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Abstract: Structure-based drug design targeting the SARS-CoV-2 virus has been greatly
facilitated by available virus-related protein structures. However, there is an urgent need for
effective, safe small-molecule drugs to control the spread of the virus and variants. While many
efforts are devoted to searching for compounds that selectively target individual proteins, we
investigated the potential interactions between eight proteins related to SARS-CoV-2 and more
than 600 compounds from a traditional Chinese medicine which has proven effective at treating
the viral infection. Our original ensemble docking and cooperative docking approaches, followed
by a total of 16-micorsecond molecular simulations, have identified at least 9 compounds that
may generally bind to key SARS-CoV-2 proteins. Further, we found evidence that some of these
compounds can simultaneously bind to the same target, potentially leading to cooperative
inhibition to SARS-CoV-2 proteins like the Spike protein and the RNA-dependent RNA
polymerase. These results not only present a useful computational methodology to
systematically assess the anti-viral potential of small molecules, but also point out a new
avenue to seek cooperative compounds toward cocktail therapeutics to target more SARS-CoV-
2-related proteins.

Keywords: COVID-19, Qingfei Paidu decoction, virtual screening, molecular dynamics,
ensemble docking, cooperative binding.

Introduction

Despite the availability of vaccines, there is still an urgent need for small molecules that are
effective against SARS-CoV-2, the virus which causes the COVID-19 disease in the current
pandemic. Over 300 drugs are being studied as potential repurposed candidates, but to date
only remdesivir' has been approved to treat COVID-19 in the US with an Emergency Use
Authorization (EUA). In fact, we still must discover new small molecules for use as safe, oral
antivirals to treat patients early in the course of infection, which will be key to control the spread
of the virus. Also, there is an urgent need for effective treatments or even cures for patients with
severe symptoms, as well as to prepare us for emerging variants of SARS-CoV-2. Thanks to a
timely response from the global research community,? over 1,000 virus-related protein
structures have been deposited to the Protein Data Bank (PDB) since the start of the pandemic.
Particularly, the RNA genome of SARS-CoV-2 and sequences of the encoded 29 proteins have
been revealed,** and the structures of more than nine unique viral proteins are available, all of
which greatly facilitate computational efforts to search for compounds as potential treatments of
COVID-19. In this work, we present a systems computational study that targets multiple SARS-
CoV-2 proteins that span its genome and examine the potential of natural compounds for
cooperative inhibition, aiming to inspire a new avenue towards finding compounds with
cooperative effects as potential therapeutic agents.

So far, several directions of structure-based drug design (SBDD) — such as inhibitions of viral
entry, assembly, replication, etc. — have been pursued, mainly targeting a few structural and
non-structural proteins of SARS-CoV-2. Among the four structural proteins, the Spike protein
(S protein), which is crucial for host cell recognition and entry, is a primary target.>®* Compounds
that block the interactions between the S protein and the angiotensin converting enzyme 2
(ACE2) are believed to prevent viral entry and subsequent infection.”"° Besides the S protein,



two key proteases, the main protease (3CLP™ or M) and the papain-like protease (PLP™), which
are encoded as part of non-structural proteins 5 and 3 (nsp5 and nsp3, respectively), are
essential for the replication and assembly of SARS-CoV-2.""""* Inhibition of these two proteases
has also become the focus of many research programs.''® Finally, the RNA-dependent RNA
polymerase (RdRp) encoded as nsp12 is a component necessary for viral replication and
transcription and is considered another emerging target.””® In addition to those named here,
there is a fast-growing list of potential targets for SBDD.* "9

Despite the expanding breadth of targets, current computational studies almost exclusively
focus on similar methodologies — the development of specific and highly selective compounds
to inhibit individual proteins (the “one compound, one target” strategy). These methodologies
are not without their challenges.™ ?>% In particular, it remains a possibility that small molecules
interact with multiple protein targets, and a protein target may allow cooperative or allosteric
binding of the same or different molecules. Thus, conventional molecular modeling approaches
like docking and virtual screening should be adapted to allow such investigations. Ensemble
docking, using representatives of protein conformation ensembles rather than a single structure,
can be more accurate to identify potent compounds??® but is often computationally demanding.
Therefore, we have designed a multi-step method to prescreen the compounds with
conventional docking and use ensemble docking for selection, followed by a series of custom
analytical steps, simulations, and cooperative docking (see Methods and Models). Our
methodology incorporates a carefully designed clustering algorithm and workflow, which is likely
to balance computational accuracy and efficiency. In this work, we, for the first time, utilized this
method in the spirit of systems biology, to extensively examine interactions between eight
SARS-CoV-2-related proteins (Figure S1 and Table S1) and natural compounds to show the
potential cooperative effects of small molecules against SARS-CoV-2.

We included six SARS-CoV-2 proteins and two ACE2 proteins (human and cat) in our receptor
set, with small molecules (structures available for download in the SI) from 20 herbal ingredients
in the Qingfei Paidu decoction (QPD) — a traditional Chinese medicine which underwent clinical
trials in 2020-2021.2°% In a clinical trial with near 9000 patients hospitalized in China during the
period from January to May 2020, the QPD treatment was found to reduce the COVID-19-
related mortality significantly from 4.8% to 1.2%.*° Despite such effectiveness, bioactive
molecules in the 20 herbal ingredients of QPD and their mechanism of action remain largely
unknown. Also, as QPD is administrated in clinical practice as a mixture of many bioactive
compounds from the herbs, a systematic study is required to understand the individual and joint
interactions between these compounds and the SARS-CoV-2 proteins. To fulfil this need, we
have developed our computational methodology which is comprised of ensemble docking,
cooperative docking, and extensive molecular dynamics (MD) simulations for the systems
chemistry investigation. Through literature search, we have identified more than 600 flavonoids,
triterpenes, polysaccharides, and other bioactive compounds which are considered most
medicinally relevant in this work (see the selection criteria in Methods and Models). From this
study, we have identified several compounds which potentially inhibit multiple SARS-CoV-2
proteins; compounds from the same or different herbs may have synergy to enhance binding to
the viral proteins. These findings shed light on new directions of COVID-19 treatments.

Results

Flavonoid glycosides displayed medium to strong interactions with general SARS-CoV-2
proteins. We have identified at least nine compounds that broadly interact with the six SARS-
CoV-2 proteins as well as the ACE2 enzymes, with affinity predicted mostly between -5 to —15
kcal/mol (Figure 1 and Table 1). A typical example is rutin (C2;H300+6), which is a flavonoid




glycoside common in several ingredients of QPD such as those related to citrus fruits (fructus
aurantii immaturus and citri reticulatae pericarpium, or known as Zhi Shi and Chen Pi in
Chinese, respectively), as well as the Chinese thorowax root (known as Chai Hu). Despite
debate about its antiviral effects,*'* rutin was suggested to block the active site of SARS-CoV-2
3CLP® in recent computational studies.®*3* While our results from ensemble docking are
consistent with prior research in rutin binding to the 3CLP® active site,** we revealed the
interactions of rutin with other SARS-CoV-2 structural and non-structural proteins (Figure S1).
Rutin can bind to the S protein’s receptor binding domain (RBD) and ACE2 (Glide XP score
from =5 to —7 kcal/mol) and interact with residues at their recognition interfaces,” such as L455,
F456, A475, G476, F486, N487, Y489, and F490 of the viral S protein; residues 19-45, 82-83,
330, 353-357 of the human/cat ACE2. Further, we also found stable binding (Glide XP score
less than —7 kcal/mol) of rutin to the active sites of PLP™ (rutin centroid distance to the S atom of
the catalytic C111 is 10.7 + 0.9 A) and 3CLP° (between the catalytic dyad of H41 and C145; rutin
centroid distance to the S atom of C145 is 9.2 + 0.4 A), as well as the RNA binding site of RdRp
(Y546, K593, S814, E854, R858, S861, D865, and Q932). The close contact to the catalytic
cysteine or occupation of the active site suggests the potential for rutin to be an effective
inhibitor to these viral enzymes. Similar to rutin, we also identified other flavonoid glycosides like
hyperin and its derivatives which displayed medium to strong affinity to the six SARS-CoV-2
proteins. More than one stable binding mode (less than —7 kcal/mol) was often captured in our
ensemble docking poses. Notably, prior computational studies that screened various
databases' ?* % also identified a number of flavonoid glycosides as potential inhibitors to 3CL"™,
PLP* and RdRp, which strongly supports our observations in this work.
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Figure 1. Two-dimensional structures of nine compounds suggested by ensemble docking to
interact with multiple SARS-CoV-2 proteins and human/cat ACE2. Among them are eight
flavonoids including Hyperin and 3 glycosylated derivatives as well as Amygdalin, a
cyanogenic glycoside. These chemical structures were prepared in ChemDraw (version 20.0).

Table 1. Compounds suggested by ensemble docking to interact with multiple SARS-CoV-2
proteins and human/cat ACE2, as well as their best Glide XP docking scores (kcal/mol) from
ensemble docking. The PDBID of each protein model was provided in parenthesis in the table
header.

MW S protein Npro 3CLrPr PLPr RdRp NSP3 cACE2 | hACE2
(g/mol) (7C8D) (6WJI) | (7JYC) | (6WX4) | (7BV1) | (5RSO) | (7Cc8D) | (6VvW1)

Amygdalin 457 -5.5 -10.2 -8.4 -6.9 -7.5 -9.8 -5.7 -5.2

Compound




Rutin 611 -7.2 -8.0 -12.2 -7.8 -9.3 -10.5 -7.3 -5.1

Narcissin 625 48 88 | 112 | 66 8.0 93 5.9 6.1
Hyperin 464 71 102 | 104 | 74 77 | 105 | 65 43
Hyperin 5-O- 627 7.6 87 | -114 290 | -103 | -105 7.0 6.0
galactopyranoside
Hyperin 7-0-D- 597 6.2 114 | -106 6.1 95 | -123 6.3 6.2
xylopyranoside
Hyperin 6”-gallate | 617 5.1 124 | 98 6.0 06 | 103 | 72 -6.1
Tectorigenin 7-O- 625 6.2 41 | 114 65 | -10.0 9.9 6.3 55
gentiobioside
Kaempferol 7-O- 595 8.0 82 | -105 6.8 8.3 9.2 5.1 4.7

neohesperidoside

To confirm the stability of the rutin-bound complexes, we performed 120-ns MD simulations of
the best pose of each cluster from ensemble docking in solution, which helped us assess the
stability of the ligand-protein complexes. The rutin molecules stayed bound to the proteins
throughout most simulations (Table S4). With protein alignment, our ligand root mean square
deviation (RMSD) mainly varied in the range between 1.6 and 9.7 A (Figure 2) for all
complexes, comparable with previous simulations of rutin complexed with 3CL"® (RMSD 4-6
A). In particular, we observed that rutin was tightly bound in the macrodomain of nsp3, which
has a well-defined pocket (Glide XP score of —10.5 kcal/mol, ligand RMSD 1.6 + 0.3 A), but was
much more dynamic when bound to other proteins with open or wide binding sites such as the S
protein RBD and RdRp (ligand RMSDs of 4.7 + 0.9 and 5.9 + 0.5 A, respectively). For example,
key residues in the S protein RBD for ACE2 binding mainly involve the g1’ and 2’ regions,*
which are quite extended (greater than 30 A in length) with a large surface area (2,456 A?,
calculated with the PDB structure 7C8D). In both ensemble docking and MD simulations, rutin
has been shown to form a wide range of interactions with hydrophobic patches on the S protein
RBD surface, including residues L455, F456, and F489 (Figure 2). Similarly, various binding
poses of rutin in the large RNA-binding site of RdRp (approximately 25 A in width), first
suggested by ensemble docking, remained stable during our simulations, mostly in contact to
the thumb3**° region of RdRp (Figure 2). With comparable ligand stability to similar simulation
studies ranging from 50 to 400 ns,® 2% 3. 49 our simulations suggested that a number of small
compounds from the QPD ingredients can bind to key SARS-CoV-2 proteins with medium to
strong affinity. While our results identified individual compounds as “good binders” to these
proteins, we also endeavored to address the question whether simultaneous binding of similar
or different compounds can further enhance the binding strength.
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Figure 2. Cartoon illustration of rutin interactions with key SARS-CoV-2 proteins and the time
evolution of RMSDs with protein alignment (blue plot: protein Ca atoms; grey plot: rutin heavy
atoms). The RMSDs were calculated using the initial docking models as references. In the
cartoon, the initial ligand positions (from docking) are represented as transparent spheres, and
the final ligand positions (the final snapshot of the MD simulation) are shown as sticks. As the
initial and final ligand positions largely overlap, it is shown that rutin stayed bound to the viral
proteins through the simulations. The cartoon illustration was prepared in Pymol (version 2.3.4).

RMSD (A)

Structurally similar compounds binding to the S protein. We discovered from cooperative
docking and MD simulations that a number of flavonoid glycosides (like rutin, narcissin, and

chrysin 7-o-beta-gentiobioside, etc.) can simultaneously bind to the same viral protein.
Generally, flavonoids share a 15-carbon skeleton comprised of two phenyl rings (namely A and
B) and a heterocyclic C ring*' and readily form m—tr-stacking with other flavonoids or similar
compounds bound to a protein target. This has been observed before in a co-crystalized
structure.*? In addition, a distal sugar moiety may also allow hydrogen bonding to the protein,
further stabilizing the complex. Considering the S protein is a homotrimeric complex,** we
notably predict simultaneous binding at even a single monomer. Using the S protein RBD with
several flavonoid glycosides from our ligand set, we gained proof of concept that multiple
compound binding may enhance the inhibition to the target viral protein.
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Figure 3. Cooperative and additive binding of two flavonoid glycosides to the S protein RBD.
(A) Time evolution of the center of mass (COM) distances (grey plot: rutin-rutin; pink plot: rutin-



chrysin 7-O-B-gentiobioside). (B) Cartoon illustration of typical flavonoid glycosides from QPD
ingredients binding to the S protein-ACE2 interface, especially involving the 1’ and 2’ region
(PDBID: 7C8D). (C-D) Final snapshots of MD simulations of two flavonoid glycosides binding to
the S protein. Hydrogen bonds were shown in yellow dash; and m—r-stacking was shown with
magenta dash. The cartoon illustration was prepared in Pymol (version 2.3.4).

Our cooperative docking approach started by selecting a pose for a single ligand from ensemble
docking. Next, the second ligand was docked to the same binding site (containing the first
ligand), which generated initial models for subsequent MD simulations of the complex with two
ligands. Notably, the assignment of the first and second ligands can affect the complex stability
seen in subsequent MD simulations (see the Discussion section). For proof of concept, we only
focused on selected compounds (i.e. Glide XP score less than -10 kcal/mol) and rutin in this
work. For example, we have docked six compounds (Table S5) to the rutin-bound S protein
model. These compounds displayed stronger binding (with docking scores lowered by 0.5-1.8
kcal/mol) as the second ligands than as the first ligands, which is indicative of cooperative
binding. As expected, most of the secondary ligands were predicted to form m—1r-stacking
interactions with rutin. In the subsequent MD simulations, we found that all the compounds
remained bound to the S protein (Figure 3), and such stacking interactions were stable in four
simulations. First, the complex with two rutin molecules was highly stable, while the rutin dimer
remained bound to the B1’ and p2’ region. Particularly, the —1r-stacking between the rutin
molecules was enhanced during sampling in the MD simulations (centroid distance of 6.7 + 0.7
A), leading to the packing of A/C ring from one compound and the B ring from another (Figure
2C). The glucose and rhamnose sugar groups stretched out to interact with the side chain of
Q493 and the backbone of residues 490-492 . As a result of these interactions, the structural
fluctuations of the protein (RMSD from 2.0 to 1.7 A) and the first rutin (RMSD from 4.7 to 4.5 A)
were slightly reduced, compared with the simulation with one rutin bound (Table S4). Further,
similar enhanced T—-stacking interactions were observed in narcissin-rutin, coumarin
glycoside-rutin, and tectorigenin 7-O-gentiobioside-rutin in complex with the S protein RBD,
indicated by the centroid distance of the two ligands below 8.0 A (Table S5). Thus, adding
another flavonoid glycoside may increase the stability of the complex. Likely, these results imply
potential synergy between the active compounds in QPD, regarding the same compounds (like
rutin), compounds from the same herb (like rutin and narcissin in the Torowax root), or even
compounds from different herbs (like rutin in the Torowax root and tectorigenin 7-O-
xylosylglucoside in Belamcanda Sinensis). However, for the other pairs of compounds, the
complex conformations from docking were less stable. While both ligands stayed at the S
protein interface with ACE2, their centroid distances over 8.0 A indicate little to no stacking
between the two compounds (Figure 3A and 3D), such as chrysin 7-O-B-gentiobioside-rutin
(centroid distance of 8.8 + 1.8 A) and kaempferol 3-O-neohesperidoside-rutin (centroid distance
of 20.0 + 1.9 A). In these cases, although the first ligand did not enhance the binding of the
second ligand, it may still add inhibition of the S protein binding to ACE2 in comparison to only
the first ligand.
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Figure 4. Cooperative binding of rutin and triterpenes at the RNA-binding site of RdRp. (A)
Cartoon illustration of the RNA-binding site surrounded by the so-called Thumb, Palm, and
Finger regions (PDBID: 7BV2). (B-D) Final snapshots of MD simulations of rutin and a triterpene
compound binding to RdRp. (E) Time evolution of ligand RMSD of rutin or saikosaponin |-bound
simulations as well as the saikosaponin I-rutin RdRp complex simulations. It is shown that the
cooperative binding reduces the ligand flexibility at the wide RNA-binding site of RdRp. The
cartoon illustration was prepared in Pymol (version 2.3.4).

In general, the above-described patterns of multiple compound binding — involving both
addition and synergy — to the S protein were also observed in flavonoid glycoside binding to
viral enzymes like 3CLpro, PLpro, and RdRp, as well as to human/cat ACE2 (Table S5). These
findings confirm the possibility that cooperative compounds may target multiple viral proteins
and thus likely act via various mechanisms in the life cycle of SARS-CoV-2.

Structurally distinct compounds binding to the RNA polymerase. Different from the S protein, we
found cooperative binding of two different types of compounds (like triterpenes and flavonoids)

at the large RNA-binding site of RdRp. In our simulation of saikosaponin | and rutin bound to
RdRp, there was clear hydrophobic interactions between the C30 skeleton of saikosaponin |
with the A/C ring in rutin, as well as the sugar moieties forming hydrogen bonds with the RNA-
binding site of the protein (Figure 4B2). According to our simulations, rutin or saikosaponin | was
relatively stable at the same site alone, indicated by the average ligand RMSD near 5 A.
However, while both molecules were bound to RdRp (Figure 4E), the binding stability was
greatly increased as shown by the low RMSDs (saikosaponin |, 3.4 + 0.1 A and rutin 2.6 + 0.2
A), and they remained stacked for 120 ns throughout the simulations (centroid distance of 5.8 +
0.2 A). In addition to saikosaponin | from Chinese thorowax root, we also simulated two other
triterpenes from the licorice root, macedonoside B and licoricesaponin F3 (Figure 4), which were



also found to form strong stacking with rutin at the RNA-binding site of RdRp. Such interactions
may involve tighter binding of the small compounds to RdRp, which likely block RNA binding to
the polymerase.

In addition, we observed cooperative binding of two flavonoids (like rutin-rutin and rutin-
tectorigenin 7-O-xylosylglucoside) at the RNA-binding site of RdRp (Table S5). Taken all
together, as a potential QPD molecular mechanism to treat COVID-19, active compounds from
different herbs may simultaneously bind the viral proteins and generate additional or synergistic
inhibitory effects.

Discussion

From the drug discovery perspective, some of the SARS-CoV-2 proteins can be difficult targets
for structure-based design, given their less well-defined (like in the S protein) or generally very
large binding pockets (like in the RdRp). Thus, it can be a challenge to identify specific and
selective compounds. From ensemble docking and molecular simulations, we identified several
compounds contained in QPD that potentially bind to the viral proteins, but most of them
displayed only medium affinity with multiple possible binding poses, which renders these
compounds less attractive as potential drug candidates. However, with ensemble/cooperative
docking combined with extensive MD simulations, we have examined the possibility of multi-
compound interactions at the same binding site. We found that binding of one compound (i.e.
rutin) from QPD ingredients to a viral protein can favorably influence the binding of another
compounds (i.e. another flavonoid or a triterpene) from the same or different ingredients, mostly
likely through m—r-stacking interactions. Cooperativity of ligand binding through direct
interaction between stacked molecules, often referred to as heterotropic cooperativity, has been
long known in model proteins like P450 3A4.%> % Interestingly, the stacking stability can change
with different assignments of the first and second ligands (or the docking order of cooperative
compounds). Regarding the cooperativity of rutin and lucenin3 when binding to 3CLP* (Table S5
and Figure S3), the stacking between lucenin3 and rutin were much stronger (centroid distance
of 7.6 + 0.3 A), with lucenin3 directly bound to 3CLP™ as the first ligand (RMSD of 1.2 + 0.2 A).
However, with rutin as the first ligand (RMSD of 6.2 + 0.3 A), the complex appeared less stable
and the stacking was much weaker (centroid distance of 10.6 + 0.3 A). The complex that is
more thermodynamically stable will be likely dominant, and further theoretical and experimental
studies may be needed in the future to fully explore this phenomenon. In addition to cooperative
binding, we also found different compounds that may bind to the large interface of the S protein
and ACE2, which generates a joint effect stronger than a single compound. Overall, our work
shows that QPD provides a rich source of active small molecules that may synergistically inhibit
the key players in the processes of SARS-CoV-2 entry, assembly, and replication.

Although we only gained proof of concept for possible synergy among selected compounds in a
1:1 stoichiometry, more complex binding (e.g. more than two different molecules, or different
stoichiometry) is possible. Our ensemble and cooperative docking approach (Figure 5) can be
utilized to further explore these possibilities at an affordable computational cost. Moreover,
although only selected SARS-CoV-2 proteins with crystal structures were studied in this work,
the methodology presented here opens the door to more comprehensive studies to cover (i)
other viral and even human protein targets (with experimental structures or theoretical models),
and/or (ii) more small molecules (e.g. from databases). Notably, our results suggested only 12
of 20 QPD ingredients that may be directly associated with SARS-CoV-2 interactions. Some
other herbal ingredients may be involved to regulate the human immune system, and interact
with human therapeutic targets. It is viable to establish more comprehensive studies on the
methodology in this work, which can complement current efforts in computer-aided discovery for
COVID-19 treatments.



Conclusions

We have systematically modeled the interactions between eight related proteins and more than
600 small molecules from herbal ingredients of a Chinese medicine against SARS-CoV-2. Our
results suggest that several natural compounds may be able to inhibit the viral proteins, and
thus key processes in the viral life cycle. We also found compelling evidence that selected
compounds may simultaneously bind to the same viral protein as the Spike protein and the RNA
polymerase, leading to synergistic effects in blocking the protein targets. While the synergy of
identified compounds will be validated in the future experimentally, we provide a novel
computational protocol to discover synergistic agents to target large protein binding sites, as a
valuable tool to discover new COVID treatments.

Methods and Models.

Small-Molecule Ligand Selection and Preparation. Distinct from prior studies to screen
compounds from databases,'® we collected a set of 625 small-molecules (compound names and

3D models provided in the Sl for download) from a thorough literature search from recent
analytical studies of bioactive compounds of 20 herbs in QPD (Table S2). After referring to
records in PubChem,* volatile or toxic compounds were excluded, so that we could focus on
the chemically relevant ingredients. Notably, QPD is prepared by boiling the dried herbal
components in the gypsum aqueous solution for 20-30 minutes, and the small, volatile
compounds are likely lost during the drying and/or boiling processes. Non-volatile compounds
are more likely to be dominant in the active ingredients of QPD. The 3D models of these
compounds were either built in Maestro (Schroédinger Inc.) or downloaded from PubChem,
followed by structure cleanup and prediction of the favorable tautomeric states in the Epik
program.*® The qualitative assessment of absorption, deposition, metabolism, excretion and
toxicity (ADMET) profile of selected hits were predicted computationally by using the
SwissADME server*’ (Table S6).

Ensemble and Cooperative Docking Approaches. \WWe have created an original approach for
ensemble docking, which efficiently assesses the potential interactions between a large number

of compounds (ligands) and conformations of multiple protein targets (receptors). The work flow
of this approach, illustrated in Figure 5, was designed to balance the computational efficiency
and accuracy in a systems chemistry study. The eight PDB structures (Tables 1 and S1) of
protein receptors (six SARS-CoV-2 proteins, the human ACE2, and the cat ACE2) were
prepared by the Protein Preparation Wizard in Maestro (Schrddinger, Inc.), to assign
protonation states and to fill incomplete side chains and loop gaps.*®*°

After preparation of the small-molecule compounds and the protein receptors, our approach
starts with virtual screening using one model for each receptor. Notably, most selected PDB
structures in this work have co-crystalized ligands and known binding interfaces, so that we
could readily define the ligand-binding sites. The docked ligand is confined to the enclosing box
centered at the binding-site center (10 A for the inner box; 10 or 15 A for the outer box). While
all the 625 compounds were prescreened using the Virtual Screening Wizard (Schrédinger Inc.),
the top 10% with the best Glide XP scores were then promoted to ensemble docking. To do so,
we could filter the compounds that are too small or too bulky for binding, and allow only the
most relevant compounds for the costly ensemble docking and subsequent stages in our
workflow. Visualization of the docking results was carried out in Maestro (version 2020-2) and
Pymol (version 2.3.4).
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Figure 5. Cartoon illustration of our workflow. Prescreening used the Virtual Screening Wizard
and ensemble/cooperative docking was performed with Glide with the Glide XP scoring function.

In parallel to prescreening, the receptor conformations for ensemble docking were generated by
clustering the conformations sampled in the ligand-free protein simulations (Table S3). These
simulations were performed with the Desmond-GPU version (Schrédinger Inc.) and analysis for
clustering was carried out by the Desmond Trajectory Clustering Tool in Maestro. We chose the
clusters of receptor conformations based on the local dynamics of the ligand-binding site (local
RMSD), in order to select the most relevant conformations and provide an affordable
computational cost for ensemble docking. Clustering was based on heavy-atom RMSD of
residues within 4 A of the ligand-binding site. Only representative conformations of clusters with
> 10 members were selected for ensemble docking. We had 2-6 clusters (Table S1) for each
protein receptor in this work. Next, the top compounds from prescreening were docked to each
of the cluster representative conformations in Glide (Schrodinger Inc.). The best Glide XP
score® and the corresponding pose from all the docking tests of these representative models
are considered the ensemble docking score and pose respectively (Table S4). The stability of
the complex models from ensemble docking was further evaluated by MD simulations for 120-
250 ns with two trajectories for each complex.

Finally, selected complexes with one ligand were setup for cooperative docking (Table S5),
which docked the top 10% of compounds from prescreening as the second ligand at the same
binding site of each top complex model from ensemble docking by Glide (12 A for the inner box;
15 A for the outer box). For example, three clusters were identified for RdRp, and from each
cluster a representative structure was used to provide the three structures for ensemble
docking. The top complex models with saikosaponin I, macedonoside B, licoricesaponin F3
respectively were employed for cooperative docking (Table S5). Among all these complex
models with two ligands bound, the best Glide XP score and the corresponding pose were
reported as the cooperative docking results. To evaluate the stability and confirm the
cooperativity, these complex models were simulated with two trajectories for 120-250 ns in
Desmond, to further understand the potential cooperative binding. The simulations (i.e. RMSD,
RMSF, and center of mass distance) were visualized and analyzed using Maestro (version
2020-2), VMD (version 1.9.3), and our in-house Python and Tcl scripts.

System Construction and Simulation Setup of Molecular Dynamics (MD). We used MD
simulations (i) to sample apo protein conformations for ensemble docking, and (ii) to validate
complex structures from ensemble/cooperative docking. All the constructs were prepared in
System Builder (Schrodinger Inc.) and relaxed using a multistage protocol which has been




described in our previous work.>"? Parameters from the OPLS3e* force field and the SPC
water model** were assigned.

Our production runs were performed in the NPT ensemble (300 K, 1 bar, Martyna—Tobias—Klein
coupling scheme) with a time step of 2 fs in the Desmond MD engine. The particle mesh Ewald
technique was used for the electrostatic calculations. Van der Waals and short-range
electrostatics were cut off at 9.0 A. The long-ranged electrostatics was updated every third
simulation step. Each construct was simulated with two trajectories for 120-250 ns, and most of
the systems showed consistent RMSF (Figure S4), which suggests sufficient sampling within
our simulated length. Our total MD sampling reached 16 microseconds, with details provided in
Table S3-S5.
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