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HIGHLIGHTS

e Empirical estimation of the impact of non-residential distributed solar panels.

e Reduction in electricity purchased from the grid much smaller than solar electricity.
e These consumers do not reduce their monthly maximum demand in July and August.
e Solar rebound effects are important for evaluating the environmental benefits.
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Most existing assessments of the energy saving and environmental benefits from distributed solar panels assume
that the entire amount of electricity generated by distributed solar panels goes to replace the same amount of
electricity needed from the electric grid. However, such an assumption can overestimate the actual environ-
mental benefits because it incorrectly ignores the existence of rebound effects — increases in energy service usage.
We provide the first empirical evidence of the grid impact of non-residential distributed solar energy and the
associated reduced air emissions. Using consumer-level high frequency electricity consumption and solar panel
installation data from Arizona, United States, we estimate the actual hourly reduction in electricity needed from
the grid of commercial and industrial consumers through an econometric analysis. We show that this reduction is
much smaller than the actual solar electricity generation. We also show that business distributed solar consumers
create a further challenge to the utilities by not reducing their monthly maximum demand in July and August.
Lastly, we calculate the benefit of reduced air emissions by multiplying the measured hourly reduction in
electricity purchased from the grid by the marginal emission factors of CO5, SO2, NOy, and particulate matter. We
estimate that the annual benefit of reduced air emissions from an average-size business distributed panel system
is $1147.

1. Introduction

Recent scientific evidence [1,2] of global warming highlights the
urgent need for deep de-carbonization. The UN Intergovernmental Panel
on Climate Change report [1] indicates that “In 1.5 °C pathways [...]
renewables are projected to supply 70-85% (interquartile range) of
electricity in 2050 (high confidence).” Such projection necessitates a
much wider adoption of solar electricity generation [3-6]. Indeed, there
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are various types of state and sub-national policies which provide in-
centives for consumers to adopt distributed solar panels, such as feed-in
tariffs, net metering, tax credits, and direct rebates [7-10]. To justify
these government programs, policymakers, climate scientists, and
environmental researchers need to accurately quantify the climate and
environmental benefits associated with distributed solar energy as well
as the impact on the electric grid.

Existing studies and policy reports generally use the amount of

Received 23 November 2020; Received in revised form 27 February 2021; Accepted 7 March 2021

0306-2619/© 2021 Elsevier Ltd. All rights reserved.


mailto:yqiu16@umd.edu
www.sciencedirect.com/science/journal/03062619
https://www.elsevier.com/locate/apenergy
https://doi.org/10.1016/j.apenergy.2021.116804
https://doi.org/10.1016/j.apenergy.2021.116804
https://doi.org/10.1016/j.apenergy.2021.116804
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2021.116804&domain=pdf

Y.(L. Qiu et al.

electricity generated by distributed solar panels to replace the same
amount of electricity needed from fossil fuel electricity generation.
[11-17] The climate and environmental benefits of distributed solar
energy in existing studies are calculated by multiplying the marginal
emissions damages by the amount of solar electricity generated. Most
integrated assessment models (IAMs) currently use such an approach
[18,19]. The obvious logical flaw of this approach is that the usage of
solar electricity might not reduce the usage of fossil-fuel electricity in a
one-to-one fashion. It is completely conceivable that consumers increase
their overall electricity consumption when solar energy becomes avail-
able if they perceive a zero marginal cost of electricity generated by
solar panels- so-called solar rebound effects [20]. Electricity consumers
typically purchase electricity from utility companies. After net-metered
consumers adopt solar panels, they first consume the solar electricity
generated by their own solar panels, and any unused solar electricity is
sold back to the grid. This lowers their electricity bill payment and their
average effective electricity price [20]. When the average electricity
price falls, consumers increase their electricity consumption [21].

There is already empirical evidence of such solar rebound effects due
to average electricity prices falling in the residential sector [20]. While
rebound effects have been discussed in the energy efficiency literature
[22-26], solar rebound effects are rarely studied except for a few
empirical studies. Deng and Newton [21] focus on residential feed-in-
tariff solar customers in Australia and use quarterly electricity data;
they find that residential adoption of solar panels is associated with an
electricity consumption increase of 19%. Havas et al. [27] use monthly
electricity consumption data and find a 15% rebound effect for solar
households in Australia. Qiu et al. [20] use high-frequency daily and
hourly data and find that net-metered residential solar consumers in
Phoenix, Arizona (United States) have a rebound effect of 18%. Spiller
et al. [28] use high-frequency electricity data and find that residential
solar consumers in Austin, Texas (United States) have a rebound effect of
9%. Finally, Toroghi and Oliver [29] use numerical simulation to esti-
mate that residential solar rebound effects are between 2.9 and 5.8% in
Fulton County, Georgia (United States). Also, using high-frequency data
of households in Australia, La Nauze [30] provides empirical evidence
that solar consumers do indeed increase their electricity expenditures.
Because of the solar rebound effects, empirical estimation of the change
in electricity consumption of distributed solar consumers is important
which is the net change after factors such as rebound effects. However,
such empirical assessment is lacking for the non-residential sector. We
hypothesize that such solar rebound effects also exist for business con-
sumers. The electricity consumption of a business not only depends on
providing a service or a product but also on the thermal comfort of its
building occupants [31] as well as building energy management prac-
tices [24]. Business consumers might change the ways they operate the
business or the way they use heating, cooling, lighting, or electronics in
the building [32], which can lead to solar rebound effects. The temporal
time scales of price changes in the solar rebound effects estimated in the
existing literature of the residential sector include quarterly [21], daily
[20], and hourly [30]. In our study, we use the hourly time scale.

The problem being solved by this paper is what are the grid impact of
non-residential distributed solar energy and the change in air emissions
due to the change of electricity purchased from the grid. A key limitation
of current studies on the solar panel impact assessment of business
consumers is that most existing studies on solar panels in commercial
buildings are based on simulations from engineering models instead of
observable usage data. These studies use engineering simulation models
such as eQUEST to study the impact of solar energy technologies on the
energy performance of commercial buildings [33,34], collect actual
performance data of just one or a few buildings to conduct a case study
[35,361, or discuss potential applications of solar energy technologies in
commercial settings [37,38].

Our study makes four important contributions to the existing liter-
ature. First, to the best of our knowledge, we provide the first empirical
evidence of the impact of distributed solar panels on business
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consumers’ hourly electricity consumption. We define business elec-
tricity consumers as firms, rather than individuals or households, that
directly pay electric bills to utilities. Business electricity consumers
include both commercial and industrial electricity consumers, and are
responsible for 62% of electricity consumption in the U.S. as of 2017
[39] and 63% of the worldwide consumption as of 2016. [40] Business
distributed solar consumers constitute a significant portion of the total
distributed solar panels and are therefore important for mitigating
climate and environmental damages from fossil fuel consumption. In
2019, the new non-residential distributed solar PV deployment
(including distributed solar panels installed by commercial and indus-
trial, non-profit, and government entities) was about 1516 MW in the U.
S., which was about 71% of all distributed solar panel new installations
of that year in the U.S. market. [41] Despite the importance of the
business sector, there has been a lack of empirical studies using data on
actual solar panel installation and electricity consumption for the
commercial and industrial sectors [42].

Second, we use a rich dataset of consumer-level hourly smart meter
electricity-usage data for more than 17,000 business customers, as well
as the solar panel installation information for more than 300 business
solar customers between 2013 and 2018 from Arizona, United States.
Data availability enables us to apply more robust methods to provide a
better estimation of the actual change in electricity consumption due to
solar panel installation. High-frequency data is also essential for esti-
mating the benefit of reduced air emissions when controlling for the
potentially different magnitudes of the rebound effects by hour of day.

Third, we estimate the change in maximum monthly electricity de-
mand from solar panel adoption. This is important because the
increasing penetration of distributed solar energy has created an
ongoing tension between electric utilities and distributed solar devel-
opment. [43-45] Electricity consumers with distributed solar energy
reduced their payments to the utilities, leading to the utilities enjoying
less revenue than before. In the case when there is no demand charge for
electricity consumers, such tension will be exacerbated, because electric
utilities need to make a large amount of upfront investments such as in
transmission and distribution infrastructure (i.e., fixed costs) to meet the
maximum demand, not the average demand, of all consumers [46].
Demand charge is a type of electricity price charged based on the
monthly maximum electricity demand of a consumer (i.e., the highest
hourly electricity usage of a month). If there is no demand charge, then
utilities will mainly rely on electricity sales to recover their upfront in-
vestment [44,47]. Furthermore, if the distributed solar consumers are
not reducing their maximum monthly electricity usage, then their
reduced payments to the utilities imply that they are not paying for their
proper share of using the grid infrastructure. As a result, some utilities
may increase their energy price for all of their consumers, including non-
solar consumers, leading to the ongoing debate about the distributional
or equity impact of distributed solar energy.

Fourth, we provide a more precise assessment of the reduced air
emissions due to distributed solar panels adopted by business con-
sumers, using the actual hourly change in electricity usage instead of the
solar electricity generation. It is estimated that governmental financial
incentives can reduce the costs of distributed solar panels paid by
adopters by 30-50% [48]. These government programs cost the tax-
payers a significant amount of money. A natural question to the poli-
cymaker is whether the cost of these programs can justify the gain.
Climate and environmental benefits constitute an important aspect of
the gain.

2. Data, empirical strategy, and models
2.1. Data
We compile a rich dataset from an electric utility company called Salt

River Project (SRP) in Arizona, United States. Arizona is a particularly
suitable study area for solar energy research because of its abundant
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Fig. 1. Average load profiles by month of the 330 business consumers before and after installing solar panels. Notes: The y-axis is the average hourly electricity
delivered from the grid to the consumers (in kWh). The x-axis is the hour of day indicators. “Before solar” indicates the data before installing solar panels; “After

solar” indicates the data after installing solar panels.

solar resources. As of the third quarter of 2018, the cumulative capacity
of installed solar energy capacity in Arizona ranked 3rd in the United
States [49]. Our dataset contains 330 business distributed solar cus-
tomers and more than 17,000 business electricity customers in total. The
dataset includes hourly electricity consumption for individual con-
sumers from 2013 to 2018 as well as solar panel installation dates for
individual consumers. Fig. 1 shows the average load profiles (hourly
electricity purchased from the electric grid) by month of the 330 busi-
ness consumers before and after installing solar panels. Fig. 1 is a
descriptive figure which is generated by averaging the hourly electricity
purchased from the grid by each month. The figure shows that after
installing solar panels, business consumers drop their electricity pur-
chased from the grid significantly from about 10am-5 pm, during which
the solar panels generate the most electricity. Another observation from
Fig. 1 is that the electricity purchased from the grid after installing solar
panels is non-zero for all hours, implying that the electricity generated
from solar panels is not enough to offset all the electricity consumption
of these business consumers. Recall that these solar consumers in our
dataset are net-metered consumers: they first consume the solar elec-
tricity generated by their own solar panels, and any unused solar elec-
tricity is sold back to the grid.

Table S5 in the Supplementary Information shows the industry dis-
tribution of solar business customers and the top three sectors are health
care/social assistance, real estate/rental/leasing, and retail trade.
Fig. S1 in the Supplementary Information shows the distribution of the
solar panel systems in our sample and the average size of panels is 66 kW
(in AC). Fig. S1 also shows the distribution of solar panel adoption per
year. The panels were installed between 2006 and 2017. Fig. S2 in the
Supplementary Information shows that there is a wide range of daily
electricity generated per kW by the solar panel system, due to the var-
iations in panel performance and solar irradiance.

Our data is at the account-level instead of at the building level. One
building can have multiple accounts with the utility company. Even
within a business, there can be multiple accounts. If a certain business is
spread within several buildings, each building/business combination
will have a separate account. If each of the businesses has its own
electricity account and they were to be combined into the same building,
then they would still maintain their original individual accounts. If an
account changes its address, the account number does not change, and
the utility still records the electricity information for the same account.
In such a case, our data will not show a higher consumption just because
of business consolidation into one building.

2.2. Summary of empirical strategy

We use fixed panel regressions to estimate the impact of distributed
solar panel installations on electricity consumption behaviors. Intui-
tively, the panel regression method compares the electricity purchased
from the grid of a consumer before and after solar panel adoption and
measures the difference of the electricity amount, while controlling for
various other factors that can influence electricity consumption [50].
Also, the non-solar consumers that enter into the panel regression model
provide baseline change in electricity amount, which will be compared
against the change of solar consumers. This panel regression method has
the advantage of controlling for time-invariant consumer-level unob-
served confounding factors as well as time-dimensional factors that can
bias the estimation of the causal impact [51]. This panel regression
method is widely used in the energy economics literature which esti-
mates the impact of various types of technologies on electricity con-
sumption behaviors, such as energy efficiency technologies [52-53] and
recently residential solar panels [20,30]. In addition, we use two
matching methods, propensity score matching (PSM) and coarsened
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exact matching (CEM) to further help eliminate any systematic differ-
ences between the control and treatment consumers. The matching
methods are also commonly used in the literature to evaluate the impact
of energy technology adoption [54-56]. Details of the panel regression
and matching methods are described below.

There could be several confounding factors when estimating the
impact of solar panel adoption on electricity consumption behavior.
First, adopting solar panels is voluntary. For example, more environ-
mentally conscious business consumers might be more likely to adopt
solar panels, but they are also more likely to pay more attention to
energy-saving practices in general. Second, business consumers might
adopt contemporaneous energy efficiency projects or other business
expansion projects, concurrently with solar panels. Third, conditional on
adoption, if business consumers make certain changes (e.g., they remove
barriers such as trees to increase the sunlight exposure of the panels),
then these unobservable practices can impact their electricity
consumptionl.

To address these potential challenges, we use a panel regression with
consumer-year fixed effects to control for consumer-level time-variant
confounding factors such as consumer environmental awareness, occu-
pancy change, tree-shade change, and business expansion or energy
efficiency projects. Essentially, these fixed effects give each individual
consumer a different baseline electricity consumption profile due to
individual-specific characteristics as measured in different years. For
example, a consumer that is very environmentally friendly might have a
relatively small fixed effect which would indicate a low level of baseline
electricity consumption. The consumer-year fixed effects can also con-
trol for yearly business expansion activities. For more detailed expla-
nations of the panel regression model, please refer to “Supplementary
Information — Explanations of Fixed Effects Panel Regression”.

As robustness checks, we use two main matching methods: pro-
pensity score matching (PSM) and coarsened exact matching (CEM).
Matching helps construct a non-equivalent control group similar to the
treatment group for a quasi-experimental design [57,58]. In other
words, for each solar consumer, the matching method selects similar
non-solar consumers for comparison. The selected non-solar consumers

1 Here electricity consumption means the total amount of electricity
consumed by the business including the electricity consumed via both the
electricity purchased from the grid and the electricity generated from the solar
panels. When electricity consumption changes, that will also change the
amount of electricity purchased from the grid. In terms of why such changes can
impact electricity consumption, if they remove the barriers and increase sun-
light exposure, it can change the space cooling or heating needs, and thus
electricity consumption will change because sunlight can go through the win-
dow to warm up the rooms.
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Fig. 2. Monthly electricity consumption of the
control and solar customers in the pre-treatment
period. Notes: The y-axis is the monthly average
electricity consumption (in kWh). Orange color
represents the average consumption of the solar
customers and blue color represents that of the
control customers. The x-axis is the month number
in the pre-treatment period, with the first month
normalized to be month #1. In total there are about
4 years of pre-treatment billing data. This figure is
generated using the sample from propensity score
matching. Coarsened exact matching shows similar
parallel trends.
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will be similar to the solar consumer in terms of the key attributes such
as the industry sector and the average size of electricity consumption (in
the absence of solar installation). These matched non-solar consumers
will serve as the control group for the solar consumers. A key assumption
when using matching for causal inference is conditional independence —
only observable factors can impact the treatment and outcome variables,
which is normally difficult to justify. As a result, we apply a fixed-effects
panel regression on the matched control and treatment groups in order
to control for any potentially confounding unobservable factors, similar
to the method used by Qiu and Kahn. [54] In our PSM, a logit model is
used in the first stage to calculate the predicted probability of a con-
sumer adopting solar panels. Then in the second stage, non-solar con-
sumers are matched with solar consumers based on similarity in the
predicted probability of adoption. We use the nearest neighbor matching
algorithm and the heteroskedasticity-consistent analytical standard er-
rors as in Abadie and Imbens [59] in the second stage of PSM. CEM first
coarsens the matching variables into strata and then matches consumers
based on which strata they belong to. We use the programming-
generated strata for CEM instead of pre-specified strata. Compared to
PSM, CEM can control for the difference between the treatment and
control groups ex-ante [60]. We match consumers based on their pre-
adoption monthly electricity consumption to ensure that the control
and treatment groups have a similar pre-solar electricity consumption
profile. For the non-solar consumers, we randomly assign them the solar
installation dates. In addition, we match the businesses on their two-
digit industry code and city. In Tables S3-54 in the Supplementary In-
formation, we present the results of the balancing tests conducted to
ensure that the treatment and control groups are comparable to each
other after the matching process. Table S2 shows the number of solar
and non-solar consumers before and after matching. Tables S3-54 list
the types of tests and statistics used for the balancing checks as well as
the sample distribution of the matched control and treatment groups.
The matching methods will generate different samples with different
numbers of solar and non-solar consumers [61] because in the matching
process, if a solar consumer cannot be matched well the matching pro-
cess will drop that solar consumer. We will run the panel regression
models using the samples generated by the two different matching
methods as well as using the original sample without matching, to show
the robustness of our statistical results.

A potential important selection bias is the likelihood that businesses
installing solar panels are also those that are doing well financially and
growing or are about to be growing. In order to reduce this bias and to
check that the matched treatment and control groups share a common
trend in electricity consumption prior to the installation of solar panels
by the treatment businesses, we plot the monthly average electricity
consumption of the treatment and control groups in the pre-treatment
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periods. Fig. 2 confirms that the treatment and control groups have
parallel trends and thus it is unlikely that solar consumers are only those
businesses that were experiencing growth.

We use the software Stata to process the data and to conduct the
econometric analyses. The steps to process the data are as follows. (1)
We merge the hourly electricity consumption data of individual con-
sumers obtained from SRP with hourly temperature data obtained from
National Oceanic and Atmospheric Administration (NOAA) [62] by the
location, the hour, and the date. We use the weather station that is the
closest to the zip code where each consumer is located for the merging
process. (2) Based on the electricity price plan faced by each consumer
on each day, we assign the hourly electricity price to each consumer
based on SRP’s rate book [63]. (3) Next, we merge the dataset with the
solar panel installation dataset by the consumer identification numbers.
For each solar consumer, the installation dataset contains the commis-
sioning date of each distributed solar panel, based on which we can
know the pre-installation and post-installation periods. (4) We next use
statistical matching methods including PSM and CEM to find compara-
ble control (non-solar) consumers for the distributed solar consumers.
(5) We then run the fixed effects panel regression models on the matched
control and solar consumers which will be explained in detail in Eqgs. (1)
and (2).

2.3. Research hypotheses

For net-metering consumers, when solar panels generate electricity,
the solar electricity will be consumed by the consumers first, and then
any excess electricity will be sold back to the grid. This means that part
of the electricity originally needed from the electric grid can be supplied
by solar electricity. As a result, we have the following hypothesis, to be
tested in Eq. (1) described in the next section:

Hypothesis 1. Installation of distributed solar panels will reduce the
electricity purchased from the electric grid during the hours when solar
panels generate electricity.

Due to the solar rebound effects, consumers might increase their
electricity consumption, especially during the months when the space
cooling needs are high, such as in July and August. During these two
months, the lower electricity bills from solar electricity can make the
building occupants use more electricity to cool the space and increase
their thermal comfort levels. Such an increase in electricity consumption
might completely offset the reduction in electricity needed from the grid
during the hottest hours (when maximum electricity demand happens)
of these two months. Thus we make the following hypothesis about the
change in maximum monthly demand, to be tested in Eq. (2) described
in the next section:

Hypothesis 2. The installation of distributed solar panels does not
reduce the monthly maximum demand in July and August.

2.4. Models

2.4.1. Hourly load profile

In order to more precisely evaluate the benefit from reduced air
pollution associated with burning fossil fuel, including CO,, SO3, NOx,
and particulate matter, the solar panels’ impact on the hourly electricity
consumption is needed. This is because the marginal fuel being used to
supply electricity, such as from coal, natural gas, or renewables, could be
different depending on the hour of day, and because each of these fuel
options has different air emissions. Thus, the marginal damage factor
from one additional kWh of electricity supplied from the electric grid
differs by hour of day. Our paper improves existing evaluations of the
benefits of distributed solar panels by estimating the actual change in
hourly electricity usage from the grid for the distributed solar consumers
in the commercial and industrial sector, after incorporating the behavior
change due to the rebound effects.
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Specifically, we regress hourly electricity delivered from the grid to
the consumer on the solar panel adoption status, controlling for various
confounding factors. We run the following regression model:

24

GridkWhy, =ai,+ > By Solary*Iy-+p;y +f (HDDy,)0+f (CDDy, )+ 6Holiday,
H=1

+Hour of day+Day of month+Day of week+month of year+e; (1)

where Grid_kWhy, is the electricity delivered from the grid to business
consumer i in hour h of sample. a;y is a consumer-year fixed effect which
can control for time-variant unobservable factors at business consumer
level as these could impact solar adoption and solar generation; exam-
ples of such factors are consumer environmental awareness, occupancy
change, tree-shade change, and contemporaneous projects for each
customer at the yearly level. Solar;, is a dummy variable that is equal to
1 if consumer i has a solar panel at that time, while Iy is an indicator
variable indicating the hour of the day. ; measures the change in
hourly electricity delivered from the grid after adopting solar panels for
hour H of the day and there are 24 such coefficients.” p;, is a price vector
containing both the marginal electricity price® and the demand charge. y
are the coefficients measuring the impact of electricity prices on elec-
tricity purchased from the grid. HDD represents heating degree days as
calculated by 65 - temperature; CDD represents the cooling degree days
as calculated by temperature — 65; f is a spline function for HDD and
CDD." 9 are the coefficients in each of the HDD piecewise linear func-
tions. n are the coefficients in each of the CDD piecewise linear func-
tions. Holiday is an indicator variable for federal holidays. We also
include a set of time fixed effects including hour of day, day of the
month, day of the week, and month of the year, all of which control for
factors that change over time for all customers such as changes in energy
efficiency policies and incentives, or the changing prices of solar
panels.” Note that year of sample is not included since we include
consumer-year fixed effects. Standard errors are clustered at the busi-
ness customer level to avoid autocorrelation of the error term g,

Our Hypothesis 1 states that py will be negative during the hours
when solar panels generate electricity and consumers use solar elec-
tricity. We will test the hypothesis empirically from the regression. The
dependent variable in the hourly analysis is the electricity that was
delivered from the grid. Hourly data is needed here because the mar-
ginal emissions produced by the electricity supply vary throughout the
day based on the different marginal fuels (e.g., natural gas, coal, or

2 h is the h™ hour of the sample while H is the H™ hour within 24 h of a day.
For example, for hour 1am-2am on the 31st day of the sample, h will be 24 * 30
+ 2 = 722, while H will be 2.

% The marginal electricity price information comes from the utility company.
It is a price paid by the consumers. The business consumers are on several price
plans and each price plan has a different marginal price in different hours.
Table S6 in the Supplementary Information summarizes the price information.

4 For the temperature spline function, the number of knots is 4 such that the
data is divided into 5 equal-width groups of CDD or HDD, respectively, for
piecewise linear function. In other words, the linear relationship between
temperature and electricity consumption has different coefficients in each of the
temperature intervals %4,

5 The coefficients of each term have their own units so that the unit of the left
side of the equation (kWh/hour) will be equal to that of the units of the right
side of the equation. For example, for the fixed effect term “Day of month”, it
includes both the coefficient and the day of month indicator, meaning “coef-
ficient (unit is kWh/hour) * Day of month indicator (unit is normalized and is 1
since it is an indicator variable)”. The units for each term in the equation are:
Grid_kWhg, (kWh/hour), a;, (kWh/hour), Iy (unit is normalized and is 1), Solary,
(unit is normalized and is 1), #; (kWh/hour), py(dollar), y (kWh/dollar/hour),
HDD;, (degree/hour),d (kWh/degree), CDD;, (degree/hour), n (kWh/degree),
Holiday, (unit is normalized and is 1), 5§ (kWh/hour), Hour of day (kWh/hour),
Dayofmonth(kWh/hour), Day of week(kWh/hour), month of year(kWh/hour),
en (kWh/hour).
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renewables) used to supply electricity at different times of day.

2.4.2. Maximum monthly demand
To measure the impact of solar panel adoption on the maximum
monthly electricity demand, we run the following regression model:

12
max_kW,, = a; + ZﬁSMSolar[m*IM + Py +f(HDD,,)0 + f(CDD;,,)n
M

=1
+ month of year + &,
@

where max_kWj, is the maximum monthly electricity demand by busi-
ness consumer i in month m; Solar;, is a dummy variable which is equal
to 1 if in month m consumer i has had a solar panel; fg,, measures the
change in maximum electricity demand by month-of-year M after
adopting solar panels. Our Hypothesis (2) states that S, will be zero in
the hottest months of a year — July and August. We will test the hy-
pothesis empirically from the regression.

2.4.3. Air emissions calculation

We use the hourly marginal pollution damage factors from Holland
et al. [64] to calculate the benefit of reduced air emissions due to solar
panels.® We analyze the four major air emissions including CO2, SO,
NOy, and particulate matter. Our formula to calculate the daily benefit
from a pollutant is ), MDyfp;, where MDy is the marginal damage
factor in hour H of a day and fy is the coefficient estimated from
regression Eq. (1), which measures the change in electricity delivered
from the grid in hour H of a day. After calculating the daily benefit, we
then calculate the annual benefit using the number of days in a year.

3. Results
3.1. Hourly load profile

Fig. 3 shows the results of the changes in hourly electricity purchased
from the grid estimated from Eq. (1). The solid blue dots indicate the

¢ We not only examine the emissions of these pollutants but also the damage
associated with the emissions. The marginal damage factors in Holland et al.
[64] measure the damages in dollar values associated with the additional
emissions of the pollutions. The damages from local air pollution in these fac-
tors include impacts on human health, buildings and material, visibility and
recreation, and crop and timber yields. Holland et al. calculate these marginal
damage factors for each North American Electric Reliability Corporation
(NERC) interconnection region. They first use an econometric model to estimate
the amount of pollutants emitted from an additional kWh of electricity gener-
ation. They regress an individual power plant’s hourly emissions of each of the
pollutants on the corresponding hourly electricity load of the regions the power
plant is connected to, in order to obtain the change in emissions at an individual
power plant from an increase in electricity usage in a given region by hour of
the day. Then they use an integrated assessment air pollution model called AP2
to determine the damages from local air pollution. AP2 maps the reported
emissions of pollutants to the ambient air pollution concentrations in the United
States. Then AP2 links the ambient concentrations to physical effects, expo-
sures, and monetary damages, based on data on population, crop and timber
yields, infrastructure and recreation, as well as concentration-response func-
tions and damage functions reported in relevant existing literature [65,66].
Next, AP2 calculates the damages from a baseline air pollution level. Then it
adds one ton of an air pollutant and calculates the total damages again. The
incremental damages from a unit of air pollution emission are then the differ-
ence between the baseline case and the add-one-unit case. Then combining the
damages per unit of additional pollutant estimated from AP2 and the change in
emissions from an increase in electricity usage, the marginal damage factors of
an additional kWh of electricity generation of each region can be obtained. The
NERC interconnection region where Arizona is located is the Western Electricity
Coordinating Council (WECC). Thus we use the marginal damage factors esti-
mated for the WECC in our calculation.
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coefficients for each hour, measuring the impact of an average-size
business distributed solar panel system on the electricity delivered
from the grid. Most reduction (statistically significant at 5% level)
happens during the day when the solar radiation is the strongest. The
coefficients around 8 pm are positive, implying rebound effects. After
consumers install solar panels they pay lower electricity bills and thus
consider electricity cheaper than before. As a result, they increase their
electricity consumption. During the day when there is solar electricity to
supply part of the electricity consumption, such an increase in electricity
consumption can on average be offset by the solar electricity and thus
we still see a reduction in electricity needed from the grid. In the early
evenings when there is no solar electricity, such rebound effects will
cause an increase in electricity purchased from the grid.

We then demonstrate how the actual reduction in hourly electricity
delivered from the grid can deviate from the amount of electricity
generated by the solar panels. Fig. 4 shows that the average hourly solar
electricity generation in our sample is much higher than the actual
average hourly reduction in electricity delivered from the grid. This
implies that using the amount of solar electricity generated to replace
the same amount of electricity needed from the grid can significantly
overstate the environmental and climate benefits of distributed solar
panels’.

3.2. Maximum monthly electricity demand

Quantifying the change in the maximum monthly demand is critical
to assessing the challenge created for the utilities. This has not been
done before using a large solar consumer sample as well as actual
electricity demand and solar electricity generation data. Fig. 5 shows the
change in the maximum monthly electricity demand estimated from Eq.
(2). Results show that due to rebound effects business distributed solar
consumers do not reduce their maximum electricity demand during July
and August, as illustrated by the positive and statistically non-significant
coefficients.® Even though there is a reduction in the maximum demand
for other months, only the maximum demand in July and August is of
interest. July and August are the two months when the system peak load
tends to be reached. Electric utilities make their investment based on the
system peak load of the whole year. As a result of the rebound effects,
business distributed solar consumers create further challenges to the
utilities by not reducing their maximum load in the peak summer
months. From a social equity perspective, this implies that demand
charges for business solar consumers are important in order to mitigate
this potential challenge faced by the utilities.

In order to examine the impact on the actual system peak load of the
utility, we first plot the monthly system peak load for the past 10 years;
panel (a) of Fig. 6 shows that the system peak has not declined. We then
plot the residuals from a regression of system peak loads controlling for
various confounding factors in Fig. 6 panel (b), which shows that there is
still no decline in the system peak load. This descriptive evidence is

7 Eq. (1) is essentially comparing the change in electricity demand of con-
sumers before and after they install solar panels. The comparison was con-
ducted via the econometric model instead of simply subtracting pre-installation
demand from post-installation demand, because the econometric model can
also control for other confounding factors. It is an empirical estimation rather
than a simulation model.

8 Although the coefficients in July/August are positive, the 95% confidence
intervals indicate that the coefficients are not statistically significantly different
from zero. This means that we cannot infer that the maximum power demand
increased in July/August. Instead, the results indicate that their maximum
demand did not change in these two months. This can be a result of the rebound
effect. After consumers install the solar panels, their electricity bills decline and
thus they tend to increase their electricity consumption especially during the
hours when they usually have maximum monthly demand (the hottest hours
and thus with the largest cooling needs), so that the solar electricity does not
reduce their monthly maximum demand.
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Fig. 3. Change in hourly electricity delivered from the grid (kWh/hr) due to solar panel adoption, by hour of day. Notes: The solid dots indicate the magnitude of the
coefficients for solar panel adoption, while the vertical lines show the 95% confidence intervals. The values of the coefficients measure the change in hourly
electricity delivered from the grid due to solar panel adoption. PSM stands for propensity score matching. CEM stands for coarsened exact matching. The matching
variable for PSM and CEM in this figure is the pre-adoption average monthly electricity consumption in summer and winter.
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Fig. 4. Comparison of hourly solar electricity generation and actual reduction in electricity delivered from the grid. Notes: The actual reduction in hourly electricity
delivered from the grid is obtained using the coefficients from panels (a & b) in Fig. 3. It has the opposite sign as the coefficients for illustration purposes. When the
coefficient is not statistically significant at the 5% level, we treat it as zero.

consistent with our finding that the distributed solar energy generation the details of the calculation. Assuming a 30-year lifetime and a 3%
by businesses has not reduced system peak loads in the past few years. discount rate, the lifetime benefit of reduced air emissions is $22,474 per
Fig. 6 panel (b) even shows an increasing trend of monthly peak load system.

after controlling for population, GDP, and energy efficiency policies.

This could be due to rebound effects where consumers increase their 4. Discussion and conclusion

electricity consumption due to lower perceived cost of using energy

services. We also check the temperature trends (Fig. S3 in Supplemen- This study takes advantage of a unique and previously unavailable
tary Information) but do not find increasing needs for cooling or heating dataset on consumer-level high-frequency electricity demand and the
during our study time periods and thus the temperature trends cannot installation information at the level of solar panel systems; we provide
explain the increasing trend of peak load. the first empirical evidence of the change in hourly electricity purchased

from the grid due to distributed solar panel adoption for business con-
sumers. In this study, we conduct three critical analyses. First, we esti-
mate the actual hourly reduction in electricity needed from the grid of
commercial and industrial consumers through an econometric analysis.
We show that this reduction is much smaller than the actual solar
electricity generation. Second, we show that business consumers of

3.3. Assessment of reduced air emissions

We find that the annual benefit of reduced air emissions due to an
average-size business distributed panel system (66 kW AC) is $1147 (in
2018 U.S. dollars). Table S1 in the Supplementary Information shows
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Fig. 5. Change of maximum monthly electricity demand (kW) from solar panel
adoption, by month. Notes: The solid dots indicate the magnitude of the co-
efficients for solar panel adoption, while the vertical lines show the 95% con-
fidence intervals. The values of the coefficients measure the change in the
maximum monthly electricity demand due to solar panel adoption. This figure
is generated using the full sample without matching.

distributed solar create additional challenges to utilities by not reducing
their maximum monthly demand in July and August, which contradicts
previous studies that found a reduction in maximum-capacity invest-
ment [13]. Third, we conduct a more precise assessment of the reduced
air emissions due to businesses’ distributed solar panels using the actual
hourly reduction in electricity needed from the grid. The assessment
includes reduction in CO3, NOy, SO,, and PM (particulate matter). We
show that not relying on empirical evidence can overestimate the benefit
of reduced air emissions from distributed solar panels being used by
businesses.

Our estimated coefficients from running regression Eq. (1) test for
Hypothesis 1 and the coefficients and their 95% confidence intervals
indeed confirm that the electricity purchased from the electric grid
during the hours when solar panels generate electricity reduced after
adopting solar panels. Our estimated coefficients from running regres-
sion Eq. (2) test for Hypothesis 2 and the results confirm that the
monthly maximum electricity demand does not change for July and
August. We use two matching techniques (PSM and CEM) as well as no
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matching (using the original sample) to check for the robustness of our
conclusions. Our results are consistent across using different samples
generated by the two different matching methods. In addition, we test
for the parallel trends of the control and treatment consumers in Fig. 2 to
further check for the validity of using panel regression models. Our re-
sults show the validity of our methods.

Our finding has important implications. Most existing studies assume
that the entire amount of electricity generated by solar panels leads to a
reduction in electricity needed from the grid [67,68]. We show that such
an approach can drastically overestimate the benefits of reduced air
emissions from solar energy by ignoring factors such as solar rebound
effects. Solar rebound effects also demonstrate the importance of
cleaning the grid by adding the portion of utility-scale renewable en-
ergy. If the grid is dirty with a significant share of energy generation
with fossil fuel, then solar rebound effects mean that it will be harder for
distributed solar panels to reduce air emissions that arise from electricity
consumption.

We show that distributed solar panels can create challenges to util-
ities by not reducing the maximum monthly demand of business con-
sumers for the months of July and August, which are when the system
load peak tends to happen. This implies that, when more businesses
adopt distributed solar panels, the investment in grid infrastructure re-
mains unchanged, while electricity sales are reduced. Such imbalance
between the infrastructure needs and the reduction in electricity sales
highlights the importance of a demand charge for business solar con-
sumers, so that utilities can better recover their upfront investment to
serve the broader community [43,44].

To conclude, our results imply that any impact evaluation of
distributed solar panels should rely on empirical assessment due to
factors such as rebound effects as it can offset the theoretical savings of
electricity needed from the grid. More comprehensive studies are
needed to evaluate the costs and benefits of distributed solar energy
after incorporating our empirical results of the grid impacts from
distributed solar panels.
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Fig. 6. The utility’s monthly system peak loads. Notes: Panel (a) plots the actual monthly system peak loads. Panel (b) plots the residuals of a regression which
regresses the monthly system peak loads on annual population and GDP in Phoenix metropolitan area as well as state-level energy efficiency scores. The annual state-
level energy efficiency scores are developed by American Council for an Energy-Efficient Economy which reflect states’ energy efficiency policy stringency and actual

energy efficiency investments (https://aceee.org/state-policy/scorecard).
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