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Abstract The study of epidemics is useful for not only understanding out-
breaks and trying to limit their adverse effects, but also because epidemics are
related to social phenomena such as government instability, crime, poverty,
and inequality. One approach for studying epidemics is to simulate their spread
through populations. In this work, we describe an integrated multi-dimensional
approach to epidemic simulation, which encompasses: (i) a theoretical frame-
work for simulation and analysis; (ii) synthetic population (digital twin) gen-
eration; (iii) (social contact) network construction methods from synthetic
populations, (iv) stylized network construction methods; and (v) simulation
of the evolution of a virus or disease through a social network. We describe
these aspects and end with a short discussion on simulation results that inform
public policy.
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1 Introduction

With an increasingly connected world, the potential for large scale virus out-
breaks, including epidemics and pandemics, grows. Example outbreaks in-
clude severe acute respiratory syndrome (SARS) in 2003, which claimed 800
lives [127, 48]; the 2015 Ebola outbreak (8833 killed to date) [46]; and Asian
and Hong Kong influenza, each producing death tolls in the millions [127],
which are some of the worst outbreaks in recent history [80]. Over the last
40 years in the U. S., seasonal influenza has caused between 3000 and 49000
deaths annually [47]. Of course, the current COVID-19 pandemic is changing
the world health state too rapidly to give “current” statistics.

While deaths and serious illness are immediate impacts of disease out-
breaks, there are others. For example, the effects of virus outbreaks on eco-
nomic costs have been studied [15], illustrating that interventions can sig-
nificantly reduce these costs. Secondly, shorter-term conditions can lead to
longer-term trends. The so-called poverty trap is the phenomenon wherein
poor economic conditions and disease prevalence can lock a society into per-
sistent states of poor health and wealth [44]. A third example is the effect of
disease on government instability and upheaval. [94] provide a regression anal-
ysis showing that civil wars may be precipitated or exacerbated by disease
outbreaks, because they decrease social health and welfare. Finally, persis-
tent disease threat can also lead to different type of crimes [121]. There are
several social issues coming to the fore through the 2019-initiated COVID-19
outbreak. These include closing businesses [32], educational impacts [118], dis-
proportionate burden of racial minorities (e.g., in the United States) and by
the poor [64, 45], general heightened anxiety levels [54, 126], and domestic vi-
olence [81, 125]. Hence, there are many reasons to study epidemics and disease
outbreaks.

Epidemiologists and the health sciences community use various tools to an-
ticipate outbreaks and help them react to those in progress, as well as perform
research to understand disease dynamics and the factors that influence their
spread (e.g., [16]). Software simulation tools are used for these purposes and
many studies have been conducted (e.g., [60, 74, 58, 115, 27, 41, 50, 73, 134]).

Simulation may use ordinary differential equation (ODE) approaches that,
for example, focus on groups (compartments) of people and compute the ag-
gregated numbers of individuals that are in each state (e.g., infected, not
infected) as a function of time. These equations essentially describe how many
people move from one state to another based on rate equations that involve
the current number of people in each compartment. They can also be used to
compute characteristics of populations such as the basic reproductive number.
See [76] for a detailed treatment and [58, 115, 116, 43, 55, 69] for particular
applications and overviews.

Agent-based models (ABM) [57, 68, 66, 113] represent another class of
simulation wherein each human of a population is modeled as a distinct en-
tity or agent that is attributed with traits and behaviors. These agents inter-
act, thereby generating opportunities for contagion transmission among them.
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Agent interactions on a local scale produce population-level outcomes, such
as numbers of cases, regions of high outbreak intensity, subpopulations with
greater or lesser numbers of outbreaks, and pathways of virus transmission,
among other characteristics. While ODE (aggregated) and ABM (disaggre-
gated) methods each have their strengths, one strength of ABM is the fine-
grained opportunities it offers to modify agent traits, behaviors, interactions,
and disease parameters and assess their effects on outcomes [15]. Interven-
tions and sensitivity analyses are two example classes of studies that make
use of these refinements. Works on use of agent-based modeling for epidemic
simulation include [60, 74, 134, 101, 87, 3, 90, 77].

With this background, we turn to the focus of this work in the next section.
This paper addresses many disciplines that comprise epidemiological study (in
addition to the epidemiological modeling approaches mentioned above). All
such disciplines are not covered. Those that are covered are large and wide-
ranging. Several references are provided for each discipline; they should be
taken as representative, not exhaustive. The topics covered are integrated to
give a unified perspective.

We note that while the theme of this paper is computational epidemiology,
most of the topics are applicable to other types of human behavior.

2 An Integrated Modeling Methodology: Scope and Motivation

Our focus is an ABM environment for computational epidemiology. Agent-
based modeling of the spread of viruses or diseases is often given the most
attention because it is most closely associated with the ultimate results. How-
ever, there are many technical contributions to these final results. Our goals
are the construction and use of tools and methods that ultimately produce
time-resolved state transitions of each agent in a population, and a quanti-
tative understanding of the factors that produce these results. These tools
and their results may then be used by policy analysts and makers [42]. We
describe several components of this methodology: (i) theoretical foundations;
(ii) population generation procedures and data; (iii) social network construc-
tion from these populations; (iv) large-scale stylized network generators; and
(v) simulation software that models virus transmission.

There is ample motivation for these individual components, and for their
combination and integration. Figure 1 provides an overview of the components
and their interactions. We use a formalism called graph dynamical systems
(GDS) to study the transmission of diseases and other phenomena. This not
only guides simulation software implementations, but also provides a frame-
work to reason about such systems and applications. Examples are provided
below. Diseases and other contagions propagate within populations and hence
the generation of representative synthetic populations (also called digital
twins), down to the individual level, is a key technology. There are many ap-
proaches for generating agent-level populations. Social contact networks,
and other types of interaction networks, can be produced from these popu-
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lations. Large scale stylized networks with particular properties, such as
scale-free and exponential decay degree distributions, clustering coefficient dis-
tributions, assortativity, and community structure, are useful in that dynam-
ics on them can serve as null model results. Moreover, network properties—
through different network instances—can be systematically varied in stylized
networks as another dimension to sensitivity and parametric studies; this is
very difficult to do with synthetic populations. These results can then be com-
pared against those from population-based networks. Disease (contagion)
dynamics are computed on these networks using various simulation tools.

The goals of these efforts are to: (i) understand baseline population be-
havior, (ii) quantify the effects on results of small changes in inputs (sensitiv-
ity studies) and of larger changes in inputs (parametric studies), (iii) deter-
mine the effects of different interventions, (iv) explain behaviors and establish
causality, and (v) understand results in terms of policy implications.

It is useful to recall that the sizes of networks are routinely on the order of
10s or 100s of millions, or even billions, of agents (nodes) and 100s of millions
or billions of edges. Hence, for many of these investigations, parallel processing
is required to compute quantities efficiently.

3 Technical Challenges

There are many challenges in developing ABM systems. First, we seek a the-
oretical approach to describe disease dynamics and for this we use graph dy-
namical systems [106]. Second, to construct populations, data are required
from multiple sources. These data are by their nature incomplete, often at
different levels of granularity, and may be contradictory. Data fusion under
these conditions is challenging. Third, big data challenges exist for generating
populations that may involve 10s of millions of agents or more, and 100s of
millions or billions of interactions [39]. In the same way, simulating dynamics
on these networks requires parallel computations to drive down execution time
and to enable runtime storage of large populations. Hence, efficient simulation
is another challenge. A major part of a dynamics evaluation is sensitivity stud-
ies: how changes in input parameters affect the results. These require many
simulation runs, increasing the need for fast simulation of large populations.

4 Modeling Environment

We describe four of the main elements of our modeling environment.

4.1 Graph Dynamical Systems

First we provide a theoretical overview of GDS, and then we make the ideas
concrete through some examples. Then, we briefly touch on analysis problems
and dynamical systems characterizations that are solved using GDS.
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Fig. 1 Major components of the agent-based modeling system for computational epidemi-
ology. These boxes are the topics in Section 4 below. Feedback loops are not shown. For
example, based on the results of system behavior, the population construction methods may
be changed, stylized networks with different properties may be generated, or parameters of
the dynamics model may be changed.

4.1.1 Theoretical Foundations

We use a discrete dynamical systems formulation known as graph dynami-
cal systems (GDS) [106, 98, 4] to model epidemiological processes. A GDS
S(G(V,E), F,K,W ) describes the system and its dynamics. Here, G is a (de-
pendency) graph with vertex set V and edge set E. We use undirected de-
pendency graphs in this work, but the concepts extend naturally to directed
graphs. Each agent v ∈ V is assigned a state xv ∈ K, where K is the vertex
state set. The (system) state x is given by x = (x1, x2, . . . , xn) where n is
the number of agents in the system; i.e., n = |V |. A GDS will have |K|n (sys-
tem) states. Let n[v] be the sequence of vertex IDs for v itself and for all of
its distance-1 neighbors (i.e., the vertices adjacent to v), ordered in increasing
numerical order. This sequence of vertices is identified from the connectivity
of G. We denote the states of v and of all of its distance-1 neighbors as x[v],
such that x[v] = (xn[v](1), xn[v](2), . . . , xn[v](dv+1)), where d(v) is the degree
of v.

A vertex function fv is assigned to each agent v that describes the state
transitions for it. The vertex functions for all n agents in the system comprise
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the sequence F = (fv)
n
v=1. For each fv, the argument is x[v], such that the

next state of v, denoted x′v, is given by x′ = fv(x[v]).
Parameter W describes the order in which the vertex functions execute.

We will cover two of the most common update schemes: synchronous and
sequential.

A synchronous GDS map F:Kn → Kn is defined by

F = (f1(x[1]), f2(x[2]), . . . , fn(x[n])) . (1)

That is, all vertex functions execute simultaneously. This is also called a par-
allel GDS map or a synchronous dynamical system. The system state
at time t+ 1, x(t+ 1), is given by x(t+ 1) = F(x(t)).

A sequential GDS map Fπ uses a permutation π = (π1, π2, . . . , πn) from
the set SX of all permutations of the vertices in V , where each πi ∈ V . We
introduce the X-local function Fv:K

n −→ Kn, for a vertex v, given by

Fv(x1, . . . , xn) = (x1, . . . , xv−1, fv(x[v]), xv+1, . . . , xn) . (2)

That is, only the vertex function for v is executed, with the states of all other
vertices remaining unchanged. The sequential GDS map Fπ:Kn −→ Kn, is
then the composition of the X-local functions; i.e.,

Fπ = Fπn
◦ Fπn−1

◦ . . . ◦ Fπ2
◦ Fπ1

. (3)

This is also referred to as a sequential dynamical system. The system state
at time t+ 1, x(t+ 1), is given by x(t+ 1) = Fπ(x(t)).

A forward trajectory is the sequence of (system) states (x(0), x(1), x(2), . . . , x(tf ))
through which the GDS evolves from an initial state x0 = x(0) to a final
state x(tf ), corresponding to a specified end time tf . Thus, x(1) = F(x(0)),
x(2) = F(x(1)) = F2(x(0)), and so on, until x(tf ) = F(x(tf − 1)) = Ftf (x(0))
is computed. Consequently, time t ∈ [0, tf ]. A forward trajectory is some-
times referred to as a diffusion instance. If, for a deterministic system
map F—one in which there is precisely one value of x(t + 1) = F(x(t)) for
each x(t)—we have that x(t + 1) = x(t), for some time t, then the GDS has
reached a fixed point. That is, when a fixed point is reached at time t∗,
x(t) = x(t∗) for all t ≥ t∗; the system state does not change. Further, if there
exists a smallest integer q such that x(t+ q) = x(t), and no q∗ < q exists such
that x(t + q∗) = x(t) for some t, then the long-term dynamics is a repeating
sequence or cycle of states (x(t), x(t+1), . . . , x(t+q−1)) called a limit cycle
with cycle length q. When q = 1, the limit cycle is a fixed point.

A GDS may be deterministic or stochastic. We say that x(t + 1) is the
successor of x(t) and that x(t) is the predecessor of x(t + 1). In a deter-
ministic system, a state x may have many (or zero) predecessors, but only
one successor (which may be itself). In a stochastic system, a state may have
any number of predecessors and will have at least one successor, up to |K|n
predecessors and successors. All of these states may or may not be visited in
one forward trajectory of deterministic and stochastic GDSs.
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Typically, for computations on large populations, the synchronous update
mechanism is used in order to take advantage of parallel processing capabilities
of simulation software that incorporates parallel execution of vertex functions.

4.1.2 Example: SIR Model With Explicit Dependency Graph

The state transition diagram for the susceptible-infectious-recovered (SIR)
model is provided in Figure 2. Vertex functions (fv)

n
v=1 quantify the con-

ditions under which the two state transitions S −→ I and I −→ R take place.
For the sake of simplicity in this example, we let p ∈ [0, 1] be a probability
of infection that holds for all agents (in many cases, p may be a function of
simulation variables, such as the duration of contact between an infectious
agent and a suspectible one). We let tdI be the duration (i.e., number of time
steps) that a vertex spends in the infectious (I) state; again, we take this as
uniform across all agents, but in practice can vary among agents. Let tiv be
the time at which vertex v transitions to state I. A description of the vertex
function follows, in which a vertex v transitions from xv to x′v:

Vertex function fv for node v

1. If xv = R, then x′v = R, irrespective of the states of v’s neighbors.
2. If xv = I and tiv was the time at which this agent v was infected, then if

the current time t = tiv + tdI , then x′v = R. Otherwise, v does not change
state; i.e., x′v = xv.

3. If xv = S, then for each neighbor u of v that is in state I, v transitions to
state I with probability p. If v does not change state, then x′v = xv.

In particular for Condition 3, only one neighbor of v, in state I, is needed to
cause v to change to state I. This is an example of a stochastic GDS, because,
owing to the probability p, there is not a unique x(t+ 1) given x(t).

!" #" $" %" !" $" %"

Fig. 2 State transition diagrams for the susceptible-infected-recovered (SIR) model. The
state set K = {S, I,R}. Vertex functions quantify the conditions under which a vertex
changes state.

Figure 3 provides a simple example that illustrates the dynamics of an
SIR-based GDS. Each vertex is an agent, so the graph is a person-to-person
contact or interaction graph. Each vertex function is the SIR function given
immediately above. Let tdI = 2. The states at four times are shown: x(0),
x(1), x(2), and x(3). Initially, only vertex 1 is infected; all other vertices are
in state S. At time t = 1, a random number r1 < p is generated for vertex 2,
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based on its edge with vertex 1, resulting in 2 transitioning to state I. For
vertex 3 and its edge to vertex 1, r2 > p and hence 3 does not change state.
Vertex 4 has no neighbor in state I and thus remains in state S. At time
t = 2, vertex 3 changes to state I because, based on vertex 3’s edge with
vertex 1, the generated random number r3 < p. Vertex 4 does not change
state. Vertex 1 transitions to state R at the end of time t = 2. Other state
changes occur similarly. In this example, the dependency graph is explicit. In
the next example, it is implicit.
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Fig. 3 Illustrative example of a 4-time step forward trajectory for a synchronous GDS where
each vertex function is an SIR model. The dependency graph has 4 vertices and 4 edges.
The infectious duration for each vertex (agent) is tdI = 2, and the probability of infection
is p for each vertex. The vertices (agents) are labeled in the graph at the left, corresponding
to the initial state x(0). The state corresponding to each time, displayed below the time,
is given as x(t) = (x1, x2, x3, x4). This particular sequence of states is dependent on the
random numbers ri, 1 ≤ i ≤ 5, and their relation to p.

4.1.3 Example: SIR Model With Implicit Dependency Graph

In the previous example, we used an explicit agent-to-agent social network
for the dependency graph. In this example, we use a different type of graph,
shown in Figure 4. It is a bipartite people-locations graph (PLG), where one
bipartition is the set of vertices representing people and the other bipartition
is the set of vertices representing locations [60]. The edge labels are the times
of the day at which the person is located at the specified location.

A person-to-person contact graph is produced in the following way: an edge
between two people is generated if they appear at the same location, at the
same time. We say that they are co-located. For example, consider persons 1
and 2 in Figure 4. They are co-located at location B between 2 and 3 pm, and
at location D from 4:30 to 5 pm. This results in one edge in the person-person
graph in Figure 3. Persons 1 and 3 also form an edge from the interaction
at location D, because they overlap from 3:30 to 4 pm. Proceeding with this
construction, we recover the dependency graph of Figure 3. In this example,
the SIR model is the same as that in Section 4.1.2, and since we use the same
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Fig. 4 Illustrative example of a person-location bipartite graph, where people (1 through
4) are the elements of the left partite set and locations (A through G) are the elements
of the right partite set. The edges are labeled with time. When two people are co-located,
they form a person-person edge in a social network such as that in Figure 3. Since these
interactions give rise to the same person-person edges as in Figure 3, and the same SIR
model vertex functions are used, this network produces the same forward trajectory as that
in in Figure 3.

synchronous update scheme and assume that the random numbers are the
same as those in Section 4.1.2, we produce the same forward trajectory as
above in Figure 3.

There are variants of this approach. For example, the probability p of
interaction can be a function of the contact duration between two people. In
both examples, edges can be time-varying. For the first example, the edges
can have labels denoting their interaction times, in a fashion similar to that in
Figure 4. In the second example, the activity pattern of an agent may change.
An activity pattern is the set of locations that a person visits, along with
the times of the visits.

4.1.4 Analysis Problems and System Characterizations

Besides providing a framework for constructing simulation software, GDS also
provides a framework for investigation of analysis problems and dynamical
systems characterization. Analysis problems of interest here are those re-
garding system dynamics of the types described in this section. The following
are some examples:
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1. Reachability problems. Given a state x, can the state x′ be reached in
one time step? More generally: given a state x, can state x′ be reached in
at most t time steps?

2. Predecessor existence problems. Given a state x, is there a state x′

such that the system transitions from x′ to x in one time step? More
generally: given a state x, is there a state x′ such that a GDS transitions
from state x′ to x in at most t time steps?

3. Fixed point existence problems. Given a GDS, does it have fixed
points? A counting version is: How many fixed points does a system have?

These types of problems and their answers are important for practical reasons.
For example, if a given state x of a system has been observed, one may want
to know whether a particularly harmful state x′ can arise; this is an example
of a reachability problem. We refer the reader to numerous works on these and
other related analysis problems. See [21, 123, 83, 23, 29, 26, 25, 22, 19, 20, 17,
18, 117].

The GDS framework also provides a foundation for characterizing dynam-
ical systems. Useful texts include [70, 106]. An example of a system character-
ization is the following: progressive Boolean threshold systems, heavily used
in the social sciences [72, 120, 49] and that are similar to models popularized
in [79], are shown to generate only fixed points as limit cycles [86]. Works with
other characterizations include [70, 106, 85, 128, 2, 84, 122]. These types of
results, along with those from analysis problems, are useful not only for under-
standing system dynamics, but also for modeling and simulation verification
and validation.

4.2 Synthetic Population Generation

A synthetic population is a (data) representation of a group of individuals.
The notion of group varies widely, from the members of a single family to
all of the people of a nation. The wide range in sizes of such populations
is a signal of their increasing development and use. Synthetic populations
are also called “digital twins.” The individuals in a synthetic population are
often endowed with (demographic) traits, such as age, gender, home location
and housing. They are often given activity patterns where individuals go to
particular locations and particular times of days. There is often additional data
associated with synthetic individuals; particular data (assigned to synthetic
individuals) depends on the requirements and use of the population. Figure 5
is a conceptual view of a synthetic population and movements of individuals
as they perform daily activities; the two types of networks described above;
and an attributed individual.

Typically, these populations are not one-to-one with actual populations. In
other words, consider a real person who lives in a real city in the United States,
on a particular street, with a family. That person is not (typically) represented
in a synthetic population. Rather, distributions of characteristics of a synthetic
population match those of the actual population. For example, age and gender
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Fig. 5 Synthetic individuals (bottom) in a baseline synthetic population (top left) have
associated demographics and are located in a specific geographic context (e.g., city, state,
country). They are assigned activities to be performed at specific locations and times of day,
creating a people-location network (top right). As described in Sections 4.1.2 and 4.1.3, a
person-to-person contact network (top middle) can be constructed from the people-location
graph. The person-to-person network is conceptually the same as that in Figure 3, while the
people-location graph is conceptually the same as that in Figure 4.

distributions of people within a U.S. state, and distributions of household sizes
are matched within a synthetic population. Because of the stochastic nature
of the synthetic population construction process, one synthetic population is
typically one instance or realization of a family of instances. Work has been
done to assess the variability of synthetic population instances, e.g., [62].

4.2.1 Synthetic Populations and Their Building Blocks

The synthetic population generation process is comprised of the following
steps [13, 40].

Contructing synthetic individuals and households. Individuals and households
(collections of individuals) are created. Individuals are endowed with charac-
teristics such as age, gender, marital status. A representation of each household
is created from census data by collecting individuals and assigning attributes
such as household income and size.
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Determining activities of individuals. Each synthetic person in a household is
assigned a set of activities to perform during a day, along with the times when
the activities begin and end, as given by activity or time-use survey data.

Determining locations for activities. An appropriate real location is chosen for
each activity of every synthetic person based on a gravity model (i.e., locations
closer to home locations are more likely to be selected, but longer distance
locations are also selected, just with lesser probability) and data sources such
as land use patterns, tax data, or commercial location data. Locations often
have sublocations (e.g., sublocations may be rooms within a building), so that
a location may be a (location, sublocation) pair.

Generating social contact networks. Two different representations of human
interaction networks are provided. See the discussions for Figures 3 and 4.

Below we describe each of the four steps above in more detail, for popula-
tions generated for regions of the U.S.

4.2.2 Constructing synthetic individuals and households

A baseline population is constituted from two data sources: American Com-
munity Survey (ACS) and Public Use Microdata Sample (PUMS). The ACS
data are used to create an individualized set of agents with assigned charac-
teristics; see [38] for details. The PUMS data are used to construct individuals
that have, in distribution, the same traits as those of members of an actual
population.

The ACS provides data for public use that are resolved to the block
group level, which is a geographical region containing between 600 and 3000
people. For each block group, tables of distributions of many demographic
characteristics—such as age, gender, and household size—are provided. These
are marginal distributions. To create a synthetic population for the block
group, a joint distribution is constructed from the given marginal distribu-
tions. This distribution is sampled the required number of times (one for each
member of the target population).

The ACS also provides a 5 percent representative sample for each region,
known as a PUMS, which is generated from a larger region called a Public
Use Microdata Area (PUMA); the latter contains at least 100,000 people. A
PUMS record is essentially a complete census record. The PUMS information
is incorporated into the inference of the joint distribution from the marginal
distributions using a statistical procedure called iterative proportional fitting
(IPF) [56, 52]. IPF is an approach for combining the information from the
marginal distributions and the sample data. It has been shown to preserve
important properties and correlations of the data; see [78, 95]. The joint dis-
tribution for each block group is sampled to select households (with individ-
uals) from the PUMS data, and these households are added to the synthetic
population for that block group.
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4.2.3 Determining activities of individuals

Data from the National Household Travel Survey (NHTS) are used to assign
a daily activity sequence to each individual in a synthetic population. The
NHTS contains detailed information on individual’s movements and activities
over the course of a normative day [119].

The activity patterns for different members of a household are typically
dependent on each other. For instance, if there is a child under twelve years
of age in the household, then an adult will likely be present in the home with
the child whenever the child is at home.

NHTS surveys households, not individuals. Consequently, activity sequences
are assigned by household, for each household, thereby preserving within-
household activity correlations. This method is known as the Fitted-Values
Method or FVM [96]. Essentially, a survey household is selected that is sim-
ilar to the synthetic household using the asymmetric Hausdorff distance; a
person within the survey household is selected that is most similar to each
synthetic person; and that survey person’s activities are assigned to the syn-
thetic individual, for each household member.

4.2.4 Determining locations for activities

Since each activity must be located, there are procedures for assigning (i) home
locations and (ii) locations for other activities.

Home locations are assigned with the following procedure. U. S. Census
data provide geographic boundary data (shapefiles) for each block group. The
Census and ACS provide housing unit distributions (number of buildings with
that contain different numbers of housing units), again for each block groups.
HERE contains road networks, including geographic information. The portions
of road networks that lay within the boundary of a block group are determined.
Residential locations within a block group are assigned along these roadways
with, e.g., single family homes more likely to be assigned to smaller (less
traveled) streets. Households are assigned to these home locations.

Locations for other activities for individuals are assigned using a gravity
model (see, e.g., [124, 82] for works on gravity models). The idea is that the
probabilities of assigning particular locations for the next activity in a syn-
thetic individual’s time-order list of activities are proportional to the capacities
of buildings and inversely proportional to the distances from the current lo-
cation to the candidate next locations. The base location is a person’s home
location. From the determined current location of the most recent activity, it
is more likely that a closer location of greater human capacity is chosen for
the next activity’s location. For schools, National Center for Education Statis-
tics (NCES) [111, 110] information is used; for business and other activity
locations, D&B data are used. See [36, 71, 60] for additional information on
location assignments. The above location assignments are constrained by ca-
pacities that are assigned to each building, or rooms (i.e., sublocations) within
buildings. Consequently, a location may be a (location, sublocation) pair.



14 Keith R. Bissett et al.

4.2.5 Generating social contact networks

Each person has been assigned a (location, sublocation) pair for each activity
during the day. Each activity has a start and end time. Thus, all information
for the network representation in Section 4.1.3 is known, and a person-location
graph analogous to that in Figure 3 can be generated for a synthetic popu-
lation. To generate a person-person contact social network, a graph edge is
formed between two synthetic individuals (i.e., two nodes in the network) if
they are located at the same (location, sublocation) with overlapping visit
times during the day. Section 4.1.2 describes such as person-person network.
Aspects of contact network evaluation can be found at [60, 61, 129, 130]. Il-
lustrative examples of populations and their contact networks are provided in
Table 1. It is evident that populations with billions of edges (e.g., for states
and countries) are readily attainable.

Table 1 Characteristics of selected U.S. city populations, in millions [13].

City Number of
Agents

Number of
Locations

Number of
Edges

Los Angeles 16.2 M 3.2M 917M
New York City 17.9 M 4.3M 961M
Seattle 3.2 M 0.78M 177M

4.2.6 Other population generation approaches.

In concluding this section, we note that there are several other approaches for
generating and evaluating synthetic populations, and there are many applica-
tions. See for examples [105, 65, 108, 132, 31, 75, 92, 103, 10, 109, 136, 97,
107, 131]. Reviews can be found at [30, 114, 51].

4.3 Stylized Network Construction

Constructing explicit contact networks on the involved individuals allows us to
study disease dynamics in more detail than possible with some other methods
(e.g., compartmentalized models). A contact network is a graph G = G(V,E),
where V is the set of persons (each person is a vertex) and E is the set of
contacts or edges; each edge (u, v) ∈ E indicates the existence of the contact
between two persons u and v. Use of a social contact network, in which a
link represents physical contact between two people, can provide greater un-
derstanding of the disease dynamics. However, such studies require explicit
networks, in which contacts (edges) exist explicitly. Although the data for
these networks is difficult to get because of privacy and security concerns,
conceptually these networks are well-defined. A study of epidemics (e.g., in-
fluenza, which spreads by physical contact) requires social contact networks,
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in which an edge represents an actual physical contact between two people at
some location during the day. Procedures for generating these networks were
discussed in Section 4.2.

In this section, we discuss several procedures for generating large stylized
networks. As mentioned earlier, these networks are useful for several reasons.
First, because (selected) properties of these networks can be controlled, the
effects of network structure on disease dynamics (see Section 4.4) can be quan-
tified. Second, even within a class of graphs, variations in parameter settings
for their construction can also be evaluated to determine their effects on dis-
ease dynamics. Third, results of virus spreading on these networks can be
used as null model results that can be compared with those generated with
the networks of the preceding section.

Often, contact networks are approximated by various random network
models such as the Erdös–Rényi model [59], preferential attachment model
[11, 9], Chung-Lu model [104], etc. The Erdös–Rényi model is the most widely-
used and well-studied model due to its simplicity. Its simplicity has allowed
us to perform rigorous theoretical analysis on this model over the last several
decades. However, the Erdös–Rényi model generates random networks that
have binomial degree distributions, which are not common in the real world.
The preferential attachment model produces networks with power-law degree
distributions. Many real-world networks follow power-law degree distributions,
but many do not. Chung-Lu is a more general model that can produce a net-
work from any given degree distribution. However, a degree distribution must
be input to the Chung-Lu model whereas Erdös–Rényi and preferential models
are controlled using just a few scaler parameters. In this section, we discuss
some details of these models.

The study of complex systems has significantly increased the interest in
various random graph models [34, 67, 7]. As some of the complex networks
grow, it has become necessary to correspondingly generate massive random
networks efficiently. As discussed in [93], the structure of larger networks is
fundamentally different from small networks, even if both are generated using
the same model, and many patterns emerge only in massive graphs. Demand
for large random networks necessitates the use of efficient algorithms, in terms
of both running time and memory consumption, for their generation. There-
fore, in addition to the description of these models, we also discuss some effi-
cient sequential and parallel algorithms for generating random networks using
the models.

Although various random graph models are being used and studied over
the last several decades, even efficient sequential algorithms for generating
such graphs were nonexistent until recently. Batagelj and Brandes [34] justi-
fiably said “To our surprise we have found that the algorithms used for these
generators in software such as BRITE, GT-ITM, JUNG, or LEDA are rather
inefficient. . . . superlinear algorithms are sometimes tolerable in the analysis of
networks with tens of thousands of nodes, but they are clearly unacceptable for
generating large numbers of such graphs.” As a step towards meeting this goal,
efficient sequential algorithms have recently been developed to generate cer-
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tain classes of random graphs: Erdös–Rényi [34], small world [34], Preferential
Attachment [34, 112], and Chung-Lu [104]. Although these efficient sequential
algorithms are able to generate networks with millions of nodes quickly, gener-
ating networks with billions of nodes can take substantially longer. Further, a
large memory requirement often makes generation of such large networks using
these sequential algorithms infeasible. Thus, parallel algorithms that scale to
large numbers of processors and provide good speed up become a necessity.

The design of parallel distributed memory algorithms poses two main chal-
lenges in the context of generating random graphs. First, the dependencies
among the edges, especially in the preferential-attachment model, impede in-
dependent operations of the processors. Second, different processors can create
duplicate edges, which must be avoided. Dealing with both of these problems
requires complex synchronization and communication among the processors,
and thus gaining satisfactory speedup by parallelization becomes a challeng-
ing problem. Even for the Erdös–Rényi model where the existence of edges are
independent of each other, parallelization of a non-naive efficient algorithm,
such as the algorithm by Batagelj and Brandes [34], is a non-trivial problem.
A parallelization of Batagelj and Brandes’s algorithm was recently proposed
in [112].

4.3.1 Erdos-Renyi Networks

The Erdös–Rényi model [59] is well-studied and one of the first random graph
models. The model is as follow. We are given two parameters: an integer n and
a real number p in [0, 1]. The model generates a random graph with n = |V |
vertices such that for every pair of vertices u, v ∈ V , edge (u, v) is included
in the graph independently at random with probability p. Since there are

(
n
2

)
possible pairs of nodes, the expected number of edges is 1

2n(n − 1)p and the
expected degree of each vertex is (n − 1)p. It is easy to see that the degree
distribution is binomial.

 . . .  . . . (0, 1) (0, 2) (0, 3) (1, 2) (1, 3)  . . . (1, 4) (2, 3) (2, 4) (2, 5) (n-2, n-1) 

Fig. 6 A sequence of all possible potential edges. Each circle represents a potential edge.
The white circles are the skipped edges, and the solid black circles are the selected edges in
an Erdös–Rényi graph.

A naive algorithm is: for each pair of vertices u and v, pick edge (u, v)
independently with probability p by tossing a biased coin. Since there are
Θ(n2) pairs of vertices, this algorithm takes Θ(n2) time. An efficient algorithm
is given in [34] that takes O(m) time, where m is the number of edges in the
generated graph. The runtime is improved by avoiding tossing coins for the
edges that are not selected. Consider a sequence of all possible edges, that is,
all possible pairs of vertices as shown in Figure 6. If we select each edge with
probability p independently, a streak of edges are skipped between two selected
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edges (solid back circles in the figure). Instead of discarding those edges one
by one, their algorithm determines the number of edges to be skipped by
generating a single random number using the following geometric distribution.
Let δ be a random variable denoting the number of edge to be skipped. Then
δ edges are skipped and the following edge is selected to be added to the
graph. This process is repeated until there is no remaining potential edges.
The number edges to be skipped is called the skip length, which is computed
as follows. We have

Pr{δ = k} = (1− p)kp

i.e., δ is a geometric random variable. A geometric random number can be
generated as follow.

– r ← a uniform random number in [0, 1)

– δ ←
⌊ log (1−r)
log (1−p)

⌋
For additional details see [34]. Since each edge in the generated graph requires
one random number and constant time, the algorithm takes O(m) time, which
is optimal.

A parallelization of the above sequential algorithm is given in [112]. In the
sequential algorithm the edges are selected one after another as the algorithm
walks through the sequence of the potential edges (as shown in Figure 6) using
the skip lengths. Notice that determining a selected edge is dependent on the
previous selected edges. Thus the process seems to be sequential in nature
and pose a difficulty in parallelization. To deal with this difficulty, instead of
generating an edge instantly after computing a skip length, all skip lengths
are computed and stored by the processors, and then edges are created from
these skip lengths. Another difficulty is that the algorithm does not know how
many edges, and consequently how many skip lengths, need to generated in
advance. The algorithm begins with an estimated number of skip lengths B.
the expected number of edges 1

2n(n − 1)p can serve as an estimation for B.
Each of the P processors generates B/P skip lengths and stores them in an
array S. Then a parallel prefix sum operation on the array S is performed
by the processors to generate the actual edges. Let T be the sum of the skip
lengths. If T < 1

2n(n − 1) (i.e., B is an under estimation), generate some
additional skip lengths. If there are some extra skip lengths, they are discard.
See [112] for details.

4.3.2 Preferential Attachment Networks

The preferential attachment model generates random evolving scale-free net-
works using a preferential attachment mechanism: a new node is added to the
network and connected to some existing nodes that are chosen preferentially
based on some properties of the nodes. In the most common applications, pref-
erence is given to nodes with larger degrees: a node is chosen with probability
proportional to its degree. Below we discuss this degree-based preferential at-
tachment (PA) model. A random network generated with a PA model has
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a power-law degree distribution [11]. In a power-law degree distribution, the
probability that a node has degree d is given by Pr{d} ∼ d−γ , where γ is a
positive constant.

Let n be the number of nodes in the network we want to generate. In this
model, nodes are added one by one. In phase t, 0 ≤ t < n, a new node t is
added to the network and connected to x randomly chosen existing nodes.
In this discussion, we use x = 1. The methods described below can easily be
generalized for any x ≥ 1 (see [6]). Let Ft be the node selected in phase t,
i.e., edge (t, Ft) is added to the network. Let Pt(i) be the probability that
node t is connected to node i < t; that is, Pt(i) = Pr{Ft = i} = di∑

j dj
, where

dj represents the degree of node j. A naive implementation of this method
can be inefficient. Batagelj and Brandes [34] give an efficient algorithm with
running time O(m). This algorithm maintains a list of nodes such that each
node i appears in this list exactly di times. The list can easily be updated
dynamically by simply appending u and v to the list whenever a new edge
(u, v) is added to the network. Now to find Ft, a node is chosen from the list
uniformly at random. Since each node i occurs exactly di times in the list, we
have Pr{Ft = i} = di∑

j dj
.

Another algorithm, called copy model, proposed in [88] also leads to pref-
erential attachment and power law degree distribution. The algorithm works
as follows. In each phase t,

Step 1: first a random node k ∈ [1, t−1] is chosen with uniform probability.
Step 2: then Ft is determined as follows:

Ft = k with prob. p

= Fk with prob. (1− p)

In the copy model when p = 1
2 , we have Pr{Ft = i} = di∑

j dj
[6, 8]. Thus,

the copy model is more general. Further, it is easy to see the running time of
the copy model is O(m), and it leads to more efficient parallel algorithms.

A parallel algorithm based on the copy model is given in [6, 8]. The depen-
dencies among the edges pose a major challenge in parallelizing preferential
attachment algorithms. Apparently any algorithm for preferential attachment
seems to be highly sequential in nature: phase t cannot be executed until all
previous phases are completed. However, a careful observation reveals that Ft
can be partially, or sometime completely, determined even before completing
the previous phases. Notice that Step 1 above in the copy model can be ex-
ecuted for all node t simultaneously and independently. In Step 2, if Ft = k,
we are done with the computation of Ft. If Ft = Fk, we may need to wait and
coordinate with other processors as described below. Assuming there are P
processors, the set of nodes V is divided into P disjoint subsets V1, V2, . . . , VP ;
that is, Vi ⊂ V , such that for any i and j, Vi ∩ Vj = ∅ and

⋃
i Vi = V .

Processor Pi is responsible for computing and storing Ft for all t ∈ Vi. The
load balancing and performance of the algorithm crucially depend on how V
is partitioned. See [6] for a detailed study on load balancing and partitioning
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of V . Let t ∈ Vi. Now, if Ft is chosen to be Fk, to determine Ft, we need to
wait until Fk is known. If k ∈ Vj with i 6= j, processor i sends a message to
processor j to find Fk. If Fk is unknown, Pj keeps this message in a queue
until Fk is known. Once Fk is known, Pj sends back a message with Fk to Pi.

 

1 2 0 3 4 

Fig. 7 A preferential attachment network with 5 nodes generated using the copy model.
Solid lines show final decided edges, and dashed lines denote waiting of processors for node
attachment to be resolved—the undecided edges. For node t = 3, k is chosen to be 2, F3 is
chosen to be k = 2, and thus edge (3, 1) is decided immediately. Similarly, edge (1, 0) is also
decided immediately. For node t = 4, k is 2 and F4 is set to be F2. That is, F4 is dependent
on F2. Similarly, F2 is dependent on F1. Finally, we have F4 = F2 = F1 = 0.

Now notice that while processor Pi waits for processor Pj until Fk is known,
it is possible that to determine Fk, processor Pj is waiting for some other
processor and so on. These events may lead to a waiting chain or dependency
chain (see Figure 7). If the lengths of the dependency chains are large, it can
cause some processors wait for a long time, leading to poor performance of
the parallel algorithm. Fortunately, the length of a dependency chain is small,
and the performance of the algorithm is hardly affected by such waiting steps.
In [6, 8], it is shown that the maximum length of a dependency chain is at
most O(log n) with high probability. Moreover, while O(log n) is the maximum
length, most of the chains have much smaller length. It is easy to see that for
a constant p, the average length of a dependency chain is also constant, which
is at most 1

p . For an arbitrary p, the average length is still bounded by log n.

Thus, while for some nodes a processor may need to wait for O(log n) steps,
the processor hardly remains idle as it has other nodes on which it can work.

4.3.3 Chung-Lu Networks

The Chung–Lu model [53] generates a random network from a given sequence
of expected degrees. We are given a sequence of weights (representing expected
degrees of the nodes), the model generates a random network such that the
expected degree of a node is equal to the corresponding weight in the given
sequence. Let the given sequence of the weights be (W0,W1, . . .Wn−1), where
Wv represents the expected degree of node v for all v ∈ V = {0, 1, . . . , n− 1},
the set of nodes. Assuming W 2

v <
∑
k∈V Wk for all v ∈ V , the model works as

follows. For every pair of nodes u, v ∈ V , edge (u, v) is added to the network
with probability

pu,v =
WuWv

S
, where S =

∑
k∈V

Wk.

Now we have the expected degree for each v,

E[dv] =
∑
u

pu,v =
∑
u∈V

WuWv

S
=
Wv

S

∑
u∈V

Wu = Wv.
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Notice that above model can produce self loops. However, the self loops can
easily be avoided by a simple modification of the model. One way to avoid the
self loops is to simply discard any self loops created [104]. In such a case,

E[dv] =
∑

u∈V,u 6=v

WuWv

S
= Wv −

W 2
v

S
.

For large graphs, where the number of nodes n is very large, the expected
degree E[dv] converges to Wv for each node v. It is also possible to adjust the
probability pu,v such that even after discarding the self loops, E[dv] is exactly
equal to Wv.

A naive algorithm for the Chung–Lu model is for each pair of nodes
u, v ∈ V , create edge (u, v) with probability pu,v = WuWv

S independently
(independent of the other edges). Like the Erdös–Rényi model, this naive al-
gorithm requires O(n2) time to generate a network with n nodes since there are
1
2n(n− 1) possible pairs of nodes. The difference between Erdös–Rényi model
and Chung–Lu model is that in the Erdös–Rényi model all edges are created
with same probability whereas in the Chung–Lu model different edges have
different probabilities. An efficient O(n+m) time algorithm is given in [104].
This algorithm is based on a technique similar to the edge skipping technique
used in [34] for the Erdös–Rényi model. Let the sequence of weights be sorted
in non-increasing order. First consider the following algorithm. For each node
u, pick each edge from the sequence of edges (u, u+1), (u, u+2), (u, u+3), . . .,

in this order, with probability p = pu,u+1 = WuWu+1

S until an edge (u, v) is

picked. Let q = pu,v = WuWv

S . Now include edge (u, v) in the generated net-
work G with probability q

p . Then repeat the above process again beginning

with edge (u, v + 1) and probability pu,v. Notice that for any u, v ∈ V , edge
(u, v) is included in G with probability p · qp = q = pu,v. That is, this algorithm
generates random networks following the Chung–Lu model. Since in the first
step of this algorithm, the edges are picked with equal probability p, the edge
skipping technique discussed in Section 4.3.1 can also be used for this algo-
rithm leading to an O(m + n) time algorithm, which is presented in [104]. A
pseudocode for this algorithm using the edge skipping technique is shown in
Algorithm 1.

In Algorithm 1, as we always have u < v and no edge (u, v) can be selected
more than once, this algorithm does not create any self-loop or parallel edges.

Based on this sequential algorithm, an efficient distributed-memory parallel
algorithm is given in [5] that takes O(m+n

P + P ) time with high probability,
where P is the number of parallel processors. Let there be P independent
processors with distributed memory system and the processors communicate
with each other via exchanging messages. Computation of the probabilities
pu,v are dependent on Wu and Wv. Assume that every processor has a copy of
the sorted (in non-increasing order) sequence of the weights in its own memory.
Efficient parallelization of Algorithm 1 requires
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Algorithm 1: Efficient algorithm to generate Chung–Lu networks

S ←
∑

k∈V Wk

for u = 0 to n− 2 do
v ← u+ 1

p← WuWv
S

while v < n do
r ← a uniform random number in [0, 1)

δ ←
⌊
log (1−r)
log (1−p)

⌋
v ← v + δ
if v < n then

q ← WuWv
S

Output edge (u, v) with probability p
q

p← q
v ← v + 1

end

end

end

– Computing the sum S =
n−1∑
k=0

Wk in parallel. Sequential computation of S

takes O(n) time whereas S can be computed in parallel in O( nP + logP )
time.

– Dividing the task of selecting and generating edges into independent sub-
tasks.

– Balancing computation load among the processors. Load balancing is the
most challenging issue in this parallel algorithm.

To compute the sum S in parallel, the weights W are divided equally among
P processors such that every processor is responsible for n

P weights. Each of
the P processors adds its weights locally in n

P time. Then these local sums
from all processors can be aggregated (say, for example, using an MPI reduce
function) in O(logP ) time. Therefore, computing sum S takes O(n/P +logP )
time. As the edges can be generated independently, the iterations of the for
loop in Algorithm 1 can be executed by multiple processors independently
and simultaneously. For the details of this algorithm along with a good and
efficient load balancing method, see [5].

4.4 Epidemiological Simulation

The GDS formalism of Section 4.1 is useful for developing simulation systems
[91]. In this section, we look in depth at a simulation system based on the
conceptual view of interactions as presented in Section 4.1.3. Other tools are
cited in Section 1.

The EpiSimdemics model [27, 42, 133] is used to explore the impact of
agent behavior and public policy mitigation strategies on the spread of con-
tagion over extremely large interaction networks. The interaction network is
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represented by a labeled bipartite graph, where nodes consist of people and
locations, referred to as a person-location graph. If a person visits a location,
there is an edge between them, labeled by the type of activity and the time of
the visit. The interaction graph is not static, but changes over time in response
to changes in a person’s health state (e.g., stay home when sick), public policy
(e.g., school closure), or behavior changes (e.g., reduce unnecessary activities
during an outbreak). This new network, in turn, affects a person’s health (e.g.,
reducing contact with potentially infectious individuals outside the home, or
increasing contact with potentially infected children inside the home). Includ-
ing this co-evolution is important for correctly modeling the spread of dis-
ease [28]. The person-location graph is converted to a person-person graph,
where nodes represent people and edges represent contact between people, la-
beled by the duration of contact. This graph is regenerated each timestep as
the person-location graph changes.

Between-host contagion transmission and within-host contagion progres-
sion can be viewed as two connected but independently computed processes.
Between-host transmission triggers the start of within-host progression by
causing an uninfected individual to transition to an infected state. The disease
progress of the infected individual is then fully determined by the local (ver-
tex) function governing the within-host progression. The within-host disease
progression is modeled as a Probabilistic Timed Transition Systems (PTTS),
an extension of finite state machines with two additional features: the state
transitions are probabilistic and timed. The system also supports multiple in-
teracting PTTSs for modeling of multiple co-circulating diseases, enhanced
sociological modeling in the agents, and the addition of more complex inter-
ventions, such as contact tracing and antiviral stockpiles.

The PTTS and the interaction network are co-evolving, as the progression
of each one potentially affects the other. In simple terms, who you meet de-
termines whether you fall sick, and the progression of a disease may change
who you meet (e.g., you stay home because you are sick). The co-evolution
can be much more complex, as an individual’s schedule may change depending
on information exchanged with others, the health state of people they contact
even if no infection takes place (e.g., more people than usual are sick at work),
or even expected contacts that do not happen (e.g., coworkers who are absent
from work). All of this may also be affected by an individual’s demographics
(e.g., a person’s income affects their decision to stay home from work).

4.4.1 The Disease Model

The disease propagation (inter-host) and disease progression (intra-host) mod-
els were developed in the National Institutes of Health Models of Infectious
Disease Agent Study (MIDAS) project. A disease progression model is shown
in Figure 8.

When a susceptible individual and an infectious individual are colocated,
the propagation of disease from the infected individual to the susceptible in-
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Fig. 8 PTTS for the H5N1 disease model. Ovals represent disease states, while lines rep-
resent the transition between states, labeled with the transition probabilities. The line type
represents the treatment applied to an individual. The states contain a label and the dwell
time within the state, and the infectivity if different from one.

dividual is modeled by

pi→j = 1− (1− risjρ)τ (4)

where pi→j is the probability of infectious individual i infecting susceptible
individual j, τ is the duration of exposure, ri is the infectivity of i, sj is the
susceptibility of j, and ρ is the transmissibility, a disease-specific property de-
fined as the probability of a single completely susceptible person being infected
by a single completely infectious person during one minute of exposure [24].
Generally, ρ is calibrated to produce a desired attack rate (fraction of total
population infected) in the absence of any interventions. A person’s infectiv-
ity and susceptibility default to 1, but can be increased or decreased due to
individual characteristics or behavioral changes. For instance, a child with less
developed personal hygiene habits may be more infectious than typical (i.e.,
have a infectivity greater than 1), while an imuno-compromised individual may
have an increased susceptibility. A person who wears a face mask in public may
have reduced infectivity and/or susceptibility.

4.4.2 Intervention and Behavior Modification

A scenario specifies the behavior of individuals (e.g., stay home when sick), as
well as public policy (e.g., school closure when a specific proportion of the stu-
dents is sick). There are two fundamental changes that can be made that will
affect the spread of a contagion in a social network. All behavior and public
policy interventions are implemented through these changes. First, the proba-
bility of transmission of a contagion can be changed by changing the infectivity
or susceptibility of one or more individuals. For example, getting vaccinated
reduces an individual’s susceptibility whereas wearing a mask while sick re-
duces an individual’s infectivity. Taking antiviral medication, such as TamiFlu
(oseltamivir), reduces the likelihood of becoming infected and reduces both
the infectivity and length of the infectious period once an infection has taken
place. Second, edges can be added, removed, or altered in the social network,
resulting in different individuals coming into contact for different amounts of
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time. Individual behaviors and public policy interventions in EpiSimdemics,
collectively referred to as the scenario, expose these two changes in a way that
is flexible, easy to understand for the modeler, and computationally efficient.

The scenario is a series of triggers and actions written in a domain specific
language. While conceptually simple, this language has proven to be quite
powerful in describing a large range of interventions and public policies. A
trigger is a conditional statement that is applied to each individual separately.
If a trigger evaluates to true, one or more specified actions are executed. These
actions can modify an individual by changing its attributes or schedule type,
explicitly changing the PTTS and modifying scenario variables. Scenario vari-
ables can be written (assigned, incremented, and decremented) and read in
the scenario file. The value read is always the value at the end of the previous
simulation day. Any writes to a scenario variable are accumulated locally, and
synchronized among processors at the end of each simulated day.

4.4.3 Social Network Representation

We provide four views into the simulation system, in terms of populations
in Figure 9. The two networks were addressed previously, but we now in-
clude attributes of graph elements that are particular to simulation, and how
a simulation uses each type of network to compute contagion dynamics. In
EpiSimdemics, the social network is represented by a labeled bipartite graph
per Figure 9(a), as discussed previously. Labels attached to persons correspond
to his/her demographic attributes such as age or income. The labels attached
to locations specify the location’s attributes such as its geographic coordinates,
the types of activity performed there, maximum capacity, etc. It is important
to note that there can be multiple edges between a person and a location
which record different visits. Internally, within the EpiSimdemics code, this
network is converted into the equivalent person-person graph per Figure 9(c),
as discussed earlier, within each (location, sublocation) pair. This form of the
contact network is much more conducive for calculating interactions between
people, but much less sparse, containing approximately 10 times more edges
than the person-location graph. Figure 9(b) shows the people that are colo-
cated in space and time. Assuming that person 2 is infected and either in the
latent state (infectious, but not yet symptomatic) or infectious (contagious and
symptomatic), Figure 9(d) shows a potential transmission. The social contact
graph is not static, but changes over time in response to changes in a person’s
health state (e.g., stay home when sick), public policy (e.g., school closure),
or behavior changes (e.g., reduce unnecessary activities during an outbreak).
This new network, in turn, affects a person’s health (e.g., reducing contact
with potentially infectious individuals outside the home, or increasing contact
with potentially infected children inside the home). Including this co-evolution
is important for correctly modeling the spread of disease [28].

The EpiSimdemics model can be simulated with a simple discrete event
simulation (DES) algorithm in which the system only changes its state upon
the occurrence of an event. As shown in Figure 9d, there are two types of
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Fig. 9 An example social contact network: (a) the bipartite graph representation showing
people visiting locations; (b) the temporal and spatial projection of the network; (c) the
person-person graph showing interactions between temporally and spatially co-located peo-
ple; (d) potential disease transmission between an infectious person 2, and susceptible people
1 and 3.

events in the system: Arrive Events (person p arrives at location l at time
tarrive) and Depart Events (person p leaves location l at time tdepart).

To ensure correctness, the algorithm has to adhere to the following causal-
ity constraint: If an individual i leaves location LA at time tdepart and arrives
at location LB at time tarrive, his/her health state when arriving at LB (de-
noted by si(tarrive)) has to be decided prior to calculating the states of other
individuals at LB after time tarrive. This causality constraint leads to temporal
and spatial dependencies among nodes in the simulated system.

For simplicity of exposition, travel between locations is shown as instan-
taneous. In the actual system, there is a delay between leaving one location
and arriving at the next location, based on an approximation of the travel
time between locations. This delay can be calculated with varying degrees of
accuracy [12].

There are three important semantic points of the contagion diffusion prob-
lem that lead to the EpiSimdemics algorithm.

1. Individuals can only affect other individuals through interactions that oc-
cur when they are co-located in space and time.

2. An individual’s health state changes, once infected, can be precomputed.
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Sequence of operations

a: person computes visits
b: person sends visits
c: location receives visits
d: location computes visits
e: location sends outcomes
f: person receives outcomes
g: person combines outcomes

Fig. 10 The computational structure of the sequential EpiSimdemics algorithm.

3. There is a minimum latent period, Dmin. This is the amount of time that
must pass between a person becoming infected, and a person being able to
infect others. For most infectious diseases, there is a suitable latent period
that is determined by the biology of the infection. For influenza, this period
is at least 24 hours.

The above observations led to a semantics-oriented problem decomposition.
The existence of a latent period for newly infected individuals in the disease
model provides a basis for relaxing the global clock. If the time period to be
simulated is divided into n iterations, and if the length of a single simulation
iteration is less than Dmin, then all locations can be concurrently considered
and interactions between individuals at these locations can be simulated in
parallel.

The processing is separated into iterations that represent, for influenza,
simulated days. It is important to note that state changes are not limited to
time step boundaries. For example, if an individual is infected at 10:47 on day
10, and becomes infectious 36 hours later, they can start infecting others at
22:47 on day 11. Each iteration has the basic following four steps.

1. Each individual determines the locations that they are going to visit, based
on a normative schedule, public policy, and individual behavior and health
state. The person sends a message to each visited location with the details
of the visit (time, duration and health state during the visit). This can be
computed in parallel for each person.

2. Each location computes the pairwise interactions that occur between oc-
cupants of that location. Each interaction may or may not result in an
infection, depending on a stochastic model. For the epidemiological model,
disease propagation is modeled by Equation 4.
A message is then sent to each infected person with the details of the
infection (time of infection, infector and location). Again, each location
can perform this computation in parallel, once it has received information
for all of the individuals that will visit the location during the iteration.

3. Each person who is infected updates its health state by transitioning to an
infected state. In the event that a person iis infected in multiple locations,
the earliest infection is chosen.

4. Any global simulation states (i.e., total people infected) are updated.
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For each iteration, there are two synchronizations required: between steps
1 and 2, and between steps 2 and 3. In addition, step 4 requires a reduction
operation. These computational steps are further broken down in Figure 10.

4.4.4 Performance

EpiSimdemics has been carefully designed to balance generality, efficiency, and
scalability. It has been used to simulate the United States population (on the
order of 300 million people) on both moderate sized university clusters of 1000
cores and NCSA’s BlueWaters system of 352,000 cores. The latter system was
able to simulate the spread for 120 simulated days in less than 12 seconds
[134], as shown in Figure 11.
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Fig. 11 These plots show the performance of EpiSimdemics when run on NCSA’s Blue
Waters system using up to 352,000 cores. The spread of Influenza through the population
of the United States (on the order of 300 million people) is being simulated for 120 days,
with no interventions, in 12 seconds.

5 Policy Implications

One of the most important practical results of epidemic simulations is to inform
policy planning. A listing of selected studies is provide in Table 2. A few of
these studies are described below. We note that simulation is not the only way
to generate results to inform policy. For example, such results can be generated
with compartmental models [102] and game theoretic approaches [35], which
are not covered here.

Reference [74] describes a multi-institutional study, exercising three differ-
ent ABMs, to determine the most effective strategies for mitigating influenza
spread in a 9 million agent system, similar to a population like Chicago. They
found that a combination of school closures and targeted antiviral prophylaxis
by individuals gave good results in decreasing the number of infected people.
Additional work [42] indicates that these results are robust across a different
population.

In taking the [74] study one step further, [15] looked not only at outbreak
size, but also the costs of outbreaks to determine which intervention strategies
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Table 2 Selected studies pertaining to epidemic simulations to support policy planning.
The great majority of these investigate intervention strategies to reduce disease outbreaks.

Number Type of
Study

Description References

1 Epidemiological Determine which intervention strategies
are most effective in reducing outbreak
size.

[74]

2 Economic Determine which intervention strategies
are most cost-effective; i.e., the reduction
in outbreak size per unit expenditure.

[15]

3 Epidemiological Different intervention triggers by demo-
graphic class.

[14]

4 Epidemic
tracking

Simulations run during a large outbreak
by policy planners for situational aware-
ness.

[37]

5 Epidemiological Demonstrates, for stylized networks, that
homogeneous vaccination strategies can
be counterproductive and that strategies
should depend on social network local
conditions

[135]

6 Epidemiological Comparisons of vaccination strategies
based on local versus regional conditions.

[99]

7 Epidemiological Evaluation of drugs and vaccines that are
under development.

[1]

8 Epidemiological Influenza-based interventions for school-
age children.

[33]

9 Economic Paid sick leave and its effect on outbreak
size.

[89]

10 Epidemiological Influenza outbreak and various contain-
ment strategies.

[63]

11 Epidemiological
and social

Influenza outbreaks in (slums of) Delhi,
India.

[101]

12 Epidemiological
and social

Interventions for influenza in (slums of)
Delhi, India.

[3]

were most cost-effective. These costs include lost productivity by corpora-
tions, as well as lost income by households. So, for example, while staying at
home (i.e., social distancing) may be useful in halting transmission, it also
has the cost of reducing income among some socio-economic classes. Of the
strategies investigated, the one that reduces the size of the outbreak and total
costs is a combination of behavior modification of individuals (i.e., eliminating
non-essential travel and taking antivirals) and government action (i.e., closing
schools). In this case, the number of infected individuals decreases by 87% and
the total cost drops by 82%. These findings indicate that the strategies that are
best for decreasing outbreak size are also good for reducing their economic im-
pact. Furthermore, it is noted in [100] that paid sick leave is also cost-effective
because it reduces the spread of sick workers who would otherwise come to
work. Paid sick leave is also studied elsewhere (e.g., [89]).
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6 Summary

In this paper, we motivated epidemic simulation and itemized challenges in
developing capabilities to perform these simulations. We focused primarily on
describing fundamental elements of epidemic simulation: (i) theoretical foun-
dations for simulation software, (ii) synthetic population (digital twin) devel-
opment, (iii) social networks generated from synthetic populations, (iv) large-
scale stylized network generation, and (v) simulation. We provided several
examples of how epidemic simulation can support policy planning.
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79. Kempe D, Kleinberg JM, Tardos É (2003) Maximizing the spread of in-
fluence through a social network. In: Getoor L, Senator TE, Domingos P,
Faloutsos C (eds) KDD, ACM, pp 137–146, DOI 10.1145/956750.956769

80. Kilbourne ED (2006) Influenza pandemics of the 20th century. Emerging
Infectious Diseases pp 9–14

81. Kofman YB, Garfin DR (2020) Home is not always a haven: The domes-
tic violence crisis amid the covid-19 pandemic. Psychological Trauma:
Theory, Research, Practice, and Policy 12(S1):S199–S201

82. Kohei T, Naoki M (2017) Effects of the distant population density on
spatial patterns of demographic dynamics. R Soc Open Science

83. Kosub S, Homan CM (2007) Dichotomy results for fixed point counting
in boolean dynamical systems. In: Proc. ICTCS, pp 163–174

84. Kuhlman CJ, Mortveit HS (2015) Limit sets of generalized, multi-
threshold networks. Journal of Cellular Automata 10:161–193

85. Kuhlman CJ, Mortveit HS, Murrugarra D, Kumar VSA (2011) Bifurca-
tions in boolean networks. In: AUTOMATA, pp 29–46

86. Kuhlman CJ, Kumar VSA, Marathe MV, Ravi SS, Rosenkrantz DJ
(2015) Inhibiting diffusion of complex contagions in social networks: The-
oretical and experimental results. Data Min Knowl Discov 29(2):423–465

87. Kuhlman CJ, Ren Y, Lewis BL, Schlitt J (2017) Hybrid agent-based
modeling of zika in the united states. In: Winter Simulation Conference
(WSC), pp 1085–1096

88. Kumar R, Raghavan P, Rajagopalan S, Sivakumar D, Tomkins A, Upfal
E (2000) Stochastic models for the web graph. In: Proceedings of the 41st
Annual Symposium on Foundations of Computer Science (FOCS), IEEE
Computer Society, Washington, DC, USA, p 57, URL http://dl.acm.

org/citation.cfm?id=795666.796570

89. Kumar S, Grefenstette JJ, Galloway D, Albert SM, Burke DS (2013)
Policies to reduce influenza in the workplace: Impact assessments using
an agent-based model. American Journal of Public Health 103(8):1406–
1411

90. Kuylen E, Willem L, Broeckhove J, Beutels P, Hens N (2020) Clustering
of susceptible individuals within households can drive measles outbreaks:
an individual-based model exploration. Scientific Reports 10:13 pages

91. Laubenbacher R, Jarrah AS, Mortveit HS, Ravi SS (2020) Mathemati-
cal formalism for agent-based modeling. Complex Social and Behavioral
Systems pp 683–703

92. Lenormand M, Deffuant G (2013) Generating a synthetic population of
individuals in households: Sample-free vs sample-based methods. Journal
of Artificial Societies and Social Simulation 16

93. Leskovec J (2008) Dynamics of large networks. PhD thesis, Pittsburgh,
PA, USA, aAI3340652

94. Letendre K, Fincher CL, Thornhill R (2010) Does infectious disease cause
global variation in the frequency of intrastate armed conflict and civil



36 Keith R. Bissett et al.

war? Biological Review 85:669–683
95. Little RJA, Wu MM (1991) Models for contingency tables with known

mmargin when target and sampled populations differ. J Amer Statist
Assoc 86(413):87–95

96. Lum K, Chungbaek Y, Eubank SG, Marathe MV (2013) A two-stage,
fitted values approach to activity matching. In: Procedia - Social and
Behavioral Sciences

97. Ma L, Srinivasan S (2015) Synthetic population generation with mul-
tilevel controls: A fitness-based synthesis approach and validations.
Computer-Aided Civil and Infrastructure Engineering 30(2):135–150,
DOI 10.1111/mice.12085, URL http://dx.doi.org/10.1111/mice.

12085

98. Macauley M, Mortveit HS (2009) Cycle equivalence of graph dynamical
systems. Nonlinearity 22:421–436

99. Marathe A, Lewis B, Barrett C, Chen J, Marathe M, Eubank S, Ma Y
(2011) Comparing effectiveness of top-down and bottom-up strategies in
containing influenza. PLOS ONE 6:e25149–1–e25149–6

100. Marathe A, Chen J, Eubank S, Liao S, Ma Y (2014) Impact of paid sick
leave policy: A social planner’s perspective. American Journal of Public
Health 104:1

101. Marathe A, Chen J, Chu S, Chungbaek Y, Khan M, Kuhlman C, Mortveit
H, Vullikanti A, Xie D (2016) Effect of modeling slum populations on
influenza spread delhi. BMJ Open

102. Medlock J, Galvani AP (2009) Optimizing influenza vaccine distribution.
Science 325(5948):1705–1708

103. Meindl B, Templ M, Alfons A, Kowarik A (2014) simpop : An open source
R package for generating synthetic populations. URL http://www.ihsn.

org/home/projects/synthetic-populations

104. Miller J, Hagberg A (2011) Efficient generation of networks with given
expected degrees. In: Proceedings of Algorithms and Models for the Web-
Graph (WAW), pp 115–126

105. Moeckel R, Spiekermann K, Wegener M (2003) Creating a synthetic pop-
ulation. In: 8th International Conference on Computers in Urban Plan-
ning and Urban Management (CUPUM)

106. Mortveit HS, Reidys C (2007) An introduction to sequential dynamical
systems. Springer

107. Müller K, Axhausen K (2010) Population synthesis for microsimulation:
State of the art. Tech. rep., Technical Report August. Swiss Federal In-
stitute of Technology Zurich

108. Muller K, Axhausen KW (2011) Hierarchical ipf: Generating a synthetic
population for switzerland. In: ERSA

109. Namazi-Rad MR, Mokhtarian P, Perez P (2014) Generating a dynamic
synthetic population–using an age-structured two-sex model for house-
hold dynamics. Plos One 9:e4761–1–e4761–16

110. National Center for Education Statistics (2013) Characteristics of pub-
lic and private elementary and secondary schools in the United States:



Agent-Based Computational Epidemiological Modeling 37

Results from the 2011d12 schools and staffing survey. Tech. Rep. NCES
2013312, Department of Education

111. National Center for Education Statistics (2014) Private school universe
survey (PSS): Public-use data file user’s manual for school year 2011-12.
Tech. Rep. NCES 2014351, Department of Education

112. Nobari S, Lu X, Karras P, Bressan S (2011) Fast random graph gen-
eration. In: Proceedings of the 14th International Conference on Ex-
tending Database Technology (EDBT/ICDT), pp 331–342, DOI 10.
1145/1951365.1951406, URL http://doi.acm.org/10.1145/1951365.

1951406

113. Railsback SF, Grimm V (2011) Agent-Based and Individual-Based Mod-
eling: A Practical Introduction. Princeton University Press

114. Ramadan OE, Sisiopiku VP (2019) A critical review on population syn-
thesis for activity- and agent-based transportation models

115. Reluga TC, Medlock J, Perelson AS (2008) Backward bifurcations and
multiple equilibria in epidemic models with structured immunity. Journal
of Theoretical Biology 252:155–165

116. Rivers CM, Lofgren ET, Marathe MV, Eubank S, Lewis BL (2014) Mod-
eling the impact of interventions on an epidemic of ebola in sierra leone
and liberia. PLOS Currents Outbreaks

117. Rosenkrantz DJ, Marathe MV, Ravi SS, Stearns RE (2018) Testing phase
space properties of synchronous dynamical systems with nested canalyz-
ing local functions. In: Autonomous Agents and Multi-Agent Systems
(AAMAS), pp 1585–1594

118. Rosenthal DM, Ucci M, Heys M, Hayward A, Lakhanpaul M (2020) Im-
pacts of covid-19 on vulnerable children in temporary accommodation in
the uk. The Lancet Public Health 5:E241–E242

119. Santos A, McGuckin N, Nakamoto H, Gray D, Liss S (2011) Summary of
travel trends: 2009 National Household Travel Survey. Tech. Rep. FHW
A-PL-ll-022, U.S. Department of Transportation Federal Highway Ad-
ministration

120. Schelling T (1978) Micromotives and Macrobehavior. Norton and Co.,
New York, NY

121. Shrira I, Wisman A, Webster GD (2013) Guns, germs, and stealing: Ex-
ploring the link between infectious disease and crime. Evolutionary Psy-
chology 11:270–287

122. Stearns RE, Ravi SS, Marathe MV, Rosenkrantz DJ (2019) Symmetry
properties of nested canalyzing functions. In: Discrete Mathematics &
Theoretical Computer Science, p 17 pages

123. Tosic PT (2010) On the complexity of enumerating possible dynamics of
sparsely connected boolean network automata with simple update rules.
In: Automata 2010 - 16th Intl. Workshop on CA and DCS, pp 125–144

124. Truscott J, Ferguson NM (2012) Evaluating the adequacy of gravity mod-
els as a description of human mobility for epidemic modelling. PLOS
Computational Biology 8:1–12



38 Keith R. Bissett et al.

125. Usher K, Bhullar N, Durkin J, Gyamfi N, Jackson D (2020) Family vio-
lence and covid-19: Increased vulnerability and reduced options for sup-
port. International Journal of Mental Health Nursing 29:549–552

126. Vigo D, Patten S, Pajer K, Krausz M, Taylor S, Rush B, Raviola G,
Saxena S, Thornicroft G, Yatham LN (2020) Mental health of communi-
ties during the covid-19 pandemic. The Canadian Journal of Psychiatry
65(10):681–687

127. WebMD (2015) Cold, flu, & cough health cen-
ter. URL http://www.webmd.com/cold-and-flu/

what-are-epidemics-pandemics-outbreaks, visited 30 January
2015.

128. Wu S, Adiga A, Mortveit HS (2014) Limit cycle structure for dynamic
bi-threshold systems. Theoretical Computer Science 559:34–41

129. Xia H, Barrett CL, Chen J, Marathe MV (2013) Computational methods
for testing adequacy and quality of massive synthetic proximity social
networks. In: Proc. IEEE International Conference on Big Data Science
and Engineering (BDSE)

130. Xia H, Chen J, Marathe MV, Swarup S (2014) Comparison and validation
of synthetic social contact networks for epidemic modeling (extended
abstract). In: Proceedings of The Thirteenth International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), Paris, France
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