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H I G H L I G H T S  

• Empirical estimation of the impact of non-residential distributed solar panels. 
• Reduction in electricity purchased from the grid much smaller than solar electricity. 
• These consumers do not reduce their monthly maximum demand in July and August. 
• Solar rebound effects are important for evaluating the environmental benefits.  
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A B S T R A C T   

Most existing assessments of the energy saving and environmental benefits from distributed solar panels assume 
that the entire amount of electricity generated by distributed solar panels goes to replace the same amount of 
electricity needed from the electric grid. However, such an assumption can overestimate the actual environ
mental benefits because it incorrectly ignores the existence of rebound effects – increases in energy service usage. 
We provide the first empirical evidence of the grid impact of non-residential distributed solar energy and the 
associated reduced air emissions. Using consumer-level high frequency electricity consumption and solar panel 
installation data from Arizona, United States, we estimate the actual hourly reduction in electricity needed from 
the grid of commercial and industrial consumers through an econometric analysis. We show that this reduction is 
much smaller than the actual solar electricity generation. We also show that business distributed solar consumers 
create a further challenge to the utilities by not reducing their monthly maximum demand in July and August. 
Lastly, we calculate the benefit of reduced air emissions by multiplying the measured hourly reduction in 
electricity purchased from the grid by the marginal emission factors of CO2, SO2, NOx, and particulate matter. We 
estimate that the annual benefit of reduced air emissions from an average-size business distributed panel system 
is $1147.   

1. Introduction 

Recent scientific evidence [1,2] of global warming highlights the 
urgent need for deep de-carbonization. The UN Intergovernmental Panel 
on Climate Change report [1] indicates that “In 1.5 ◦C pathways […] 
renewables are projected to supply 70–85% (interquartile range) of 
electricity in 2050 (high confidence).” Such projection necessitates a 
much wider adoption of solar electricity generation [3–6]. Indeed, there 

are various types of state and sub-national policies which provide in
centives for consumers to adopt distributed solar panels, such as feed-in 
tariffs, net metering, tax credits, and direct rebates [7–10]. To justify 
these government programs, policymakers, climate scientists, and 
environmental researchers need to accurately quantify the climate and 
environmental benefits associated with distributed solar energy as well 
as the impact on the electric grid. 

Existing studies and policy reports generally use the amount of 
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electricity generated by distributed solar panels to replace the same 
amount of electricity needed from fossil fuel electricity generation. 
[11–17] The climate and environmental benefits of distributed solar 
energy in existing studies are calculated by multiplying the marginal 
emissions damages by the amount of solar electricity generated. Most 
integrated assessment models (IAMs) currently use such an approach 
[18,19]. The obvious logical flaw of this approach is that the usage of 
solar electricity might not reduce the usage of fossil-fuel electricity in a 
one-to-one fashion. It is completely conceivable that consumers increase 
their overall electricity consumption when solar energy becomes avail
able if they perceive a zero marginal cost of electricity generated by 
solar panels- so-called solar rebound effects [20]. Electricity consumers 
typically purchase electricity from utility companies. After net-metered 
consumers adopt solar panels, they first consume the solar electricity 
generated by their own solar panels, and any unused solar electricity is 
sold back to the grid. This lowers their electricity bill payment and their 
average effective electricity price [20]. When the average electricity 
price falls, consumers increase their electricity consumption [21]. 

There is already empirical evidence of such solar rebound effects due 
to average electricity prices falling in the residential sector [20]. While 
rebound effects have been discussed in the energy efficiency literature 
[22–26], solar rebound effects are rarely studied except for a few 
empirical studies. Deng and Newton [21] focus on residential feed-in- 
tariff solar customers in Australia and use quarterly electricity data; 
they find that residential adoption of solar panels is associated with an 
electricity consumption increase of 19%. Havas et al. [27] use monthly 
electricity consumption data and find a 15% rebound effect for solar 
households in Australia. Qiu et al. [20] use high-frequency daily and 
hourly data and find that net-metered residential solar consumers in 
Phoenix, Arizona (United States) have a rebound effect of 18%. Spiller 
et al. [28] use high-frequency electricity data and find that residential 
solar consumers in Austin, Texas (United States) have a rebound effect of 
9%. Finally, Toroghi and Oliver [29] use numerical simulation to esti
mate that residential solar rebound effects are between 2.9 and 5.8% in 
Fulton County, Georgia (United States). Also, using high-frequency data 
of households in Australia, La Nauze [30] provides empirical evidence 
that solar consumers do indeed increase their electricity expenditures. 
Because of the solar rebound effects, empirical estimation of the change 
in electricity consumption of distributed solar consumers is important 
which is the net change after factors such as rebound effects. However, 
such empirical assessment is lacking for the non-residential sector. We 
hypothesize that such solar rebound effects also exist for business con
sumers. The electricity consumption of a business not only depends on 
providing a service or a product but also on the thermal comfort of its 
building occupants [31] as well as building energy management prac
tices [24]. Business consumers might change the ways they operate the 
business or the way they use heating, cooling, lighting, or electronics in 
the building [32], which can lead to solar rebound effects. The temporal 
time scales of price changes in the solar rebound effects estimated in the 
existing literature of the residential sector include quarterly [21], daily 
[20], and hourly [30]. In our study, we use the hourly time scale. 

The problem being solved by this paper is what are the grid impact of 
non-residential distributed solar energy and the change in air emissions 
due to the change of electricity purchased from the grid. A key limitation 
of current studies on the solar panel impact assessment of business 
consumers is that most existing studies on solar panels in commercial 
buildings are based on simulations from engineering models instead of 
observable usage data. These studies use engineering simulation models 
such as eQUEST to study the impact of solar energy technologies on the 
energy performance of commercial buildings [33,34], collect actual 
performance data of just one or a few buildings to conduct a case study 
[35,36], or discuss potential applications of solar energy technologies in 
commercial settings [37,38]. 

Our study makes four important contributions to the existing liter
ature. First, to the best of our knowledge, we provide the first empirical 
evidence of the impact of distributed solar panels on business 

consumers’ hourly electricity consumption. We define business elec
tricity consumers as firms, rather than individuals or households, that 
directly pay electric bills to utilities. Business electricity consumers 
include both commercial and industrial electricity consumers, and are 
responsible for 62% of electricity consumption in the U.S. as of 2017 
[39] and 63% of the worldwide consumption as of 2016. [40] Business 
distributed solar consumers constitute a significant portion of the total 
distributed solar panels and are therefore important for mitigating 
climate and environmental damages from fossil fuel consumption. In 
2019, the new non-residential distributed solar PV deployment 
(including distributed solar panels installed by commercial and indus
trial, non-profit, and government entities) was about 1516 MW in the U. 
S., which was about 71% of all distributed solar panel new installations 
of that year in the U.S. market. [41] Despite the importance of the 
business sector, there has been a lack of empirical studies using data on 
actual solar panel installation and electricity consumption for the 
commercial and industrial sectors [42]. 

Second, we use a rich dataset of consumer-level hourly smart meter 
electricity-usage data for more than 17,000 business customers, as well 
as the solar panel installation information for more than 300 business 
solar customers between 2013 and 2018 from Arizona, United States. 
Data availability enables us to apply more robust methods to provide a 
better estimation of the actual change in electricity consumption due to 
solar panel installation. High-frequency data is also essential for esti
mating the benefit of reduced air emissions when controlling for the 
potentially different magnitudes of the rebound effects by hour of day. 

Third, we estimate the change in maximum monthly electricity de
mand from solar panel adoption. This is important because the 
increasing penetration of distributed solar energy has created an 
ongoing tension between electric utilities and distributed solar devel
opment. [43–45] Electricity consumers with distributed solar energy 
reduced their payments to the utilities, leading to the utilities enjoying 
less revenue than before. In the case when there is no demand charge for 
electricity consumers, such tension will be exacerbated, because electric 
utilities need to make a large amount of upfront investments such as in 
transmission and distribution infrastructure (i.e., fixed costs) to meet the 
maximum demand, not the average demand, of all consumers [46]. 
Demand charge is a type of electricity price charged based on the 
monthly maximum electricity demand of a consumer (i.e., the highest 
hourly electricity usage of a month). If there is no demand charge, then 
utilities will mainly rely on electricity sales to recover their upfront in
vestment [44,47]. Furthermore, if the distributed solar consumers are 
not reducing their maximum monthly electricity usage, then their 
reduced payments to the utilities imply that they are not paying for their 
proper share of using the grid infrastructure. As a result, some utilities 
may increase their energy price for all of their consumers, including non- 
solar consumers, leading to the ongoing debate about the distributional 
or equity impact of distributed solar energy. 

Fourth, we provide a more precise assessment of the reduced air 
emissions due to distributed solar panels adopted by business con
sumers, using the actual hourly change in electricity usage instead of the 
solar electricity generation. It is estimated that governmental financial 
incentives can reduce the costs of distributed solar panels paid by 
adopters by 30–50% [48]. These government programs cost the tax
payers a significant amount of money. A natural question to the poli
cymaker is whether the cost of these programs can justify the gain. 
Climate and environmental benefits constitute an important aspect of 
the gain. 

2. Data, empirical strategy, and models 

2.1. Data 

We compile a rich dataset from an electric utility company called Salt 
River Project (SRP) in Arizona, United States. Arizona is a particularly 
suitable study area for solar energy research because of its abundant 
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solar resources. As of the third quarter of 2018, the cumulative capacity 
of installed solar energy capacity in Arizona ranked 3rd in the United 
States [49]. Our dataset contains 330 business distributed solar cus
tomers and more than 17,000 business electricity customers in total. The 
dataset includes hourly electricity consumption for individual con
sumers from 2013 to 2018 as well as solar panel installation dates for 
individual consumers. Fig. 1 shows the average load profiles (hourly 
electricity purchased from the electric grid) by month of the 330 busi
ness consumers before and after installing solar panels. Fig. 1 is a 
descriptive figure which is generated by averaging the hourly electricity 
purchased from the grid by each month. The figure shows that after 
installing solar panels, business consumers drop their electricity pur
chased from the grid significantly from about 10am-5 pm, during which 
the solar panels generate the most electricity. Another observation from 
Fig. 1 is that the electricity purchased from the grid after installing solar 
panels is non-zero for all hours, implying that the electricity generated 
from solar panels is not enough to offset all the electricity consumption 
of these business consumers. Recall that these solar consumers in our 
dataset are net-metered consumers: they first consume the solar elec
tricity generated by their own solar panels, and any unused solar elec
tricity is sold back to the grid. 

Table S5 in the Supplementary Information shows the industry dis
tribution of solar business customers and the top three sectors are health 
care/social assistance, real estate/rental/leasing, and retail trade. 
Fig. S1 in the Supplementary Information shows the distribution of the 
solar panel systems in our sample and the average size of panels is 66 kW 
(in AC). Fig. S1 also shows the distribution of solar panel adoption per 
year. The panels were installed between 2006 and 2017. Fig. S2 in the 
Supplementary Information shows that there is a wide range of daily 
electricity generated per kW by the solar panel system, due to the var
iations in panel performance and solar irradiance. 

Our data is at the account-level instead of at the building level. One 
building can have multiple accounts with the utility company. Even 
within a business, there can be multiple accounts. If a certain business is 
spread within several buildings, each building/business combination 
will have a separate account. If each of the businesses has its own 
electricity account and they were to be combined into the same building, 
then they would still maintain their original individual accounts. If an 
account changes its address, the account number does not change, and 
the utility still records the electricity information for the same account. 
In such a case, our data will not show a higher consumption just because 
of business consolidation into one building. 

2.2. Summary of empirical strategy 

We use fixed panel regressions to estimate the impact of distributed 
solar panel installations on electricity consumption behaviors. Intui
tively, the panel regression method compares the electricity purchased 
from the grid of a consumer before and after solar panel adoption and 
measures the difference of the electricity amount, while controlling for 
various other factors that can influence electricity consumption [50]. 
Also, the non-solar consumers that enter into the panel regression model 
provide baseline change in electricity amount, which will be compared 
against the change of solar consumers. This panel regression method has 
the advantage of controlling for time-invariant consumer-level unob
served confounding factors as well as time-dimensional factors that can 
bias the estimation of the causal impact [51]. This panel regression 
method is widely used in the energy economics literature which esti
mates the impact of various types of technologies on electricity con
sumption behaviors, such as energy efficiency technologies [52–53] and 
recently residential solar panels [20,30]. In addition, we use two 
matching methods, propensity score matching (PSM) and coarsened 

Fig. 1. Average load profiles by month of the 330 business consumers before and after installing solar panels. Notes: The y-axis is the average hourly electricity 
delivered from the grid to the consumers (in kWh). The x-axis is the hour of day indicators. “Before solar” indicates the data before installing solar panels; “After 
solar” indicates the data after installing solar panels. 
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exact matching (CEM) to further help eliminate any systematic differ
ences between the control and treatment consumers. The matching 
methods are also commonly used in the literature to evaluate the impact 
of energy technology adoption [54–56]. Details of the panel regression 
and matching methods are described below. 

There could be several confounding factors when estimating the 
impact of solar panel adoption on electricity consumption behavior. 
First, adopting solar panels is voluntary. For example, more environ
mentally conscious business consumers might be more likely to adopt 
solar panels, but they are also more likely to pay more attention to 
energy-saving practices in general. Second, business consumers might 
adopt contemporaneous energy efficiency projects or other business 
expansion projects, concurrently with solar panels. Third, conditional on 
adoption, if business consumers make certain changes (e.g., they remove 
barriers such as trees to increase the sunlight exposure of the panels), 
then these unobservable practices can impact their electricity 
consumption1. 

To address these potential challenges, we use a panel regression with 
consumer-year fixed effects to control for consumer-level time-variant 
confounding factors such as consumer environmental awareness, occu
pancy change, tree-shade change, and business expansion or energy 
efficiency projects. Essentially, these fixed effects give each individual 
consumer a different baseline electricity consumption profile due to 
individual-specific characteristics as measured in different years. For 
example, a consumer that is very environmentally friendly might have a 
relatively small fixed effect which would indicate a low level of baseline 
electricity consumption. The consumer-year fixed effects can also con
trol for yearly business expansion activities. For more detailed expla
nations of the panel regression model, please refer to “Supplementary 
Information – Explanations of Fixed Effects Panel Regression”. 

As robustness checks, we use two main matching methods: pro
pensity score matching (PSM) and coarsened exact matching (CEM). 
Matching helps construct a non-equivalent control group similar to the 
treatment group for a quasi-experimental design [57,58]. In other 
words, for each solar consumer, the matching method selects similar 
non-solar consumers for comparison. The selected non-solar consumers 

will be similar to the solar consumer in terms of the key attributes such 
as the industry sector and the average size of electricity consumption (in 
the absence of solar installation). These matched non-solar consumers 
will serve as the control group for the solar consumers. A key assumption 
when using matching for causal inference is conditional independence – 
only observable factors can impact the treatment and outcome variables, 
which is normally difficult to justify. As a result, we apply a fixed-effects 
panel regression on the matched control and treatment groups in order 
to control for any potentially confounding unobservable factors, similar 
to the method used by Qiu and Kahn. [54] In our PSM, a logit model is 
used in the first stage to calculate the predicted probability of a con
sumer adopting solar panels. Then in the second stage, non-solar con
sumers are matched with solar consumers based on similarity in the 
predicted probability of adoption. We use the nearest neighbor matching 
algorithm and the heteroskedasticity-consistent analytical standard er
rors as in Abadie and Imbens [59] in the second stage of PSM. CEM first 
coarsens the matching variables into strata and then matches consumers 
based on which strata they belong to. We use the programming- 
generated strata for CEM instead of pre-specified strata. Compared to 
PSM, CEM can control for the difference between the treatment and 
control groups ex-ante [60]. We match consumers based on their pre- 
adoption monthly electricity consumption to ensure that the control 
and treatment groups have a similar pre-solar electricity consumption 
profile. For the non-solar consumers, we randomly assign them the solar 
installation dates. In addition, we match the businesses on their two- 
digit industry code and city. In Tables S3–S4 in the Supplementary In
formation, we present the results of the balancing tests conducted to 
ensure that the treatment and control groups are comparable to each 
other after the matching process. Table S2 shows the number of solar 
and non-solar consumers before and after matching. Tables S3–S4 list 
the types of tests and statistics used for the balancing checks as well as 
the sample distribution of the matched control and treatment groups. 
The matching methods will generate different samples with different 
numbers of solar and non-solar consumers [61] because in the matching 
process, if a solar consumer cannot be matched well the matching pro
cess will drop that solar consumer. We will run the panel regression 
models using the samples generated by the two different matching 
methods as well as using the original sample without matching, to show 
the robustness of our statistical results. 

A potential important selection bias is the likelihood that businesses 
installing solar panels are also those that are doing well financially and 
growing or are about to be growing. In order to reduce this bias and to 
check that the matched treatment and control groups share a common 
trend in electricity consumption prior to the installation of solar panels 
by the treatment businesses, we plot the monthly average electricity 
consumption of the treatment and control groups in the pre-treatment 

Fig. 2. Monthly electricity consumption of the 
control and solar customers in the pre-treatment 
period. Notes: The y-axis is the monthly average 
electricity consumption (in kWh). Orange color 
represents the average consumption of the solar 
customers and blue color represents that of the 
control customers. The x-axis is the month number 
in the pre-treatment period, with the first month 
normalized to be month #1. In total there are about 
4 years of pre-treatment billing data. This figure is 
generated using the sample from propensity score 
matching. Coarsened exact matching shows similar 
parallel trends.   

1 Here electricity consumption means the total amount of electricity 
consumed by the business including the electricity consumed via both the 
electricity purchased from the grid and the electricity generated from the solar 
panels. When electricity consumption changes, that will also change the 
amount of electricity purchased from the grid. In terms of why such changes can 
impact electricity consumption, if they remove the barriers and increase sun
light exposure, it can change the space cooling or heating needs, and thus 
electricity consumption will change because sunlight can go through the win
dow to warm up the rooms. 
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periods. Fig. 2 confirms that the treatment and control groups have 
parallel trends and thus it is unlikely that solar consumers are only those 
businesses that were experiencing growth. 

We use the software Stata to process the data and to conduct the 
econometric analyses. The steps to process the data are as follows. (1) 
We merge the hourly electricity consumption data of individual con
sumers obtained from SRP with hourly temperature data obtained from 
National Oceanic and Atmospheric Administration (NOAA) [62] by the 
location, the hour, and the date. We use the weather station that is the 
closest to the zip code where each consumer is located for the merging 
process. (2) Based on the electricity price plan faced by each consumer 
on each day, we assign the hourly electricity price to each consumer 
based on SRP’s rate book [63]. (3) Next, we merge the dataset with the 
solar panel installation dataset by the consumer identification numbers. 
For each solar consumer, the installation dataset contains the commis
sioning date of each distributed solar panel, based on which we can 
know the pre-installation and post-installation periods. (4) We next use 
statistical matching methods including PSM and CEM to find compara
ble control (non-solar) consumers for the distributed solar consumers. 
(5) We then run the fixed effects panel regression models on the matched 
control and solar consumers which will be explained in detail in Eqs. (1) 
and (2). 

2.3. Research hypotheses 

For net-metering consumers, when solar panels generate electricity, 
the solar electricity will be consumed by the consumers first, and then 
any excess electricity will be sold back to the grid. This means that part 
of the electricity originally needed from the electric grid can be supplied 
by solar electricity. As a result, we have the following hypothesis, to be 
tested in Eq. (1) described in the next section: 

Hypothesis 1. Installation of distributed solar panels will reduce the 
electricity purchased from the electric grid during the hours when solar 
panels generate electricity. 

Due to the solar rebound effects, consumers might increase their 
electricity consumption, especially during the months when the space 
cooling needs are high, such as in July and August. During these two 
months, the lower electricity bills from solar electricity can make the 
building occupants use more electricity to cool the space and increase 
their thermal comfort levels. Such an increase in electricity consumption 
might completely offset the reduction in electricity needed from the grid 
during the hottest hours (when maximum electricity demand happens) 
of these two months. Thus we make the following hypothesis about the 
change in maximum monthly demand, to be tested in Eq. (2) described 
in the next section: 

Hypothesis 2. The installation of distributed solar panels does not 
reduce the monthly maximum demand in July and August. 

2.4. Models 

2.4.1. Hourly load profile 
In order to more precisely evaluate the benefit from reduced air 

pollution associated with burning fossil fuel, including CO2, SO2, NOx, 
and particulate matter, the solar panels’ impact on the hourly electricity 
consumption is needed. This is because the marginal fuel being used to 
supply electricity, such as from coal, natural gas, or renewables, could be 
different depending on the hour of day, and because each of these fuel 
options has different air emissions. Thus, the marginal damage factor 
from one additional kWh of electricity supplied from the electric grid 
differs by hour of day. Our paper improves existing evaluations of the 
benefits of distributed solar panels by estimating the actual change in 
hourly electricity usage from the grid for the distributed solar consumers 
in the commercial and industrial sector, after incorporating the behavior 
change due to the rebound effects. 

Specifically, we regress hourly electricity delivered from the grid to 
the consumer on the solar panel adoption status, controlling for various 
confounding factors. We run the following regression model: 

Grid kWhih =αiy +
∑24

H=1
βHSolarih*IH +pihγ+f (HDDih)θ+f (CDDih)η+δHolidayd 

+Hour of day+Day of month+Day of week+month of year+εih (1)  

where Grid kWhih is the electricity delivered from the grid to business 
consumer i in hour h of sample. αiy is a consumer-year fixed effect which 
can control for time-variant unobservable factors at business consumer 
level as these could impact solar adoption and solar generation; exam
ples of such factors are consumer environmental awareness, occupancy 
change, tree-shade change, and contemporaneous projects for each 
customer at the yearly level. Solarih is a dummy variable that is equal to 
1 if consumer i has a solar panel at that time, while IH is an indicator 
variable indicating the hour of the day. βH measures the change in 
hourly electricity delivered from the grid after adopting solar panels for 
hour H of the day and there are 24 such coefficients.2 pih is a price vector 
containing both the marginal electricity price3 and the demand charge. γ 
are the coefficients measuring the impact of electricity prices on elec
tricity purchased from the grid. HDD represents heating degree days as 
calculated by 65 – temperature; CDD represents the cooling degree days 
as calculated by temperature − 65; f is a spline function for HDD and 
CDD.4 θ are the coefficients in each of the HDD piecewise linear func
tions. η are the coefficients in each of the CDD piecewise linear func
tions. Holiday is an indicator variable for federal holidays. We also 
include a set of time fixed effects including hour of day, day of the 
month, day of the week, and month of the year, all of which control for 
factors that change over time for all customers such as changes in energy 
efficiency policies and incentives, or the changing prices of solar 
panels.5 Note that year of sample is not included since we include 
consumer-year fixed effects. Standard errors are clustered at the busi
ness customer level to avoid autocorrelation of the error term εih. 

Our Hypothesis 1 states that βH will be negative during the hours 
when solar panels generate electricity and consumers use solar elec
tricity. We will test the hypothesis empirically from the regression. The 
dependent variable in the hourly analysis is the electricity that was 
delivered from the grid. Hourly data is needed here because the mar
ginal emissions produced by the electricity supply vary throughout the 
day based on the different marginal fuels (e.g., natural gas, coal, or 

2 h is the hth hour of the sample while H is the Hth hour within 24 h of a day. 
For example, for hour 1am-2am on the 31st day of the sample, h will be 24 * 30 
+ 2 = 722, while H will be 2.  

3 The marginal electricity price information comes from the utility company. 
It is a price paid by the consumers. The business consumers are on several price 
plans and each price plan has a different marginal price in different hours. 
Table S6 in the Supplementary Information summarizes the price information.  

4 For the temperature spline function, the number of knots is 4 such that the 
data is divided into 5 equal-width groups of CDD or HDD, respectively, for 
piecewise linear function. In other words, the linear relationship between 
temperature and electricity consumption has different coefficients in each of the 
temperature intervals 64.  

5 The coefficients of each term have their own units so that the unit of the left 
side of the equation (kWh/hour) will be equal to that of the units of the right 
side of the equation. For example, for the fixed effect term “Day of month”, it 
includes both the coefficient and the day of month indicator, meaning “coef
ficient (unit is kWh/hour) * Day of month indicator (unit is normalized and is 1 
since it is an indicator variable)”. The units for each term in the equation are: 
Grid kWhih (kWh/hour), αiy (kWh/hour), IH (unit is normalized and is 1), Solarih 

(unit is normalized and is 1), βH (kWh/hour), pih(dollar), γ (kWh/dollar/hour), 
HDDih (degree/hour),θ (kWh/degree), CDDih (degree/hour), η (kWh/degree), 
Holidayd (unit is normalized and is 1), δ (kWh/hour), Hour of day (kWh/hour), 
Dayofmonth(kWh/hour), Day of week(kWh/hour), month of year(kWh/hour), 
εih (kWh/hour). 
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renewables) used to supply electricity at different times of day. 

2.4.2. Maximum monthly demand 
To measure the impact of solar panel adoption on the maximum 

monthly electricity demand, we run the following regression model: 

max kWim = αiy +
∑12

M=1
βSMSolarim*IM + pimγ + f (HDDim)θ + f (CDDim)η

+ month of year + εim

(2)  

where max kWim is the maximum monthly electricity demand by busi
ness consumer i in month m; Solarim is a dummy variable which is equal 
to 1 if in month m consumer i has had a solar panel; βSM measures the 
change in maximum electricity demand by month-of-year M after 
adopting solar panels. Our Hypothesis (2) states that βSM will be zero in 
the hottest months of a year – July and August. We will test the hy
pothesis empirically from the regression. 

2.4.3. Air emissions calculation 
We use the hourly marginal pollution damage factors from Holland 

et al. [64] to calculate the benefit of reduced air emissions due to solar 
panels.6 We analyze the four major air emissions including CO2, SO2, 
NOx, and particulate matter. Our formula to calculate the daily benefit 
from a pollutant is 

∑
HMDHβH, where MDH is the marginal damage 

factor in hour H of a day and βH is the coefficient estimated from 
regression Eq. (1), which measures the change in electricity delivered 
from the grid in hour H of a day. After calculating the daily benefit, we 
then calculate the annual benefit using the number of days in a year. 

3. Results 

3.1. Hourly load profile 

Fig. 3 shows the results of the changes in hourly electricity purchased 
from the grid estimated from Eq. (1). The solid blue dots indicate the 

coefficients for each hour, measuring the impact of an average-size 
business distributed solar panel system on the electricity delivered 
from the grid. Most reduction (statistically significant at 5% level) 
happens during the day when the solar radiation is the strongest. The 
coefficients around 8 pm are positive, implying rebound effects. After 
consumers install solar panels they pay lower electricity bills and thus 
consider electricity cheaper than before. As a result, they increase their 
electricity consumption. During the day when there is solar electricity to 
supply part of the electricity consumption, such an increase in electricity 
consumption can on average be offset by the solar electricity and thus 
we still see a reduction in electricity needed from the grid. In the early 
evenings when there is no solar electricity, such rebound effects will 
cause an increase in electricity purchased from the grid. 

We then demonstrate how the actual reduction in hourly electricity 
delivered from the grid can deviate from the amount of electricity 
generated by the solar panels. Fig. 4 shows that the average hourly solar 
electricity generation in our sample is much higher than the actual 
average hourly reduction in electricity delivered from the grid. This 
implies that using the amount of solar electricity generated to replace 
the same amount of electricity needed from the grid can significantly 
overstate the environmental and climate benefits of distributed solar 
panels7. 

3.2. Maximum monthly electricity demand 

Quantifying the change in the maximum monthly demand is critical 
to assessing the challenge created for the utilities. This has not been 
done before using a large solar consumer sample as well as actual 
electricity demand and solar electricity generation data. Fig. 5 shows the 
change in the maximum monthly electricity demand estimated from Eq. 
(2). Results show that due to rebound effects business distributed solar 
consumers do not reduce their maximum electricity demand during July 
and August, as illustrated by the positive and statistically non-significant 
coefficients.8 Even though there is a reduction in the maximum demand 
for other months, only the maximum demand in July and August is of 
interest. July and August are the two months when the system peak load 
tends to be reached. Electric utilities make their investment based on the 
system peak load of the whole year. As a result of the rebound effects, 
business distributed solar consumers create further challenges to the 
utilities by not reducing their maximum load in the peak summer 
months. From a social equity perspective, this implies that demand 
charges for business solar consumers are important in order to mitigate 
this potential challenge faced by the utilities. 

In order to examine the impact on the actual system peak load of the 
utility, we first plot the monthly system peak load for the past 10 years; 
panel (a) of Fig. 6 shows that the system peak has not declined. We then 
plot the residuals from a regression of system peak loads controlling for 
various confounding factors in Fig. 6 panel (b), which shows that there is 
still no decline in the system peak load. This descriptive evidence is 

6 We not only examine the emissions of these pollutants but also the damage 
associated with the emissions. The marginal damage factors in Holland et al. 
[64] measure the damages in dollar values associated with the additional 
emissions of the pollutions. The damages from local air pollution in these fac
tors include impacts on human health, buildings and material, visibility and 
recreation, and crop and timber yields. Holland et al. calculate these marginal 
damage factors for each North American Electric Reliability Corporation 
(NERC) interconnection region. They first use an econometric model to estimate 
the amount of pollutants emitted from an additional kWh of electricity gener
ation. They regress an individual power plant’s hourly emissions of each of the 
pollutants on the corresponding hourly electricity load of the regions the power 
plant is connected to, in order to obtain the change in emissions at an individual 
power plant from an increase in electricity usage in a given region by hour of 
the day. Then they use an integrated assessment air pollution model called AP2 
to determine the damages from local air pollution. AP2 maps the reported 
emissions of pollutants to the ambient air pollution concentrations in the United 
States. Then AP2 links the ambient concentrations to physical effects, expo
sures, and monetary damages, based on data on population, crop and timber 
yields, infrastructure and recreation, as well as concentration–response func
tions and damage functions reported in relevant existing literature [65,66]. 
Next, AP2 calculates the damages from a baseline air pollution level. Then it 
adds one ton of an air pollutant and calculates the total damages again. The 
incremental damages from a unit of air pollution emission are then the differ
ence between the baseline case and the add-one-unit case. Then combining the 
damages per unit of additional pollutant estimated from AP2 and the change in 
emissions from an increase in electricity usage, the marginal damage factors of 
an additional kWh of electricity generation of each region can be obtained. The 
NERC interconnection region where Arizona is located is the Western Electricity 
Coordinating Council (WECC). Thus we use the marginal damage factors esti
mated for the WECC in our calculation. 

7 Eq. (1) is essentially comparing the change in electricity demand of con
sumers before and after they install solar panels. The comparison was con
ducted via the econometric model instead of simply subtracting pre-installation 
demand from post-installation demand, because the econometric model can 
also control for other confounding factors. It is an empirical estimation rather 
than a simulation model.  

8 Although the coefficients in July/August are positive, the 95% confidence 
intervals indicate that the coefficients are not statistically significantly different 
from zero. This means that we cannot infer that the maximum power demand 
increased in July/August. Instead, the results indicate that their maximum 
demand did not change in these two months. This can be a result of the rebound 
effect. After consumers install the solar panels, their electricity bills decline and 
thus they tend to increase their electricity consumption especially during the 
hours when they usually have maximum monthly demand (the hottest hours 
and thus with the largest cooling needs), so that the solar electricity does not 
reduce their monthly maximum demand. 
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consistent with our finding that the distributed solar energy generation 
by businesses has not reduced system peak loads in the past few years. 
Fig. 6 panel (b) even shows an increasing trend of monthly peak load 
after controlling for population, GDP, and energy efficiency policies. 
This could be due to rebound effects where consumers increase their 
electricity consumption due to lower perceived cost of using energy 
services. We also check the temperature trends (Fig. S3 in Supplemen
tary Information) but do not find increasing needs for cooling or heating 
during our study time periods and thus the temperature trends cannot 
explain the increasing trend of peak load. 

3.3. Assessment of reduced air emissions 

We find that the annual benefit of reduced air emissions due to an 
average-size business distributed panel system (66 kW AC) is $1147 (in 
2018 U.S. dollars). Table S1 in the Supplementary Information shows 

the details of the calculation. Assuming a 30-year lifetime and a 3% 
discount rate, the lifetime benefit of reduced air emissions is $22,474 per 
system. 

4. Discussion and conclusion 

This study takes advantage of a unique and previously unavailable 
dataset on consumer-level high-frequency electricity demand and the 
installation information at the level of solar panel systems; we provide 
the first empirical evidence of the change in hourly electricity purchased 
from the grid due to distributed solar panel adoption for business con
sumers. In this study, we conduct three critical analyses. First, we esti
mate the actual hourly reduction in electricity needed from the grid of 
commercial and industrial consumers through an econometric analysis. 
We show that this reduction is much smaller than the actual solar 
electricity generation. Second, we show that business consumers of 

Fig. 4. Comparison of hourly solar electricity generation and actual reduction in electricity delivered from the grid. Notes: The actual reduction in hourly electricity 
delivered from the grid is obtained using the coefficients from panels (a & b) in Fig. 3. It has the opposite sign as the coefficients for illustration purposes. When the 
coefficient is not statistically significant at the 5% level, we treat it as zero. 

Fig. 3. Change in hourly electricity delivered from the grid (kWh/hr) due to solar panel adoption, by hour of day. Notes: The solid dots indicate the magnitude of the 
coefficients for solar panel adoption, while the vertical lines show the 95% confidence intervals. The values of the coefficients measure the change in hourly 
electricity delivered from the grid due to solar panel adoption. PSM stands for propensity score matching. CEM stands for coarsened exact matching. The matching 
variable for PSM and CEM in this figure is the pre-adoption average monthly electricity consumption in summer and winter. 
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distributed solar create additional challenges to utilities by not reducing 
their maximum monthly demand in July and August, which contradicts 
previous studies that found a reduction in maximum-capacity invest
ment [13]. Third, we conduct a more precise assessment of the reduced 
air emissions due to businesses’ distributed solar panels using the actual 
hourly reduction in electricity needed from the grid. The assessment 
includes reduction in CO2, NOx, SO2, and PM (particulate matter). We 
show that not relying on empirical evidence can overestimate the benefit 
of reduced air emissions from distributed solar panels being used by 
businesses. 

Our estimated coefficients from running regression Eq. (1) test for 
Hypothesis 1 and the coefficients and their 95% confidence intervals 
indeed confirm that the electricity purchased from the electric grid 
during the hours when solar panels generate electricity reduced after 
adopting solar panels. Our estimated coefficients from running regres
sion Eq. (2) test for Hypothesis 2 and the results confirm that the 
monthly maximum electricity demand does not change for July and 
August. We use two matching techniques (PSM and CEM) as well as no 

matching (using the original sample) to check for the robustness of our 
conclusions. Our results are consistent across using different samples 
generated by the two different matching methods. In addition, we test 
for the parallel trends of the control and treatment consumers in Fig. 2 to 
further check for the validity of using panel regression models. Our re
sults show the validity of our methods. 

Our finding has important implications. Most existing studies assume 
that the entire amount of electricity generated by solar panels leads to a 
reduction in electricity needed from the grid [67,68]. We show that such 
an approach can drastically overestimate the benefits of reduced air 
emissions from solar energy by ignoring factors such as solar rebound 
effects. Solar rebound effects also demonstrate the importance of 
cleaning the grid by adding the portion of utility-scale renewable en
ergy. If the grid is dirty with a significant share of energy generation 
with fossil fuel, then solar rebound effects mean that it will be harder for 
distributed solar panels to reduce air emissions that arise from electricity 
consumption. 

We show that distributed solar panels can create challenges to util
ities by not reducing the maximum monthly demand of business con
sumers for the months of July and August, which are when the system 
load peak tends to happen. This implies that, when more businesses 
adopt distributed solar panels, the investment in grid infrastructure re
mains unchanged, while electricity sales are reduced. Such imbalance 
between the infrastructure needs and the reduction in electricity sales 
highlights the importance of a demand charge for business solar con
sumers, so that utilities can better recover their upfront investment to 
serve the broader community [43,44]. 

To conclude, our results imply that any impact evaluation of 
distributed solar panels should rely on empirical assessment due to 
factors such as rebound effects as it can offset the theoretical savings of 
electricity needed from the grid. More comprehensive studies are 
needed to evaluate the costs and benefits of distributed solar energy 
after incorporating our empirical results of the grid impacts from 
distributed solar panels. 
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Fig. 6. The utility’s monthly system peak loads. Notes: Panel (a) plots the actual monthly system peak loads. Panel (b) plots the residuals of a regression which 
regresses the monthly system peak loads on annual population and GDP in Phoenix metropolitan area as well as state-level energy efficiency scores. The annual state- 
level energy efficiency scores are developed by American Council for an Energy-Efficient Economy which reflect states’ energy efficiency policy stringency and actual 
energy efficiency investments (https://aceee.org/state-policy/scorecard). 

Fig. 5. Change of maximum monthly electricity demand (kW) from solar panel 
adoption, by month. Notes: The solid dots indicate the magnitude of the co
efficients for solar panel adoption, while the vertical lines show the 95% con
fidence intervals. The values of the coefficients measure the change in the 
maximum monthly electricity demand due to solar panel adoption. This figure 
is generated using the full sample without matching. 
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