal likelihood. Thus mAm(y) ≤ mAm+1

i,j∗
(y) for any m < n, proving

Lemma 1.

Proposition 5. Assume that ηj = 1/k, j = 1, . . . , k. Let A1
∗, . . . , A

n
∗ be a

sequence of anchor models where Am
∗ has the highest marginal likelihood among

all anchor models with m anchor points. The marginal likelihoods of the models
satisfy mA1

∗
(y) ≤ . . . ≤ mAn

∗ (y).
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Proof. Fix m and let i be the index of an observation not anchored in Am
∗ .

Then,

mAm
∗ (y) ≤ mAm+1

i,j∗
(y) ≤ mAm+1

∗
(y),

where the first inequality follows from Lemma 1 and the second from the defi-
nition of Am+1

∗ .

Proposition 6. Let q be the posterior distribution of the allocations under an
anchor model, subject to the restrictions in (M15). The KL divergence of q∗ from
q, evaluated at a fixed value of γ, is minimized when the sets Aj are chosen to

maximize
∑k0

j=1

∑
i∈Aj

rij and when r̃ij = rij for all i �∈ A.

Proof. For any distributions q and q∗, and defining x log(x) = 0, the KL-
divergence of q∗ from q is equal to

DKL(q||q∗) =
∑
s

q(s) log

(
q(s)

q∗(s)

)

=
∑
s

[
n∏

l=1

q(sl)

]
log

( ∏n
i=1 q(si)∏n
i=1 q∗(si)

)

=
∑
s

[
n∏

l=1

q(sl)

]
n∑

i=1

(
log

(
q(si)

q∗(si)

))

=

k∑
s1=1

. . .

k∑
sn=1

[
n∏

l=1

q(sl)

]
n∑

i=1

(
log

(
q(si)

q∗(si)

))

=
k∑

s1=1

. . .
k∑

sn−1=1

[
n−1∏
l=1

q(sl)

]
k∑

sn=1

q(sn)
n∑

i=1

(
log

(
q(si)

q∗(si)

))

=

k∑
s1=1

. . .

k∑
sn−1=1

[
n−1∏
l=1

q(sl)

]
[

k∑
sn=1

q(sn)

n−1∑
i=1

(
log

(
q(si)

q∗(si)

))
+

k∑
sn=1

q(sn)

(
log

(
q(sn)

q∗(sn)

))]

=

k∑
s1=1

. . .

k∑
sn−1=1

[
n−1∏
l=1

q(sl)

]
[
n−1∑
i=1

(
log

(
q(si)

q∗(si)

))
+

k∑
sn=1

q(sn)

(
log

(
q(sn)

q∗(sn)

))]
...

=
n∑

i=1

k∑
si=1

q(si) log

(
q(si)

q∗(si)

)
.
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Substituting the definition of q∗ in (M13) and the restrictions on q from (M15)
yields

DKL(q||q∗) =
n∑

i=1

k∑
j=1

q(si = j) log

(
q(si = j)

rij

)

=
∑
i∈Aj

k∑
j=1

I(si = j) log

(
I(si = j)

rij

)
+

∑
i/∈A

k∑
j=1

r̃ij log

(
r̃ij
rij

)

= −
k∑

j=1

∑
i∈Aj

log (rij) +

k∑
j=1

∑
i/∈A

r̃ij log

(
r̃ij
rij

)
. (37)

The second term in (37) is non-negative and can be made equal to zero by
setting r̃ij = rij for i /∈ A. The first term decreases toward zero as rij → 1 for
i ∈ A. Subject to the restriction that Aj ∩ Aj′ = ∅ and |Aj | = mj , the q that
minimizes DKL(q||q∗) is

q(Si = j) =

⎧⎪⎨⎪⎩
rij , i /∈ A,

1, i ∈ Aj ,

0, i ∈ Aj′ , j′ �= j,

where the Aj are selected to maximize
∑k

j=1

∑
i∈Aj

rij . The sets Aj will contain

the mj observations with the highest value(s) of rij , for j = 1, . . . , k0, if there
are no observations that fit this criterion for more than one value of j.

Appendix B: Simulation study

Here, we describe in detail the simulation studies referenced in Section 3.1 of
the main manuscript, evaluating how the number of anchor points affects out-
of-sample predictions from the anchor model.

B.1. Simulation 1

In the first simulation study, we simulated data from a mixture with k = 2
mixture components to assess the relationship between goodness of fit and pre-
dictive performance of the anchor model. For each data set we fit a univariate
location model assuming σ1 = σ2 = 1 and η1 = η2 = 0.5, using independent
N(0, 25) prior distributions on the component means θ1 and θ2. We generated
data from a Gaussian mixture with means θ1 = 0, θ2 = δ and standard devia-
tions σ1 = 1 and σ2 = σ. We considered several values of δ to assess the effect of
separation among the mixture components and several values of σ to assess the
effect of model misspecification. For each combination of δ and σ, we generated
1,000 small data sets, yj,(δ,σ), j = 1, . . . , 1, 000, of size n = 10. To each of these

data sets, we fit nine anchor models A2
j,(δ,σ), . . . , A

10
j,(δ,σ), having m = 2, . . . , 10



3902 D. Kunkel and M. Peruggia

anchor points such that Am
j,(δ,σ) has the highest marginal likelihood among an-

chor models with m anchor points, subject to the additional requirement that
at least one anchor point be assigned to each of the two components. To block
out uninteresting sources of variation, we used a common master batch of 1,000
data sets sampled from a model with standard normal mixture components and
obtained the 1,000 data sets for each (δ, σ) pair through appropriate rescaling
and translation of the observations.

We assessed the out-of-sample predictive performance of each model using
its expected log pointwise predictive density (ELPPD) [Gelman, Hwang and
Vehtari, 2014] as follows. For a given simulated data set, yj,(δ,σ), we generated

Ñ = 1, 000 replicate data sets, ỹ1
j,(δ,σ), . . . , ỹ

Ñ
j,(δ,σ), from the same distribution

as that of yj,(δ,σ). Again, this was done using a common master batch of 1,000
standardized data sets. For each anchor model Am

j,(δ,σ), we generated T = 3, 000

Monte Carlo samples of the parameters γ1, . . . ,γT from the posterior distribu-
tion of γ conditional on yj,(δ,σ).

We then estimated the ELPPD for that anchor model fit to yj,(δ,σ) by the

quantity 1/Ñ
∑Ñ

i=1

{∑10
k=1

[
log

(
T−1

∑T
t=1 f(ỹ

i,k
j,(δ,σ)|γt)

)]}
, which provides a

Monte Carlo estimate of the expected log predictive density, p(ỹ|yj,(δ,σ)), of a
new sample, ỹ, and will be large when the model has strong predictive perfor-
mance.

Figure A7 shows boxplots of the 1,000 estimated ELPPD values for each
of the (δ, σ) simulation settings, with δ = 0.25, 1.75, 2.75 and σ2 = 0.10, 1,
and each value for the number of anchor points, m, between 2 and 9. For the
settings with the largest value of δ = 2.75 in which the mixture components
are well-separated, there is only a slight increase in predictive performance as
the number of anchored points increases. For the smallest value of δ = 0.25,
however, the predictive performance deteriorates when the number of anchor
points is large: the ELPPD values appear to have both lower medians and
higher variability for models with more anchor points. For the settings in which
the data were generated with σ �= 1, this pattern of deterioration as m grows is
more apparent.

B.2. Simulation 2

The second simulation sought to investigate the effect of increasing the num-
ber of anchor points when using the anchored EM algorithm. We simulated
data from models 1, 2, and 3, whose parameters are given in Table M2 and
analyses of which are presented in Section M4.3 with the same prior and hy-
perparameter specification. From each model we generated 250 data sets of size
n = 100 and fit eight different anchor models, requiring mj = m, j = 1, . . . , k,
using the values of m = 1, 2, 3, 5, 7, 9, 10, 12. The anchor points were chosen
using the anchored EM method as well as two oracle methods. The first set
of oracle anchor points (random oracle points) were selected randomly from,
for component j, the observations generated from component j. The second
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Fig A7. Boxplots of the values of the ELPPD of each simulated data set for anchor models
with m = 2, . . . , 10. The panels show results for selected experimental conditions with δ =
0.25, 1.75, 2.75 and σ = 0.1, 1.

set of oracle anchor points (quantile oracle points) were chosen to be evenly-
spaced percentiles from the true component densities, beginning at the 5th
percentile and ending at the 95th. The model with m = 1 uses only the 5th
percentile.

The estimated ELPPD was calculated for each data set to assess the model’s
predictive performance. Figure A8 shows boxplots of the ELPPD values for
models 1, 2, and 3 respectively.

The left-hand panels display the values under anchor models specified using
anchored EM, as would occur in practice. For model 1, the two-component scale
mixture, the median predictive performance improves slightly as m increases,
but for model 2, the four-component location mixture, the performance deteri-
orates noticeably as the number of anchor points increases. For model 3 there is
also a slight tendency for the ELPPD to decrease with higher values of m. In all
models there is more variability in the ELPPD when m is large. This pattern
suggest that in models with substantial overlap among components, using many
points selected by anchored EM leads to models that may introduce bias. In all
models there is little apparent difference in the average ELPPD between models
with m = 1 and m = 2.

The random and quantile oracle methods demonstrate how predictive per-
formance changes with anchor points that represent true features of the distri-
butions. In the random oracle models, shown in the middle panels of Figure A8
the anchor points are guaranteed to be a random sample from the component
to which they are anchored. In models 2 and 3, there is little difference in the
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Fig A8. Estimated ELPPD values under the anchored EM (left), random oracle (center), and
quantile oracle (right) anchor models. Rows 1, 2 and 3 give results for models 1, 2, and 3,
respectively.

model performance as m increases. In model 1, larger numbers of points lead to
poorer predictive performance. The estimated ELPPD values under the quan-
tile oracle models, are shown in the right panels of Figure A8. As m increases,
these points will become increasingly representative of the features of the true
component densities. It is unsurprising that, for these methods, there is a slight
increase in predictive performance as m increases.
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Appendix C: Anchored EM algorithm

In this section we list the pseudo-code of the Anchored EM algorithm described
in Section 3.2 of the main manuscript.

Algorithm 1 Anchored EM Algorithm

0: Initialize γ0 and select ε > 0. Set t = 1 and δ > ε.
while δ ≥ ε do

E step: Calculate the unconstrained posterior probabilities rtij at the current value of

γt−1. Initialize At = ∅.
Find At to maximize

∑k0
j=1

∑
i∈Aj

rtij .

Set r̃tij = 1 and r̃til = 0, l �= j for i ∈ At
j , j = 1, . . . , k0.

Set r̃tij = rtij for i /∈ At, j = 1, . . . , k. Define qt as in M14 using r̃tij .

M step: Set γt = argmaxγ F (γ, qt).

δ = F (γt, qt)− F (γt−1, qt−1); t++.
end while

An exact solution to the maximization of At above may be framed as a so-
lution to a transportation problem where k0 sources must be connected to n
destinations and the cost of connecting source j to destination i is −rtij . The
solution can be expressed as an n× k0 matrix B of 0’s and 1’s, where Bij = 1 if

i ∈ Aj , subject to the constraints
∑k0

j=1 Bij ≤ 1 and
∑n

i=1 Bij = mj . The func-
tion lp.transport in the R package lpSolve [Berkelaar, 2015] can be used to
perform this step of the algorithm. Alternatively, an approximate solution may
be found using, for example, Vogel’s approximation method and variants thereof
[Mathirajan and Meenakshi, 2004, Juman and Hoque, 2015] or using the heuris-
tic method described in the pseudo-code below.

while |At| < m do
Find i′, j′ = maxi,j:i �∈At, |At

j |<mj
rtij . Set i

′ ∈ Aj′ .

Set r̃ti′j′ = 1 and r̃ti′l = 0, l �= j′.
end while

Appendix D: Random permutation sampler

As noted in Section 4.1, to prove that the random permutation sampler is a
Gibbs sampler that generates draws from the target posterior distribution we
need to show that the accepted randomly permuted draw (γ,η) is in fact a draw
from the distribution of (γ,η) given (s,y). Let C be a measurable subset and
let the symbol pT (·|·) denote generically a conditional density under the target
posterior for the given model (either the exchangeable or the anchor model).
We note first that the absolute values of the Jacobian determinants for the k!
permutations and their inverses are all equal to one and can therefore be ignored
in the following derivation. Then we have
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P ((γ,η) ∈ C|s,y)

=

k!∑
q=1

∫
ρ−1
q (C)

pT (ρq(ρ
−1
q (γ,η))|y)∑k!

h=1 pT (ρh(ρ
−1
q (γ,η))|y)

pT (ρ
−1
q (γ,η)|s,y) d(ρ−1

q (γ,η))

=

k!∑
q=1

∫
C

pT (ρq(γ,η)|y)∑k!
h=1 pT (ρh(γ,η)|y)

pT (γ,η|s,y) d(γ,η)

=

∫
C

∑k!
q=1 pT (ρq(γ,η)|y)∑k!
h=1 pT (ρh(γ,η)|y)

pT (γ,η|s,y) d(γ,η)

=

∫
C

pT (γ,η|s,y) d(γ,η)

= PT ((γ,η) ∈ C|s,y),

proving the claim. Note that for the exchangeable model all relabelings will
have the same probability 1/k! of being selected and the algorithm reduces to
the original algorithm proposed in Frühwirth-Schnatter [2001].

Appendix E: Univariate examples with mj = 2

In this section, we revisit the univariate examples of Section (M4) using the
anchored EM method to select two anchor points per component. We also use
oracle anchor points chosen as the 5th and 95th percentiles of the true compo-
nent distributions. The minimum-entropy method is not demonstrated for this
case.

Figure A9 shows the scaled component densities under model 1 for the an-
chor models and relabeling methods. Table A7 gives posterior means of the
model parameters for all methods, including the anchor models with mj = 1 as
presented in the main manuscript. Figure A10 and Table A8 show the scaled
component densities and posterior means of the model parameters, respectively,
for all methods for model 2. The results for model 3 are shown in Figure A11
and Table A9.

In model 1, the anchor models with two anchor points provide parameter
estimates with higher accuracy than the ones with one anchor point. This im-
provement is, however, not seen for all parameters in model 2 and model 3. The
anchored EM model with mj = 1 provides more accurate estimates of both θ
and η for model 2, althoughmj = 2 produces better estimates of σ. For model 3,
the anchored EM model is more accurate with mj = 1 than with mj = 2.

Appendix F: Analysis of the SisFall data

This section provides additional details on the data analysis example presented
in Section 5 of the main manuscript.
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Fig A9. Left panel: anchor points and true scaled component densities for model 1. Middle
panel: estimated scaled component densities for the anchor models. Right panel: estimated
scaled component densities for the relabeling methods and prior constraints.

Table A7

Posterior means of the component-specific parameters for model 1.

θ1 θ2 error time (s)

true 0 0
oracle anchors (mj = 2) 0.0004 (0.0014) −0.0008 (0.0005) 0.0012 N/A
anchored EM (mj = 2) −0.0004 (0.0014) −0.0007 (0.0005) 0.0011 1.03
oracle anchors (mj = 1) 0.0010 (0.0010) −0.0010 (0.0010) 0.0020 N/A
anchored EM (mj = 1) −0.0027 (0.0014) −0.0009 (0.0005) 0.0036 1.03
min-entropy(mj = 1) −0.0003 (0.0014) −0.0006 (0.0005) 0.0009 0.50

KL 0.0005 (0.0013) −0.0008 (0.0005) 0.0013 1102.78
DB 0.0005 (0.0013) −0.0008 (0.0005) 0.0013 547.59

constraint 0.0005 (0.0013) −0.0008 (0.0005) 0.0013 N/A

σ1 σ2 error

true 1.5 0.5
oracle anchors (mj = 2) 1.356 (0.0013) 0.485 (0.0005) 0.1593
anchored EM (mj = 2) 1.333 (0.0013) 0.470 (0.0006) 0.1973
oracle anchors (mj = 1) 0.867 (0.0035) 0.866 (0.0035) 0.9988
anchored EM (mj = 1) 1.320 (0.0013) 0.467 (0.0006) 0.2125
min-entropy (mj = 1) 1.320 (0.0013) 0.468 (0.0006) 0.2122

KL 1.307 (0.0013) 0.464 (0.0005) 0.2293
DB 1.307 (0.0013) 0.464 (0.0006) 0.2293

constraint 1.733 (0.0013) 0.220 (0.0005) 0.5129

η1 η2 error

true 0.35 0.65
oracle anchors (mj = 2) 0.395 (0.0008) 0.605 (0.0008) 0.0907
anchored EM (mj = 2) 0.418 (0.0008) 0.582 (0.0008) 0.1363
oracle anchors (mj = 1) 0.501 (0.0009) 0.499 (0.0009) 0.3020
anchored EM (mj = 1) 0.430 (0.0009) 0.570 (0.0009) 0.1594
min-entropy (mj = 1) 0.428 (0.0009) 0.572 (0.0009) 0.1568

KL 0.439 (0.0009) 0.561 (0.0009) 0.1781
DB 0.439 (0.0009) 0.561 (0.0009) 0.1782

constraint 0.439 (0.0009) 0.561 (0.0009) 0.1781
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Fig A10. Left panel: anchor points and true scaled component densities for model 2. Middle
panel: estimated scaled component densities for the anchor models. Right panel: estimated
scaled component densities for the relabeling methods and prior constraints.

Table A8

Posterior means of the component-specific parameters for model 2.

θ1 θ2 θ3 θ4 error time (s)

true −3 −1 1 3
oracle anchors (mj = 2) −2.802 (0.0037) −0.978 (0.0059) 0.979 (0.0057) 2.800 (0.0038) 0.442 N/A
anchored EM (mj = 2) −3.104 (0.0051) −1.061 (0.0050) 1.138 (0.0050) 3.140 (0.0051) 0.443 21.39
oracle anchors (mj = 1) −2.819 (0.0049) −0.960 (0.0072) 0.956 (0.0072) 2.818 (0.0049) 0.448 N/A
anchored EM (mj = 1) −2.983 (0.0069) −0.960 (0.0073) 0.997 (0.0073) 2.997 (0.0068) 0.063 24.87
min-entropy (mj = 1) −2.967 (0.0116) −1.653 (0.0095) 1.965 (0.0088) 2.864 (0.0134) 1.786 10.37

KL −2.208 (0.0078) −0.942 (0.0376) 1.288 (0.0090) 1.864 (0.0318) 2.274 6134.31
DB −2.536 (0.0141) −0.259 (0.0393) 0.278 (0.0136) 2.520 (0.0199) 2.408 159.00

constraint −3.477 (0.0230) −1.039 (0.0129) 1.027 (0.0127) 3.492 (0.0225) 1.035 N/A

σ1 σ2 σ3 σ4 error

true 1 1 1 1
oracle anchors (mj = 2) 1.109 (0.0020) 1.257 (0.0030) 1.259 (0.0031) 1.108 (0.0020) 0.7333
anchored EM (mj = 2) 1.011 (0.0020) 0.954 (0.0027) 0.945 (0.0026) 1.001 (0.0020) 0.1135
oracle anchors (mj = 1) 1.024 (0.0026) 1.067 (0.0041) 1.063 (0.0039) 1.026 (0.0025) 0.1805
anchored EM (mj = 1) 1.074 (0.0025) 0.984 (0.0031) 0.984 (0.0032) 1.069 (0.0025) 0.1752
min-entropy (mj = 1) 1.121 (0.0040) 1.089 (0.0036) 1.042 (0.0034) 1.168 (0.0043) 0.4192

KL 1.243 (0.0037) 0.699 (0.0069) 1.497 (0.0023) 0.766 (0.0068) 1.270
DB 1.071 (0.0033) 0.687 (0.0028) 1.476 (0.0050) 0.970 (0.0031) 0.8893

constraint 0.981 (0.0038) 1.123 (0.0048) 1.122 (0.0048) 0.979 (0.0038) 0.2848

η1 η2 η3 η4 error

true 0.25 0.25 0.25 0.25
oracle anchors (mj = 2) 0.245 (0.0007) 0.254 (0.0009) 0.255 (0.0009) 0.246 (0.0007) 0.0181
anchored EM (mj = 2) 0.236 (0.0010) 0.269 (0.0010) 0.266 (0.0010) 0.229 (0.0009) 0.0702
oracle anchors (mj = 1) 0.247 (0.0011) 0.252 (0.0013) 0.251 (0.0013) 0.250 (0.0010) 0.0059
anchored EM (mj = 1) 0.255 (0.0012) 0.247 (0.0012) 0.247 (0.0012) 0.251 (0.0012) 0.0124
min-entropy (mj = 1) 0.222 (0.0016) 0.283 (0.0016) 0.263 (0.0014) 0.232 (0.0018) 0.0923

KL 0.353 (0.0015) 0.075 (0.0006) 0.459 (0.0017) 0.114 (0.0008) 0.6230
DB 0.273 (0.0015) 0.077 (0.0007) 0.427 (0.0022) 0.223 (0.0014) 0.4010

constraint 0.224 (0.0017) 0.276 (0.0020) 0.277 (0.0019) 0.224 (0.0017) 0.1047

Data The full SisFall data set collected by [Sucerquia, López and Vargas-
Bonilla, 2017], with additional details on the experimental procedure, is available
at http://sistemic.udea.edu.co/en/research/projects/english-falls/.

Additional tables Table A10 gives posterior means of θj for each mixture
component. Table A11 gives the full table of posterior allocation probabilities
for each of the activities considered in the analysis. Activities beginning with
“D” are ADLs and activities beginning with “F” are falls.

http://sistemic.udea.edu.co/en/research/projects/english-falls/
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Fig A11. Left panel: anchor points and true scaled component densities for model 3. Middle
panel: estimated scaled component densities for the anchor models. Right panel: estimated
scaled component densities for the relabeling methods and prior constraints.

Table A9

Posterior means of the component-specific parameters for Model 3.

θ1 θ2 θ3 θ4 θ5 error time (s)
true 19 19 23 29 33

oracle anchors (mj = 2) 18.990 (0.0053) 19.012 (0.0020) 23.023 (0.0011) 29.007 (0.0006) 32.993 (0.0016) 0.059 N/A
anchored EM (mj = 2) 16.822 (0.0224) 19.044 (0.0015) 22.954 (0.0012) 29.006 (0.0006) 32.990 (0.0016) 2.284 16.11
oracle anchors (mj = 1) 18.955 (0.0049) 18.958 (0.0049) 23.030 (0.0014) 29.006 (0.0006) 32.990 (0.0016) 0.135 N/A
anchored EM (mj = 1) 17.273 (0.0290) 19.049 (0.0019) 22.975 (0.0014) 29.006 (0.0006) 32.991 (0.0016) 1.816 16.60
min-entropy (mj = 1) 18.948 (0.0014) 23.011 (0.0010) 29.006 (0.0006) 33.031 (0.0056) 33.838 (0.0100) 14.94 10.56

KL 19.086 (0.0026) 20.087 (0.0868) 23.028 (0.0016) 29.005 (0.0007) 32.992 (0.0018) 1.215 986.31
DB 18.799 (0.0062) 20.335 (0.0831) 23.065 (0.0044) 29.007 (0.0007) 32.994 (0.0018) 1.613 285.12

constraint 17.848 (0.0255) 20.062 (0.0287) 23.856 (0.0351) 29.266 (0.0117) 33.167 (0.0150) 3.504 N/A

σ1 σ2 σ3 σ4 σ5 error
true 2.236 1 1 0.7071 1.414

oracle anchors (mj = 2) 2.059 (0.0028) 1.018 (0.0020) 0.973 (0.0008) 0.717 (0.0005) 1.363 (0.0012) 0.284
anchored EM (mj = 2) 1.377 (0.0067) 1.125 (0.0031) 1.023 (0.0009) 0.719 (0.0005) 1.364 (0.0012) 1.070
oracle anchors (mj = 1) 1.371 (0.0048) 1.380 (0.0048) 0.973 (0.0010) 0.719 (0.0005) 1.364 (0.0012) 1.334
anchored EM (mj = 1) 1.490 (0.0081) 1.073 (0.0042) 1.011 (0.0009) 0.719 (0.0005) 1.363 (0.0012) 0.892
min-entropy (mj = 1) 1.606 (0.0010) 1.011 (0.0007) 0.718 (0.0005) 1.067 (0.0025) 1.134 (0.0037) 1.563

KL 1.581 (0.0023) 0.986 (0.0062) 0.973 (0.0013) 0.716 (0.0011) 1.358 (0.0007) 0.760
DB 1.579 (0.0036) 0.989 (0.0052) 0.971 (0.0012) 0.716 (0.0006) 1.358 (0.0013) 0.761

constraint 1.322 (0.0049) 1.273 (0.0060) 0.934 (0.0024) 0.746 (0.0018) 1.338 (0.0019) 1.368

η1 η2 η3 η4 η5 error
true 0.2 0.2 0.25 0.2 0.15

oracle anchors (mj = 2) 0.219 (0.0006) 0.187 (NA) 0.244 (0.0003) 0.201 (0.0001) 0.149 (0.0001) 0.0405
anchored EM (mj = 2) 0.094 (0.0015) 0.286 (0.0013) 0.269 (0.0003) 0.201 (0.0001) 0.149 (0.0001) 0.2134
oracle anchors (mj = 1) 0.201 (0.0008) 0.204 (0.0008) 0.245 (0.0003) 0.201 (0.0001) 0.149 (0.0001) 0.0127
anchored EM (mj = 1) 0.132 (0.0021) 0.255 (0.0019) 0.264 (0.0003) 0.201 (0.0001) 0.149 (0.0001) 0.1387
min-entropy (mj = 1) 0.392 (0.0002) 0.255 (0.0002) 0.200 (0.0002) 0.088 (0.0004) 0.064 (0.0004) 0.4954

KL 0.334 (0.0011) 0.074 (0.0008) 0.246 (0.0005) 0.198 (0.0002) 0.147 (0.0002) 0.2688
DB 0.303 (0.0016) 0.106 (0.0013) 0.245 (0.0005) 0.198 (0.0002) 0.147 (0.0002) 0.2063

constraint 0.189 (0.0023) 0.253 (0.0012) 0.228 (0.0010) 0.186 (0.0007) 0.143 (0.0003) 0.1060

Table A10

Posterior means of θj for each component from the SisFall data.

Component 1 2 3 4 5
log(maxt SMVt) 5.769 7.304 7.169 6.972 6.366
log(mint SMVt) 5.323 3.661 1.686 4.626 3.795
log(maxt |SMVt − SMVt−1|) 3.162 5.963 5.802 5.021 3.979
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Table A11

Posterior allocation probabilities for selected activities in the SisFall data set.

Activity Component
1 2 3 4 5

D01 Walking slowly 0.099 0.008 0.000 0.490 0.403
D02 Walking quickly 0.000 0.086 0.000 0.066 0.848
D03 Jogging slowly 0.000 0.000 1.000 0.000 0.000
D04 Jogging quickly 0.000 0.011 0.989 0.000 0.000
D05 Walking upstairs and downstairs slowly 0.059 0.027 0.000 0.887 0.027
D06 Walking upstairs and downstairs quickly 0.000 0.796 0.188 0.000 0.016
D07 Slowly sit in a half height chair, wait a moment, and up slowly 0.981 0.000 0.000 0.006 0.013
D08 Quickly sit in a half height chair, wait a moment, and up quickly 0.000 0.019 0.001 0.024 0.956
D09 Slowly sit in a low height chair, wait a moment, and up slowly 0.245 0.050 0.000 0.575 0.131
D10 Quickly sit in a low height chair, wait a moment, and up quickly 0.001 0.042 0.001 0.148 0.808
D11 Sitting a moment, trying to get up, and collapse into a chair 0.000 0.541 0.003 0.454 0.002
D12 Sitting a moment, lying slowly, wait a moment, and sit again 0.938 0.020 0.000 0.035 0.007
D13 Sitting a moment, lying quickly, wait a moment, and sit again 0.173 0.110 0.000 0.695 0.022
D14 Being on one’s back change to lateral position, wait a moment, and change
to one’s back

0.942 0.001 0.000 0.038 0.019

D15 Standing, slowly bending at knees, and getting up 0.978 0.000 0.000 0.010 0.012
D16 Standing, slowly bending without bending knees, and getting up 0.986 0.000 0.000 0.008 0.005
D17 Standing, get into a car, remain seated and get out of the car 0.797 0.003 0.000 0.156 0.045
D18 Stumble while walking 0.000 0.957 0.003 0.040 0.000
D19 Gently jump without falling (trying to reach a high object) 0.000 0.308 0.033 0.000 0.658
F01 Fall forward while walking caused by a slip 0.000 0.915 0.001 0.084 0.000
F02 Fall backward while walking caused by a slip 0.000 0.302 0.001 0.697 0.000
F03 Lateral fall while walking caused by a slip 0.000 0.250 0.000 0.750 0.000
F04 Fall forward while walking caused by a trip 0.000 0.938 0.001 0.061 0.000
F05 Fall forward while jogging caused by a trip 0.000 0.799 0.201 0.000 0.000
F06 Vertical fall while walking caused by fainting 0.000 0.058 0.000 0.942 0.000
F07 Fall while walking, with use of hands in a table to dampen fall, caused by
fainting

0.000 0.211 0.001 0.788 0.000

F08 Fall forward when trying to get up 0.001 0.586 0.001 0.412 0.000
F09 Lateral fall when trying to get up 0.000 0.074 0.000 0.926 0.000
F10 Fall forward when trying to sit down 0.000 0.609 0.001 0.390 0.000
F11 Fall backward when trying to sit down 0.000 0.230 0.002 0.760 0.008
F12 Lateral fall when trying to sit down 0.000 0.239 0.001 0.759 0.000
F13 Fall forward while sitting, caused by fainting or falling asleep 0.014 0.726 0.001 0.124 0.135
F14 Fall backward while sitting, caused by fainting or falling asleep 0.001 0.527 0.003 0.467 0.002
F15 Lateral fall while sitting, caused by fainting or falling asleep 0.000 0.439 0.001 0.561 0.000
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