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ABSTRACT

In a group anagram game, players are provided letters to form as many words as possible. They can also
request letters from their neighbors and reply to letter requests. Currently, a single agent-based model is
produced from all experimental data, with dependence only on number of neighbors. In this work, we
build, exercise, and evaluate enhanced agent behavior models for networked group anagram games under
an uncertainty quantification framework. Specifically, we cluster game data for players based on their skill
levels (forming words, requesting letters, and replying to requests), perform multinomial logistic regression
for transition probabilities, and quantify uncertainty within each cluster. The result of this process is a
model where players are assigned different numbers of neighbors and different skill levels in the game. We
conduct simulations of ego agents with neighbors to demonstrate the efficacy of our proposed methods.

1 INTRODUCTION

1.1 Background and Motivation

In previous work (Cedeno-Mieles et al. 2018; Ren et al. 2018), online group anagram games (GrAGs)
or experiments were conducted, where players share alphabetic letters to form words. Experiments were
performed with human subjects as a priming task to generate collective identity within a group. Collective
identity (CI) is an individual’s cognitive, moral, and emotional connection with a broader community,
category, practice, or institution (Polletta and Jasper 2001). From experimental data, an agent-based model
(ABM) was developed to enable simulation of games for conditions beyond those tested. The experiments
and model are described below as background, and then we describe the need for model enhancements,
which provides the motivation for this work.

Group Anagram Game. Figure 1 provides an illustration of four consecutive time steps in our GrAG.
Communication channels are in purple, and on these channels a player may request letters and reply to letter
requests. Overall, a player may take any of four actions, any number of times, and in any order: (i) request
a letter from a neighbor (request sent), (ii) reply to a request with the letter (reply sent), (iii) form a word
(form word), and (iv) think or idle (i.e., a no-op condition). In our online experiments, players are initially
given three letters (shown in brown, in the black boxes). Players can request letters from their neighbors,
and neighbors can reply with the requested letters. For example, v1 requests a e from v2 at time t, and v2
sends a reply with the e at time (t +1) so that e gets added to v1’s letter set, with which it forms words.
Received letters are shown in black. If a player shares a letter with the requestor, then both the requestor
and the player replying have a copy of the letter. A person never loses a letter, even when they share it with
others. This is to encourage sharing letters and forming more words; players evenly split the total earnings
from a game, where the earnings are proportional to the total number of words formed by the team. Also,
a person may use a letter in any number of words, and any number of times within a word. For example,



Hu, Deng, and Kuhlman

v1 uses s and e in forming sea at time (t +2) and in forming seem at (t +3), and uses the single e twice
in the latter word. Games are played for 300 seconds (5 minutes). Each player typically forms between
10 and 40 words. The setup in Figure 1 is specifically designed to illustrate the various actions. In reality,
most player actions, at each second of a 300-second game, are think or idle; our models are consistent
with this behavior. Also, players are motivated in a game because players split evenly a reward (sum of
money) that is proportional to the total number of words formed by the team. Additional game details are
in (Ren, Cedeno-Mieles, et al. 2018).
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Figure 1: Illustrative play in a group anagram game (GrAG) among three players vi, 1 ≤ i ≤ 3, each with
three initial letters in brown, within a black box. Received letters from neighbors are in black. In the model
of these games, a player executes one action per time step where a time step is one second. The game is
described in the text.

Agent-based model (Ren et al. 2018). A multinomial logistic regression model was developed to predict
a player’s action at time (t + 1) based on the player’s action at time t and the values of a temporal
four-dimensional vector z(t) that accounts for the number of letters a player has in her hand, the number
of letter requests that the player has not yet replied to, the number of words formed, and the number of
consecutive seconds that a player has engaged in the current action (Ren et al. 2018). This latter element
applies mostly to the idle or thinking action. The resultant ABM model provides a representation of mean
behavior over all experiments, with an explicit dependence on the number of neighbors of a player.

Motivation for work. In GrAGs, behaviors can vary significantly among players. The mean model does
not capture this heterogeneity. A baseline ABM that only captures mean behavior is problematic because
it implies that all agents will, over time and/or over many simulation instances, tend to the mean behavior.
Thus nullifies some of the prime motivators for using an ABM approach; most importantly, incorporating
heterogeneous agent behaviors.

Moreover, there are limitations to the amount of experimental data that can be collected. We used
Amazon Mechanical Turk (AMT) to recruit game players, and it is well-known that AMT does not provide
an unlimited pool of candidate players, and some candidates do not show up for experiments (Mason
and Suri 2018). We also constrained our experiments so that a person could only play the GrAG one
time, to obviate learning from past experience. Consequently, we encountered limitations in the size of
our candidate pool, resulting in fewer completed games than we desired. This produced two problems to
overcome in building ABMs of game player behavior: data sparsity and variability.

These challenges motivate the development of a general uncertainty quantification approach for building
ABMs of human behavior in the face of data sparsity and data uncertainty, for the networked anagram game.
The proposed methodology enables agents in agent-based simulations (ABSs) to behave heterogenously
(we use “simulation” for computations of a simulation; we use “modeling” for the process of constructing
the model used in simulation). We believe that our uncertainty quantification methodology for ABM is also
applicable to other types of experiments that involve human behavior, such as (Mason and Watts 2012).
Specifically, our methods center on actions performed by players in games. In our game, each player can
take multiple types of actions and each action can be taken multiple times; our model predicts when each
agent takes each action. Our methods can be applied to other games that have similar features.
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1.2 Novelty of Our Work

The primary objective of this work is a general uncertainty quantification (UQ) approach for building ABMs
of human behavior in the networked GrAG, such that different agents can have heterogenous behaviors
supported by uncertainty quantification of the experimental data. The novelty of this work is in the following
aspects. First, we conduct rigorous hypothesis testing to examine the homogeneity of players with different
numbers k of neighbors (k = 2, 4, 6, and 8) in the networked anagram game. This enables data aggregation
into a smaller number of homogeneous groups with more meaningful interpretations of the groups in terms
of players’ activities (e.g., sending requests, replying to requests, forming words). Second, a clustering
technique is adopted to further partition the players from each homogenous group into several clusters,
such that the players in different clusters reflect the variability of players’ abilities, from low performers
to high performers, in a principled way. Third, we construct a distinct multi-logit model for each cluster
to estimate the transition probabilities among four action states (i.e., idle, requesting letters, replying to
requests, and forming words). The transition probability is the probability that, given action ai at time
t, the next action, at time (t + 1) will be a j. Moreover, we quantify the probabilistic uncertainty of the
estimated transition probabilities via the asymptotic distribution of the estimated parameters. Our methods
are not restricted to experiments with network structure. Specifically, any experiment that has a parameter
which is naturally used to partition data can be analyzed with this approach for UQ.

1.3 Our Contributions

The contributions of this work are in both methodology and application in the context of modeling and
simulation of the anagram game.

First, we make a methodological contribution. The proposed approach for uncertainty quantification, us-
ing hypothesis testing and clustering, partitions human subjects into skill levels and characterizes uncertainty
within each level. It enables uncertainty quantification for each level, rather than having the uncertainty
aggregated over the entire data set. The proposed methodology makes model building more general and
meaningful in reflecting the heterogeneity of players’ behaviors in the anagram game. Through uncertainty
quantification, we can categorize human performance relative to the modeled behavior. Explicitly, these
approaches enable us to specify and quantify what it means to be a poor- or good-performing agent in a
game, and to quantify behavior at multiple levels. The combination of a multi-logit model for transition
probabilities with UQ produces a meaningful probabilistic framework, sufficiently complex and flexible. It
provides a framework to investigate the impact of these modeling choices on the behavior of an individual
within an interacting team of players and the overall group/team performance. See Figure 2.

Our second contribution is to make a UQ framework for ABM. The proposed UQ approach for ABM
strikes a good compromise (the meaning of which is problem dependent) among model explainability,
model flexibility, and model complexity, e.g., (Baker 2016; Pearl and Mackenzie 2018). An ABM model
of human behavior is expected to satisfy one or more criteria such as: (1) explainability of human behavior,
(2) sufficient model complexity of human behavior, (3) a favorable framework for UQ with consideration
of computational cost, and (4) other considerations based on specific problems. It is known that there are
various UQ tools in the literature, such as variational inference, conditional random fields, and sensitivity
analysis. However, some of these methods only address some of the aforementioned aspects. For example,
conditional random fields has an explainable model structure, but may not have sufficient model complexity
for human behaviors that are more readily extended to behaviors beyond those studied in this work. The
developed methodology can also be characterized for use within ABMs.

Our third contribution is the evaluation of the UQ method in the context of ABM for human group
behavior. We demonstrate the merit of the proposed UQ method on a network of game players with a
star structure in ABSs; see Figure 5 for a star configuration, with a single hub (center) node linked to
leaf (degree-1) nodes. We evaluate the models and methods by locating an ego agent within a context,
which for social networks here, means specifying the ego node’s neighbors. We assign properties to the
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ego node and each of its neighbors. Using the “ego networks,” we can study several factors: the number
of neighbors, the skill levels of players, and the structure of networks. Owing to space limitations, we
compare model output for two skill levels, and leave further analyses for an extended version of this work.
We confirm, for example, that players with lower skill levels form fewer words.
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Uncertainty 
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method
Hypothesis 
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clustering
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game players
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of method 

against data

Evaluation:  
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model
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Figure 2: The approach and contributions of this paper in developing a UQ method to capture game player
behavior in agent-based models. The first two boxes represent work in Section 4, and the last two boxes
represent work on evaluations in Sections 5 and 6.

Paper organization. The reminder of the paper is organized as follows. Related work comprises Section 2.
We first present the formalism for the mean model (Section 3), taken from (Cedeno, Hu, et al. 2020),
which provides a point of departure for our new work. Then we present uncertainty quantification methods
(Section 4), which includes clustering methods for players and quantifying uncertainty for model parameters.
Next, we present the model evaluation (Section 5). In Section 6, we provide simulation studies of ego
networks, and we conclude in Section 7.

2 RELATED WORK

Modeling group anagram games. Online GrAG games (controlled experiments) and a mean logistic
regression model—the starting points for this present work—are described and evaluated in (Cedeno et al.
2020). Cedeno-Mieles et al. (2018) use this model in software pipelines for data analysis and modeling.
The logistic regression model is expanded upon in (Cedeno-Mieles et al. 2019). Another anagram model,
to study the effects of network structure in GrAGs, is provided in Hu et al. (2019).

Uncertainty quantification methods and analyses. ABMs use rules at the individual level to simulate
a social system, which can provide results of structured behavior at an aggregated level. Such ABMs
often do not account for uncertainty quantification for model parameter estimation and prediction. In our
experiments, human subjects under the same nominal conditions are shown in many instances to behave
differently. Thus, it is important to incorporate uncertainty in models of human behavior in the GrAG.

In the literature, design of experiments (DoE) and Guassian process are two commonly-used tools
in uncertainty quantification (Ryzhov et al. 2020). For example, Papadelis and Flamos (2019) introduce
calibration and UQ techniques for ABMs. They first fit a Gaussian process emulator to ABM results. Then
they calibrate the model and quantified uncertainty based on the history matching method. This approach
assumes that the model output distribution is normal, conditioned on the mean and variance. Stavrakas
et al. (2019) develop an agent-based technology adoption model and performed parameter estimation and
uncertainty quantification based on Gaussian process. Fadikar et al. (2018) use an emulation approach
within a Bayesian model calibration framework to quantify uncertainty in an epidemic ABM. Zhang et al.
(2016) employ an ABM to forecast residential rooftop solar adoption in San Diego county, and they provide
a quantification of uncertainty in the model’s predictions based on likelihood. Methods using DoE for
sensitivity analysis and UQ can be found in (Alam et al. 2015) and the references therein. Other UQ
techniques are Bayesian maximum entorpy (Lee and Wentz 2008; House-Peters and Chang 2011) and
Bayesian melding (Sevcikova et al. 2007), among many others.

In our framework, we perform clustering of players based on the experimental data, which enables
quantifying uncertainty and estimating parameters for our model based on the data in each cluster. The
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conditional multi-logit model is used for parameter estimation in the transition probability matrix. Then
we incorporate this uncertainty into a model that produces heterogeneous behaviors in agents. Here we
adopt the multinomial logistic regression to model the transition probabilities of player’s actions. But the
proposed framework of uncertainty quantification is also applicable to other models, such as Gaussian
process modeling.

3 MEAN MODEL

Ren et al. (2018), Cedeno et al. (2020) present an ABM of the GrAG. In the model, the set V of players
and the set E of their communication channels (edges) are represented as an undirected graph G(V,E).
The game is modeled as a discrete-time stochastic process, where at each time step, a player executes one
of the actions from the action set A provided in Table 1.

Table 1: The four actions of players in the GrAG and model. The set A of actions is A = {a1,a2,a3,a4}.
Item Variable Name Description Item Variable Name Description
1 a1 idling Thinking (a no-op). 3 a3 request Requesting a letter from

a neighbor.
2 a2 reply Replying to a neighbor

with a requested letter.
4 a4 word Forming and submitting

a word.

They also introduce four variables in Equation (1) below: size ZB(t) of the buffer of letter requests that
v has yet to reply to at time t; number ZL(t) of letters that v has available to use (i.e., in hand) at t to form
words; number ZW (t) of valid words that v has formed up to t; and number ZC(t) of consecutive time steps
that v has taken the same action. ZC(t) is used to ensure agents do not stagnate in thinking; this parameter
forces agents to have a finite deliberation period before acting. Let z = (1,ZB(t),ZL(t),ZW (t),ZC(t))g×1.
They use a multinomial logistic regression to model πi j—the probability of a player taking action a j at
time t +1, given that the player took action ai at time t—as

πi j =
exp(z′β (i)

j )

∑
4
l=1 exp(z′β (i)

l )
, j = 1,2,3,4 (1)

where βββ
(i)
j = (β

(i)
j1 , . . . ,β

(i)
j,g)
′, prime indicates vector transpose, and β

(i)
j,h are the elements of βββ

(i)
j , with

1 ≤ h ≤ g being the index of the element of the z vector. For a given i (the index i on action ai), the
parameter set can be expressed as

B(i) =


β
(i)
11 β

(i)
12 . . . β

(i)
1,g

β
(i)
21 β

(i)
22 . . . β

(i)
2,g

...
...

. . .
...

β
(i)
41 β

(i)
42 . . . β

(i)
4,g

 , (2)

with matrix entries β
(i)
j,h.

Game players in the GrAG data are grouped by their degrees k in the network G, i.e., k is the number
of neighbors a player has in the game. To estimate the parameter sets B(i), they use maximum likelihood
estimation across the experimental observations for each k = 2, 4, 6, and 8. For a given i and k, denote the
corresponding observational data as D

(i)
k . Then they conduct parameter estimation by

B̂(i)(k) = argmaxlogL(B(i)|D (i)
k ),
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Figure 3: Boxplots of engagements and words. The left plot shows engagements of each player in games
with k = 2, 4, 6, 8 neighbors. The right plot shows number of words of each player in games with 2, 4, 6, 8
neighbors.

where L(B(i)|D (i)
k ) is the likelihood function with respect to the data D

(i)
k collected under the setting of k

neighbors in the experiments.
By applying this model, all agents with the same degrees (i.e. number of neighbors) k in the network

G are assigned the same coefficient matrix. Thus, these agents will have the same behaviors in expectation.
However, we would like agents to exhibit heterogeneous behaviors. Consequently, we devise a method to
produce variability in actions among agents with the same degree k. This is the subject of the next section.

4 UNCERTAINTY QUANTIFICATION METHODS

4.1 Clustering Methods for Players

Our goal is to partition players based on their activity in a game. The number of letters a player requests,
the number of letter requests a player replies to, and the number of words a player forms in a game are used
to quantify a player’s activity in a game. We define two variables, engagements and words. Engagements
is the sum of the number of requests and number of replies of a player, and words is the number of words
a player forms in a game. The engagements and words are used to partition players.

The number of neighbors of a player in a game could affect the engagements and words. For example,
a player can request more letters and reply to more letter requests with more neighbors. Thus, we want
to study whether players should be partitioned based on their numbers of neighbors. Figure 3 shows
the numbers of engagements and words for different numbers of neighbors. Data were collected at even
numbers of neighbors to span a wide range of neighbors; we planned to interpolate at intermediate values.
Engagements increase with the number of neighbors, but becomes saturated when the number of neighbors
is greater than four. The numbers of words are nearly the same for different numbers of neighbors. In
summary, game data for players with k = 4, 6, and 8 neighbors are observed to be similar, and these data
are different from those of players with k = 2 neighbors.

We conduct hypothesis testing on engagements and words to determine whether we can partition players
on k = 2 neighbors and on 4, 6, 8 neighbors separately. We denote µ

eng
r and µword

r for r = 2,4,6,8 as the
mean engagements and words for players with r neighbors, respectively. We also denote µ

eng
468 and µword

468
as the mean numbers of engagements and words for players with 4, 6, or 8 neighbors, respectively. The
hypotheses of our two-sample t-tests are:

Hr,s,eng
0 : µ

eng
r = µ

eng
s vs. Hr,s,eng

1 : µ
eng
r 6= µ

eng
s ,

Hr,s,word
0 : µ

word
r = µ

word
s vs. Hr,s,word

1 : µ
word
r 6= µ

word
s ,

where r,s = 2,4,6,8, and r < s.
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We also perform hypothesis testing on players with 2 neighbors and players with 4, 6, or 8 neighbors, and
the hypotheses are:

Heng
0 : µ

eng
2 = µ

eng
468 vs. Heng

1 : µ
eng
2 6= µ

eng
468 ,

Hword
0 : µ

word
2 = µ

word
468 vs. Hword

1 : µ
word
2 6= µ

word
468 .

To partition players, we use the kmeans clustering method (Hartigan and Wong 1979). Before clustering
players, the engagement and words are standardized first, so no variable would dominate the clustering.
To determine the number of clusters in the kmeans clustering, we use the Bayesian Information Criterion
(BIC) as our criterion (Li et al. 2016). Based on the BIC and the size of data, we select four clusters,
which gives the smallest BIC values.

4.2 Quantifying Uncertainty For Model Parameters

In the mean logistic regression model (Cedeno et al. 2020), the next player action depends on the BBB(i)

matrix and z vector input variables. The BBB(i) matrix is kept the same for all players in a game. Thus,
players will have the same probability vector given the same set of z vector values. In order to study player
behaviors using a hetergeneous model structure, we modify the logistic regression model as below.

The probability vector is πππ i = (πi1,πi2,πi3,πi4)
T , whose components are calculated using Equation (1).

To produce different player behaviors, we devise an approach that uses the asymptotic normal distribution of
B̂BB. Different players are assigned different BBB(i) matrices, thus different players will have different behaviors.
To generate different BBB(i) matrices from the mean model, we use two different approaches, described next.

We first transform the B̂BB
(i)

matrix to the β̂ββ
(i)

vector, then we can use the asymptotic normal distribution

of parameter estimators β̂ββ
(i)

, which is the asymptotic property of maximum likelihood estimators. For

simplicity of notation, let β̂ββ = β̂ββ
(i)

= (β̂ββ
(i)T
2 ,β̂ββ

(i)T
3 ,β̂ββ

(i)T
4 )T , then β̂ββ follows a multivariate nomal distribution,

β̂ββ ∼MN(µ̂µµ,Σ̂ΣΣ). There are two ways to obtain a heterogeneous probability vector: one can draw a random
sample from the confidence region of β̂ββ or directly draw a random sample from the distribution of β̂ββ . These
are addressed next.

Sampling from the 95% confidence region of β̂ββ . The first approach is to find the 95% confidence
region of β̂ββ based on the asymptotic distribution of β̂ββ . Then we uniformly draw a random point from the
confidence region Sβ , which is defined as

Pr(β̂ββ ∈ Sβ ) = 95% (3)

(β̂ββ − β̂ββ mle)
T

Σ̂
−1(β̂ββ − β̂ββ mle)< χ

2
d (0.95) (4)

where β̂ββ mle is the estimation of βββ , Σ̂−1 is the estimation of covariance of β̂ββ mle, χ2
d (0.95) is the 0.95 quantile

of the Chi-squared distribution with degree of freedom d, and d is the dimension of βββ . The feasible region
defined above is a ellipsoid. We can use the “uniformly” package in R to generate random points. After
we obtain a randomly generated value of β̂ββ , we are able to compute the corresponding probability vector
πππ i whose components are given by Equation (1).

Sampling from the distribution of β̂ββ . The second approach is very similar to the first approach, but
we do not need to find the confidence region Sβ . Instead, we directly sample from the asymptotic normal
distribution of β̂ββ . Then we can calculate the corresponding probability vector based on the sampled value
of β̂ββ , again using Equation (1).

5 MODEL EVALUATION

We evaluate the UQ method of Section 4, and in Section 6, we use these evaluation results to reason about
ABS output.
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5.1 Clustering Players

Table 2 shows the p-values of two-sample t-tests. For engagements, the p-values show that 2 neighbors is
significantly different from 4, 6, and 8 neighbors, while pairs of values among 4, 6, and 8 neighbors are
not significantly different. For words, the p-values show that 2 neighbors is significantly different from 4
neighbors, while, again, pairs of values among 4, 6, and 8 neighbors are not significantly different. Though
2 neighbors is not significantly different from 6 and 8 neighbors, respectively, 2 neighbors is significantly
different from 4, 6, and 8 neighbors together. This means that we can collect players into two groups:
those players with 2 neighbors [group g = 1] and those players with 4, 6, and 8 neighbors [group g = 2].

Table 2: Pairwise comparisons of engagements and pairwise comparisons of words. The numbers are p-
values of two-sided two-sample t-tests.

Engagements Words
number of neighbors p-value number of neighbors p-value

2 vs. 4 8.286e-13 2 vs. 4 2.151e-03
2 vs. 6 8.386e-05 2 vs. 6 0.236
2 vs. 8 1.418e-04 2 vs. 8 0.210
4 vs. 6 0.269 4 vs. 6 0.589
4 vs. 8 0.641 4 vs. 8 0.967
6 vs. 8 0.202 6 vs. 8 0.749

2 vs. 468 5.009e-18 2 vs. 468 3.231e-03

Figures 4a and 4b show the clustering results. The left plot is for 2 neighbors, and the right plot is
for 4, 6, and 8 neighbors. Different clusters are marked with different colors and numbers, 1 through 4.
In Figure 4a, the black cluster is the least active, and the blue cluster is the most active. In Figure 4b, the
blue cluster is the least active, and the green cluster is the most active.

5.2 Quantifying Uncertainty For Model Parameters

Table 3 shows one set of z values, for the group k = 2, and we are using these z values to generate
heterogeneous probability vectors. One can draw a random sample from the confidence region of β̂ββ or
directly draw a random sample from the distribution of β̂ββ . Table 4 shows generated probability vectors for
group k = 2 and clusters 3 and 4 and these values are from direct draw, and these clusters can be found in
Figure 4a. Players in cluster 4 have lower to-idle (a1→ a1) transition probablity than players in cluster 3,
so players in cluster 4 are more active than players in cluster 3. This also can be confirmed in Figures 4a.
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Figure 4: (a) Scatter plot of words against number of replies and requests (engagements) for 2 neighbors.
(b) Scatter plot of words against number of replies and requests (engagements) for 4, 6, and 8 neighbors.
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Table 3: z vector values of ZB(t), ZL(t), ZW (t), and ZC(t).

Initial state Number of neighbors buffer letter word constant
a1 (idle) 2 0 3 1 5

Table 4: Samples of randomly generated probability vectors using the asymptotic normal distribution, where
the initial state is a1 (idle) and the group is k = 2. The left part is for cluster 3, and the right part is for cluster
4. One can see these clusters in Figures 4a. The deviance of the multinomial logistic regression models for
cluster 3 and cluster 4 are 12294.71 and 8830.27, respectively. Each row is a probability vector for next
actions. The ai → a j means the previous action is ai and the next action is a j, so the value under each
column represents the probability of next action (e.g., idling, replying with letter, request letter, and form
word). The mean probability vector is calulated using Equation (1).

Cluster 3 Cluster 4
a1→ a1 a1→ a2 a1→ a3 a1→ a4 a1→ a1 a1→ a2 a1→ a3 a1→ a4

mean 0.9620 0.0059 0.0127 0.0194 mean 0.8711 0.0235 0.0559 0.0496
sample 1 0.9661 0.0028 0.0113 0.0198 sample 1 0.8731 0.0218 0.0525 0.0526
sample 2 0.9604 0.0045 0.0158 0.0193 sample 2 0.8678 0.0256 0.0602 0.0464
sample 3 0.9624 0.0050 0.0124 0.0202 sample 3 0.8725 0.0229 0.0552 0.0494
sample 4 0.9681 0.0060 0.0097 0.0162 sample 4 0.8606 0.0276 0.0621 0.0497

6 SIMULATIONS OF EGO AGENT WITH NEIGHBORS

We use the models developed in Section 4 to build agent models of GrAG player behavior. In this section,
we provide results from ABSs, using data in Section 5 for explanations.

Simulation scenarios. Simulations focus on an ego node and its neighborhood. This enables us to illustrate
the value of the UQ approach, and that simulation results can change significantly for different groups
and clusters, while using a minimal networked game configuration. This system illustrates the effects of
the groups and clusters. We include both groups: (i) group 1 (g = 1): four nodes with degrees 1, and
(ii) group 2 (g = 2): one node with degree 4. See Figure 5. We include cluster 1 for node 0 and clusters 3
and 4 for nodes 1 through 4. For each node, we identify the group and cluster pair by [g,c]. The ego node
is node 0 (in group 2), with four neighbors (nodes 1 through 4, which are leaf nodes, and are in group 1).
Each player is assigned four letters that they can use to form words and to share with their neighbors.

Simulation process. A simuation is composed of a collection of simulations instances or iterations. An
iteration is sequence of simulation steps from time t = 0 to tmax, such that actions of players (see Table 1)
are computed at each t. The state of the system at t = 0 constitute the initial conditions for the simulation
instance. The process of forming words and sharing letters in an iteration is that shown in Figure 1. In this
work, each simulation is comprised of 50 iterations, and results are presented as time point-wise averages
over all 50 instances.

Simulation parameters. Simulation parameters are: the configuration of game players as in Figure 5;
four letters initially assigned to each player; game duration tmax = 300 seconds, consistent with the GrAG
experiments; and model properties (BBB matrices) assigned to each player via a pair [g,c] based on node
degree for group g, and cluster c.

Simulation results. Figure 6 shows results for node 0, assigned the behavior model according to [g,c] = [2,1]
and nodes 1 through 4, assigned the model behavior for [g,c] = [1,3]. Figure 6a depicts the time histories
for forming words for the five nodes; the leaf nodes form fewer words than the hub node 0. All leaf nodes
form roughly the same number of words. Figure 6b provides time histories for node 0: numbers of replies
received, replies sent, requests received, requests sent, and words formed. Node 0 receives letter requests
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Group 1 (4 leaf nodes)

Group 20
1 2

4 3

Figure 5: Star network used for simulations. Nodes are game players and edges represent communication
channels that can be used to share letters. The center node (hub) has degree k = 4 and hence is in group
g = 2 and the four leaf nodes each have degree k = 1 and so are in group g = 1.

from all nodes, but only replies to five of the 16 requests made by the leaf nodes. Figure 6c contains
the same data for leaf node 1. All nodes form significant numbers of words, consistent with the data in
cluster 1 for group 2 and cluster 3 for group 1; see Figure 4.
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Figure 6: Simulation results for game configuration of a star, with hub node 0 connected to four leaf nodes
(nodes 1 through 4). Each player has four initial letters. (a) Number of words formed by each player.
(b) Counts of each action for node 0. (c) Counts of each action for node 1. Node 0 has properties [g,c] =
[2,1] and all leaf nodes have properties [g,c] = [1,3].

Figure 7 shows the same data as in the previous figure, with one change: the cluster of the leaf nodes
changes from 3 to 4. The dominant effect is the increases in numbers of words formed by the leaf nodes.
This is consistent with the data in Table 4, showing increases in the probabilities of transition a1→ a4.
These results illustrate the changes in game player performance that can be produced in ABMs for different
assignments of model properties. In particular, since monetary payouts to game players are proportional to
the number of words formed by the team, and all players evenly split total earnings (Cedeno et al. 2020),
a comparison of Figures 6a and 7a indicates that the players in Figure 7 would receive more than 2× the
earnings as those in Figure 6.

7 CONCLUSION

Our work presents and evaluates a method to quantify uncertainty and build ABMs of human behavior.
This work uses as starting points (i) data from group anagram games, and (ii) a mean logistic regression
model. Motivation, novelty, and contributions of our uncertainty quantification approach and ABM are
provided in Sections 1.1, 1.2, and 1.3. The method works best when a data set can be partitioned along
natural parameter dimensions as is the case in this work. Note that the multinomial logistic regression
used in this work assumes a linear parametric form, which may not be satisfied in some sophisticated
social experiments. However, we can modify the parametric statistical model (i.e., multinomial logistic
regression) by some nonparametric statistical model such as generalized Gaussian process. Future work
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Figure 7: Simulation results for game configuration of a star, with hub node 0 connected to four leaf nodes
(nodes 1 through 4). Each player has four initial letters. (a) Number of words formed by each player.
(b) Counts of each action for node 0. (c) Counts of each action for node 1. Node 0 has properties [g,c] =
[2,1] and all leaf nodes have properties [g,c] = [1,4].

includes exploring Bayesian approaches for modeling and uncertainty quantification (van de Schoot et al.
2021).
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