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Abstract—Fear of reprisals such as violence and punishment
can inhibit citizens from speaking out, or make them more
reluctant to act, in opposition to a repressive regime. Protests
are one form of opposition, and their growth has been success-
fully modeled as an influence-based contagion process within a
social network (representing a population). In these models, an
individual joins a protest if a sufficient number of her neighbors
has already joined. This required number of neighbors is often
called a “threshold.” In this study, we model a regime’s ability to
suppress protests by instilling fear in a subset of a population, and
this fear is manifested by an increase in a person’s threshold. We
consider different social networks, numbers of seed nodes, and
amounts of fear. Through simulations, we present several results.
For example, we demonstrate that, for the objective of reducing
the size of a protest, inducing fear can be more advantageous
than removing nodes from a network.

Index Terms—fear modeling, contagion blocking, threshold
models, social networks

I. INTRODUCTION

A. Background and Motivation

Despots and authoritarian regimes have been studied at least
back to the time of Aristotle [3]. These regimes may impose
their will through coercion, intimidation, violence, and threats
against its citizens [3], [7], [8]. Such tactics are designed to
control dissent by instilling fear in a population [19]. This
means, for example, that citizens are less likely to protest
against a tyrant for concern of harmful repercussions. Our
goal is to study the effects of fear in inhibiting the process
of individuals joining a protest in a population. Following [9],
joining a protest is modeled as a contagion process where
individuals respond to social influence; they are more likely
to participate if their friends and neighbors do.

Our model represents a population as a social network. The
nodes are individuals, and undirected edges denote interactions
(e.g., friendship relations) between nodes. Nodes may be
inactive, meaning that they are not involved in a protest, or
active, meaning that they are protesting. We use a threshold
model [4], [10], [14] to quantify whether a node transitions
from the inactive state to the active state in a contagion
process. An inactive node vi transitions to the active state if at
least a threshold θi number of its neighbors are already in the
active state. Otherwise, vi remains inactive. Once activated, a

node remains active because the individual is assumed to be
subjected to reprisals—she has reached “a point of no return.”

Threshold models are used in many contexts, from modeling
protests [5], [9], [13] to joining online platforms [17]. Other
applications where threshold models are used in decision
making are given in [10], [14], [18].

B. Our Approach to Fear Modeling and Analysis

Threshold models are a natural approach for modeling fear
because θi represents vi’s intrinsic resistance to become active.
According to [6], fear is a deterrent, and a deterrent, in turn,
is a reluctance to participate. This reluctance can be quantified
as a threshold increase.

By increasing vi’s threshold θi by some amount ∆θi > 0,
vi becomes more resistant to contagion adoption, which is
our goal in modeling fear. That is, we use ∆θi as a proxy
for fear instilled in a person. We refer to these nodes as
blocking nodes because they may inhibit protest adoption for
themselves and their neighbors in a social network. We model
successive increases in fear as successive increases in ∆θi.
In addition, we evaluate different human contact networks G,
different numbers of seed nodes for the contagion process
(seed nodes are nodes that are protesting at the start of the
protest contagion spreading process), and different amounts of
fear. We quantify the effects of these input variables on the
contagion process of protest participation. In particular, we
compute the effects of these inputs on the fraction of nodes in
a population that participates in a protest. We use agent-based
modeling and simulation (ABMS) to quantify these effects.
Section III provides the formal model.

C. Novelty and Significance of Our Work

To our knowledge, there is only one work that studies
thwarting of contagion process by increasing node thresholds,
i.e., increasing fear among population members to make them
more reluctant to join a protest. Our work, and our goals, are
significantly different from theirs. See Section II. Our approach
of blocking protest contagions by fear (modeled as threshold
increases) rather than by extreme violence/killing (modeled
as removing nodes from a social network)—and comparing
the two approaches—is significant because despots, in reality,
make these calculations: to control by subtlety (inducing fear)



or brutality (killing) [19]. Our work helps to explain and
understand these decisions.

D. Contributions

1. Methodology to model the effects of fear in inhibiting
participation in protests against a regime. Modeling fear
through a principled approach, i.e., increasing thresholds of
selected nodes of a social network, enables one to quantify the
effects of fear on the spread of a dissent contagion. Similarly,
changes in the numbers of seed nodes and in the amount of
fear can be quantified in terms of the resulting fraction σ of
nodes that join a protest. Ours is a global methodology in
the sense that a set of blocking nodes is designed to halt a
contagion that starts anywhere in a social network.
2. Effectiveness of threshold increases in thwarting the
contagion of joining a protest. We show the following
results. (i) Threshold increases in roughly 40% of nodes are
required to completely halt contagion spreading (exact values
depend on simulation conditions). (ii) We demonstrate that
the more subtle approach of instilling fear in a population,
as opposed to the more draconian approaches of removing
dissenters from society by killing or incapacitating them, can
be highly effective. Removing a node vi from a graph is
equivalent, from a network perspective, to setting its threshold
to θi = d(vi) + 1, where d(vi) is the degree of vi. For the
same number k of blocking nodes, we demonstrate that for
some conditions, increasing fear can produce the same reduced
protest contagion spread fraction σ as node removal, but with
a total cost (i.e., threshold increase) over all nodes that is only
38% or less of the total cost required to remove these nodes.
(iii) These two conditions combined indicate that although a
despot may have to engender fear in a significant fraction of
a population, the amount of required total fear—the cost of
fear—is significantly less than taking more overt actions such
as abducting or killing people.

II. RELATED WORK

Seigel [15], [16] has studied repression; this work is closest
to our own. However, there are several differences between
his work and ours. First, the networks studied in [15], [16]
have 1000 nodes. In [16], the network is presumably a clique
while those studied in [15] are 1000-node stylized small world,
clustered, scale-free, and hierarchical networks. Our networks
have been developed from sophisticated synthetic population
procedures [2] and are much larger in size. Second, we use a
Granovetter type threshold model (see Section III for a formal
description) which is different from the ones used in [15],
[16]. Third, and central to our entire work, is that when we
apply fear in our model, we do so to a targeted subset of k
people, and we vary the amount of fear over the k nodes. The
selected set of blocking nodes (in size and composition) can
make a big difference on the blocking efficacy of nodes and
on the cost of the blocking nodes (see Section V). Seigel’s
work applies the fear model to all the nodes of a network.

III. CONTAGION MODEL

A. Graph Dynamical System (GDS)

Here, we define the discrete dynamical systems framework,
called graph dynamical system, that we use to model and
simulate the Granovetter, Schelling, and Centola and Macy [4],
[10], [14] type of complex contagion.

A graph dynamical system (GDS) [1], [12], denoted S,
is a four-tuple (G,K,F,R) where G is a (social) network
G(V,E) with vertex (or node or agent) set V and edge set
E, with n = |V | and m = |E|. An undirected edge between
vi ∈ V and vj ∈ V , denoted {vi, vj} ∈ E, means that vi and
vj interact and therefore can influence each other. The set K
of vertex states is the set of states of a node; an agent vi is in
exactly one state si ∈ K at each time t. A sequence of local
functions F , with |F | = |V |, provides a local function fi for
each vi ∈ V . The function fi specifies how agents update their
states, and will be explained below. The update scheme R is
the manner in which the fi are invoked at each time. For this
work, we assume a synchronous or parallel scheme whereby
all agents update their states in parallel.

The system state, also called a configuration, s =
(s1, s2, . . . , sn) is the n-vector of all vertex states. Let Ni

denote the closed neighborhood of vi (i.e., Ni contains vi and
all of vi’s distance-1 neighbors in G). Let s[vi] be the vector of
states of the vertices in Ni; the sequence is of length d(vi)+1,
where d(vi) is the degree of vi in G. Then the next state s′i of
vi is computed with the local function fi on s[vi], the current
states of the vertices in Ni; i.e., s′i = fi(s[vi]). Introducing
time t as a superscript, the state s(t+1)

i at time t+1 is computed
by fi and is given by s(t+1)

i = fi(s
t[vi]).

B. Contagion Threshold Model

For the GDS model, we have specified G and R. Here,
we specify K and F in the GDS in Section III-A. For the
threshold contagion model, the node state set K = {0, 1},
where state 0 means that a node is inactive (i.e., does not
possess the contagion, does not participate in a protest), and
state 1 means that a node is active (i.e., does possess the
contagion, does participate in a protest). Once a node reaches
state 1, it remains in state 1; it never transitions back to state 0.
This model is appropriate when state 1 involves a commitment
that is not easily rescinded, such as acting against government
wishes. This is a progressive threshold model [11].

We now specify the local functions fi ∈ F (i ∈
{1, 2, . . . , n}). Let n1,i represent the number of vi’s distance-
1 neighbors in G that are already in state 1 at time t. Also,
each node vi is assigned an integer θi ≥ 0 that represents its
resistance or inertia to adopting a contagion (e.g., joining a
protest). The next state s

(t+1)
i of vi at time (t + 1) is 1 if

n1,i ≥ θi and 0 otherwise. Hence, if the number of neighbors
of vi in state 1 is at least θi, then vi will transition 0 to 1. If
each node vi has its threshold θi = 1, then the model is called
a simple contagion. If at least one node vi has θi > 1, then
the model is a complex contagion. Thus, complex contagions
require social reinforcement [4].



C. Examples of GDS State Transitions and Blocking Nodes

Figure 1 shows a 7-node social network G. The forms of
threshold T and state s(t) vectors for the seven nodes are
provided in the figure below the graph. Two cases of dynamics
are given, and each case corresponds to a separate threshold
vector T . The node thresholds for these two cases are the
same, except that θ4 increases from 2 (on the left) to 3 (on
the right). That is, ∆θ4 = 1 between cases 1 and 2; all other
∆θi = 0 between the two cases for i ∈ {1, 2, 3, 5, 6, 7}. These
two cases use the initial system state, namely s0 = s(0) =
(0, 0, 1, 0, 0, 1, 0); that is, only nodes v3 and v6 are in state 1.
Since nodes v3 and v6 are initially in state 1, they are called
seed nodes.

In both cases, v7 has θ7 = 1. Since n1,7 = 1 (because v7’s
neighbor v6 is in state 1) and θ7 = 1, v7 transitions from 0
to 1. It can be verified by iterating through the nodes that this
is the only node that transitions at t = 1, in both cases. In
a similar manner, one can verify the other successive system
states shown in Figure 1. The spread fraction σ is the fraction
of nodes that are active at the end of a simulation. Here, for
each of cases 1 and 2, σ = 5/7.

If θ4 increases further to 4 in a case 3 (not shown), so that
∆θ4 = 2 between cases 1 and 3, then v4 will not transition
from 0 to 1, for the specific initial conditions of this example.
This is because only three neighbors of v4 can be active based
on the seeding; they are v3, v5, and v7.

To ensure that v4 can never transition to state 1 (i.e., can
never participate), regardless of the choice of seed nodes, we
set θ4 = d(v4) + 1 = 6 in a new case 4 (compared to θ4 = 2
in case 1). Hence, ∆θ4 = 6 − 2 = 4 ensures that this node
never transitions to state 1. Thus, increasing its threshold to
d(v4) + 1 effectively removes v4 from the network.

This is one of the behaviors that we seek to study in realistic
social networks in Section V: can we reduce contagion spread
by increasing thresholds rather than by removing nodes from
G (i.e., can we reduce spread by increasing thresholds to a
lesser extent than to θ = d(v) + 1)? When a node threshold is
increased between two simulations (i.e., cases) of contagion,
as done here for node v4, we say that v4 is a blocking node.
That is, the node may inhibit contagion spreading (our goal is
to have blocking nodes reduce σ, but some or all of them may
be ineffective). The set of all blocking nodes in a simulation
is the blocking set B.

The threshold increase ratio is a comparison between two
simulations (cases), each relative to the same base case. The
numerator is the sum of threshold increases due to fear over
all k blocking nodes. The denominator is the sum of threshold
increases due to node removal over all k blocking nodes. Here,
the base case is case 1, with no threshold increases, and k = 1
because B = {v4}. Case 2 has a threshold increase due to fear
of Σfear = Σvi∈B(∆θi) = 1. From case 4, we know that
Σremoval = Σvi∈B(∆θi) = 4. So the threshold increase ratio
is Σfear/Σremoval = 1/4 = 0.25. This is a way to measure
the cost of instilling fear, relative to removing nodes.
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Fig. 1: Schematic of a GDS, showing a 7-node graph G, threshold
vector T , and state vectors s(t) as they update over time. There
are two cases, each involving a threshold vector T where the only
difference between them is that θ4 increases from 2 to 3 for v4. These
cases are discussed in the text.

IV. NETWORKS AND RESULTS

Networks evaluated in this work are listed in Table I.
Both are human proximity (contact) networks. The human
contact networks were generated using synthetic populations
of cities, and the procedures in [2]. For this work, we make the
assumption that issues that pertain to protest and fear involve
only people between the ages of 15 to 70, inclusive, so that
the networks are subgraphs of the full city social networks
that include only those people in the specified age range.

TABLE I: Human proximity contact networks. The city-based
human contact networks were made with the procedures in [2].
Each network is the giant component of the network, since we run
dynamics on these networks.

Network Type Num.
Nodes

Num.
Edges

Ave.
Deg.

Max.
Deg.

Danville,
VA

human
contact

12961 44393 6.85 93

Newport
News, VA

human
contact

64425 418879 13.00 344

V. SIMULATIONS AND RESULTS

A. Simulation Process

Simulations are of the following scenario. A population
wants to protest/revolt against a repressive regime. But protest
has risk in that if it is unsuccessful, there will be adverse con-
sequences, perhaps violence and/or death, for those individuals
revolting. The regime seeks to thwart the protest by inducing
fear of reprisal in a subset of its citizens, which is manifested
through threshold increases ∆θ for these fearful people.

A simulation is composed of 100 runs. A run is one
contagion spread instance. The following applies to one run.
All nodes are assigned a base threshold θbase, and only the
fearful nodes have their thresholds increased by ∆θ to θblk.
Fearful nodes—which are the blocking nodes—are identified
by (i) ordering the nodes of a network by their degrees, from
greatest to least (so that the first node has the greatest degree;
break ties arbitrarily); (ii) specifying a number k (≤ n);
and (iii) selecting the top k nodes that have the greatest



degrees as the fearful (blocking) nodes. Given a base threshold
θbase and threshold increase ∆θ for fearful (blocking) nodes,
a node vi’s threshold is never more than d(vi) + 1, as
explained in Section III-C. For example, suppose θbase = 1,
∆θ = 6, and d(vi) = 3. Then the actual ∆θ applied to vi is
∆θ = d(vi) + 1 − θbase = 3. This ensures that the threshold
increases are not spurious.

Each run has a set of seed nodes that are in state 1 at time
t = 0. The seed nodes are selected using the Centola/Macy
method [4] in that a node is chosen at random, and it and
all of its distance-1 neighbors are made seed nodes. Because
the number of seed nodes can vary depending on the degree
of the chosen node, we set a minimum number ns,min of
seed nodes per run, and this procedure is repeated for a run,
as needed, until at least ns,min total nodes are seeds. Given
the above description, the only variations among runs in a
simulation are the specific number ns ≥ ns,min of selected
seed nodes, the particular nodes that are the seeds, and the k
selected blocking nodes. The k blocking nodes only change if
one or more of the desired blocking nodes is also a seed node,
as described next. Because we have 100 seed sets (100 runs in
a simulation), we are testing the blocking method against 100
different seed sets, and thus are testing our blocking method
against seeding “anywhere” in a network.

There are many features of a simulation that make the
goal of blocking contagions more onerous. First, seed nodes
are selected before the blocking nodes. If a desired blocking
node is already a seed node, then this node is not chosen
for blocking; a lesser ranked blocking node takes its place
so that the blocking set size is k. Second, the number of
seed nodes for a run can be significantly greater than the
minimum ns,min. Third, the diffusion process is deterministic.
This drives contagion through the graph faster, making it
more difficult to block. Fourth, we use small values for
base threshold θbase. This makes it easier for non-fearful
nodes to become active. Fifth, each social network is the
giant component of the graph: this prevents seed nodes being
specified in a small component and eliminates the possibility
that contagion cannot reach some disconnected nodes.

B. Simulation Results

Each subsection below addresses the effect of a parameter
on the spread fraction σ (the fraction of nodes that join a
protest movement). Each box in a boxplot represents 100
values of σ from the 100 runs of a simulation.
Effect of threshold increase ∆θ. We evaluate the Danville
network with θbase = 2, and we choose the k nodes using
(p, k) = (dg, 5000), where p means we are selecting blocking
nodes based on greatest degrees (dg). Figure 2 shows the
results. In each plot, as ∆θ increases from 1 to 6, σ decreases.

Figure 2a shows that in Danville, if the 5000 people with the
greatest degrees (i.e., those with the most connections to other
people) out of a population of 12961 have their thresholds
increased by three (∆θ = 3), then seeding nominally 50
(ns,min = 50) people anywhere in the graph will result in a
zero median spread fraction (σ = 0). Moreover, this achieves

the same result as removing those 5000 people from the graph,
which is the case denoted by the symbol ∞ on the x-axis
(more on this below). Additionally, since the base threshold
θbase = 2 in these simulations, even the 5000 nodes have
threshold θblk = θbase + ∆θ = 5 < dave = 6.85. That
is, the thresholds θblk are not excessively large: they are not
even equal to the average degree in the network. Thus, these
results indicate that inducing fear in a population, resulting in
threshold increases that are relatively modest, can be effective
in deterring protests. This same conclusion can be drawn from
the other plot in Figure 2.
Effect of seeding. We continue with Figure 2, and note that
the only condition that changes across the plots is ns,min

increasing from 50 to 500. The trend holds for ns,min = 10,
50, 100, and 500. As the minimum number of seeds ns,min

increases, from 50 in Figure 2a to 500 in Figure 2b, the
blocking nodes have a more difficult time thwarting the
contagion spread, so σ increases across the two plots for a
fixed value of ∆θ.
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Fig. 2: Fractional spread size σ as a function of threshold increase
∆θ for the Danville network with θbase = 2, with blocking nodes
(p, k) = (dg, 5000). The number of seed nodes per run increases in
plots as (a) ns,min = 50, and (b) ns,min = 500. As ∆θ increases,
σ decreases and as the minimum number of seeds ns,min increases,
σ increases. “Base” case is threshold increase ∆θ = 0. ∆θ = ∞
means that nodes are removed from the network.

Effectiveness of smaller threshold increases versus com-
plete node removal. Figure 2 has on the x-axis ∆θ = ∞.
This is the case that the k = 5000 blocking nodes are removed
from the network (rather than having their thresholds increased
by a smaller amount). For ns,min = 50 in Figure 2a, ∆θ = 6
produces the same median spread fraction σ as removing those
nodes. However, in Figure 2b for ns,min = 500, removing
blocking nodes results in less spread than does increasing
the thresholds by six for the k = 5000 nodes with the
greatest degrees. Node removal can be represented as each
of the k = 5000 nodes vi having their thresholds increased
to d(vi) + 1 so that they never transition to state 1. Then, we
can compare the effectiveness of threshold increases due to
fear, to node removal, by computing the ratio of the sum of
units of threshold increase for a given ∆θ (from fear) to the
sum of units of threshold increase for node removal (the sums
are over all blocking nodes). This is the threshold increase
ratio. Figure 4a shows the results of these computations for
the data in Figure 2. Specifically, this plot shows that the
good performance of reducing σ in Figure 2 is achieved



by total threshold increases that are only 0.38 fraction of
the total threshold increase that would be required for node
removal. The 0.38 value is for ∆θ = 6; even smaller ratios
are required for smaller ∆θ. Figures 2 and 4a, taken together,
show that instilling fear in a population can be just as effective
at stymieing contagion spreading—at far less cost, if cost
is measured by total threshold increases over k nodes—as
removing people from society.
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Fig. 3: Fractional spread size σ as a function of threshold increase
∆θ for the Newport News network. The base threshold θbase = 2,
blocking nodes (p, k) = (dg, 30000), and number of seed nodes per
run increases across two plots as (a) ns,min = 10 and (b) ns,min =
100, “Base” case is threshold increase ∆θ = 0. ∆θ =∞ means that
nodes are removed from the network. In (a), the median spread σ = 0
for ∆θ ≥ 2. In (b), where the ns,min increases by 10× to 100, the
median spread σ = 0 for ∆θ ≥ 6. In both cases, σ can be reduced
to zero, as is the case when nodes are removed from the network.
However, for the cases of threshold increases, there are individual
runs among the 100 runs where the spread fraction σ > 0.

These results are not specific to one network. Data anal-
ogous to those in Figure 2 for Danville are shown for the
Newport News network in Figure 3, for k = 30000 blocking
nodes in this much larger graph. The same trends are observed:
spread fraction decreases as ∆θ increases; and the threshold
increases, representing increasing fear, can be as effective as
removing nodes (the latter represented by the ∞ value on the
x-axis). Moreover, Figure 4b shows that threshold increases
are effective compared to node removal.

VI. SUMMARY

This work demonstrates that instilling fear in a subset of
the people in a population (modeled by threshold increases
in selected blocking nodes) can significantly diminish, and in
many cases halt, a contagion of citizens joining a protest. In
addition, this can be done by a repressive regime at a cost, as
measured by total threshold increase of blocking nodes, that
is small compared to taking more overt, drastic actions.
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Fig. 4: The plot in (a) is related to the data in Figure 2 for Danville
and the plot in (b) is related to the data in Figure 3 for Newport News.
Threshold increase ratio is the sum of threshold increases over the
k = 5000 blocking nodes, in (a), as a result of fear, divided by the
sum of threshold increases for removal of these same k nodes in
the Danville network. Similarly, the threshold increase ratio in (b) is
for the threshold increases for all k = 30000 blocking nodes in the
Newport News network. The data show that for all ∆θ values, the
cumulative threshold increase over all k nodes (for fear) is at most
0.38 of the total threshold increase required for node removal. Hence,
blocking by fear is a cost-effective way (cost in terms of threshold
increases) to control a population.
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