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A new method is developed for quantifying the uncertainties of the estimates and 
predictions produced by honest random forests. This new method is based on the 
generalized fiducial methodology, and provides a fiducial density function that measures 
how likely each single honest tree is the true model. With such a density function, 
estimates and predictions, as well as their confidence/prediction intervals, can be obtained. 
The promising empirical properties of the proposed method are demonstrated by numerical 
comparisons with several state-of-the-art methods, and by applications to a few real data 
sets. Lastly, the proposed method is theoretically backed up by an asymptotic guarantee.
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1. Introduction

Due to its robustness and accuracy, ensemble learning is a popular method in regression and classification (e.g., Mendes-
Moreira et al., 2012). It is commonly used to make predictions for future observations. Denote the observed sample as 
{Yi, X i}, i = 1, . . . , n, where Yi ∈ R are scalar responses and Xi ∈Rp are vector predictors. The general regression model is

Yi = f (X i) + εi, (1)

where the iid noise εi ’s follows N(0, σ 2). An ensemble learning method approximates the model f (·) by a weighted sum 
of weak learners Ti(·)’s with weights wi ’s:

f (X i) =
a∑

i=1

wiTi(X i). (2)

With their excellent interpretability, decision trees are often chosen as the weak learners. Notable earlier examples 
include bagging (Breiman, 1996) and random forests (Breiman, 2001). Recently, Athey et al. (2019) proposed generalized 
random forests that can be naturally extended to other statistical tasks such as quantile regression and heterogeneous 
treatment effect estimation. All of these three methods use the basic ensemble method (Perrone and Cooper, 1992) in 
regression, which takes all wi ’s in (2) equally as 1/a.

Wang et al. (2003) proposed a weighted ensemble approach for classification, where the classifiers are weighted by 
their accuracies in classifying their own training data. Their work can be straightforwardly extended to the regression case. 
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Bayesian ensemble learning (Chipman et al., 2007; Wu et al., 2007) is another approach that takes a weighted average of 
the trees. The posterior probabilities are used as weights in this scenario.

Despite the above efforts, the study of uncertainty quantification for ensemble learning is somewhat limited. One ex-
ception is Wager et al. (2014), where the authors proposed a method that produces standard error estimates σ̂ for random 
forests predictions. The method is based on jackknife and infinite jackknife (Efron, 2014) and can be used for constructing 
Gaussian confidence intervals.

Another related work is Mentch and Hooker (2016), where the authors showed that under some strong assumptions, 
random forests based on subsampling are asymptotically normal, allowing for confidence intervals to accompany predictions. 
In addition, Chipman et al. (2010) developed a Bayesian Additive Regression Trees model (BART) that produces both point 
and interval estimates via posterior inference. And most recently Rockova (2020) provided some theoretical results on using 
BART for inference.

In this paper, we apply generalized fiducial inference (Hannig et al., 2016) to construct a probability density function on 
the set of honest trees in an honest random forests model. We shall show that such a new ensemble method of honest 
trees provides more precise confidence intervals as well as point estimates.

The rest of this paper is organized as follows. First, a brief introduction of generalized fiducial inference is provided in 
Section 2. Then the main methodology is presented in Section 3, and the theoretical properties of the method are studied 
in Section 4. Section 5 illustrates the practical performances of the proposed method. Lastly, concluding remarks are offered 
in Section 6 while technical details are delayed to the appendix.

2. Generalized fiducial inference

Fiducial inference was first introduced by Fisher (1930). It aims to construct a statistical distribution for the param-
eter space when no prior information is available. Under such condition, the usage of the classical Bayesian framework 
receives criticism because it requires a prior distribution of the parameter space. Alternatively, Fisher considered a switch-
ing mechanism between the parameters and the observations, which is quite similar to how parameters are estimated by 
the maximum likelihood method. Despite Fisher’s continuous effort on the theory of fiducial inference, this framework was 
overlooked by the majority of the statistics community for several decades. Hannig et al. (2016) have a detailed introduction 
on the history of the original fiducial inference.

In recent years, there has been a renewed interest in extending Fisher’s idea. The modified versions include Dempster-
Shafer theory (Dempster, 2008; Martin et al., 2010), inferential models (Martin and Liu, 2015a,b), confidence distributions 
(Xie and Singh, 2013; Xie et al., 2011) and generalized inference (Weerahandi, 1995, 2013). In this paper we focus on the 
successful extension known as generalized fiducial inference (GFI) (Hannig et al., 2016). It has been successfully applied to a 
variety of problems, including wavelet regression (Hannig and Lee, 2009), ultrahigh-dimensional regression (Lai et al., 2015), 
nonparametric additive models (Gao et al., 2020) and principal component regression (Wu et al., 2021).

Under the GFI framework, the relationship between the data y and the parameter θ is expressed by a data generating 
algorithm G:

y = G(u, θ),

where u is a random component whose distribution is completely known. Selection of the data generating algorithm plays a 
similar role to selecting a model in a more traditional statistical analysis. In this paper we will use data generating algorithm 
(1), where the function f (Xi) is chosen as a tree with l(T ) leaves, i.e., T (Xi |μ1, . . . , μl(T )) = μk if Xi is in the kth leaf, and 
εi = σUi , where Ui are i.i.d. N(0,1). Thus the random component of the data generating algorithm is u = (U1, . . . , Un) and 
the parameters are θ = (μ1, . . . , μl(T ), σ).

To explain how fiducial inference accounts for uncertainty, suppose for the moment that the inverse function G−1 exists 
for any u; i.e., one can always calculate

θ = G−1(u, y)

for any u. Then a random sample {θ̃1, ̃θ2, . . .} of θ can be obtained by first generating a random sample {ũ1, ũ2, . . .} of u
and then calculate

θ̃1 = G−1(ũ1, y), θ̃2 = G−1(ũ2, y), . . .

Recall that as the distribution of u is known, one can always generate {ũ1, ũ2, . . .} Notice that the roles of θ and y are 
“switched” in the above, as in the maximum likelihood method of Fisher. When the inverse G−1 does not exist for some 
u, the sample {ũ1, ũ2, . . .} are generated from a distribution of u truncated to the set {ũ : θ̃ = G−1(ũ, y) exists}. We call 
the above random sample {θ̃1, ̃θ2, . . .} a generalized fiducial sample of θ , which can be used to form point estimates and 
confidence intervals for θ , as with a posterior sample in the Bayesian context. We also call the corresponding density r(θ)

the generalized fiducial density of θ .
When G is not invertible, Hannig et al. (2016) provide a general definition and a user friendly formula for the generalized 

fiducial density:
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r(θ) = h(y, θ) J (y, θ)∫
�
h(y, θ ′) J (y, θ ′)dθ ′ , (3)

where h(y, θ) is the likelihood and

J (y, θ) = D
{
∇θG(u,θ)|u=G−1(y,θ)

}
with ∇θG(u,θ) being a gradient of the data generating algorithm with respect to θ and D(A) = {det(AT A)} 1

2 . Notice that 
(3) resembles Bayesian posterior with the role of a prior being played by the volume of the parallelepiped determined by 
the gradient matrix of the data generating equation ∇θ G(u,θ).

Formula (3) is applicable to a wide selection of data generating algorithms differentiable with respect to the parameters 
but it assumes that the model dimension is known. When model selection is involved, the generating function of a certain 
model T becomes:

y = G(u, T , θ T ).

The formula (3) is not directly applicable because T is a discrete parameter. However under identifiability assumptions 
Hannig et al. (2016) derived the marginal fiducial probability of a model T as

r(T ) = n− l(T )
2

∫
hT (y, θ T ) J T (y, θ T )dθ T∑

T ′∈T n− l(T ′)
2

∫
hT ′(y, θ T ′) J T ′(y, θ T ′)dθ T ′

, (4)

where T is the set of all possible models and l(T ) is the number of parameters in model T . We note that closed form 
expressions for (3) and (4) do not always exist so one may need to resort to MCMC techniques.

3. Methodology

3.1. Regression trees and honest regression trees

A decision tree models the function f (·) in (1) by recursively partitioning the feature space, i.e., the space of all X ’s, 
into different subsets. These subsets are called leaves. Let X0 be any point in the feature space and L(X0) be the leaf that 
contains X0. The decision tree estimate f̂ (X0) for f (X0) is the average of those responses that are in the same leaf as X0:

f̂ (X) = 1

|{i : X i ∈ L(X)}|
∑

i:X i∈L(X)

Yi .

Naturally one may like a partition that minimizes the loss function: 
∑n

i=1{yi − f̂ (X i)}2. However, very often in practice a 
serious drawback is that the number of potential partitions is huge which makes it infeasible to obtain the partition that 
minimizes the above loss. Therefore, a greedy search algorithm is usually considered.

One criticism of the above decision tree is that the same data are used to grow the tree and make predictions. To 
ensure good statistical behaviors and as a response to this criticism, honest decision trees were proposed (Biau, 2012; Denil 
et al., 2014). An honest tree is grown using one subsample of the training data and uses a different subsample for making 
predictions at its leaves. If there are no observations falling to a specific leaf, its prediction will be made by one of its 
parents. A corresponding honest random forest can be generated by using the same mechanism to generate random forests 
from decision trees. Wager and Athey (2018) proved that under some regularity conditions, the leaves of an honest tree 
become small in all dimensions of the feature space when n becomes large. Hence, if the true generating function is 
Lipschitz continuous, honest trees are unbiased and so are honest random forests. In our context, we need honest trees to 
get a valid uncertainty quantification.

3.2. Ensemble of honest trees using generalized fiducial inference

The goal is to solve the regression problem (1) using an ensemble of honest binary trees {T j}aj=1 and apply GFI to 
conduct statistical inference.

Suppose there exists a binary tree structured function T0 such that f (X) = T0(X) for any X ∈RP ; we will call any such 
tree a true model. An example of a binary tree structured function is the “AND” function mentioned in Wager et al. (2014): 
T (X) = 10 · AND(X1 > 0.3; X2 > 0.3; X3 > 0.3; X4 > 0.3). Notice that a true model is not necessarily unique. For example, if 
a true model is nested within another binary tree structured function then the larger binary tree would also act as a true 
model albeit unnecessarily complex.

We assign a generalized fiducial probability to each tree T using (4). To this end, suppose T has l(T ) leaves L1, . . . , Ll(T ) . 
Denote the number of observations in the j-th leaf is n j and hence n = n1 + · · · + nl(T ) . Also denote the response value of 
the j-th leaf as μ j . Its least square estimator is the average of all the Yi ’s that belong to this leaf: μ̂ j = 1 ∑

i:X ∈L Yi .
|L j | i j

3
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The likelihood for this tree is

hT (y,μ,σ ) = (2πσ 2)−
n
2 e

−∑n
i=1(Yi−μ̂i(Xi )

)2

2σ2 ,

where i(Xi) is the index of the leaf that X i belongs to; i.e., X i ∈ Li(Xi) . The Jacobian term is J (μ, σ 2) = σ−1
√
SSE

∏l(T )
i=1 ni

with SSE = ∑n
i=1(Yi − μ̂i(Xi))

2. Integrating out the parameters in (4) we see that the marginal fiducial probability of the 
tree T is proportional to

r(T ) ∝ R(T ) := �(
n−l(T )−1

2 )n− l(T )
2

SSE
n−l(T )

2 −1π
n−l(T )

2

. (5)

3.3. A practical method for generating fiducial samples

This subsection presents a practical method for generating a fiducial sample of honest trees.
Even when n is only of moderate size, the set T of all possible trees is huge. Therefore we only consider a subset of 

trees T ∗ ⊂ T . More precisely, T ∗ is an honest random forest with an adequate number of trees such that one can assume 
it contains at least one good model T0; i.e., a model that approximates the actual data generating process well. We follow 
the usual practice and generate the trees in T ∗ randomly. In particular, each tree samples �n/4	 observations without 
replacement to grow, and uses a different group of �n/4	 observations to calculate the averages μ̂ j ’s (i.e., make predictions) 
at the leaves; see Wager and Athey (2018, Procedure 1).

There are three steps involved in generating a fiducial sample of trees directly from the generalized fiducial distribution. 
The first step is to generate the structure of the tree. The second step is, given a tree, to generate the noise variance. The 
last step is, given the sampled tree and variance, to generate the leaf values μ j ’s. We describe details of each step in turn.

For each tree T ∈ T ∗ , we calculate r(T ) with

r(T ) = R(T )∑
T ′∈T ∗ R(T ′)

. (6)

After a particular tree T is sampled from (6), σ̃ 2 is sampled using

σ̃ 2 = SSE/χ2
�n/2	−l(T ), (7)

where l(T ) denotes the number of leaves in T , SSE is computed using the training data of size �n/2	 and χ2
�n/2	−l(T )

denotes 
a sample from chi-square distribution with �n/2	 − l(T ) degrees of freedom. In the third step we draw without replacement 
�n/4	 observations from the part of the data that was not used to grow T . Denote these drawn observations as {X̃ i, Ỹ i}�n/4	

i=1 . 
Then a generalized fiducial tree sample T̃ can be obtained by updating the leaf values of T using

μ̃ j = 1

ñ j

∑
i:X̃ i∈L j

Ỹ i + σ̃√
ñ j

Ũ j, j = 1, . . . , l(T ), (8)

where Ũl
iid∼ N(0, 1), L j are the leaves and ñ j is the number X̃ i in leaf L j .

Repeating the above procedure multiple times provides fiducial sample {σ̃ , T̃ }. Statistical inference can then be conducted 
in a similar fashion as with a posterior sample in the Bayesian context. For any design point X , averaging over all the T̃ (X)’s 
will deliver a point estimate for f (X). The α/2 and 1 −α/2 percentiles of T̃ (X) will give a 100(1 −α)% confidence interval 
for f (X), while the α/2 and 1 − α/2 percentiles of T̃ (X) + σ̃u will provide a prediction interval for the corresponding Y .

We summarize the above procedure in Algorithm 1.

Algorithm 1 A generalized fiducial method for generating honest tree ensemble.
1: Choose |T ∗| and M .

2: Train an honest random forest with |T ∗| honest trees {T j}|T
∗|

j=1 .
3: For each tree T j , calculate the generalized fiducial probability r(T j) using (6).
4: for i = 1, . . . , M do
5: Draw a T ∈ {T j}|T

∗|
j=1 using (6).

6: Draw a σ̃ 2 from (7).
7: Draw without replacement �n/4	 observations from the part of the data that was not used to grow T . Denote these drawn observations as 

{X∗
i , Y ∗

i }�n/4	
i=1 .

8: Obtain T̃ by updating its leaf values using (8).
9: end for

10: Output the M copies of generalized fiducial sample {σ̃ 2, ̃T } obtained from above for further inference.
4
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We conducted a set of numerical experiments to help determine a practical choice for the number of trees |T ∗|, and 
found that |T ∗| = 1, 000 provides very satisfactory results and offers a good compromise between computational and sta-
tistical efficiencies. Therefore, in all our numerical work, we set |T ∗| = 1, 000.

4. Asymptotic properties

If our ensemble contains a tree that is a good approximation to the true function, we are actually dealing with a strong 
learner like in the case of a Bayesian CART (Denison et al., 1998). Under this situation we show that the fiducial distribution 
recognizes this and assigns high probability to this tree. The theoretical properties of the proposed method are established 
under the following conditions.

A1) The generating function f (x) has a binary tree structure. Denote the training data set of T as DT = {Yi, X i}�n/4	
i=1 . We 

say this binary tree T is a true model if, for any X in the training set DT , E(T (X)) = f (X). Notice that such a binary tree 
is not unique. We denote the collections of true models as T0. This assumption defines precisely what true models T0 are.

A2) Let T ∗ be the collection of honest trees in a trained random forests model. We assume that with a high probability 
T ∗ has at least one tree that belongs to T0: P (T ∗ ∩ T0 = ∅) → 0. In other words, we assume that with high probability the 
collection of honest trees T ∗ contains at least one good model.

A3) Meanwhile, we assume that the size of T ∗ is not too large: |T ∗| = o(
√

log(n)
log logn ). That is, we do not need to consider 

a large set of honest trees.
A4) Let H T = {hij}ni, j=1 be the projection matrix of T with

hij =
{

1
n j

if Xi ∈ L(X j) in T ,

0 otherwise,

and let 	T = ||μ − H Tμ||2, where μ = E(y). Assume

lim
n→∞ min

T∈T ∗\T0

{
	T

l(T ) logn

}
= ∞.

Heuristically speaking, this assumption means that T ∗ contains only trees that are different enough from each other. The 
assumption ensures that the true models are identifiable.

Theorem 4.1. Let Tl0 be the trees in T ∗ ∩ T0 with number of leaves equal to l0 = min{l(T ), T ∈ T ∗ ∩ T0}. Then under the above 
assumptions,∑

T∈Tl0

r(T ) →p 1.

The heuristic interpretation of this theorem is that if T ∗ is not too dense and contains a tree close to the true data 
generating model, the GFD will concentrate on that tree. The proof proceeds by controlling the rate at which R(T ′)/R(T ) →p

0, for T ′ ∈ T ∗ \Tl0 and T ∈ Tl0 . This is achieved by using tail estimates on the chi-square distribution separately for the case 
T ′ /∈ T0 and the case T ′ ∈ T0 but l(T ′) > l0. The details can be found in the appendix.

We note that the assumption stated above, such as f (x) following a binary tree structure, may not be realistic in many 
practical situations. However, we remark that the assumptions are needed for the strong learner result obtained by Theo-
rem 4.1. We believe this theorem is a useful first step in understanding how fiducial inference works on trees. Numerical 
results reported below suggest that our method works well in practice even when this assumption is violated.

5. Empirical properties

This section illustrates the practical performance of the above proposed method via a sequence of simulation experiments 
and real data applications. We shall call the proposed method FiT, short for Fiducial Trees.

5.1. Simulation experiments

In our simulation experiments three test functions were used:

• Cosine: 3 · cos(π · (X1 + X2)),
• XOR: 5 · XOR(X1 > 0.6; X2 > 0.6) + XOR(X3 > 0.6; X4 > 0.6),
• AND: 10 · AND(X1 > 0.3; X2 > 0.3; X3 > 0.3; X4 > 0.3).
5
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Table 1
Empirical coverage rates for the 90% confidence intervals for E(Y ∗|X∗) obtained by the various methods. The results that are closest to the target coverage 
rate are highlighted in bold. The numbers in parentheses are the average widths of the intervals.
Function n p FiT Bootstrap Jackknife BART

Cosine 50 2 82.7 (4.29) 34.6 (1.63) 23.6 (1.40) 57.6 (2.33)
Cosine 200 2 87.4 (3.11) 51.0 (2.12) 39.2 (1.05) 91.1 (1.66)
XOR 50 50 73.2 (4.64) 5.0 (1.72) 3.8 (1.48) 62.9 (4.53)
XOR 200 50 92.6 (2.61) 26.3 (2.96) 32.0 (1.02) 89.1 (3.53)
AND 50 500 60.3 (8.19) 3.4 (3.07) 0.7 (2.30) 66.1 (6.87)
AND 200 500 87.2 (4.79) 35.0 (5.09) 0.0 (1.94) 59.2 (6.10)

Table 2
Similar to Table 1 but for the 95% confidence intervals for E(Y ∗|X∗).

Function n p FiT Bootstrap Jackknife BART

Cosine 50 2 91.6 (5.27) 41.9 (1.94) 27.9 (1.67) 66.3 (2.78)
Cosine 200 2 93.6 (3.80) 58.8 (2.52) 47.5 (1.26) 95.6 (1.98)
XOR 50 50 83.9 (5.67) 8.0 (2.05) 6.7 (1.77) 77.3 (5.39)
XOR 200 50 96.1(3.22) 38.0 (3.53) 37.4 (1.21) 95.4 (4.21)
AND 50 500 71.5 (9.91) 8.3 (3.65) 2.6 (2.74) 71.4 (8.18)
AND 200 500 90.5 (5.86) 50.3 (6.06) 0.4 (2.31) 67.9 (7.26)

Table 3
Empirical coverage rates for the 90% and 95% confidence intervals for σ obtained by FiT and BART. The results closest to the target rate are highlighted in
bold. The numbers in parentheses are the average widths of the intervals.
Function n p FiT 90% BART 90% FiT 95% BART 95

Cosine 50 2 93.4 (0.68) 8.5 (0.67) 96.4 (0.83) 15.5 (0.80)
Cosine 200 2 96.8 (0.26) 86.5 (0.20) 99.1 (0.31) 92.3 (0.24)
XOR 50 50 71.8 (0.67) 5.4 (1.03) 81.4 (0.82) 9.6 (1.24)
XOR 200 50 90.0 (0.24) 93.6 (0.62) 95.4 (0.29) 96.1 (0.76)
AND 50 500 24.3 (1.04) 0.0 (1.59) 26.1 (1.27) 0.0 (1.90)
AND 200 500 1.4 (0.45) 0.0 (0.78) 2.0 (0.53) 0.0 (0.94)

The design points X i ’s are iid random uniform (0, 1) variables, and the error standard deviation σ = 1. We tested different 
combinations of n and p following experimental configurations used by previous authors (e.g., Chipman et al., 2010; Wager 
et al., 2014). The number of repetitions for each experimental configuration is 1000.

We applied FiT to the simulated data and calculated the mean coverages of various confidence intervals. We also applied 
the following three methods to obtain other confidence intervals:

• BART: Bayesian Additive Regression Trees of Chipman et al. (2010) (R package BART),
• Bootstrap: the bootstrap method of Mentch and Hooker (2016) (R package surfin), and
• Jackknife: the infinite jackknife method of Wager et al. (2014) (R package grf).

Tables 1 and 2 report the empirical coverage rates of the 90% and 95% confidence intervals, respectively, produced by these 
methods for E(Y ∗|X∗), where (X∗, Y ∗) is a random future data point, i.e., the proportion of times the confidence interval 
contains its target conditional expected value.

Overall FiT provided good and stable coverages. The performances of Bootstrap and Jackknife are somewhat disappoint-
ing. The possible reasons are that in Jackknife the uncertainty of the residual noise was not taken into account, and that 
Bootstrap is, in general, not asymptotically unbiased, as argued in Wager and Athey (2018). BART sometimes gave better 
results than FiT. However, for those cases where BART were better, results from FiT were not far behind, but for some other 
cases, BART’s results could be substantially worse than FiT’s. Therefore it seems that FiT is the preferred and safe method if 
one is targeting E(Y ∗|X∗).

Next we examine the coverage rates for the noise standard deviation σ . Since Bootstrap and Jackknife do not produce 
convenient confidence intervals for σ , we only focus on FiT and BART. The results are summarized in Table 3. Overall one 
can see that FiT is the preferred method, although the performances of all the methods for the test function AND were 
rather disappointing.

5.2. Real data examples

This subsection reports the coverage rates of the FiT prediction intervals on five real data sets:
6
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Table 4
Empirical coverage rates for the 95% FiT prediction 
intervals for various real data sets, i.e., the propor-
tion of the validation set covered by its respective 
prediction intervals. The numbers in parentheses 
are the averaged widths of the intervals.
Data Coverage

Air Foil 93.2% (14.2)
Auto Mpg 91.8% (11.5)
CCPP 95.1% (11.5)
Boston House 87.9% (12.4)
CCS 92.8% (30.4)

Fig. 1. Predictions (dots) and 95% intervals obtained by the proposed FiT for the Auto MPG data set. The solid lines are the 95% confidence intervals for 
E(Y ∗|X∗) while the wider dotted lines show the 95% prediction intervals for Y ∗ . The FiT prediction intervals cover 98.7% of the validation set (diagonal 
line).

• Air Foil: This is a NASA data set, obtained from a series of aerodynamic and acoustic tests of two and three-dimensional 
air foil blade sections conducted in an anechoic wind tunnel (Dua and Graff, 2017). Five features were selected to 
predict the air foil noise. We used 1000 observations as the training data set and 503 observations as test data.

• Auto Mpg: This data set contains eight features to predict city-cycle fuel consumption in miles per gallon (Asuncion and 
Newman, 2007; Dua and Graff, 2017). After discarded samples with missing entries, we split the rest of the observations 
into a training set of size 314 and a test set of size 78.

• CCPP: This data set contains 9568 data points collected from a Combined Cycle Power Plant over six years (2006-2011), 
when the power plant was set to work with full load (Tüfekci, 2014; Kaya et al., 2012). There are four features aiming 
to predict the full load electrical power. We split the data into a training set of size 8000 and a test set of size 1568.

• Boston House: Originally published by (Harrison Jr and Rubinfeld, 1978), a collection of 506 observations associated with 
14 features from the U.S. Census Service are used to predict the median value of owner-occupied homes. We split the 
data into a training set of size 400 and a test set of size 106.

• CCS: In civil engineering, concrete is the most important material (Yeh, 1998). This data set consists of eight features to 
predict the concrete compressive strength. We split it into a training set of size 750 and a test set of size 280.

For each of the above data sets, we applied FiT to the training data set to construct 95% prediction intervals for the obser-
vations in the test data set. We repeated this procedure 100 times by randomly splitting the whole data set into a training 
data set and a test data set. The empirical coverage rates of these prediction intervals, i.e., the proportion of times the 
validation value was covered, are reported in Table 4.

For visual inspection, we plotted the FiT intervals for the Auto MPG data set in Fig. 1. The FiT plot has two types of 
intervals: the solid lines are the 95% confidence intervals for E(Y ∗|X∗) while the wider dotted lines show the 95% prediction 
7
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intervals for Y ∗ . One can see that the FiT prediction intervals are wide enough to cover 98.7% of the validation set, showing 
adequate uncertainty quantification.

6. Concluding remarks

In this paper, we applied generalized fiducial inference to ensembles of honest regression trees. In particular, we derived 
a fiducial probability for each honest tree in honest random forests, which shows how likely the tree contains the true 
model. A practical procedure was developed to generate fiducial samples of the tree models, variance of errors and predic-
tions. These samples can further be used for point estimation, and constructing confidence intervals and prediction intervals 
that account for uncertainty in the estimation and prediction process. The proposed method compares favorably with other 
state-of-the-art methods in simulation experiments and real data analysis.

There are several potential extensions to this method. First, it would be interesting to see how fiducial inference can 
be used to quantify uncertainty for classification problems. The main challenge will be due to the fact that classification is 
inherently a discrete parameter problem.

Second, as an alternative to our implementation of FiT that is based on enumerating the fiducial probabilities for all 
members of a moderately sized T ∗ , one could consider a very large T ∗ and implement an MCMC algorithm proposing 
a modification of the current tree and accepting it using Metropolis-Hastings ratio based on the unnormalized fiducial 
probability R(t).

Third, the theoretical results could be extended. The current results give a strong model selection consistency and there-
fore require very strong assumptions; the data was generating using a tree. It would interesting to see if one can use the 
mathematical tools in Castillo and Rousseau (2015) to relax this assumption and still get Bernstein - von Mises theorem 
even if the true function is no longer a tree and the number of candidate trees T ∗ is large.
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Appendix A. Technical details

This appendix provides the proof for Theorem 4.1.
WLOG, assume σ 2 = 1 and fix T ∈ Tl0 . We first prove that

max
T ′ /∈Tl0 ,T ′∈T ∗ R(T ′)/R(T ) →p 0.

Rewrite

R(T ′)/R(T ) = exp{−D1 − D2},
where

D1 = n − l(T ′) − 1

2
log

SSET ′

SSET

and

D2 = log
�(

n−l0
2 )

�(
n−l(T ′)

2 )
+ l0 − l(T ′)

2
logπ + l0 − l(T ′)

2
logSSET + l(T ′) − l0

2
log(n).

Case 1: T ′ /∈ T0.
Now calculate

SSET ′ − SSET = 	T ′ + 2μ′(I − H T ′)ε − ε′(H T ′ − H T )ε. (A.1)

Let cl(T ) = l(T ) log logn, consider the second term in equation (A.1) and denote

ZT ′ = μ′(I − H T ′)ε/
√

	T ′ ,

then

μT (I − H T ′)ε = √
	T ′ ZT ′
8
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and ZT ′ ∼ N(0, In) since var(ZT ′ ) = 1. Furthermore,

P ( max
T ′∈T ∗ |ZT ′/

√
cl(T ′)| > 1) ≤ |T | max

T ′∈T ∗ P (Z2
T ′ > cl(T ′))

= |T ∗| max
T ′∈T ∗ P (χ2

1 > cl(T ′))

≤ |T ∗| max
T ′∈T ∗(cl(T ′)e

1−cl(T ′) )1/2 −→ 0 as n −→ ∞.

Therefore,

P (|μ′(I − H T ′)ε| > √
	T ′cl(T ′)) −→ 0 as n −→ ∞.

Consider the third term in equation (A.1):
Notice that ε′H T ε = ∑l(T )

i=1 ni ε̄
2
i ∼ χ2

l(T )
. Thus,

P (max
T∈T ∗ ε

′H Tε/cl(T ) > 1) ≤ |T ∗| max
T∈T ∗ P (εT H l(T )ε > cl(T ))

= |T ∗| max
T∈T ∗ P (χ2

l(T ) > cl(T ))

≤ |T ∗| max
T∈T ∗(

cl(T )

l(T )
e1−

cl(T )
l(T ) )l(T )/2

= |T ∗| max
T∈T ∗ (

e log logn

logn
)

l(T )/2

−→ 0 as n −→ ∞.

Therefore, P (εT H T ε > cl(T )) −→ 0, and P (εT H T ′ε > cl(T ′)) −→ 0 as n −→ ∞. Thus, we have P (SSET ′ − SSET < 0.5	T ′ ) −→
0 as n −→ ∞.

In addition,

P (χ2
n−L <

n

4
) ≤ P (χ2

n−L <
n − L

2
) ≤ (

√
e

2
)
n−L
2 −→ 0 as n −→ ∞,

which means

P ( min
T ′∈T ∗ χ

2
n−l(T ′) <

n

4
) −→ 0 as n −→ ∞.

Thus,

D1 = n − l(T ′) − 1

2
log(

SSET ′

SSET
)

= −n − l(T ′) − 1

2
log(

SSET
SSET ′

)

= −n − l(T ′) − 1

2
log(1+ SSET − SSET ′

SSET ′
)

≥ n − l(T ′) − 1

2

SSET ′ − SSET
SSET ′

= 
p(	T ′).

Moreover, D2 = 
p(−l(T ′) log(n)). Therefore, D1 + D2 = 
p(logn).
Case 2: T ′ ∈ T0 and l(T ′) > l0.
Recall T ∈ Tl0 is fixed. First notice that SSET − SSET ′ = χ2

l(T ′)−l0
(T ′), where χ2

l(T ′)−l0
(T ′) is a chi-square random variable 

depending on T ′ with degrees of freedom l(T ′) − l0.

P ( max
T ′∈T0,l(T ′)>l0

χ2
l(T ′)−l0

(T ′)
(l(T ′) − l0) log logn

≥ 1) ≤ |T ∗| max
T ′∈T0,l(T ′)>l0

(log logne1−log logn)
l(T ′)−l0

2

= |T ∗|(e log logn
logn

)
1
2 → 0.

It implies that

χ2 ′ = O p(cl(T ′)−l ).
l(T )−l0 0

9
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Therefore,

n − l(T ′) − 1

2
log

SSET ′

SSET
= −n − l(T ′) − 1

2
log(1+ χ2

l(T ′)−l0
(T ′)

χ2
n−l(T ′)

)

≥ −n − l(T ′) − 1

2
(
χ2
l(T ′)−l0

(T ′)
χ2
n−l(T ′)

)

= 
p(−cl(T ′)−l0),

uniformly over {T ′ : T ′ ∈ T0, l(T ′) > l0}. Thus, we show that

D1 = 
p(− l(T ′)
2

log logn).

Meanwhile, the calculation of D2 is similar to Case 1, D2 = 
p((l(T ′) − l0) log(n)), so we have D1 + D2 = 
p(logn).

Combining Case 1 and Case 2, we have:

max
T ′ /∈Tl0 ,T ′∈T ∗ R(T ′)/R(T ) = O p(1/n).

Furthermore,∑
T ′ /∈Tl0 ,T ′∈T ∗

R(T ′)/R(T ) ≤ |T ∗| max
T ′ /∈Tl0 ,T ′∈T ∗ R(T ′)/R(T ) ≤ |T ∗|

n
→p 0.

Equivalently,∑
T∈Tl0

r(T ) →p 1.
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