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ABSTRACT
The analysis of individual X-ray sources that appear in a crowded field can easily be compromised by the misallocation of
recorded events to their originating sources. Even with a small number of sources, which none the less have overlapping point
spread functions, the allocation of events to sources is a complex task that is subject to uncertainty. We develop a Bayesian
method designed to sift high-energy photon events from multiple sources with overlapping point spread functions, leveraging
the differences in their spatial, spectral, and temporal signatures. The method probabilistically assigns each event to a given
source. Such a disentanglement allows more detailed spectral or temporal analysis to focus on the individual component in
isolation, free of contamination from other sources or the background. We are also able to compute source parameters of
interest like their locations, relative brightness, and background contamination, while accounting for the uncertainty in event
assignments. Simulation studies that include event arrival time information demonstrate that the temporal component improves
event disambiguation beyond using only spatial and spectral information. The proposed methods correctly allocate up to
65 per cent more events than the corresponding algorithms that ignore event arrival time information. We apply our methods
to two stellar X-ray binaries, UV Cet and HBC 515 A, observed with Chandra. We demonstrate that our methods are capable
of removing the contamination due to a strong flare on UV Cet B in its companion ≈40× weaker during that event, and that
evidence for spectral variability at times-scales of a few ks can be determined in HBC 515 Aa and HBC 515 Ab.
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1 INTRODUCTION

Analysis of X-ray data relies on the identification of the emitting
sources and the allocation of the recorded events to the separated
sources. When observing clusters of multiple contiguous sources,
the presumable overlap of the sources’ point spread functions (PSFs)
casts uncertainty on the true origin of each of the recorded events,
as well as on the physical and spectral properties of components
in the observed system. These uncertainties are often amplified
by issues such as low-count data and background contamination.
One possible solution for analysis involves fitting multiple PSF
components to binned images (Primini & Kashyap 2014). How-
ever, X-ray data are originally acquired as event lists that allow
high spatial resolution, and also contain energy and arrival time
information that is lost when binned into a 2D image. The purpose
of the separated extraction regions is to allow further processing
and individual analysis of the separated sources. This is sub-
optimal in the event of substantial overlap in the sources’ PSF,
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since events from each source are highly likely to contaminate
the core of the other sources, which is expected to result in
misclassification. For a given PSF size, this misclassification rate
increases with both the size of the extraction region and the
proximity of the sources. Moreover, events outside of the extraction
regions are discarded from the analysis, which further inflates
the uncertainties in parameter estimation due to the misclassifica-
tion.

The problem with identification of sources in close pairs or
in crowded fields is often encountered when running standard
detection algorithms (e.g. wavdetect; Freeman et al. 2002), leading to
source confusion and misclassification of extended sources. Source
catalogues often flag problematic sources, use optical catalogues as
a reference, or modify source and background extraction regions to
exclude the overlapping part (Watson et al. 2009; Evans et al. 2010;
Principe et al. 2017).

The limitations of the manual extraction approach have motivated
the development of alternative algorithmic methodologies to tackle
the problem of overlapping point sources in high-energy photon
image analysis. Jones, Kashyap & van Dyk (2015) developed a
statistical approach to probabilistically allocate events to sources
using spatial and spectral information. This method is known as
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Bayesian Separation of Close Sources (BASCS). BASCS models
the spatial distribution using a known PSF and leverages the
differences in the energy spectra of the components to estimate
the locations of the point sources and their relative intensities.
BASCS simultaneously provides the posterior distribution of the
number of sources, which is particularly useful for detecting
sources. This final feature of BASCS has added to the effort of
probabilistic cataloguing in dense fields that has been pursued by
others [such as Portillo et al. (2017), whose method applies to
multiband optical data], but is not the focus of this article. More
recently, Sottosanti et al. (2017) used a Bayesian mixture model to
disentangle sources using spatial information, with the added feature
of allowing for a diffuse non-isotropic background which is more
suitable for gamma-ray data. Picquenot et al. (2019) developed
a method to separate extended sources from the background by
using spectral information (unlike BASCS, this method uses binned
images and assumes that the source components all have similar
spectra). Foord et al. (2019) developed BayMAX, a statistical tool
that uses spatial and spectral information to distinguish between
single and dual active galactic nuclei (AGNs) via a Bayes Factor
evaluation.

Here, we tackle the separate problem of time-variable sources. In
many cases, temporal information carries significant discriminatory
power, since astronomical objects display brightness and spectral
variability. Their spectral energy distributions are also expected
to change with source intensity. Therefore, we expect a method
that leverages the temporal signatures of the observed sources to
outperform existing algorithms in the task of allocating recorded
events to temporally variable sources. The principles behind the
methodology developed here follow those of Jones et al. (2015), but
the variability of source intensity across time is incorporated into the
model to aid in the task of source separation.

The paper is organized as follows. Section 2 provides an overview
of the existing methodology and introduces the proposed methods.
Section 3 presents the statistical analysis framework and computa-
tional procedures. Simulation studies are carried out in Section 4
to evaluate the performance of the methods. In Sections 5 and 6,
two data sets from observations of the UV Cet and HBC 515 A
systems (respectively) are analysed. Finally, potential extensions and
limitations are discussed in Section 7 and detailed results from our
numerical studies appear in a number of appendices.

2 DATA AND STATISTICAL MODELS

2.1 Structure of the data

High-energy detectors, such as Charged Coupled Device (CCD)
imaging spectrometers, record detector spatial coordinates, (xi, yi),
arrival time, ti, and energy, Ei. The full event list for n recorded
events is denoted as x = {xi}n

i=1 = {(xi, yi, ti , Ei)}n
i=1. The observed

spatial and spectral data are subject to the effect of the PSF and the
Redistribution Matrix Function (RMF). While the spatial dispersion
of events by the PSF is explicitly accounted for in the model, for
this study the RMF-induced energy dispersion is ignored and the
observed spectra is modelled, rather than the source spectra.

Each recorded event is assumed to originate either from one of
the sources located in the field of view, or from the background.
In this article, only point sources are considered. Our proposed
methods, unlike BASCS (Jones et al. 2015), assume that the number
of observed sources on the image is known. The location, intensities,
spectral distributions, and light curves are unknown. Background
events are assumed to be uniformly distributed spatially under the

source. Their spectrum is assumed to be known up to a normalization
factor, and can be either uniform, or one of the models described in
Section 2.4. We expect the modelling to be robust to mild deviations
from the assumption of spatial uniformity of the background, as
photons that are spatially distant from the sources are highly likely
to be attributed to the background, irrespective of the background
model.

2.2 Finite mixture model

A natural way to describe data assumed to originate from a collection
of sub-populations (in this case, the sources and background) is with
the class of statistical models known as finite mixture distributions.
In such models, each event xi , i = 1, . . . , n is assumed to arise from
one of S + 1 (S sources and the background) component distributions
{hj (xi |�j )}S

j=0, each parametrized by a parameter vector �j. It is
further assumed that it is not known which mixture component gen-
erated each observation. The background contamination is defined
as corresponding to component j = 0 of the finite mixture. Further
denote by wj the proportion of the population originated from mixture
component j, so that

∑S

j=0 wj = 1. The likelihood of data x is thus

p(xi |�, w) =
S∑

j=0

wjhj (xi |�j ). (1)

With the aim of learning which mixture component underlies each
observed event, we introduce the latent indicator variables, si, into
the model: si = j if xi is drawn from mixture distribution hj i.e. if
event i originated from source j. Since w = (w0, . . . , wS) gives the
proportion of the population of events belonging to each mixture,
and s = (s1, . . . , sn) gives the mixture assignment of event xi , it is
sensible to model s with a Multinomial1 distribution:

(s1, . . . , sn) | w ∼ Multinomial(n; (w0, . . . , wS)). (2)

The joint distribution of the data, x, and latent variable, s, is then
given by

p(x, s|�,w) = p(s|w)p(x|s, �) =
n∏

i=1

p(si |w)p(x|si , �)

=
n∏

i=1

S∏

j=0

p(si = j |wj )p(xi |si = j, �j )

=
n∏

i=1

S∏

j=0

wjhj (xi |�j ). (3)

For the rest of this article, we refer to the mixture weights, w, as the
relative intensities of the sources. Table 1 summarizes the symbols
used in this work. Now that the general framework for statistical
modelling of overlapping sources is established, models for the
individual mixture distributions {hj (xi |�j )}S

j=0 can be constructed.
In particular, each component is a combination of sub-models for
the spatial, spectral, and temporal data. BASCS (Jones et al. 2015)
only included {(xi, yi, Ei)}n

i=1, i.e. only the spatial and spectral
information. The contribution to the existing framework is the
formulation of a model for the temporal data {ti}n

i=1 and its integration
into the current methodology.

1Let nj = ∑n
i=1 1(si = j ) for j = 0, . . . , S. The probability mass func-

tion of the Multinomial(n; (w0, . . . , wS)) distribution is then given by
p(n0, . . . , nS ) = n/n0! . . . nS !

∏
w

n0
0 . . . w

nS
S .
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Table 1. Symbols used in this work.

Symbol Definition

(xi, yi) Location of event i on detector
Ei Energy of event i
ti Arrival time of event i
uj = {uj0, ..., ujK} A collection of pre-selected K + 1 breakpoints defining time bins for source j
bij An indicator of time bin for event i and source j,

bij = k if ti ∈ (uj, k − 1, ujk]
μj True unknown location of source j (2D coordinates)
fμj

PSF centred at μj

θ jk Spectral parameters for source j and time bin k
θ j Spectral parameters for source j in BASCS algorithm
Emin, Emax Minimum and maximum detected energy
π j Relative intensity of source j (j = 0 for background)
S Number of sources assumed
si The true source of event i
λjk Relative source intensity for source j and time bin k
njk True number of events detected for source j and time bin k
nj · True number of events detected for source j, i.e. nj · = ∑K

k=1 njk

n· k Number of events detected for time bin k, i.e. n·k = ∑S
j=1 njk

n Total number of events detected, i.e. n· k = ∑
j, knjk

(x, y, E, t, b) Vectors of the corresponding event specific variables

2.3 Spatial model

The detector spatial coordinates of an event (xi, yi) are a deviation
from the actual (unknown) position of the event’s originating source
(say j), μj = (μxj, μyj). This deviation is due to the PSF, the response
of the imaging system to the incident events that redistributes them
on the surface of the detector according to a telescope and detector
specific distribution centred at μj. In our numerical studies, we
assume that the PSF is well approximated by a King profile (see
Appendix A and Jones et al. 2015). The observed event locations
from source j are, therefore, distributed according to the PSF centered
at the unknown source location μj, i.e.

(xi, yi) | (si = j, μj ) ∼ fμj
(xi, yi) (4)

for j = 1, . . . , S, where fμj
(xi, yi) denotes the PSF centred at μj

evaluated at (xi, yi).
As for the background, the assumption of spatial uniformity across

the image means

(xi, yi) | (si = 0) ∼ Uniform. (5)

2.4 Spectral model

In addition to spatial information, Jones et al. (2015) discuss the
benefits of including spectral information when allocating events
to sources. Generally, approximating the observed spectral energy
distribution2 with a rough shape is a simple way to exploit spectral
differences among sources, with relatively little additional com-
putation. A simple sensible photon energy model is a Gamma

2Since we use approximate spectral shapes to distinguish sources, we
ignore the effects of the RMF and Auxiliary Response File (ARF) and
instead model the distributions of the observed spectrum as recorded by the
detector. Although differences in the observed spectra are just as powerful
as differences in source spectra for source separation, it precludes us from
interpreting the parameters of the observed spectral model in terms of the
physical properties of the sources.

distribution,3 because it only allows positive energy values and its
mode is around the mid- to low-energy region. This yields

Ei | (si = j, α, γ ) ∼ Gamma(αj , αj /γj ) (6)

for j = 1, . . . , S, where αj and γ j are, respectively, the unknown shape
and mean parameters of the Gamma distribution. This modelling
strategy makes no attempt at describing the energy distributions in a
detailed science-based manner, since for instance emission lines are
ignored. Nevertheless, Jones et al. (2015) showed that when sources
are relatively close spatially, modelling their rough spectral shapes
improves source detection and separation and increases the precision
of source parameter estimates.

In practice, however, a single Gamma distribution may not capture
the shape of the spectra sufficiently well, and the miss-specification
of the spectral model can bias the parameter estimates. Jones et al.
(2015) discuss a more general spectral model, defined by a mixture
of two Gamma distributions, which allows for a more flexible
approximation of the observed energy distribution. This energy
model can be written as

Ei | (si = j, α1, α2, γ1, γ2,π)

∼ πj Gamma(αj1, αj1/γj1) + (1 − πj )Gamma(αj2, αj2/γj2)

(7)

for j = 1, . . . , S, where π j is the mixture weight. We denote
the modelled spectral distribution by gθ , with θ representing its
parameters. The observed spectral energy for source j is therefore
distributed as gθj

with unknown parameter θ j, i.e.

Ei | (si = j, θ ) ∼ gθj
(Ei). (8)

The reader is referred to Jones et al. (2015) for further discussion on
the specification of the spectral model and the costs and benefits of
more complex spectral energy distributions.

3The density of the Gamma(α, α/γ ) distribution is f (x) = αα

γ α	(α) x
α−1e

− α
γ x ,

x > 0.
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The background contamination is again assumed to have a uniform
spectral distribution:

Ei | si = 0 ∼ Uniform(Emin, Emax), (9)

where Emin and Emax are the detector-specific minimum and maxi-
mum observable photon energies.

2.5 Temporal model and time-varying energy distributions

Our proposed extension of BASCS (Jones et al. 2015) incorporates
event arrival times into the model. The assumption of BASCS
that both the relative brightness of the sources and their spectral
energy distributions remain invariant during the observation period
is thus relaxed. In general, astronomical objects display brightness
and spectral variability. Furthermore, spectral energy distributions
are also expected to change with source intensity. In many cases,
temporal information therefore carries significant discriminative
power and including it will outperform BASCS in the allocation
of recorded events to sources.

We model the light curve of each source as a piece-wise constant
function defined on a pre-selected collection of K time bins, the union
of which equals the entire observation period. Assuming that the light
curves are uniform over each of the K time intervals yields a flexible
temporal model, suitable to flexibly capture temporal variability.

We formulate the proposed extension as follows: for each source
j, let u = {uk}K

k=0, with 0 = u0 < u1 < ... < uK = T, be a collection
of breakpoints segmenting the full observation interval into K bins.
Let bi indicate the bin in which event i is detected, i.e. bi = k if ti

∈ (uk − 1, uk]. The labels {bi} are an observed, discretized version
of the original time-arrival data. These play a role in measuring the
time-varying intensity within each of the sources.

To measure the within-source time relative intensity, first let njk

represent the number of events from source j that are observed in
time bin k. For each source j, let λj = (λj1, λj2, ..., λjK) be the relative
intensities for source j across the K time bins, with

∑K

k=1 λjk = 1.
For source j, the number of events observed across the time bins are
modelled as a Multinomial distribution,

(nj1, nj2, ..., njK ) | λj , nj , S ∼ Multinomial(nj ; λj ), (10)

where
∑K

k=1 njk = nj . The collection of time intensities across the
background and the S sources is denoted λ = (λ0, λ1, ..., λS).

The temporal model is not intended to capture nuanced variability
in the observed light curves. Instead, in conjunction with coarse
energy distributions, it captures general trends in time that may have
discriminatory power.

The source-level energy distributions may also be time variable,
i.e. they may change at each of the breakpoints u. The energy
distribution for events arriving in time bin k from source j is modelled
with a distribution g and source-time specific parameters θ jk, i.e.

Ei | (si = j, bij = k) ∼ gθjk
(Ei), (11)

where gθ denotes the mixture of two Gamma distributions defined
in Section 2.4. In this case, the models for the spectral energy
distribution are independent for each source and within each time
bin. Because the number of parameters in this energy model grows
rapidly with the number of sources and the number of time bins,
it is difficult to fit without a sufficient number of events. A more
sophisticated model might have fewer time bins for dimmer sources.
In our numerical studies and examples, we assume the source spectra
are invariant over the whole observation period.

Figure 1. The light curve of the combined UV Cet system, with a time bin
size of ≈1500 s. Our data-driven procedure is deployed to identify the five
break points denoted by the red vertical bars.

2.6 Selection of time bins

In order to account for temporal changes, we split the data into
possibly irregular bins that capture the variations in the observed
light curve of the system. There is a trade-off here between the
fineness with which one wants the variability to be modelled on the
one hand, and the data size that allows useful uncertainty intervals
on the fitted parameters, the total number of parameters, and the
running time. The dimension of the parameter space scales linearly
with the number of time segments; for the sake of parsimony as
well as to avoid unnecessarily complex calculations, a small number
of segments is preferred. The temporal segmentation model is not
designed to capture subtle variations directly, but rather aims to
improve disambiguation between overlapping photon events.

We thus allow the number of breakpoints to be set on a case-by-
case basis, and choose as the breakpoints those times that show the
largest changes in counts in adjacent bins. Given the user-specified
number of breakpoints, we develop a simple data-driven procedure to
identify the locations that best isolate transient variations and flares
in the light curves. The procedure first divides the event-arrival times
into a high-resolution histogram and then identifies the adjacent bins
with the largest differences in intensity. The breakpoints are set to
separate these bins; see Fig. 1 for an illustration of this method in
the case of the UV Cet light curve with the number of breakpoints
preset to five. Finally, the algorithm merges all of the histogram
bins between the selected breakpoints to obtain the target number
of time intervals. Full details appear in the form of pseudo-code in
Appendix B; computer code is included in the eBASCS software
package available on the CHASC GITHUB software library.4

2.7 Statistical models and likelihoods

Here, we combine the spatial, spectral, and temporal models into the
overall models that we use and compare in this article. We refer to the

4https://github.com/AstroStat/

MNRAS 506, 6160–6180 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/506/4/6160/6294476 by guest on 18 D
ecem

ber 2021

https://github.com/AstroStat/
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model that only incorporates spatial data, {(xi, yi)}n
i=1, as the baseline

orspatialmodel. Its parameters are denoted by � = {μj }S
j=1, and

the corresponding likelihood is

Lspatial(�, s) ∝
n∏

i=1

S∏

j=1

wjfμj
(xi, yi). (12)

BASCS (Jones et al. 2015) models observed event spatial and
energy data: {(xi, yi, Ei)}n

i=1. The parameters for this model are
denoted by � = {μj , θj }S

j=1, and the corresponding likelihood is

LBASCS(�, s) ∝
n∏

i=1

S∏

j=1

wjfμj
(xi, yi)gθj

(Ei). (13)

The proposed method, eBASCS, models observed event spatial,
spectral, and temporal data: x = {(xi, yi, ti , Ei)}n

i=1. The parameters
for this model are denoted � = {μj , θj , λj }S

j=1, and the correspond-
ing likelihood is

LeBASCS(�, s) ∝
n∏

i=1

S∏

j=1

K∏

k=1

wjλjkfμj
(xi, yi)gθj

(Ei). (14)

Some X-ray detectors do not record the energy of the observed
events with useful accuracy, e.g. the Chandra/HRC-S detector used
to record the UV Cet observation analysed in Section 5. In such
cases, it is useful to consider a spatio-temporal model that only
includes the spatial and temporal components. We refer to this model
as the space+time model. The parameters for this model are
� = {μj ,λj }S

j=1, which yields the likelihood:

Lspace+t ime(�, s) ∝
n∏

i=1

S∏

j=1

K∏

k=1

wjλjkfμj
(xi, yi). (15)

3 BAYESIAN INFERENCE AND STATISTICAL
COMPUTATION

3.1 Inferential approach

We adopt a Bayesian statistical approach. This allows us to quantify
uncertainty in the model parameters via their joint (posterior)
distribution given the observed data. From this we can compute point
estimates and error bars, if required. The Bayesian paradigm also
allows us to incorporate existing scientific knowledge about the likely
values of the parameters into the model via their prior distributions.
Once the prior distributions are specified and the data are observed
(and integrated into the model via the likelihood), Bayes’ Theorem
gives the expression for the posterior distribution of the parameters,
i.e. the updated beliefs about the model parameters after observing
the data:

p(�, s|x) = p(x|�, s)p(�, s)
p(x)

, (16)

where p(x|�, s) ≡ L(�, s) is the likelihood of the data under the
chosen model, p(�, s) is the prior distribution of the parameters, and
p(x) is the marginal distribution of the data. While p(x) is sometimes
used for model selection, for the purposes of equation (16), it can
be viewed as a normalizing constant and need not be computed. Our
choices of prior distributions are discussed in Section 3.2.

3.2 Specifying prior distributions

Our general approach is to specify uninformative and computation-
ally practical prior distributions. In our applications, we usually

observe a large enough data set to mitigate the effect of the prior
distributions on posterior inference. However, any information about
likely parameter values can and should be encoded into the prior
distributions.

Following Jones et al. (2015), we specify uniform (across the
image) priors on the source locations:

μj ∼ Uniform (17)

for j = 1, . . . , S, but one could also specify a distribution centred
at a likely value μj0 for μj. The prior distributions for the other
parameters are those given in Jones et al. (2015). The parameters that
are probability vectors, w and λ, and govern the Multinomial splitting
of events among sources and time bins, respectively, are given
Dirichlet prior distributions. Picking conjugate prior distributions
(like Dirichlet priors for Multinomial likelihoods) is computation-
ally convenient, and allows for more transparent interpretations of
posterior inferences (Gelman et al. 2013). Hence,

w ∼ Dirichlet(η, . . . , η),

λ ∼ Dirichlet(ζ, . . . , ζ ). (18)

Following Jones et al. (2015), the above hyperparameters are set at η

= ζ = 1, so that the prior distributions correspond to as much infor-
mation as a single event added to each source (or each time bin for λ).

For a spectral model defined as a single Gamma distribution,
we use the prior distributions, αj ∼ Gamma(2, 0.5) and γ j ∼
Uniform(Emin, Emax). If a mixture of two Gamma distributions is used
for the spectral model, a reasonable choice for the mixture weight
parameter is a Beta(2,2) distribution (assuming a two-component
mixture), again following Jones et al. (2015).

3.3 Statistical computation

In order to derive useful summaries of the posterior distribution of the
model parameters, we generate a Monte Carlo sample of parameter
values from the posterior. Indeed, for an unknown model parameter
μ with marginal posterior distribution p(μ|x), a sample {μ(1), . . . ,
μ(N)} of N draws from the posterior allows us to compute point esti-
mates and error bars for μ, e.g. via the mean and standard deviation
of the sample if the posterior is roughly Gaussian (e.g. Stenning &
van Dyk 2021), or more generally via quantiles of the sample.

We use Markov Chain Monte Carlo (MCMC) to obtain a sample
of (�, s) from its joint posterior distribution, p(�, s|x). A Markov
chain is a set of sequentially sampled random variables, (�, s)(t),
for t = 1, 2, . . . , such that each (�, s)(t) depends on the history
of the chain only through the most recent iterate, (�, s)(t − 1).5

MCMC methods are a class of iterative algorithms that produce
a Markov chain with stationary distribution equal to the target
Bayesian posterior distribution. If run for a sufficient number of
iterations, the marginal distribution of each of the (correlated) iterates
of the chain approaches the target posterior distribution. Thus, if
the sample that is comprised of the MCMC iterations before the
chain reaches approximate convergence (i.e. the burn-in iterations)
is discarded, the remaining sample (i.e. the main run) can be treated
as a correlated sample from the target posterior distribution. In our
simulations, we typically discard the first half of the chain as burn-in.

Positively correlated samples carry less information than indepen-
dent samples of the same size, and thus yield estimates of posterior
quantities with higher Monte Carlo error. The Effective Sample Size

5More formally,{(�, s)(1), . . . , (�, s)(t − 1)}, and (�, s)(t + 1) are conditionally
independent given (�, s)(t), for each t.
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Figure 2. Examples of the convergence the location parameters’ MCMC
iterates. Both panels show the recorded spatial coordinates of the UV Ceti
(Gliese 65) binary system, analysed in Section 5. Left-hand panel: With poor
choice of initialization, both fitted location parameters, μ1 (red) and μ2 (blue),
converge to the location of source to the left of the image. Right-hand panel:
When better initialized, they converge to their respective true locations.

(ESS) approximates how large of an independent sample would
contain the same level of information as our correlated MCMC
sample (e.g. Stenning & van Dyk 2021). In our numerical studies
and examples, we choose the number of main-run iteration to
obtain an ESS between 1000 and 2000. Generally, this requires a
total run of about 40 000 iterations. (We discard the first half of
each chain as burn-in and thin the remainder, saving only every
tenth iterate, to reduce memory requirements.) We also monitor
convergence of the chains through visual diagnostics such as trace
plots and autocorrelation plots. For a more detailed discussion of
practical considerations involved with MCMC, the reader is referred
to Gelman et al. (2013) or, for a more astronomy-oriented account,
to Stenning & van Dyk (2021). We develop both R code for MCMC
methods based on the Metropolis algorithm6 (Metropolis et al.
1953) and STAN7 code which implements Hamiltonian Monte Carlo8

(Duane et al. 1987; Neal 2011).
Naturally, our methodology has certain limitations. Here, we detail

two and propose solutions. Finite mixture models, such as the one
we use with eBASCS, produce multimodal posterior distributions,
which are notoriously difficult to explore via MCMC and thus require
special care. The most obvious and important issue is the possibility
that the algorithm becomes ‘stuck’ in one mode, and thus fails
to explore the full posterior distribution. To give a more detailed
example, consider a binary star system, with unknown location
parameters μ1 and μ2. If the sources are well separated, it might
happen that the MCMC samples of both μ1 and μ2 converge to
the location of source 1 (see Fig. 2). This worry can be addressed
by choosing starting values for μ1 and μ2 at random locations
along the edges of the image close to the respective sources.
Another option that we recommend is to initialize the location
parameter values at the approximate location of the modes of the
spatial image of observed event locations, e.g. found by applying

6The Metropolis algorithm is a simple MCMC sampler that produces a
Markov chain by sampling the next iterate from a proposal distribution centred
at the current iterate (i.e. a symmetric proposal distribution), using a rejection
rule designed to ensure that the stationary distribution of the Markov chain
equals the target posterior distribution. See Speagle (2019) for a recent, and
accessible, description of MCMC concepts.
7STAN is a probabilistic programming language for Bayesian inference with
gradient-based MCMC techniques (Carpenter et al. 2017).
8Hamiltonian Monte Carlo is an MCMC method that exploits the differential
structure of the target posterior distribution to generate a Markov chain that
efficiently represents the posterior distribution. [See Betancourt (2017) for an
introduction to Hamiltonian Monte Carlo.]

Kernel Density Estimation9 (KDE), to the raw images. We have not
found it necessary to implement sophisticated multimodal sampling
techniques [e.g. parallel tempering10 (Geyer 1991) or evolutionary
Monte Carlo 11 (Liang & Wong 2000)], since the failure mode has
been obvious and the remedies easily implemented.

Another possible concern is that constraints on the parameter
values can result in computational inefficiency. For instance, the
source locations μ1 and μ2 can only take values within the boundaries
of the image, and the spectral parameters must be positive. Using a
standard Metropolis proposal distribution for these parameters, such
as a normal distribution centred on the current value, leads to severe
inefficiency in the algorithm since proposed values outside of the
parameter’s support must be rejected, which induces sub-optimality
in the Metropolis acceptance rate. To remedy this, we log-transform
the parameters to eliminate the constraints on their support. This
allows us to efficiently implement a normal proposal distribution (on
the logarithmic scale).

4 SIMULATION STUDIES

In this section, we evaluate the benefit of incorporating temporal
data by comparing the performance of eBASCS with the BASCS and
spatial algorithms on simulated data sets. Our simulations are
parametrized in terms of a range of background intensities, spatial
source separations, and relative source intensities. They are organized
into two simulation studies that differ in terms of the strength of
the background. Simulation I, described in Section 4.2, constructs
a challenging scenario where one source is weak compared to the
background contamination. Simulation II, described in Section 4.3,
considers a more realistic situation where the background is weaker
than the sources, in order to mimic the level of background encoun-
tered with modern high-resolution X-ray telescopes like Chandra.
Section 4.1 sets up the general simulation design, which applies to
both Simulations I and II.

4.1 Simulation design

Our simulation design involves two astronomical objects, one
brighter than the other, emitting photons in an image of 10 by 10
spatial units.12 The first simulation setting is the distance between the
two sources, denoted as d, and we consider the set of values d ∈ {0.5,
1, 1.5, 2}. In each simulation, the number of events originating from
the background and sources are drawn from Poisson distributions
with respective means m0, m1, and m2. The brighter source has m1

= 2000, while the fainter source’s intensity is defined as m2 = m1/r,
where r denotes the relative intensity of the two sources and is the
second simulation setting. We consider the set of values r ∈ {1,
2, 5, 10, 50}. The strength of the simulated background m0 differs
between Simulations I and II (see Sections 4.2 and 4.3) for details.

9Kernel density estimation is a non-parametric procedure designed to estimate
probability densities from observed data (Davis, Lii & Politis 2011).
10Parallel tempering is a multiple chain MCMC method, where each chain
targets one of a sequence of tempered versions of the target distribution. Swap-
ping draws among the chains enables improved exploration of multimodal
posterior distributions.
11Evolutionary Monte Carlo incorporates features from simulated annealing
and genetic algorithms to improve on the efficiency of standard MCMC
methods.
12In terms of the 2D King profile PSF parametrized as in Appendix A, the
10 by 10 image is roughly equivalent to the region where the PSF is greater
than 5 × 10−4.
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We also generate spectral data for the source and background
events. Since the focus of Simulations I and II is to investigate how
much we can improve the fitted parameters and event allocations
by incorporating temporal data, we use a common spectra for both
sources (rather than different spectra between the sources or between
the time bins). Specifically, the two sources have a common spectra
generated from a Gamma distribution with shape parameter α = 3.18
and mean γ = 1832; these particular parameter values follow Jones
et al. (2015). The background spectra is generated from a Uniform
distribution.

To simulate the temporal data (in the form of arrival times for
the events), a 60ks observation period is defined and split into
four equally sized time bins. Events are allocated to each time
bin according to a Multinomial distribution with parameters (λ1,
λ2, λ3, λ4) = (0.05, 0.15, 0.3, 0.5) for the bright source, and
(λ1, λ2, λ3, λ4) = (0.5, 0.3, 0.15, 0.05) for the faint source. This
means that the bright source gets brighter over time and that the
faint source dims over the observation period (see the right-hand
panel of Fig. 3). Background events are spread uniformly among
the time bins. The number of parameters to be fitted for eBASCS
grows linearly with the number of time bins. Simulating data and
fitting the model with four time bins are a reasonable option to both
generate enough discriminatory temporal information and moderate
the required computational complexity.

In Simulation I, replicate data sets were generated under 20
different settings, crossing r ∈{1, 2, 5, 10, 50} and d ∈{0.5, 1, 1.5, 2}.
In Simulation II, five different settings were considered, crossing r ∈
{1, 2, 5, 10, 50} and d = 1. Evaluating the performance of eBASCS
in this way ensures its consistency with the expected behaviour of a
disentangling model in the physical environments represented by the
data sets. In particular, the two sources are expected to be increasingly
distinguishable as their spatial separation, d, grows. Similarly, as r
gets large the model is expected to easily detect the brighter source but
detection of the dimmer source may remain difficult. Fifty replicate
data sets were generated for each of the 20 settings in Simulation I,
and each of eBASCS, BASCS, and spatial were run on each
replicate. For Simulation II, 50 replicate data sets were generated for
each of the 5 settings, and each ofeBASCS,space+time,BASCS,
and spatial were run on each replicate.

4.2 Simulation I: high background

In Simulation I, the strength of the simulated background m0 is
defined as a function of the faint source region and intensity.
Specifically, we set m0 so that the expected number of background
and faint source counts is equal in the faint source region (defined as
the area where the PSF is greater than 3 per cent of its maximum).
Mathematically, we let q be the probability that an event from the faint
source falls within this source region and set m0 = qm2. This results in
very intense background that strongly overwhelms the fainter source,
allowing us to investigate to what extent eBASCS outperforms
BASCS and spatial in an extremely noisy environment.

At each MCMC iteration, updated allocations of the events to
sources or background are drawn from a Multinomial distribution
with probabilities given by the posterior distribution for the variable
s, computed with the latest sampled parameter values. From these
allocations, two metrics are computed to measure the classification
performance of eBASCS. Specifically, we report

Allocation recovery: The proportion of events originating from a
source that were indeed allocated to that source.

Allocation accuracy: The proportion of events allocated to a
source that actually originate from this source.

All proportions are averaged over both MCMC iterations and repli-
cate data sets. Averaging over the replicate data sets reduces sampling
variability, which can be substantial in low-count simulation settings
(between 2000 and 4000 counts with r ∈ {50, 10, 5}). Relying
on a single replicate data set might not accurately reflect the
relative performance of the methods. Tables 2 and 3 report the
two metrics, respectively, averaging over the 20 simulation settings.
Appendices D1 and D2 report complete results for each simulation
setting separately.

As expected, on average, eBASCS performs substantially better at
disentangling overlapping sources than either BASCS or spatial.
This provides strong evidence of the ability of the proposed method to
leverage the temporal information to extract discriminatory features.
Tables 2 and 3 show that all models are less able to properly allocating
events to the faint source than to the bright source. This is a direct
consequence of the simulation design. Under the simulation settings
where r is large (r ≥ 5), the faint source is completely overwhelmed
by the strong background. For example, with a relative intensity of r
= 5, the expected number of faint source and background events are
m2 = 400 and m0 ≈ 1920, respectively, while the expected number
of bright source events is m1 = 2000.

Fig. 4 shows that classification performance for the faint source
improves as its relative intensity grows (i.e. as r decreases). In
the simulation setting with r = 1 and d = 0.5, eBASCS had an
allocation recovery of 57.1 per cent of the bright source events and
56.4 per cent of faint source events (see Table D1 in Appendix D1).
That is, in a setting where the sources are extremely close, have
the same spectra and relative intensity, and are immersed in an
exceedingly strong background, eBASCS still correctly classifies
more than half of events from the sources. This is a substantial
improvement over BASCS, which had an allocation recovery of only
42.8 per cent of bright source events and 42.2 per cent of faint source
events in the same simulation setting (see Tables D4 and D7 in
Appendix D1).

The biggest improvement of eBASCS over the other algorithms is
its ability to distinguish faint sources from background, particularly
when the relative intensities of the bright and faint sources are
extreme. In such a case, BASCS and spatial sometimes mistake
the faint source for a random cluster of events from either the
brighter source or the background. In the middle panel of Fig. C1 in
Appendix C, for the simulation setting r = 10 the allocation recovery
of faint source events by BASCS and spatial is close to 0, which
indicates that these algorithms cannot separate the faint source from
the bright source or the background. eBASCS, however, is able to
better distinguish the faint source and has an allocation recovery of
around 20 per cent. Incorporating the temporal data allows eBASCS
to partially solve this problem and to provide more precise and
confident event allocations.

In addition to probabilistically attributing events to sources,
eBASCS provides estimates and error bars for the model parameters.
Figs E1 and E2 (in Appendix E) illustrate the statistical properties
of the estimates by plotting the posterior means of the two source
locations for all 50 replicate data sets under each of the 20 simulation
settings. Crosses indicate the true source locations. The variance
among replicate data sets of the posterior mean of the bright source’s
location increases as r decreases, i.e. as the faint source becomes
relatively brighter and the background intensifies compared to both
sources. (Recall that the background intensity is tied to the faint
source intensity.) The location of the faint source, however, is
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eBASCS 6167

Figure 3. Illustrative simulation design, with parameters r = 5, d = 2, b = 1. Left-hand panel: Scatter plot of simulated event locations for the bright source
(red), the dim source (blue), and the background (green). True source locations are marked by the black circles. Middle panel: Spectra used to simulate the
source and background event energies. Right-hand panel: Observed light curves for the sources and background.

Table 2. Allocation recovery for each source by eBASCS,
BASCS, and spatial. The proportions are averaged over
MCMC iterates, replicate data sets, and simulation settings.
A breakdown according to simulation settings appears in
Appendix D1.

True source eBASCS BASCS spatial

Bright source 0.771 0.723 0.651
Faint source 0.420 0.307 0.252
Background 0.831 0.822 0.722

Table 3. As in Table 2, for allocation accuracy. A break-
down according to simulation settings appears in Ap-
pendix D2.

Allocated source eBASCS BASCS spatial

Bright source 0.798 0.744 0.686
Faint source 0.424 0.310 0.264
Background 0.803 0.794 0.671

estimated more accurately, as it grows brighter (i.e. as r decreases).
Particularly, when it is bright enough for the algorithms to detect
an energy signature that is distinguishable from the background
spectrum.

The eBASCS algorithm yields fits that are at least as accurate
as BASCS. Even when the sources are closely located (i.e. d =
0.5), the eBASCS-fitted posterior means of the source locations
concentrate more closely around the true locations than those
provided by BASCS. With d = 0.5, the separation between sources
and background relies heavily on the energy model and thespatial
algorithm does not perform as well as either BASCS or eBASCS.

The specific simulation setting with r = 10 and d = 1 is illustrated
in Fig. 5 and shows that eBASCS is not only able to locate the
sources more accurately, as its posterior means cluster more closer
to the true location, but also more confidently, since the eBASCS
standard deviations (circling the posterior means in Fig. 5) are much
smaller than those of BASCS and spatial. This also holds for the
other model parameters (see Appendix F) for a full comparison of
the parameter estimates.

To investigate the number of counts eBASCS requires to produce
meaningful results, we repeated the simulation setting illustrated in
Fig. 5 (r = 10, d = 1) but with m1 = {800, 600, 400}; recall that m1

Figure 4. Average proportion of events originating from the faint source
that were correctly classified by the eBASCS (green), BASCS (red), and
spatial (blue) algorithms, for simulation settings (d = 1.5, r ∈ {1, 2, 5,
10, 50}), averaged over the replicate data sets. This plot is replicated for the
other simulation studies in Appendix C.

is the expected count for the brighter source and was originally set
to m1 = 2000 in Simulation I. Even with m1 = 400, corresponding
to about 100 counts per time bin, the posterior means of the source
locations cluster closely around their true values.

4.3 Simulation II: low background

The background intensities in Simulation I are by design the same
as the intensity of the faint source. The background in modern high-
resolution X-ray telescopes similar to Chandra, however, is typically
weaker than this. Simulation II assesses how eBASCS performs
in a more realistic and plausible noise environment. It considers
scenarios where the total background count is drawn from a Poisson
distribution with mean m0 = 100.

The allocation recovery and allocation accuracy for each algorithm
and setting in Simulation II are reported in Appendix G. Tables 4 and
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6168 A. D. Meyer et al.

Figure 5. Posterior means and standard deviations of the source locations for 10 replicate data sets generated under the simulation setting with r = 10 and
d = 1 and fit with the spatial (left-hand panel), BASCS (middle panel), and eBASCS (right-hand panel) algorithms. The points and ellipses represent the
posterior means and standard deviations for each of the 10 replicates; those for the bright source are plotted in blue and those for the faint source in red. Crosses
indicate the true location of the sources. eBASCS is able to locate the faint source much more consistently (the posterior means of the location are closer to the
true value) and confidently (the posterior standard deviations are much smaller) than the other methods.

Table 4. Allocation recovery. As in Table 2, for Simulation II by eBASCS,
BASCS, space+time, and spatial. A breakdown according to simu-
lation settings appears in Appendix G1.

True source eBASCS BASCS space+time spatial

Bright source 0.869 0.804 0.841 0.810
Faint source 0.495 0.346 0.499 0.334
Background 0.580 0.570 0.315 0.200

Table 5. Allocation accuracy. As in Table 4, for allocation accuracy. A
breakdown according to simulation settings appears in Appendix G2.

Allocated source eBASCS BASCS space+time spatial

Bright source 0.878 0.820 0.870 0.780
Faint source 0.484 0.334 0.338 0.482
Background 0.523 0.515 0.305 0.221

5 average these metrics across relative source intensities, r, to sum-
marize the overall performance of the algorithms in Simulation II.
The fact that the space+time algorithm outperforms BASCS for
both sources is not unexpected. Because both sources are simulated
with the same spectrum, the spectral data do not help distinguish
between the two sources (but do help to separate out background
events). Temporal data, however, do help to distinguish the two
sources. Since background counts are low in Simulation II, the added
benefit of spectral data are small compared to that of temporal data,
as illustrated by the almost imperceptible improvement of BASCS
over the spatial algorithm.

5 APPLICATION I: UV CETI

5.1 Data and models

UV Ceti (Gliese 65) is an M dwarf hierarchical binary system.
Both the main components of the binary, UV Cet A and UV Cet B
are flare stars that undergo unpredictable and dramatic changes in
their brightness over short time-scales. The UV Cet system was
observed with Chandra on 2001 Nov 26 (ObsID 1880) with the
LETGS+HRC-S configuration. The spatial resolution of Chandra
is sufficient to visually distinguish the two components, which are
separated by a distance of 1.4 arcsec [UV Cet B is itself a binary
(Benz, Conway & Gudel 1998), but with a separation of ∼1 mas,
it is not resolvable by Chandra]. These data have been previously
analysed to separate the two components (see Audard, Güdel &
Skinner 2003) using small extraction radii to limit contamination of
one source due to the other. However, UV Cet B undergoes a large
flare during the observation, and its effect is also visible in the light

curve of UV Cet A (see Fig. 2 Audard et al. 2003). This source is
thus a natural test case for the application of the eBASCS algorithm.
Since the HRC-S has no spectral discrimination, applying BASCS
to the 0th-order data to separate the events from the two sources
will not yield any improvements over the spatial algorithm. We
demonstrate below that the space+time algorithm does lead to a
significantly better allocation of events.

We selected the time bins for UV Cet using the procedure detailed
in Section 2.6. We chose six time bins that renders a temporal model
that is flexible enough to capture the source flare at ≈54 ks after the
start of observation (see Fig. 1), while maintaining a reasonable
number of model parameters to be fit with the space+time
algorithm (25 parameters i.e. 4 location, 3 relative intensity, and
18 time intensity parameters).

5.2 Results

To measure the difference of the space+time model over the
spatial model, we carry out a disputed event analysis. This
consists of comparing the allocations of the events in the two
algorithms and studying the characteristics of disputed events to
highlight the benefits of incorporating temporal information. For each
event i, the disentangling models output the posterior distribution of
si, the latent variable that encodes its origin. For each model, we set
the allocation of event i to the source it has the highest probability of
originating from, i.e. event i is allocated to the bright source if p(si

= bright) = max {p(si = bright), p(si = faint), p(si = background)}.
Fig. 6 shows that, as expected, most disputed events are located

in the zone where the source wings overlap, or in other words where
events are roughly equidistant from both cores. In this case, the
space+time algorithm performs a more careful analysis of events
in the overlap between the sources, i.e. in locations where it is most
difficult to separate the sources based on spatial data alone.

The recorded locations of the disputed events allocated to
UV Cet A by spatial, circling around the source’s core, indicate
that these events were assigned to UV Cet B by space+time on
the basis on temporal information. Indeed, as illustrated in the right-
hand panel Fig. 7, these events were all detected at the time coincident
with an observed flare attributed to UV Cet B. The right-hand panel
shows that this contamination of the flare of UV Cet B on UV Cet A is
completely removed by eBASCS, as the light curve of UV Cet A (as
allocated by eBASCS) does not exhibit a spike in its intensity at the
time of the flare. Fig. 7 also shows that the contamination of UV Cet A
on UV Cet B at early times (between 0ks and approximately 15ks),
i.e. when UV Cet A has higher intensity, is removed by eBASCS.

Table 6 reports the disagreement matrix (i.e. the number of events
allocated to each source by both algorithms). Adding temporal data
changed the allocation of 331 (out of 12 660) events, 149 of which
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Figure 6. Sky pixel locations of photon events disputed by the spatial
and space+time algorithms for UV Cet. Events coloured in black were
allocated to the same source by both algorithms. Events coloured in orange
were allocated to UV Cet B by the spatial algorithm and UV Cet A by
the space+time algorithm. Events coloured in green are the opposite, i.e.
allocated to UV Cet A by spatial but to UV Cet B by space+time.
Disputed background events are marked as magenta symbols (‘+’ denoting
those reallocated to a source, and ‘∗’ are those reallocated to the background
by space+time).

correspond to the contamination of UV Cet B’s flare on UV Cet A,
and 107 of which correspond to the contamination of UV Cet A on
UV Cet B in the early stages of the observation period. Removing
these contaminations would not have been possible without mod-
elling the temporal information, and clearly shows the improvement
of space+time over the spatial algorithm.

6 APPLICATION II : HBC 515 A

6.1 Data and models

HBC 515 A is a component of the well-separated weak-lined T
Tauri multicomponent system HBC 515 (Reipurth, Herbig & Aspin
2010). HBC 515 A is a binary, composed of two variable stars,
HBC 515 Aa and HBC 515 Ab, separated by a distance of approx-
imately 0.5 arcsec. The system was observed with Chandra/ACIS-
S on 2011 January 8 (ObsID 12383). The overlap of the PSFs
of the two components is significantly larger than UV Cet, and
separating them through non-overlapping extraction regions would
lead to a significant loss in the number of counts available for
follow-up analyses. Such an analysis was performed by Principe
et al. (2017), who used a complex set of regions covering the cores
and the diametrically opposed crescent-shaped wings to extract the
events and conduct spectral and temporal analyses. They found that
the spectra accumulated over the duration of the observation were
similar and that there was no evidence for temporal variability. In
the following, we demonstrate that even in this challenging data
set, eBASCS is able to recover small temporal changes to both the
intensities and spectra of the two components. Not only do the data
show that the spectra of both stars vary stochastically over time-

scales of a few ks, but that at different times different components
are observed to be spectrally harder.

The HBC 515 A data set is comprised of 14 601 events recorded
over 28.76 ks. We first extract the events over a range of sky pixels
large enough to include both components of the binary, but exclude
other components of the system (see Fig. 8).13

Since the ACIS detectors do allow for event energy discrimination,
we apply the eBASCS algorithm to the HBC 515 A data, allowing
us to characterize the time variability of both HBC 515 Aa and
HBC 515 Ab. We use eBASCS with the number of sources fixed at S
= 2, and for simplicity adopt the King profile density (Appendix A)
as the PSF model. We use six equally spaced time bins to model
temporal variations, as this choice presents a practical trade-off
between preserving the flexibility in modeling while limiting the size
of the parameter space. We model the counts spectra in three different
ways: first, using the single-Gamma distribution (equation 6) for
each source; secondly, using the two-component mixture of Gamma
distributions (equation 7) for each source; and thirdly, using a two
component mixture at each time bin for each source (equation 11). As
discussed by Jones et al. (2015), a crude spectral model that roughly
tracks the shape of the astrophysical model spectrum weighted by the
effective area has sufficient power to distinguish spectral variations
between the sources. We use a uniform spectral model for the
background.

6.2 Results

The two-component mixture of Gamma distributions (equation 7)
fits the observed counts spectra better than the single-Gamma
distribution (see Fig. 9). Unfortunately, the very few counts in each
time bin per source leads to large uncertainties in the parameter
estimates under the spectral model that incorporates a two component
mixture at each time bin. Moreover, the spectra of the sources do not
appear to be variable enough to justify the complexity of estimating
different spectral parameters for each source at each time bin. Thus,
we adopt the two-component mixtures for each source, but do not
allow them to vary between time bins.

Table H1 in Appendix H shows that parameter values fitted by
BASCS are recovered by eBASCS with similar precision. This
demonstrates the consistency and well-definedness of eBASCS.
Both models return a posterior mean of the relative intensity of
the background of ≈0; this is a consequence of the cropping of the
image described in Section 6.1.

Our estimates of the two-component Gamma mixture model
parameters indicate that HBC 515 Aa and HBC 515 Ab have very
similar spectra (see middle panel of Fig. 8), as Principe et al. (2017)
suggested.

eBASCS is able to recover temporal changes in the intensities
of the two components (see Table 7 and the right-hand panel of
Fig. 8). The estimated temporal parameters shown in Table 7 reveal
statistical evidence for a difference in the light curves of HBC 515 Aa
and HBC 515 Ab. Indeed, the error bars (computed using 16 per cent
and 84 per cent posterior quantiles) of the eBASCS-fitted temporal
parameters λ1,k and λ2,k do not significantly overlap in five of the

13As a practical matter, in order to allow for better and faster convergence, it
is important to ensure that the every part of the spatial window is covered by
the wings of the PSF wherever it may be centred, as otherwise it is possible for
one of the fitted source locations to stick in a random cluster of background
events too distant from the sources’ cores, or in a more event-sparse region
of the image.
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Figure 7. Left-hand panel: Light curves for UV Cet A, UV Cet B, and the background obtained from an single Monte Carlo iteration of the space+time
algorithm. There is moderate contamination from the UV Cet B’s flare (at around 53ks) on the background. This contamination is less severe than with the
spatial algorithm; space+time allocated 84 events to the background at the time of the UV Cet B flare, while spatial allocated 106 events to the
background. (Such contamination is also a consequence of the approximate nature of our PSF model.) Right-hand panel: Arrival times of events disputed by the
spatial and space+time algorithms. The orange bars indicate events that are moved from UV Cet B to UV Cet A, and green bars indicate events that are
moved from UV Cet A to UV Cet B by the space+time model. Events allocated to the same source by both algorithms are not included in the plot. Notice
that space+time is successful in identifying the contamination in UV Cet A due to the large flare of UV Cet B and allocating those events to UV Cet B.

Table 6. Disagreement matrix between the allocations made
by the space+time and spatial algorithms. Columns
correspond to the allocations made by spatial and rows
correspond to allocations made by space+time. For exam-
ple, 149 events that were attributed to UV Cet A by spatial
were instead allocated to UV Cet B by space+time.

UV Cet B UV Cet A Background

UV Cet B 8388 149 28
UV Cet A 107 3560 19
Background 23 5 381

six time bins. (Only error bars for λ1,4 and λ2,4 show a substantial
overlap.) The right-hand panel of Fig. 8 illustrates the difference in
the separated light curves; HBC 515 Aa is stable for the first 15ks
and then starts dimming, whereas HBC 515 Ab has a u-shaped light
curve.

To further investigate spectral differences between the sources, we
analyse variations in their hardness ratios, shown in Fig. 10. First,
we sampled 500 allocations of the recorded events to HBC 515 Aa
and HBC 515 Ab from the posterior distribution of s (i.e. the
latent variable encoding the origin of the observed events, see
Section 2.2) under eBASCS. Then, for each allocation, we computed
the spectral hardness of the separated sources in the soft (S:0.3–
0.9 keV), medium (M:0.9–2 keV), and hard (H:2-8 keV) bands,
in each of 30 time intervals of length 1 ks. This yields, for each
separated source at each time interval, the posterior distribution
of spectral hardness in the top (log S

M
) and bottom (log M

H
) panels

of Fig. 10. Fig. 10 shows that both sources exhibit variations in
their spectra over the observation period. eBASCS is able to iden-
tify time-scales over which HBC 515 Aa and HBC 515 Ab exhibit
differences in their hardness ratios (see caption of Fig. 10 for
details).

7 SUMMARY

We have presented eBASCS, an extension to the BASCS method
developed by Jones et al. (2015) to leverage temporal variability
signatures in high-energy astronomical sources with overlapping
PSFs to perform a better separation of the photon events. The method
integrates the temporal information into the disentangling algorithm
via a flexible model that allows us to extract discriminatory features
from the observed data. The assumption of independence of the
brightness across time bins allows the model to flexibly capture
temporal variability.

Several enhancements to eBASCS are in progress. We plan
to enhance the scalability of the method, while maintaining its
current flexibility, by modelling the temporal information with simple
continuous-time processes; incorporate instrument sensitivity and
model the spectra using physically meaningful models for the source
spectra; explore extensions of our spectral modelling to grating
data (e.g. to separate photons in overlapping lines in the Chandra
LETGS+HRC-S UV Cet observation); apply our methodology to
astronomical systems that exhibit higher contrast in the relative
intensities of their components (e.g. weak jets of X-ray bright
quasars); explore observations from instruments with lower spatial
resolution (such as NuSTAR) to investigate whether eBASCS is able
to separate spatially unresolved sources on the basis of their spectral
and temporal variations; and finally, extend the method to allow the
number of sources in the model to be estimated by carrying out both
model comparisons for different assumed numbers of sources [e.g.
using AIC (Akaike 1974) or BIC (Schwarz 1978)] as well as using
a more sophisticated Reversible Jump MCMC method (Green 1995;
Jones et al. 2015).

Simulation studies show that eBASCS achieves more accurate
separation of photons from overlapping sources than either BASCS
or the baseline spatial method. In particular, the proposed
method further removes the contamination at the sources’ cores and
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Figure 8. Chandra ACIS-S observation of the binary system HBC 515 A. Left-hand panel: Scatter plot of recorded event locations with the posterior means of
the locations of HBC 515 Aa and HBC 515 Ab computed with BASCS plotted as red and blue crosses, respectively. Middle panel: Histogram of spectral data
with source spectra superimposed (using the posterior mean of the spectral parameters fitted with BASCS) . Right panel: Light curves for the two separated
components of HBC 515 A obtained by allocations made by eBASCS, superimposed with the eBASCS-fitted light curves (grey). The red and blue curves denote
the average of the allocated light curves over 500 iterations of eBASCS, the dark grey horizontal lines denote the posterior mean of the temporal parameters
fitted by eBASCS, and the light grey regions denote the intervals between the 16 per cent and 84 per cent posterior quantiles (see Table 7).

Figure 9. Fitting a single-Gamma distribution and a two-component mixture
of Gammas distributions to the spectral data for HBC 515 Aa. The histogram
shows the observed spectrum of the HBC 515 A system (i.e. all sources
combined). Note that the middle panel of Fig. 8 indicates that HBC 515 Aa
and HBC 515 Ab have very similar spectra. The solid line is the fitted two-
component mixture of Gammas and the dashed line is fitted the single Gamma
model.

produces a better disambiguation of the event allocation. eBASCS
retains the advantages of performing inference under the Bayesian
paradigm (i.e. uncertainty quantification, joint parameter inference,
and probabilistic assignment of events) from its predecessor.

The probabilistic allocation of events to sources can be incorpo-
rated in detailed follow-up spectral and temporal analyses. In partic-
ular, this uncertainty can be accounted for by repeatedly sampling
event allocations from the posterior distribution of s, conducting the
follow-up analysis according to the sampled allocations, and finally
combining the results from each individual analysis.

Our application of eBASCS to the data sets UV Cet and
HBC 515 A shows that our proposed model performs a more care-
ful separation of the observed sources than other methods. The

Table 7. Temporal parameters of HBC 515 A
fitted with eBASCS. λj,k denotes the relative
intensity of source j in time bin k. Here, j
= 1 corresponds to HBC 515 Aa, j = 2 to
HBC 515 Ab and j = 3 to the background. The
first column gives the posterior mean of the
corresponding parameters, and columns ‘q16’
and ‘q84’, respectively, denote their 16 per cent
and 84 per cent posterior quantiles.

Mean q16 q84

HBC 515 Aa
λ1,1 0.175 0.170 0.180
λ1,2 0.173 0.168 0.178
λ1,3 0.178 0.173 0.183
λ1,4 0.166 0.161 0.170
λ1,5 0.157 0.152 0.161
λ1,6 0.152 0.147 0.157

HBC 515 Ab
λ2,1 0.208 0.201 0.215
λ2,2 0.163 0.157 0.170
λ2,3 0.139 0.132 0.145
λ2,4 0.160 0.153 0.167
λ2,5 0.167 0.161 0.174
λ2,6 0.163 0.156 0.169

Background
λ3,1 0.170 0.036 0.313
λ3,2 0.168 0.034 0.310
λ3,3 0.164 0.034 0.300
λ3,4 0.168 0.034 0.310
λ3,5 0.167 0.035 0.306
λ3,6 0.164 0.034 0.302

space+time model almost eliminates the contamination of the
flare of UV Cet B on UV Cet A. ApplyingeBASCS to the HBC 515 A
data allows us to recover temporal changes in the intensities of
HBC 515 Aa and HBC 515 Ab and to identify time intervals where
the hardness ratios of the two components appear to differ.

Based on the Simulation results reported in Section 4 and the
general statistical principle that including more data/information
in a model yields more reliable estimates, we expect the overall
performance of eBASCS to exceed that of the competing algorithms.

MNRAS 506, 6160–6180 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/506/4/6160/6294476 by guest on 18 D
ecem

ber 2021



6172 A. D. Meyer et al.

Figure 10. Spectral and intensity variability in the components of HBC 515 A, constructed using event allocations from 500 iterations of eBASCS. Top and
bottom panels: Spectral hardness in the soft (S:0.3–0.9 keV), medium (M:0.9–2 keV), and hard (H:2–8 keV) bands (top: CSM = log S

M
; bottom: CMH = log M

H
)

are shown for events grouped into 1 ks bins for both the HBC 515 Aa (red) and HBC 515 Bb (blue) components. The posterior distributions of spectral colour
are shown oriented vertically for each time bin. These so-called violin plots are normalized so that the modes have the same horizontal displacements; thicker
part of each colour segment denotes a higher posterior probability of the ordinate in a given time bin. In both panels, the left halves of the shapes represent
HBC 515 Aa, and the right halves represent HBC 515 Ab in order to facilitate comparisons. Counts for the individual violin plots for HBC 515Aa vary from
49 to 76 (soft), 146 to 196 (medium), and 43 to 85 (hard); counts for HBC 515Ab vary from 28 to 50 (soft), 84 to 150 (medium), and 22 to 55 (hard). Middle
panel: Intensity variations in the combined broad (B = S + M + H:0.3-8 keV) passband are shown for the same time binning and demonstrate the evolution of
the brightness of each component. The fitted intensities λi,j in each time segment (see Table I2) are shown as grey bands. Overall the panels illustrate several
instances of spectral changes, e.g. HBC 515 Aa is spectrally harder at the beginning of the observation (see CMH), and is spectrally softer near the 25 ks mark
(see CSM); HBC 515 Ab shows increasing spectral hardening as it recovers from its minimum brightness.
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Improvement is expected to be even more significant on systems with
more substantial spatial overlap and distinct light curves among the
sources.
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APPENDIX A: KING PROFILE DENSITY

The PSF used to generate the data in the simulation studies and fit
the models (both in the simulations and data set applications) is the
2D King profile, as in Jones et al. (2015), whose functional form is
given by

f (d) = C

(1 + (d/d0)2)η
, (A1)

where

d(x, y, w)

=
√

(x cos w + y sin w)2 + (y cos w − x sin w)2/(1 − ε)2.

(A2)

The constant C is determined numerically. The parameters are chosen
to be off-axis angle θ = 0 arcmin, core radius d0 = 0.6 arcsec, power-
law slope η = 1.5, and ellipticity ε = 0.00574.

APPENDIX B: TIME-BIN SELECTION
ALGORITHM

The following time bin selection algorithms isolates transient vari-
ations and flares in the observed system light curve. The algorithm
initially evenly bins the temporal data, into ≈50 bins, then selects
breakpoints in between which the largest variation in brightness
occur, and finally applies a small deviation to the final breakpoints
to avoid splitting the data too close the flares, for instance. The
parameters (to be chosen by the user) for this algorithm are as follows:

(i) The number of thin bins k in the initial binning of the temporal
data,

(ii) The number of breakpoints N to select,
(iii) The deviation d applied to the selected breakpoints.

The algorithm is designed as follows:

(i) Thinly bin the observation period [0, T] into k bins.
(ii) Count the number of observations Xi in each time bin, and

denote by X = (X1, X2, . . . , Xk) the vector containing the counts in
each bin.

(iii) Compute the vector of first-order differences 
X = (X2 − X1,
. . . , Xk − Xk − 1).

(iv) Identify the N maximum values of 
X and set them as
breakpoints.

(v) If two breakpoints occur at consecutive bins, only keep one
corresponding the higher value of 
X. If three breakpoints occur at
consecutive bins, delete the middle one. This might cause the final
number of breakpoints to be less than N, hence running the algorithm
with different values of N is recommended to produce a satisfactory
selection.
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(vi) Denote by {b1, . . . , bN} the selected breakpoints. Note that
{b1, . . . , bN} is a subset of 
X. For each bi:

(a) If bi = 
Xj for some j such that 
Xj ≥ 0, then set b∗
i =

bi − d.
(b) If bi = 
Xj for some j such that 
Xj ≤ 0, then set

b∗
i = bi + d.

(vii) The algorithm returns {b∗
1, . . . , b

∗
N }, the final breakpoints.

APPENDIX C: SIMULATION I: GRAPHICAL
COMPARISON OF PROPORTION OF
CORRECTLY ALLOCATED EVENTS
ACCORDING TO SIMULATION SETTINGS

Figs C1–C4 present a graphical summary of the results given in
Sections D1 and D2.

Figure C1. Allocation recovery for the bright source (left), faint source (middle), and background (right) by eBASCS (green), BASCS (red), and spatial
(blue), for simulation settings (d = 0.5, r ∈ {1, 2, 5, 10, 50}), averaged over the replicate data sets.

Figure C2. As in Fig. C1, for d = 1.

Figure C3. As in Fig. C1, for d = 1.5.

MNRAS 506, 6160–6180 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/506/4/6160/6294476 by guest on 18 D
ecem

ber 2021



eBASCS 6175

Figure C4. As in Fig. C1, for d = 2.

APPENDIX D: SIMULATION I RESULTS

D1 Simulation I allocation recovery (fraction of events from a
component that are correctly allocated to the same component)

Tables D1, D2, and D3 give the allocation recovery of eBASCS
for the bright source, faint source, and background, respectively.
Tables D4, D5, and D6 give the allocation recovery of BASCS for the
bright source, faint source and background, respectively. Tables D7,

Table D1. Allocation recovery for the bright source by eBASCS,
averaged over MCMC iterates and replicate data sets.

r = 50 r = 10 r = 5 r = 2 r = 1

d = 0.5 0.948 0.835 0.735 0.630 0.542
d = 1 0.946 0.846 0.784 0.677 0.572
d = 1.5 0.943 0.862 0.801 0.701 0.610
d = 2 0.947 0.870 0.816 0.720 0.633

Table D2. As in Table D1, for the faint source.

r = 50 r = 10 r = 5 r = 2 r = 1

d = 0.5 0.025 0.201 0.383 0.479 0.534
d = 1 0.055 0.359 0.439 0.526 0.582
d = 1.5 0.143 0.436 0.502 0.569 0.610
d = 2 0.246 0.503 0.555 0.606 0.633

Table D3. As in Table D1, for the background.

r = 50 r = 10 r = 5 r = 2 r = 1

d = 0.5 0.690 0.808 0.855 0.895 0.916
d = 1 0.689 0.810 0.853 0.893 0.915
d = 1.5 0.689 0.811 0.852 0.892 0.913
d = 2 0.686 0.807 0.849 0.891 0.913

Table D4. As in Table D1, for BASCS.

r = 50 r = 10 r = 5 r = 2 r = 1

d = 0.5 0.913 0.826 0.719 0.547 0.420
d = 1 0.909 0.802 0.726 0.601 0.477
d = 1.5 0.920 0.835 0.762 0.646 0.540
d = 2 0.922 0.846 0.783 0.677 0.580

D8, and D9 give the allocation recovery of spatial for the bright
source, faint source and background respectively.

D2 Simulation I allocation accuracy (fraction of events
correctly allocated to the component)

Tables D10, D11, and D12 give the allocation accuracy of eBASCS
for the bright source, faint source, and background, respectively.

Table D5. As in Table D1, for the faint source by BASCS.

r = 50 r = 10 r = 5 r = 2 r = 1

d = 0.5 0.045 0.070 0.141 0.287 0.380
d = 1 0.055 0.197 0.285 0.397 0.483
d = 1.5 0.060 0.286 0.378 0.477 0.541
d = 2 0.097 0.378 0.456 0.537 0.580

Table D6. As in Table D1, for the background by BASCS.

r = 50 r = 10 r = 5 r = 2 r = 1

d = 0.5 0.665 0.797 0.849 0.893 0.914
d = 1 0.665 0.799 0.846 0.890 0.913
d = 1.5 0.665 0.799 0.844 0.888 0.910
d = 2 0.664 0.796 0.841 0.886 0.908

Table D7. As in Table D1, for spatial.

r = 50 r = 10 r = 5 r = 2 r = 1

d = 0.5 0.874 0.767 0.652 0.478 0.354
d = 1 0.870 0.737 0.650 0.517 0.388
d = 1.5 0.879 0.770 0.686 0.552 0.437
d = 2 0.880 0.782 0.703 0.576 0.462

Table D8. As in Table D1, for the faint source by spatial.

r = 50 r = 10 r = 5 r = 2 r = 1

d = 0.5 0.044 0.052 0.113 0.226 0.300
d = 1 0.050 0.170 0.248 0.330 0.396
d = 1.5 0.050 0.247 0.319 0.392 0.437
d = 2 0.080 0.318 0.378 0.433 0.459
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Table D9. As in Table D1, for the background by spatial.

r = 50 r = 10 r = 5 r = 2 r = 1

d = 0.5 0.437 0.688 0.772 0.845 0.879
d = 1 0.444 0.690 0.769 0.842 0.876
d = 1.5 0.439 0.688 0.764 0.838 0.872
d = 2 0.447 0.682 0.761 0.833 0.870

Table D10. Allocation accuracy for the bright source by eBASCS,
averaged over MCMC iterates, and replicate data sets.

r = 50 r = 10 r = 5 r = 2 r = 1

d = 0.5 0.950 0.844 0.789 0.669 0.564
d = 1 0.951 0.866 0.897 0.701 0.610
d = 1.5 0.954 0.876 0.822 0.725 0.645
d = 2 0.956 0.883 0.835 0.756 0.670

Table D11. As in Table D10, for the faint source.

r = 50 r = 10 r = 5 r = 2 r = 1

d = 0.5 0.0009 0.168 0.338 0.487 0.571
d = 1 0.016 0.363 0.456 0.550 0.608
d = 1.5 0.078 0.459 0.535 0.603 0.641
d = 2 0.186 0.527 0.579 0.647 0.672

Table D12. As in Table D10, for the background.

r = 50 r = 10 r = 5 r = 2 r = 1

d = 0.5 0.632 0.782 0.828 0.877 0.900
d = 1 0.635 0.781 0.828 0.876 0.899
d = 1.5 0.641 0.781 0.826 0.871 0.897
d = 2 0.639 0.777 0.824 0.870 0.894

Table D13. As in Table D10, for BASCS.

r = 50 r = 10 r = 5 r = 2 r = 1

d = 0.5 0.946 0.821 0.725 0.562 0.428
d = 1 0.947 0.835 0.753 0.620 0.504
d = 1.5 0.948 0.848 0.782 0.667 0.570
d = 2 0.948 0.861 0.800 0.700 0.611

Tables D13, D14, and D15 give the allocation accuracy of BASCS
for the bright source, faint source, and background, respectively.
Tables D16, D17, and D18 give the allocation accuracy of spatial
for the bright source, faint source, and background, respectively.

APPENDIX E: SIMULATION I: SENSITIVITY
OF POSTERIOR SOURCE LOCATION TO
PARAMETER SETTINGS

Figs E1 and E2 show the true location of sources and their mean
posterior locations under eBASCS (top part) and BASCS (bottom

Table D14. As in Table D10, for the faint source by BASCS.

r = 50 r = 10 r = 5 r = 2 r = 1

d = 0.5 0.010 0.031 0.109 0.301 0.422
d = 1 0.011 0.176 0.278 0.420 0.505
d = 1.5 0.026 0.311 0.403 0.510 0.566
d = 2 0.063 0.394 0.479 0.565 0.614

Table D15. As in Table D10, for the background by BASCS.

r = 50 r = 10 r = 5 r = 2 r = 1

d = 0.5 0.611 0.770 0.822 0.875 0.900
d = 1 0.612 0.770 0.824 0.874 0.897
d = 1.5 0.618 0.771 0.818 0.868 0.894
d = 2 0.610 0.766 0.818 0.866 0.890

Table D16. As in Table D10, by spatial.

r = 50 r = 10 r = 5 r = 2 r = 1

d = 0.5 0.922 0.770 0.665 0.492 0.358
d = 1 0.923 0.783 0.693 0.549 0.430
d = 1.5 0.923 0.797 0.719 0.594 0.489
d = 2 0.927 0.811 0.739 0.618 0.515

Table D17. As in Table D10, for the faint source by spatial.

r = 50 r = 10 r = 5 r = 2 r = 1

d = 0.5 0.007 0.013 0.102 0.236 0.352
d = 1 0.005 0.142 0.251 0.368 0.434
d = 1.5 0.014 0.268 0.355 0.436 0.481
d = 2 0.041 0.357 0.424 0.484 0.516

Table D18. As in Table D10, for the background by spatial.

r = 50 r = 10 r = 5 r = 2 r = 1

d = 0.5 0.347 0.637 0.730 0.815 0.853
d = 1 0.347 0.635 0.726 0.809 0.849
d = 1.5 0.344 0.634 0.719 0.802 0.843
d = 2 0.352 0.627 0.717 0.796 0.836

part) for all data set replicates under the simulation parameter setting
indicated in the top left corner of the plot (for Simulation I). Each dot
represents the mean posterior location of the source (blue for bright
source, red for faint source) for one data set replicate, and the large
‘X’s of corresponding colour indicate the true locations.
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Figure E1. Sensitivity of location determination under eBASCS as a function of source separation (d) and relative strength (r). Red and blue dots give the mean
posterior locations for each data set replicate of the bright and faint sources, respectively, under the simulation setting indicated in the top-left corner of the box.
The large ‘X’s of corresponding colour indicate the true locations.

Figure E2. As in Fig. E1, for BASCS.
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APPENDIX F: SIMULATION I: PARAMETER
ESTIMATES

Table F1 shows the true and estimated parameter values for a single
data set replicate under the simulation settings d = 0.5, r = 1, for the
Simulation I. The posterior means of the fitted location and intensity

parameters are closer to their respective true values when inferred
by eBASCS compared to BASCS and spatial. The posterior
quantile intervals are also narrower for eBASCS. This shows
that eBASCS is able to estimate the model parameters shared
with BASCS and spatial more accurately and more confi-
dently.

Table F1. eBASCS (left), BASCS (middle), and spatial (right) parameter estimates, resulting from an application of the models to a
simulation data set with settings d = 0.5, r = 1. Parameters xj and yj denote the spatial coordinates of the sources, wj their relative intensities
(j = 1 corresponds to the bright source, j = 2 to the faint source and j = 3 to the background). γ j and αj, respectively, denote the mean and
shape parameters of the gamma distributions. λj, k denotes the relative time intensity of source j in time bin k. The ‘truth’ column gives the
parameters values used to generate the data. The ‘mean’ column gives the posterior mean of the corresponding parameters, and the ‘(q16,q84)’
column reports the 16 per cent and 84 per cent posterior quantiles.

eBASCS BASCS spatial
Truth Mean (q16,q84) Mean (q16,q84) Mean (q16,q18)

x1 − 0.25 − 0.257 (−0.30, −0.210) − 0.270 (−0.358, −0.189) − 0.279 (−0.365 , −0.192)
y1 0 0.032 (0.006,0.058) 0.037 (−0.008,0.081) 0.046 (−0.005,0.097)
x2 0.25 0.229 (0.198,0.258) 0.208 (0.152,0.271) 0.189 (0.134,0.245)
y2 0 0.025 (0.002,0.047) 0.019 (−0.014,0.052) 0.022 (−0.010,0.054)

w1 0.138 0.121 (0.105,0.136) 0.113 (0.079,0.146) 0.099 (0.068,0.130)
w2 0.138 0.145 (0.130,0.161) 0.153 (0.120,0.187) 0.156 (0.126,0.187)
w3 0.724 0.734 (0.729,0.739) 0.734 (0.729,0.739) 0.745 (0.739,0.750)

γ 1 1832 1778.132 (1732.254,1825.486) 1831.655 (1821.378,1841.74) ∗ ∗
α1 3.18 3.212 (3.017,3.407) 3.313 (3.166,3.519) ∗ ∗
γ 2 1832 1871.892 (1831.783,1911.981) 1831.113 (1817.616,1843.494) ∗ ∗
α2 3.18 3.336 (3.158,3.512) 3.208 (3.121,3.323) ∗ ∗
λ1,1 0.05 0.039 (0.011,0.069) ∗ ∗ ∗ ∗
λ1,2 0.15 0.199 (0.170,0.227) ∗ ∗ ∗ ∗
λ1,3 0.3 0.291 (0.262,0.318) ∗ ∗ ∗ ∗
λ1,4 0.5 0.471 (0.433,0.508) ∗ ∗ ∗ ∗
λ2,1 0.5 0.511 (0.465,0.557) ∗ ∗ ∗ ∗
λ2,2 0.3 0.234 (0.210,0.258) ∗ ∗ ∗ ∗
λ2,3 0.15 0.160 (0.134,0.186) ∗ ∗ ∗ ∗
λ2,4 0.05 0.095 (0.060,0.130) ∗ ∗ ∗ ∗
λ3,1 0.25 0.245 (0.240,0.249) ∗ ∗ ∗ ∗
λ3,2 0.25 0.252 (0.247,0.256) ∗ ∗ ∗ ∗
λ3,3 0.25 0.257 (0.252,0.261) ∗ ∗ ∗ ∗
λ3,4 0.25 0.247 (0.242,0.252) ∗ ∗ ∗ ∗
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APPENDIX G: SIMULATION II RESULTS

G1 Simulation II: Allocation recovery

Tables G1, G2, G3, G4 give the allocation recoveries of eBASCS,
BASCS, spatial, and space+time (respectively) in Simula-
tion II.

G2 Simulation II: Allocation accuracy

Tables G5, G6, G7, and G8 give the allocation accuracies of
eBASCS, BASCS, spatial, and space+time (respectively) in
Simulation II.

Table G1. Allocation recovery by eBASCS, averaged over MCMC iterates
and replicate data sets.

r = 50 r = 10 r = 5 r = 2 r = 1

Bright source 0.955 0.917 0.883 0.826 0.763
Faint source 0.077 0.410 0.539 0.682 0.766
Background 0.616 0.609 0.588 0.560 0.525

Table G2. As in Table G1, for BASCS.

r = 50 r = 10 r = 5 r = 2 r = 1

Bright source 0.926 0.889 0.837 0.738 0.631
Faint source 0.057 0.197 0.331 0.509 0.638
Background 0.592 0.596 0.579 0.557 0.525

Table G3. As in Table G1, for spatial.

r = 50 r = 10 r = 5 r = 2 r = 1

Bright source 0.892 0.862 0.812 0.719 0.617
Faint source 0.061 0.186 0.323 0.496 0.624
Background 0.335 0.337 0.313 0.289 0.251

Table G4. As in Table G1, for space+time.

r = 50 r = 10 r = 5 r = 2 r = 1

Bright source 0.895 0.891 0.862 0.808 0.747
Faint source 0.148 0.404 0.524 0.666 0.751
Background 0.374 0.354 0.323 0.283 0.239

Table G5. Allocation accuracy of eBASCS, for d = 1, averaged over
MCMC iterates and replicate data sets.

r = 50 r = 10 r = 5 r = 2 r = 1

Bright source 0.962 0.927 0.896 0.837 0.769
Faint source 0.037 0.413 0.519 0.678 0.771
Background 0.564 0.551 0.519 0.503 0.478

Table G6. As in Table G5, for BASCS.

r = 50 r = 10 r = 5 r = 2 r = 1

Bright source 0.960 0.903 0.850 0.747 0.638
Faint source 0.012 0.188 0.323 0.509 0.639
Background 0.549 0.526 0.527 0.499 0.474

Table G7. As in Table G5, for spatial.

r = 50 r = 10 r = 5 r = 2 r = 1

Bright Source 0.946 0.890 0.840 0.741 0.635
Faint Source 0.016 0.183 0.326 0.510 0.636
Background 0.246 0.228 0.206 0.179 0.142

Table G8. As in Table G5, for space+time.

r = 50 r = 10 r = 5 r = 2 r = 1

Bright source 0.950 0.917 0.890 0.830 0.765
Faint source 0.050 0.410 0.513 0.673 0.764
Background 0.284 0.252 0.236 0.187 0.144

APPENDIX H: HBC 515 A PARAMETER
ESTIMATES

Table H1 compares estimates for model parameters (fitted to the
HBC 515 A data) shared by eBASCS and BASCS (i.e. spatial and
spectral parameters).

Table H1. HBC 515 A fitted spatial and spectral parameters under eBASCS
(left) and BASCS (right). xj and yj denote the spatial coordinates of source j,
wj denotes the relative intensity. γ j, l denotes the mean parameter of the lth
gamma distribution component of source j’s spectral model (similarly with
αj, l for the shape parameter). π j denotes the mixture weight for source j’s
mixture-of-gammas spectral model. j = 1 corresponds to HBC 515 Aa, j = 2
to HBC 515 Ab and j = 3 to the background. The ‘mean’ columns give the
posterior means of the corresponding parameters, and columns ‘(q16,q84)’
give the 16 per cent and 84 per cent posterior quantiles.

eBASCS BASCS

Mean (q16, q84) Mean (q16, q84)

x1 5.696 (5.688, 5.705) 5.697 (5.688, 5.704)
y1 7.962 (7.955, 7.969) 7.961 (7.954, 7.969)
x2 6.883 (6.871, 6.894) 6.881 (6.871, 6.895)
y2 7.669 (7.658, 7.679) 7.670 (7.659, 7.680)

w1 0.614 (0.607, 0.622) 0.615 (0.607, 0.622)
w2 0.386 (0.378, 0.393) 0.385 (0.378, 0.393)
w3 0.000 (0.000, 0.000) 0.000 (0.000, 0.000)

γ 1,1 1110.309 (1092.170, 1128.832) 1116.860 (1094.428, 1134.366)
γ 1,2 2278.711 (2207.070, 2351.687) 2328.049 (2223.891, 2379.936)
α1,1 10.440 (9.675, 11.197) 10.227 (9.482, 11.042)
α1,2 3.516 (3.376, 3.655) 3.631 (3.396, 3.691)
γ 2,1 1110.350 (1084.721, 1135.518) 1112.911 (1077.943, 1133.171)
γ 2,2 2244.203 (2132.280, 2353.022) 2236.035 (2106.015, 2334.583)
α2,1 11.643 (10.339, 12.949) 11.980 (10.468, 13.490)
α2,2 3.680 (3.459, 3.892) 3.673 (3.447, 3.867)
π1 0.601 (0.572, 0.630) 0.612 (0.578, 0.641)
π2 0.627 (0.583, 0.671) 0.619 (0.571, 0.665)
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APPENDIX I: UV CETI PARAMETER
ESTIMATES

Table I1 gives estimates for the spatial model parameters,
when fitted to the UV Cet data. Table I2 gives estimates for the
space+time model parameters.

Table I1. UV Cet fitted parameters under the
spatial model. xj and yj denote the spatial
coordinates of source j, wj denotes the relative
intensity. j = 1 corresponds to UV Cet B, j = 2
corresponds to UV Cet A and j = 3 corresponds
to the background. The ‘mean’ column gives
the posterior means of the corresponding pa-
rameters, and the ‘(q16,q84)’ column gives the
16 per cent and 84 per cent posterior quantiles.

Mean q16 q84

x1 28.074 28.052 28.096
y1 43.503 43.481 43.525
x2 39.008 38.975 39.042
y2 48.199 48.164 48.235

w1 0.659 0.654 0.664
w2 0.286 0.282 0.291
w3 0.055 0.052 0.058

Table I2. UV Cet fitted parameters under the space+time model.
xj and yj denote the spatial coordinates of source j, wj denotes the
relative intensity. λj, k denotes the relative intensity of source j in time
bin k. j = 1 corresponds to UV Cet B, j = 2 corresponds to UV Cet A
and j = 3 corresponds to the background.The ‘mean’ column gives the
posterior means of the corresponding parameters, and the ‘(q16,q84)’
column gives the 16% and 84 per cent posterior quantiles.

Mean q16 q84

x1 28.074 28.052 28.095
y1 43.503 43.481 43.526
x2 39.011 38.977 39.045
y2 48.198 48.163 48.233

w1 0.660 0.655 0.665
w2 0.286 0.282 0.291
w3 0.053 0.050 0.056

λ1,1 0.064 0.061 0.067
λ1,2 0.224 0.219 0.228
λ1,3 0.102 0.099 0.105
λ1,4 0.451 0.445 0.456
λ1,5 0.060 0.058 0.063
λ1,6 0.099 0.096 0.103

λ2,1 0.395 0.386 0.404
λ2,2 0.208 0.201 0.216
λ2,3 0.103 0.098 0.109
λ2,4 0.090 0.084 0.096
λ2,5 0.139 0.133 0.145
λ2,6 0.064 0.060 0.069

λ3,1 0.198 0.177 0.219
λ3,2 0.278 0.254 0.303
λ3,3 0.115 0.098 0.133
λ3,4 0.219 0.195 0.244
λ3,5 0.090 0.074 0.106
λ3,6 0.099 0.083 0.115

This paper has been typeset from a TEX/LATEX file prepared by the author.
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