
A Framework for Simulating
Multiple Contagions Over Multiple Networks

Aparna Kishore1, Lucas Machi1,
Chris J. Kuhlman1, Dustin Machi1, and S. S. Ravi1

University of Virginia, Charlottesville VA 22904, USA,
appu88@gmail.com, lhm4v@virginia.edu, hugo3751@gmail.com,

dm8qs@virginia.edu, ssr6nh@virginia.edu

Abstract. Many contagion processes evolving on populations do so si-
multaneously, interacting over time. Examples are co-evolution of human
social processes and diseases, such as the uptake of mask wearing and
disease spreading. Commensurately, multi-contagion agent-based simu-
lations (ABSs) that represent populations as networks in order to cap-
ture interactions between pairs of nodes are becoming more popular.
In this work, we present a new ABS system that simulates any num-
ber of contagions co-evolving on any number of networked populations.
Individual (interacting) contagion models and individual networks are
specified, and the system computes multi-contagion dynamics over time.
This is a significant improvement over simulation frameworks that re-
quire union graphs to handle multiple networks, and/or additional code
to orchestrate the computations of multiple contagions. We provide a
formal model for the simulation system, an overview of the software,
and case studies that illustrate applications of interacting contagions.

Keywords: interacting contagions, network discrete dynamical systems,
opinion dynamics, multi-contagion agent-based simulation systems

1 Introduction

1.1 Background and Motivation

Many contagion processes evolving on populations do so simultaneously, interact-
ing over time. Examples are co-evolution of social processes and diseases, such as
increased hand washing during the influenza (flu) season and mask wearing dur-
ing pandemic outbreaks, e.g., [9]; and co-transmission of information and evac-
uation decisions during natural disasters [29]. Commensurately, multi-contagion
agent-based simulations (ABSs) that represent populations as networks in order
to capture interactions between pairs of nodes (e.g., people are represented as
nodes and interactions as edges in a network) are becoming more popular.

Currently, several simulation systems can compute interacting contagion dy-
namics, but they do so by incorporating data that must be preprocessed for
a particular simulation, or additional software must be written. For example,

2 Aparna Kishore et al.

consider each of two interacting contagions, c1 and c2, spreading on separate
networks, G1 and G2, respectively. Generally, there are common nodes and/or
edges in the graphs so that there is interaction between contagions. Simulators
are typically set up to store one graph, so that they require that a union graph
G′ be formed (G′ = G1∪G2) where labels on edges designate whether an edge is
in G1, G2, or both. Graph nodes are handled analogously. Consequently, if there
are three graphs and simulations need to be performed with all combinations
of two graphs, then three union graphs need be generated. With ng of distinct
graphs and ninst graphs used in each simulation, the number of required union
graphs is the binomial coefficient C(ng, ninst), which can be large.

Also, software must be added to frameworks to manage contagions. As an
example for discrete time simulation, one might execute one contagion at each
time step, so that if there are nc contagions and tmax simulation time steps
(e.g., days), a simulator might execute nc × tmax time steps. But this approach
adversely affects down-stream post-processing because “time” must be manip-
ulated accordingly. For other frameworks, code has to be written to coordinate
the execution of contagions at each time (see Section 1.3). Our system obviates
the need for these changes.

We present a new ABS framework for modeling the spread of any number
of contagions on any number of networks, using a structured and principled
approach in both the software system and its use in applications. We also provide
a formal model for our simulation system and case studies to illustrate its use
in applications.

1.2 Our Contributions

1. Multi-Contagion Graph Dynamical Systems Formalism. We start
with a graph dynamical systems (GDS) formalism [1] for single-contagion dis-
crete dynamical systems. We extend that formalism to a multiple contagion
GDS, MCGDS, operating over multiple graph instances. Any number nc ≥ 1 of
contagions can operate on any number ng of graphs, where 1 ≤ ng ≤ nc, because
while each contagion spreads on one graph, two or more contagions may spread
on a single graph. The formal model is provided in Section 2.

2. Parallel Implementation of Multi-Contagion Simulation Framework.
The software framework, called CSonNet (Contagion Simulation ON NETworks)
is written in Python. Our simulation system implements concurrency through
multi-processing. The system can simulate any number nc ≥ 1 of contagions
operating over any number ng of graphs, where 1 ≤ ng ≤ nc. The graph in-
stances, in general, can be disjoint, the same graph, or have common subsets of
nodes and edges. Contagions can evolve independently or can interact as they
evolve. Contagion models (e.g., SIR epidemic models, various threshold models
for social contagions) are added to the system in one of two ways: (i) Python
code that conforms to a specified interface is written and added to the system,
or (ii) a user composes models through input files, using a set of rules provided
by the system. Option (i) is the only case where new code is written; all other
inputs (e.g., specification of graphs, the mapping of contagions to the networks

Multi-Contagion Multi-Network Framework 3

on which they evolve, rule-based models) are given through input files for a simu-
lation. The system is overviewed in Section 3 and its strong scaling performance
is evaluated in Section 4.

3. Case Studies. We provide two case studies, each with two non-interacting
and two interacting contagion simulations: (i) SIR1-SIR2 epidemic contagions,
and (ii) Threshold-SIR mixed social and epidemic contagions. Social networks
with up to 75,877 nodes are used. While the system can compute contagions on
much larger graphs, we choose graphs where fairly demanding multi-contagion
simulations can be completed in less than 300 seconds of computational time,
since in practice parametric simulation studies over large parameter spaces are
typically required. These illustrate several features of CSonNet (see Section 5).

This simulation system significantly extends the single-contagion system de-
scribed in [23]; that system does not implement the MCGDS of Contribution 1.
Our implementation here (Contribution 2) is a large extension of the previ-
ous system in terms of capabilities (e.g., software added and software modified).
None of the case studies here (Contribution 3) could be executed with the system
in [23] without the workarounds specified in Section 1.1.

1.3 Related Work

Multiple contagion simulation systems. To the best of our knowledge, no
simulator has multi-contagion capabilities “out of the box” as is the case for our
framework. However, because several frameworks enable models to be added to
them (as does ours), it is possible to use these simulators for multiple-contagion
scenarios, as described in Section 1.1. But these workarounds come with the price
of requiring additional code and/or requiring more preprocessing of graphs before
running simulations. Among the frameworks for simulations on networks that
fit this description, across a range of capabilities, are: NetLogo [24], NDlib [25],
MASON [15], and Repast HPC [10].

Studies of multiple contagion systems. Simulations of information spread-
ing and evacuation decision-making in the context of hurricane evacuation mod-
eling are discussed in [29]. Simulations of agents with limited attention spans
for which multiple contagions (e.g., ideas) must compete are discussed in [28].
Agent-based models for competing languages are summarized in [21].

A number of papers have addressed models for competing and/or cooper-
ating contagions (such as epidemics, product information, and misinformation
in social media) over networks (see e.g., [17,19,28]). Polarization and consensus
are studied with competing contagions [27]. One contagion that overtakes and
halts a second contagion is studied in [7, 20]. A model for a simple contagion
producing a complex contagion is given in [17]. Game theory is used to analyze
competing contagions in [11]. Many publications have studied optimization prob-
lems (e.g., seeding methods for influence maximization, minimizing the spread
of contagions) in the context of multiple contagions (see e.g., [6, 7]).

4 Aparna Kishore et al.

2 Multi-Contagion Graph Dynamical System

The underlying model implemented in our simulation system CSonNet is called
a graph dynamical system (GDS). The formalism [1, 18] addresses a single
contagion, but naturally extends to multiple contagions, which is done here. A
GDS can simulate Turing machines for specific complexity classes [1, 4, 5].

2.1 Multiple Contagion GDS Formalism

A multi-contagion GDS, MCGDS, incorporating nc ≥ 1 contagions, is a
quadruple S(Gc,Fc,Kc,Rc): (i) Gc: a sequence of graphs Gj(V j , Ej), where Gj

is the graph on which the contagion cj propagates, V j and Ej denote its vertex
(i.e., node) and edge sets, 1 ≤ j ≤ nc; (ii) Fc: a sequence of sequences F j , where
each F j is the sequence of local functions for contagion cj ; (iii) Kc: a sequence of
vertex (node) state sets Kj , where each Kj is the set of admissible vertex states
for contagion cj ; and (iv) Rc: a sequence of specifications Rj , where each Rj is
the order in which local functions are executed for cj . Each of these elements is
defined below.

The graph Gj(V j , Ej) represents the interaction network for cj . Let nj =
|V j | and µj = |Ej |, with n = |V 1∪V 2∪ . . .∪V nc | and µ = |E1∪E2∪ . . .∪Enc |.
Agents are vertices and pairwise agent interactions are edges in Gj . In general,
edges may be directed or undirected. In this paper, for simplicity, we will consider
graphs with undirected edges. Vertex (resp., edge) sets across contagions may
be the same, disjoint, or have some common subset of nodes (resp., edges).

Each agent vi ∈ V 1 ∪ . . . ∪ V nc has an agent state or vertex state si
which is a sequence si = (si,c1 , si,c2 , . . . , si,cnc

) of nc elements. Each si,cj ∈ Kj .
The system state (also called a configuration) s = (s1, s2, . . . , sn) is the
sequence of n vertex states. Let the local states, denoted by s[vi], represent
the sequence of states of vertex vi and all of its distance-1 neighbors in each
Gj . That is, s[vi] = (sc1 [vi], sc2 [vi], . . . , scnc

[vi]), where scj [vi] is the sequence of
length dj(vi) + 1 of the states of vi and each of its distance-1 neighbors in Gj

for contagion cj , and dj(vi) is the degree of vi in Gj . These quantities, at time t,
are denoted by sti, s

t
i,cj

, st, and st[vi] respectively.

Each agent vi has a local function fi,cj ∈ F j that determines its state
transitions for contagion cj . The state of agent vi at time t+ 1 for cj is given by

st+1
i,cj

= fi,cj (st[vi]) for each 1 ≤ j ≤ nc . (1)

Thus, the next state of vi, with respect to each contagion cj is a function of
the current state of vi and those of its distance-1 neighbors in every Gj over
all contagions. That is, the argument on the right hand side of Equation (1) is
the same for each fi,cj , for a fixed vi. This expression—and specifically the local
functions for each contagion—indicates explicitly how each contagion affects (i.e.,
interacts with) every other contagion.

We assume that specification of update order Rj for the local functions
for cj corresponds to the synchronous update scheme. That is, all agents vi

Multi-Contagion Multi-Network Framework 5

evaluate their local functions fi,cj , 1 ≤ i ≤ n, for cj and update their states st+1
i,cj

simultaneously at each time step. Furthermore, we assume the updates across
contagions are also done in parallel, i.e., all Rj are parallel with each other.
Hence, fi,cj are computed in parallel for all 1 ≤ i ≤ n and for all 1 ≤ j ≤ nc in
Equation (1). This enables greater parallelization of simulation computations,
leading to more efficient calculations. However, other update orders Rj can be
used. One example is a sequence W of the node IDs in Gj (of length nj) and
the local function for each node is computed in the order specified by W .

2.2 Example MCGDS

Two contagions propagate on the single network at the left in Figure 1, where
nodes are people and edges are interactions. The two contagions are: a social
contagion c1 on mask wearing and a disease contagion c2. Contagion c1 uses a
threshold model [12], with K1 = B = {0, 1}, where state 0 (resp., state 1) means
that a person (node) is not (resp., is) wearing a mask. The local function fi,c1
for all i ∈ {1, 2, 3, 4} and c1 is as follows. A node vi changes from state 0 to 1 if
at least a threshold θ = 1 number of its neighbors are in state 1. Contagion c2 is
a disease model with states K2 = {S, I,R}, where the states are susceptible (S),
infectious (I), and recovered (R). The local function fi,c2 for all i ∈ {1, 2, 3, 4}
and c2 is as follows. If vi is in state S, then vi changes to state I with probability
p = pbase ·mI ·mS for each neighbor in state I, where pbase = 0.008, mI = 0.2 if
the infected neighbor is wearing a mask and mI = 1 otherwise, and mS = 0.2 if
vi is wearing a mask and mS = 1 otherwise. If vi is in state I and transitioned
to state I at time tI , then it transitions to state R at time t = tI + tinf , where
tinf = 3 is node vi’s infectious duration. If vi is in state R, it remains in state R.
Contagion c1 affects c2 in that people that are wearing masks have a lesser
probability of contracting and transmitting the disease.

The system states s at t = 0, 1, and 2 are given in Figure 1. Contagion c1
states are under “Social” and c2 states are under “SIR.” At t = 1, c1 spreads to
each of v2 and v4 because these latter two nodes have v1 as a neighbor, s01,1 = 1,
and the threshold for all nodes is θ = 1. So at the end of t = 1, three of the four
nodes are wearing masks. Also at t = 1, for contagion c2, v3 is initially infected,
but the Bernoulli trials for nodes v2 and v4 do not result in contagion spread,
so the states remain s12,2 = s14,2 = S. (Note that at t = 1 for c2 and node v3,
t < tI + tinf = 0 + 3, so f3,c2 returns the next state as s3,c2 = I, which is the
current state. The local function for v3 will return the next state as I until t = 3,
at which time s3,c2 = R.) At t = 2 and for c1, v3 changes to s23,1 = 1 due to
simple contagion spread from v2 and v4. For c2 at t = 2, the edge probability
p = pbase ·mI ·mS = (0.008)(1)(0.2) = 0.0016 for the edge from v3 to v2 and from
v3 to v4 because v2 and v4 are wearing masks at the end of t = 1 but v3 is not.
The random number in [0, 1] generated for the first edge is 0.0013 < p = 0.0016
(i.e., the Bernoulli trial is successful) and so v3 infects v2 and s22,2 = I. However,
the Bernoulli trial for v3 to infect v4 is not successful because the drawn random
number is 0.732 > p, so s24,2 = S and therefore the states at t = 2 are as shown
in Figure 1. A case study using this two-contagion model is given in Section 5.1.

6 Aparna Kishore et al.

!" !#

!$

!"#$%!&'

()*$ +),"-. +/0

!"

!#

!$

!%

+

+

/

+

1

'

'

'

!"#$%!&1 !"#$%!&2

()*$ +),"-. +/0

+

+

/

+

1

1

'

1

()*$ +),"-. +/0

+

/

/

+

1

1

1

1

!%
!"

!#

!$

!%

!"

!#

!$

!%

Fig. 1: Illustrative two-contagion dynamics for a MCGDS. Contagion c1 is a
social contagion of mask wearing represented by a threshold model; contagion
c2 is a disease contagion represented by an SIR model. Both contagions spread
on the network on the left. Contagion c1 affects c2. States for each contagion,
for all nodes, are provided for three time steps.

3 CSonNet Modeling and Simulation Software System

3.1 Overview of Simulation Steps

CSonNet is a discrete-time multi-contagion ABS framework for networked pop-
ulations. CSonNet implements the MCGDS model of Section 2 in the form of
simulations. A simulation begins with reading in from file: (i) all graph in-
stances Gc; (ii) all local functions Fc over all nodes vi, 1 ≤ i ≤ n, and all
contagions cj , 1 ≤ j ≤ nc; (iii) the mapping Mj,` of contagion cj to graph G`;
(iv) the initial state assignments I to all vi for each cj ; (v) the number ni of
iterations (i.e., simulation instances) to run; (vi) the maximum number tmax of
time steps to run per iteration; and (vii) the number nwp of worker processes
that perform the computations. The number ng of graphs and number nc of con-
tagions are determined from Gc and Fc, respectively. In particular, the number
and types of contagions are completely specified by the local functions fi,cj of
Equation (1) in the sequence Fc and Kc. The local functions are not entered as
equations in input files, but rather as models Mst

i,j , that implement these local
functions for vi and cj . Section 3.2 below provides an example.

After reading all inputs, the main process of the simulation instantiates nwp

worker processes that carry out iterations in parallel on multi-core hardware
computing nodes. The main process provides to each worker process the appro-
priate graphs, local functions, mapping of contagion to graph, initial conditions
for particular iterations, and other parameters that the worker process needs,
and then starts the worker processes. An iteration consists of computing the
dynamics based on the states of all nodes at time t = 0 and over all contagions,
up through time tmax. Specifically, an iteration consists of computations over the
following nested loops: (i) over all time steps t ∈ [0, tmax− 1]; (ii) for each time,
over all contagions cj , j ∈ [1, nc]; and (iii) for each contagion, over all nodes vi,
1 ≤ i ≤ n. For each combination of (t, cj , vi), Equation (1) is evaluated, gener-
ating vi’s next state st+1

i,cj
. If the next state is different from the current state of

vi, then this next state is written to file, along with the corresponding iteration
number, t, cj , and vi; this is the simulation output.

Multi-Contagion Multi-Network Framework 7

3.2 Agent State Transition Models From Rules

State transition models Mst
i,j , which are specified in input files, represent the

local functions of Section 2. Below are examples of two state transition model
files; each specifies the contagion number, followed by a row of entities that
constitute the elements of a rule; all subsequent lines contain particular rule
names and parameter values for these rules. Hence, a model is composed of
rules. Currently, there is a fixed but extensible set of rules. Moreover, the model
files below are used to perform a simulation such as that in Section 2.2.

Contagion 1 (c1) has one rule. It is a (deterministic) threshold model that
applies to all nodes, and describes the transition from state 0 to state 1 when
at least 3 neighbors of a node are in state 1 (the cause). The threshold change
based on influence from the SIR model is zero, meaning that the SIR contagion
does not affect the threshold-based contagion. The last value of 1 represents
a minimum threshold for the nodes, in the event of a threshold decrease; the
threshold cannot go below 1.

Contagion 2 (c2) is an SIR model. There are two rules, one for the state
transition S → I and one for the transition I → R. The transition S → I is
governed by an edge probability of 0.006. If the infected (resp., susceptible)
node is in state 1 for c1, then probability is reduced by the factor 0.5 (resp.,
0.5). The Python list “[1,I]” indicates that states 1 from c1 and state I from c2
influence the transition S→ I. Thus, c1 influences c2. The second rule states that
a node stays in the infected state for 10 time units before transitioning I→ R.

Contagion 1

node from_state to_state cause rule param_1 param_2 param_3

all 0 1 [1] deterministic_progressive_node_threshold 0 3 1

Contagion 2

node from_state to_state cause rule param_1 param_2 param_3

all S I [1,I] edge_probability 0.006 0.5 0.5

all I R auto discrete_time_auto 10

4 Performance Evaluation

The networks in Section 4.1 are used to perform strong scaling studies of simu-
lation time in Section 4.2.

4.1 Networks

Networks used in performance analyses and the case studies of Section 5 are
given in Table 1. Two are face-to-face human social contact networks and the
third (Epinions) is an online social network.

4.2 Strong Scaling Results
Figure 2 shows strong scaling results for two-contagion simulations for each of the
three networks. This is the total execution time over all worker processes (from
the start of the first worker process to the end of the last executing process).

8 Aparna Kishore et al.

Table 1: The city-based human contact networks (first two entries) were made with
the procedures in [3]. Each network is the giant component of the network, since we
run dynamics on these networks. Property computations were performed with [2].

Network Type Num.
Nodes

Num.
Edges

Ave.
Deg.

Max.
Deg.

Ave.
Clus.
Coef.

Diameter

Danville, VA human
contact

12961 44393 6.85 93 0.277 16

Newport
News, VA

human
contact

64425 418879 13.00 344 0.261 22

Epinions online
social

75877 405739 10.69 3044 0.138 15

The two contagions do not interact in Figure 2a; there is interaction between
contagions in Figure 2b. The times are greater in the latter plot because all
neighbors for both contagions must be iterated over to update the state of each
contagion; these neighborhood iterations take place at each time step of each
iteration for one simulation. Each data point, with ± one standard deviation
error bars, represents the results of ten simulations for each set of conditions. The
data in both plots indicate that CSonNet exhibits strong scaling for independent
and interacting contagions. The simulation conditions are appreciably onerous.
Each time data point is for a simulation with 100 iterations, each over 100
time steps. In practice (e.g., for epidemic simulations), less than 100 iterations
are performed (often on the order of 30), and typically about 14-30 time steps
(days) are simulated. Yet, computations by worker processes complete in under
300 seconds for nwp = 32 in Figure 2b. We are interested in determining the
sizes of networks on which simulations can be run in under five minutes because
typical studies involve large parametric studies with many simulations.

5 Case Studies

Two multi-contagion case studies are presented. The first case study is a Threshold-
SIR system spreading on the Newport News network, and is motivated in part
by [8,26]. The second is an SIR1-SIR2 system spreading on the Danville network.
It is inspired by [16,22]. In the first case study, one contagion inhibits the other;
in the second study, two contagions reinforce each other. The purpose of these
case studies is to demonstrate multi-contagion capabilities of the code.

5.1 Threshold-SIR Two-Contagion Model and Simulations

One contagion model (for c1) is a Granovetter threshold model [12], with thresh-
old θ = 3, and is used to model mask wearing during COVID. States 0 and 1
indicate that a person is not wearing a mask and is wearing a mask respectively.
A node transitions from state 0 to state 1 if at least θ of its neighbors are in

Multi-Contagion Multi-Network Framework 9

1 2 4 8 16 32
Number of worker processes

10

100

1000

10000

T
o

ta
l
T

im
e

 (
S

e
c
o

n
d

s
)

Danville
Epinions
Newport News

(a) c1, c2 independent

1 2 4 8 16 32
Number of worker processes

10

100

1000

10000

T
o

ta
l
T

im
e

 (
S

e
c
o

n
d

s
)

Danville
Epinions
Newport News

(b) c1, c2 affect each other

Fig. 2: Strong scaling of total execution time of worker processes. These strong
scaling plots were generated for ten replicate simulations, where each simulation
is run for 100 iterations. (a) Timing data for two non-interacting contagions,
with one curve for each network. (b) Timing data are for interacting contagions.

state 1. The contagion model for c2 is an SIR model for COVID. Contagion
c1 may affect c2 as follows. Consider a person vj in state I (i.e., infected with
COVID) and another person who is vi in state S (i.e., is susceptible). Each of
vi and vj may or may not be wearing a mask during an encounter. When a
person wears a mask, the probability of transmission is reduced by a multiplica-
tive factor attributed to each person. For each person vi wearing a mask, we let
mi = 0.5; otherwise, the factor is mi = 1. Thus, the edge probability pe,i for
transmission along the edge e between a susceptible person vi and an infected
person vj is given by pe,i = we,base,i ·mi ·mj . In our case study, we,base,i = 0.006
and the infectious duration tinf = 10 days. COVID does not affect mask wearing
in our model. The state transition model input files for this case study—for the
interacting contagions simulation—were provided in Section 3.2.

Figure 3 provides cumulative infection curves (for c2) and cumulative num-
bers of nodes in state 1 (for c1) for the Newport News network. Seed nodes for
each contagion are chosen uniformly at random and separately for each conta-
gion: 0.0062 fraction of nodes for c1 and 0.0062 fraction of nodes for c2 in each
iteration. The particular seed nodes are different for each of the 100 iterations,
but the same seeds are used across the two simulations, for comparison. Fig-
ure 3a provides baseline data for non-interacting contagions. Figure 3b shows
results for the case of mask wearing (c1) affecting the spread of COVID (c2).
The latter plot indicates that mask wearing reduces the spread of COVID [14].

5.2 SIR1-SIR2 Two-Contagion Model and Simulations

In this SIR1-SIR2 system, if contagion c1 affects contagion c2, then this is realized
by increasing the probability that a node v` contracts c2, given that it has
already contracted c1. More formally, consider a two-contagion system where
the contagion models are SIRi and SIRj with i, j ∈ {1, 2} and i 6= j. If the

10 Aparna Kishore et al.

(a) c1, c2 independent (b) Asymmetric: c1 affects c2

Fig. 3: Results from a two-contagion model on the Newport News network; c1 is
a threshold model for mask wearing and c2 is an SIR model. There are two types
of interactions: (a) independent contagions c1 and c2 (i.e., they do not affect each
other) and (b) asymmetric contagions (i.e, contagion c1 affects contagion c2, but
not vice versa). Each data point in time is the average result over 100 iterations
with error bars for ± one standard deviation.

simultaneously evolving contagions do not interact, then mk = 1 for contagion
SIRk (k = 1, 2) by definition. However, if contagion SIRi affects SIRj , and a node
v` has already contracted contagion ci, then the edge weight (i.e., probability
of infection) for cj , is we,j = we,base,j · mj . If 0 ≤ mj < 1, then contracting
contagion ci reduces the probability of contracting cj . If mj > 1, then contracting
contagion ci increases the probability of contracting cj . For SIR1, the base edge
weight is we,base,1 = 0.01, the infectious duration is tinf,1 = 10 days, and for
interacting contagions m1 = 8. For SIR2, we,base,2 = 0.005, tinf,2 = 12 days,
and for interacting contagions m2 = 5. Since m1,m2 > 1, the contagions, when
interacting, reinforce each other.

Figure 4 shows results from three simulations. Seed nodes for each contagion
are chosen uniformly at random: 0.0077 fraction of nodes for c1 and 0.0077
fraction of nodes for c2 in each iteration. The particular seed nodes are different
for each iteration, but the same seeds are used across the three simulations,
for comparison. All plots are cumulative fractions of infected individuals as a
function of time. Error bars at each time are ± one standard deviations over the
100 iterations per simulation. In Figure 4a, the two contagions do not interact.
In Figure 4b, c1 affects c2, but not vice versa; so the cumulative fraction of
infections increases for c2 while remaining unchanged for c1. In Figure 4c, the
two contagions affect each other and the cumulative infected fractions increase
for both contagions.

Acknowledgments: We thank the anonymous reviewers for their helpful feed-
back. We thank our colleagues at NSSAC and Research Computing at the Uni-
versity of Virginia for providing computational resources and technical support.
This work has been partially supported by University of Virginia Strategic In-

Multi-Contagion Multi-Network Framework 11

(a) c1, c2 independent (b) Asymmetric:
c1 affects c2

(c) c1, c2 affect each other

Fig. 4: Results from a two-contagion model on the Danville network where c1
and c2 are both SIR models. There are three types of interactions: (a) indepen-
dent contagions c1 and c2 (i.e., they do not affect each other); (b) asymmetric
contagions (i.e, contagion c1 affects contagion c2); and (c) symmetric contagions
(i.e., c1 and c2 affect each other).

vestment Fund award number SIF160, NSF Grant OAC-1916805 (CINES), NSF
Grant CMMI-1916670 (CRISP 2.0) and CCF-1918656 (Expeditions).

References

1. Adiga, A., et al.: Graphical dynamical systems and their applications to bio-social
systems. Int J Adv Eng Sci Appl Math 11, 153–171 (2019)

2. Ahmed, N.K., Alo, R.A., Amelink, C.T., et al.: net.science: A cyberinfrastructure
for sustained innovation in network science and engineering. In: Gateway Confer-
ence. pp. 71–74 (2020)

3. Barrett, C.L., et al.: Generation and analysis of large synthetic social contact
networks. In: Winter Simulation Conference (WSC). pp. 1003–1014 (2009)

4. Barrett, C.L., et al.: Complexity of reachability problems for finite discrete dynam-
ical systems. Journal of Computer and System Sciences 72(8), 1317–1345 (2006)

5. Barrett, C.L., et al.: Modeling and analyzing social network dynamics using
stochastic discrete graphical dynamical systems. TCS 412(30), 3932–3946 (2011)

6. Borodin, A., Filmus, Y., Oren, J.: Threshold models for competitive influence in
social networks. In: International Workshop on Internet and Network Economics
(WINE). pp. 539–550 (2010)

7. Budak, C., Agrawal, D., Abbadi, A.E.: Limiting the spread of misinformation in
social networks. In: WWW. pp. 665–674 (2011)

8. Catching, A., Capponi, S., Yeh, M.T., et al.: Examining the interplay between face
mask usage, asymptomatic transmission, and social distancing on the spread of
covid-19. Scientific Reports 11, 1–11 (2021)

9. Cheng, V.C.C., Wong, S.C., et al.: The role of community-wide wearing of face
mask for control of coronavirus disease 2019 (covid-19) epidemic due to sars-cov-2.
Journal of Infection 81, 107–114 (2020)

10. Collier, N., North, M.: Parallel agent-based simulation with repast for high perfor-
mance computing. Simulation 89(10), 1215–1235 (2012)

11. Goyal, S., Kearns, M.: Competitive contagion in networks. In: Proceedings of
the Forty-Fourth Annual ACM Symposium on Theory of Computing. p. 759–774
(2012)

12 Aparna Kishore et al.

12. Granovetter, M.: Threshold models of collective behavior. The American Journal
of Sociology 83(6), 1420–1443 (1978)

13. Kishore, A., Machi, L., Kuhlman, C.J., Machi, D., Ravi, S.S.: A framework for
simulating multiple contagions over multiple networks. Technical Report (2021),
accessible at https://tinyurl.com/zyf2htn

14. Li, T., Liu, Y., Li, M., Qian, X., Dai, S.Y.: Mask or no mask for covid-19: A public
health and market study. PloS one 15(8), e0237691 (2020)

15. Luke, S., Balan, G.C., Sullivan, K., Panait, L.: MASON agent-
based modeling framework (2019), https://github.com/eclab/mason and
https://cs.gmu.edu/ eclab/projects/mason/

16. Martcheva, M., Pilyugin, S.S.: The role of coinfection in multidisease dynamics.
SIAM Journal on Applied Mathematics 66(3), 843–872 (2006)

17. Min, B., Miguel, M.S.: Competing contagion processes: Complex contagion trig-
gered by simple contagion. Scientific Reports 8(10422), 8 pages (2018)

18. Mortveit, H.S., Reidys, C.M.: An Introduction to Sequential Dynamical Systems.
Universitext, Springer Verlag (2007)

19. Myers, S.A., Leskovec, J.: Clash of the contagions: Cooperation and competition in
information diffusion. In: 12th International Conference on Data Mining (ICDM).
pp. 539–548 (2012)

20. Nguyen, N.P., Yan, G., Thai, M.T.: Analysis of misinformation containment in
online social networks. Computer Networks 57(10), 2133–2146 (2013)

21. Patriarca, M., Castello, X., Uriarte, J.R., Eguiluz, V.M., Miguel, M.S.: Influence
of community structure on misinformation containment in online social networks.
Advances in Complex Systems 15, 1250048–1–1250048–24 (2012)

22. Pawlowski, A., Jansson, M., Sköld, M., Rottenberg, M.E., Källenius, G.: Tubercu-
losis and hiv co-infection. PLoS pathogens 8(2), e1002464 (2012)

23. Priest, J.D., Kishore, A., et al.: Csonnet: An agent-based modeling software
system for discrete time simulation. In: WSC (2021), accepted, accessible at:
https://tinyurl.com/cnypt3u3

24. Railsback, S., Ayllón, D., Berger, U., Grimm, V., Lytinen, S., Sheppard, C., Thiele,
J.: Improving execution speed of models implemented in netlogo. Journal of Arti-
ficial Societies and Social Simulation 20(1) (2017)

25. Rossetti, G., Milli, L., et al.: Ndlib: a python library to model and analyze diffu-
sion processes over complex networks. International Journal of Data Science and
Analytics 5(1), 61–79 (2018)

26. Sahneh, F.D., Scoglio, C.: Epidemic spread in human networks. In: 50th IEEE
Conference on Decision and Control and European Control Conference. pp. 3008–
3013 (2011)

27. Vasconcelos, V.V., Levin, S.A., Pinheiro, F.L.: Consensus and polarization in com-
peting complex contagion processes. J. R. Soc. Interface 16, 20190196–1–20190196–
8 (2019)

28. Weng, L., Flammini, A., Vespignani, A., Menczer, F.: Competition among memes
in a world with limited attention. Scientific Reports 2(335), 9 pages (2012)

29. Yang, Y., Mao, L., Metcalf, S.S.: Diffusion of hurricane evacuation behavior
through a home-workplace social network: A spatially explicit agent-based sim-
ulation model. Computers, Environment and Urban Systems 74, 13–22 (2019)

