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Abstract: Structure-based  drug  design  targeting  the  SARS-CoV-2  virus  has  been  greatly 
facilitated by available virus-related protein structures.  However,  there is an urgent need for 
effective, safe small-molecule drugs to control the spread of the virus and variants. While many 
efforts are devoted to searching for compounds that selectively target individual proteins, we 
investigated the potential interactions between eight proteins related to SARS-CoV-2 and more 
than 600 compounds from a traditional Chinese medicine which has proven effective at treating 
the viral infection. Our original ensemble docking and cooperative docking approaches, followed 
by a total of 16-micorsecond molecular simulations, have identified at least 9 compounds that 
may generally bind to key SARS-CoV-2 proteins. Further, we found evidence that some of these 
compounds  can  simultaneously  bind  to  the  same target,  potentially  leading  to  cooperative 
inhibition  to  SARS-CoV-2  proteins  like  the  Spike  protein  and  the  RNA-dependent  RNA 
polymerase.  These  results  not  only  present  a  useful  computational  methodology  to 
systematically  assess  the  anti-viral  potential  of  small  molecules,  but  also  point  out  a  new 
avenue to seek cooperative compounds toward cocktail therapeutics to target more SARS-CoV-
2-related proteins.
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ensemble docking, cooperative binding.

Introduction
Despite the availability of vaccines, there is still an urgent need for small molecules that are 
effective against SARS-CoV-2, the virus which causes the COVID-19 disease in the current 
pandemic. Over 300 drugs are being studied as potential repurposed candidates, but to date 
only  remdesivir1 has been approved to treat  COVID-19 in  the US with an Emergency Use 
Authorization (EUA). In fact, we still must discover new small molecules for use as safe, oral 
antivirals to treat patients early in the course of infection, which will be key to control the spread 
of the virus. Also, there is an urgent need for effective treatments or even cures for patients with 
severe symptoms, as well as to prepare us for emerging variants of SARS-CoV-2. Thanks to a 
timely  response  from  the  global  research  community,2 over  1,000  virus-related  protein 
structures have been deposited to the Protein Data Bank (PDB) since the start of the pandemic. 
Particularly, the RNA genome of SARS-CoV-2 and sequences of the encoded 29 proteins have 
been revealed,3-4 and the structures of more than nine unique viral proteins are available, all of 
which greatly facilitate computational efforts to search for compounds as potential treatments of 
COVID-19. In this work, we present a systems computational study that targets multiple SARS-
CoV-2  proteins  that  span  its  genome and  examine  the potential  of  natural  compounds  for 
cooperative  inhibition,  aiming  to  inspire  a  new  avenue  towards  finding  compounds  with 
cooperative effects as potential therapeutic agents.

So far, several directions of structure-based drug design (SBDD) — such as inhibitions of viral 
entry, assembly, replication, etc. — have been pursued, mainly targeting a few structural and 
non-structural proteins of SARS-CoV-2. Among the four structural proteins, the Spike protein 
(S protein), which is crucial for host cell recognition and entry, is a primary target.5-6 Compounds 
that  block the interactions between the S protein and the angiotensin converting enzyme 2 
(ACE2) are believed to prevent viral entry and subsequent infection.7-10 Besides the S protein, 



two key proteases, the main protease (3CLpro or Mpro) and the papain-like protease (PLpro), which 
are  encoded  as  part  of  non-structural  proteins  5  and 3  (nsp5  and  nsp3,  respectively),  are 
essential for the replication and assembly of SARS-CoV-2.11-13 Inhibition of these two proteases 
has also become the focus of many research programs.14-16 Finally, the RNA-dependent RNA 
polymerase  (RdRp)  encoded  as  nsp12  is  a  component  necessary  for  viral  replication  and 
transcription and is considered another emerging target.17-18 In addition to those named here, 
there is a fast-growing list of potential targets for SBDD.3, 19-24

Despite  the  expanding  breadth  of  targets,  current  computational  studies  almost  exclusively 
focus on similar methodologies — the development of specific and highly selective compounds 
to inhibit individual proteins  (the “one compound, one target” strategy). These methodologies 
are not without their challenges.14, 25-26 In particular, it remains a possibility that small molecules 
interact with multiple protein targets, and a protein target may allow cooperative or allosteric 
binding of the same or different molecules. Thus, conventional molecular modeling approaches 
like docking and virtual screening should be adapted to allow such investigations. Ensemble 
docking, using representatives of protein conformation ensembles rather than a single structure, 
can be more accurate to identify potent compounds27-28 but is often computationally demanding. 
Therefore,  we  have  designed  a  multi-step  method  to  prescreen  the  compounds  with 
conventional docking and use ensemble docking for selection, followed by a series of custom 
analytical  steps,  simulations,  and  cooperative  docking  (see  Methods  and  Models).  Our 
methodology incorporates a carefully designed clustering algorithm and workflow, which is likely 
to balance computational accuracy and efficiency. In this work, we, for the first time, utilized this 
method  in  the  spirit  of  systems biology,  to  extensively  examine  interactions  between  eight 
SARS-CoV-2-related proteins (Figure S1 and Table S1) and natural compounds to show the 
potential cooperative effects of small molecules against SARS-CoV-2.

We included six SARS-CoV-2 proteins and two ACE2 proteins (human and cat) in our receptor 
set, with small molecules (structures available for download in the SI) from 20 herbal ingredients 
in the Qingfei Paidu decoction (QPD) — a traditional Chinese medicine which underwent clinical 
trials in 2020-2021.29-30 In a clinical trial with near 9000 patients hospitalized in China during the 
period from January to May 2020,  the QPD treatment was found to reduce the COVID-19-
related  mortality  significantly  from  4.8%  to  1.2%.30 Despite  such  effectiveness,  bioactive 
molecules in the 20 herbal ingredients of QPD and their mechanism of action remain largely 
unknown.  Also,  as QPD is  administrated in  clinical  practice as a mixture of  many bioactive 
compounds from the herbs, a systematic study is required to understand the individual and joint 
interactions between these compounds and the SARS-CoV-2 proteins. To fulfil this need, we 
have  developed  our  computational  methodology  which  is  comprised  of  ensemble  docking, 
cooperative  docking,  and  extensive  molecular  dynamics  (MD)  simulations  for  the  systems 
chemistry investigation. Through literature search, we have identified more than 600 flavonoids, 
triterpenes,  polysaccharides,  and  other  bioactive  compounds  which  are  considered  most 
medicinally relevant in this work (see the selection criteria in Methods and Models).  From this 
study,  we have identified  several  compounds which potentially  inhibit  multiple  SARS-CoV-2 
proteins; compounds from the same or different herbs may have synergy to enhance binding to 
the viral proteins. These findings shed light on new directions of COVID-19 treatments. 

Results
Flavonoid  glycosides  displayed  medium  to  strong  interactions  with   general  SARS-CoV-2   
proteins. We have identified at least nine compounds that broadly interact with the six  SARS-
CoV-2 proteins as well as the ACE2 enzymes, with affinity predicted mostly between –5 to –15 
kcal/mol (Figure 1 and Table 1).  A typical example is rutin (C27H30O16),  which is a  flavonoid 



glycoside common in several ingredients of QPD such as those related to citrus fruits (fructus 
aurantii  immaturus and  citri  reticulatae  pericarpium,  or  known  as Zhi  Shi  and  Chen  Pi  in 
Chinese,  respectively),  as well  as the  Chinese thorowax root  (known as Chai  Hu).  Despite 
debate about its antiviral effects,31-32 rutin was suggested to block the active site of SARS-CoV-2 
3CLpro in  recent  computational  studies.33-35 While  our  results  from  ensemble  docking  are 
consistent  with  prior  research  in  rutin  binding  to  the  3CLpro active  site,34 we  revealed  the 
interactions of rutin with other  SARS-CoV-2 structural and non-structural proteins (Figure S1). 
Rutin can bind to the S protein’s receptor binding domain (RBD) and ACE2 (Glide XP score 
from –5 to –7 kcal/mol) and interact with residues at their recognition interfaces,7 such as L455, 
F456, A475, G476, F486, N487, Y489, and F490 of the viral S protein; residues 19-45, 82-83, 
330, 353-357 of the human/cat ACE2. Further, we also found stable binding (Glide XP score 
less than –7 kcal/mol) of rutin to the active sites of PLpro (rutin centroid distance to the S atom of 
the catalytic C111 is 10.7 ± 0.9 Å) and 3CLpro (between the catalytic dyad of H41 and C145; rutin 
centroid distance to the S atom of C145 is 9.2 ± 0.4 Å), as well as the RNA binding site of RdRp 
(Y546, K593, S814, E854, R858, S861, D865, and Q932). The close contact to the catalytic 
cysteine or  occupation  of  the  active  site  suggests  the potential  for  rutin  to  be an effective 
inhibitor to these viral enzymes. Similar to rutin, we also identified other flavonoid glycosides like 
hyperin and its derivatives which displayed medium to strong affinity to  the six SARS-CoV-2 
proteins. More than one stable binding mode (less than –7 kcal/mol) was often captured in our 
ensemble  docking  poses.  Notably,  prior  computational  studies  that  screened  various 
databases13, 24, 36 also identified a number of flavonoid glycosides as potential inhibitors to 3CLpro, 
PLpro and RdRp, which strongly supports our observations in this work.

Figure 1.  Two-dimensional structures of nine compounds suggested by ensemble docking to 
interact  with  multiple  SARS-CoV-2  proteins  and  human/cat  ACE2.  Among  them  are  eight 
flavonoids  including  Hyperin and  3  glycosylated  derivatives  as  well  as  Amygdalin,  a 
cyanogenic glycoside. These chemical structures were prepared in ChemDraw (version 20.0).

Table 1. Compounds suggested by ensemble docking to interact with multiple  SARS-CoV-2 
proteins and human/cat ACE2, as well as their best Glide XP docking scores (kcal/mol) from 
ensemble docking. The PDBID of each protein model was provided in parenthesis in the table 
header.

Compound
MW 

(g/mol)
S protein 
(7C8D)

Npro 
(6WJI)

3CLpro 

(7JYC)
PLpro 

(6WX4)
RdRp 
(7BV1)

NSP3 
(5RSO)

cACE2 
(7C8D)

hACE2 
(6VW1)

Amygdalin 457 -5.5 -10.2 -8.4 -6.9 -7.5 -9.8 -5.7 -5.2



Rutin 611 -7.2 -8.0 -12.2 -7.8 -9.3 -10.5 -7.3 -5.1

Narcissin 625 -4.8 -8.8 -11.2 -6.6 -8.0 -9.3 -5.9 -6.1

Hyperin 464 -7.1 -10.2 -10.4 -7.1 -7.7 -10.5 -6.5 -4.3

Hyperin 5-O-
galactopyranoside

627 -7.6 -8.7 -11.4 -9.0 -10.3 -10.5 -7.0 -6.0

Hyperin 7-O-D-
xylopyranoside

597 -6.2 -11.4 -10.6 -6.1 -9.5 -12.3 -6.3 -6.2

Hyperin 6’’-gallate 617 -5.1 -12.4 -9.8 -6.0 -9.6 -10.3 -7.2 -6.1

Tectorigenin 7-O-
gentiobioside

625 -6.2 -14.1 -11.4 -6.5 -10.0 -9.9 -6.3 -5.5

Kaempferol 7-O-
neohesperidoside

595 -8.0 -8.2 -10.5 -6.8 -8.3 -9.2 -5.1 -4.7

To confirm the stability of the rutin-bound complexes, we performed 120-ns MD simulations of 
the best pose of each cluster from ensemble docking in solution, which helped us assess the 
stability  of  the  ligand-protein  complexes.  The  rutin  molecules  stayed  bound  to  the proteins 
throughout most simulations (Table S4). With protein alignment, our ligand root mean square 
deviation  (RMSD)  mainly  varied  in  the  range  between  1.6  and  9.7  Å (Figure  2)  for  all 
complexes, comparable with previous simulations34 of rutin complexed with 3CLpro  (RMSD 4-6 
Å). In particular, we observed that rutin was tightly bound in the macrodomain of nsp3, which 
has a well-defined pocket (Glide XP score of –10.5 kcal/mol, ligand RMSD 1.6 ± 0.3 Å), but was 
much more dynamic when bound to other proteins with open or wide binding sites such as the S 
protein RBD and RdRp (ligand RMSDs of 4.7 ± 0.9 and 5.9 ± 0.5 Å, respectively). For example, 
key residues in the S protein RBD for ACE2 binding mainly involve the 1’ and 2’ regions,37 
which are quite extended (greater than 30  Å in length) with a large surface area (2,456 Å2, 
calculated with the PDB structure 7C8D). In both ensemble docking and MD simulations, rutin 
has been shown to form a wide range of interactions with hydrophobic patches on the S protein 
RBD  surface, including residues L455, F456, and F489 (Figure 2). Similarly,  various binding 
poses  of  rutin  in  the  large  RNA-binding  site  of  RdRp  (approximately  25 Å  in  width),  first 
suggested by ensemble docking, remained stable during our simulations, mostly in contact to 
the thumb38-39 region of RdRp (Figure 2).  With comparable ligand stability to similar simulation 
studies ranging from 50 to 400 ns,9, 12-13, 34, 40 our simulations suggested that a number of small 
compounds from the QPD ingredients can bind to key SARS-CoV-2 proteins with medium to 
strong affinity.  While  our  results identified  individual  compounds as “good binders”  to  these 
proteins, we also endeavored to address the question whether simultaneous binding of similar 
or different compounds can further enhance the binding strength.



Figure 2. Cartoon illustration of rutin interactions with key SARS-CoV-2 proteins and the time 
evolution of RMSDs with protein alignment (blue plot: protein Ca atoms; grey plot: rutin heavy 
atoms).  The RMSDs were calculated using the initial  docking models as references.  In  the 
cartoon, the initial ligand positions (from docking) are represented as transparent spheres, and 
the final ligand positions (the final snapshot of the MD simulation) are shown as sticks. As the 
initial and final ligand positions largely overlap, it is shown that rutin stayed bound to the viral 
proteins through the simulations. The cartoon illustration was prepared in Pymol (version 2.3.4).

Structurally  similar  compounds  binding  to  the  S  protein. We  discovered  from  cooperative 
docking and MD simulations that a number of  flavonoid glycosides  (like rutin, narcissin, and 
chrysin  7-o-beta-gentiobioside,  etc.)  can  simultaneously  bind  to  the  same  viral  protein. 
Generally, flavonoids share a 15-carbon skeleton comprised of two phenyl rings (namely A and 
B) and a heterocyclic C ring41 and readily form π–π-stacking with other flavonoids or similar 
compounds  bound  to  a  protein  target.  This  has  been  observed  before  in  a  co-crystalized 
structure.42  In addition, a distal sugar moiety may also allow hydrogen bonding to the protein, 
further  stabilizing  the  complex.  Considering  the  S  protein  is  a  homotrimeric  complex,43 we 
notably predict simultaneous binding at even a single monomer. Using the S protein RBD with 
several  flavonoid  glycosides  from our  ligand  set,  we  gained  proof  of  concept  that  multiple 
compound binding may enhance the inhibition to the target viral protein. 

Figure 3.  Cooperative and additive binding of two flavonoid glycosides to the S protein RBD. 
(A) Time evolution of the center of mass (COM) distances (grey plot: rutin-rutin; pink plot: rutin-



chrysin 7-O-β-gentiobioside).  (B) Cartoon illustration of typical flavonoid glycosides from QPD 
ingredients binding to the S protein-ACE2 interface, especially involving the 1’ and 2’ region 
(PDBID: 7C8D). (C-D) Final snapshots of MD simulations of two flavonoid glycosides binding to 
the S protein. Hydrogen bonds were shown in yellow dash; and π–π-stacking was shown with 
magenta dash. The cartoon illustration was prepared in Pymol (version 2.3.4).

Our cooperative docking approach started by selecting a pose for a single ligand from ensemble 
docking.  Next,  the second ligand was docked to the same binding site (containing the first 
ligand), which generated initial models for subsequent MD simulations of the complex with two 
ligands. Notably, the assignment of the first and second ligands can affect the complex stability 
seen in subsequent MD simulations (see the Discussion section). For proof of concept, we only 
focused on selected compounds (i.e. Glide XP score less than -10 kcal/mol) and rutin in this  
work. For example, we have docked six compounds (Table S5) to the rutin-bound S protein 
model. These compounds displayed stronger binding (with docking scores lowered by 0.5-1.8 
kcal/mol)  as the second ligands than as the first  ligands,  which is  indicative of  cooperative 
binding.  As  expected,  most  of  the  secondary  ligands  were  predicted  to  form  π–π-stacking 
interactions with rutin.  In the subsequent  MD simulations,  we found that  all  the compounds 
remained bound to the S protein (Figure 3), and such stacking interactions were stable in four 
simulations. First, the complex with two rutin molecules was highly stable, while the rutin dimer 
remained bound to the  1’ and  2’  region.  Particularly,  the π–π-stacking between the rutin 
molecules was enhanced during sampling in the MD simulations (centroid distance of 6.7 ± 0.7 
Å), leading to the packing of A/C ring from one compound and the B ring from another (Figure 
2C). The glucose and rhamnose sugar groups stretched out to interact with the side chain of 
Q493 and the backbone of residues 490-492 . As a result of these interactions, the structural  
fluctuations of the protein (RMSD from 2.0 to 1.7 Å) and the first rutin (RMSD from 4.7 to 4.5 Å) 
were slightly reduced, compared with the simulation with one rutin bound (Table S4). Further, 
similar  enhanced  π–π-stacking  interactions  were  observed  in  narcissin-rutin,  coumarin 
glycoside-rutin,  and  tectorigenin  7-O-gentiobioside-rutin  in  complex with  the S protein  RBD, 
indicated by the centroid distance of  the two ligands below 8.0 Å (Table S5).  Thus,  adding 
another flavonoid glycoside may increase the stability of the complex. Likely, these results imply 
potential synergy between the active compounds in QPD, regarding the same compounds (like 
rutin), compounds from the same herb (like rutin and narcissin in the Torowax root), or even 
compounds  from  different  herbs  (like  rutin  in  the  Torowax  root  and  tectorigenin  7-O-
xylosylglucoside  in  Belamcanda Sinensis).  However,  for  the  other  pairs  of  compounds,  the 
complex  conformations  from docking  were  less  stable.  While  both  ligands  stayed  at  the  S 
protein interface with ACE2, their centroid distances over 8.0 Å indicate little to no stacking 
between the two compounds (Figure 3A and 3D),  such as chrysin 7-O--gentiobioside-rutin 
(centroid distance of 8.8 ± 1.8 Å) and kaempferol 3-O-neohesperidoside-rutin (centroid distance 
of 20.0 ± 1.9  Å). In these cases, although the first ligand did not enhance the binding of the 
second ligand, it may still add inhibition of the S protein binding to ACE2 in comparison to only 
the first ligand.



Figure 4. Cooperative binding of rutin and triterpenes at the RNA-binding site of RdRp.  (A) 
Cartoon illustration of  the RNA-binding site  surrounded by the so-called  Thumb, Palm, and 
Finger regions (PDBID: 7BV2). (B-D) Final snapshots of MD simulations of rutin and a triterpene 
compound binding to RdRp. (E) Time evolution of ligand RMSD of rutin or saikosaponin I-bound 
simulations as well as the saikosaponin I-rutin RdRp complex simulations. It is shown that the 
cooperative binding reduces the ligand flexibility at the wide RNA-binding site of RdRp.  The 
cartoon illustration was prepared in Pymol (version 2.3.4).

In  general,  the  above-described  patterns  of  multiple  compound  binding  —  involving  both 
addition and synergy — to the S protein were also observed in flavonoid glycoside binding to 
viral enzymes like 3CLpro, PLpro, and RdRp, as well as to human/cat ACE2 (Table S5). These 
findings confirm the possibility that cooperative compounds may target multiple viral proteins 
and thus likely act via various mechanisms in the life cycle of SARS-CoV-2.

Structurally distinct compounds binding to the RNA polymerase. Different from the S protein, we 
found cooperative binding of two different types of compounds (like triterpenes and flavonoids) 
at the large RNA-binding site of RdRp. In our simulation of  saikosaponin I and rutin bound to 
RdRp, there was clear hydrophobic interactions between the C30 skeleton of  saikosaponin I 
with the A/C ring in rutin, as well as the sugar moieties forming hydrogen bonds with the RNA-
binding site of the protein (Figure 4B2). According to our simulations, rutin or saikosaponin I was 
relatively  stable  at  the  same site  alone,  indicated  by  the average  ligand  RMSD near  5  Å. 
However,  while  both molecules  were bound to RdRp (Figure  4E),  the binding  stability  was 
greatly increased as shown by the low RMSDs (saikosaponin I, 3.4 ± 0.1 Å and rutin 2.6 ± 0.2 
Å), and they remained stacked for 120 ns throughout the simulations (centroid distance of 5.8 ± 
0.2 Å). In addition to saikosaponin I from Chinese thorowax root, we also simulated two other 
triterpenes from the licorice root, macedonoside B and licoricesaponin F3 (Figure 4), which were 



also found to form strong stacking with rutin at the RNA-binding site of RdRp. Such interactions 
may involve tighter binding of the small compounds to RdRp, which likely block RNA binding to 
the polymerase.

In  addition,  we  observed  cooperative  binding  of  two  flavonoids  (like  rutin-rutin  and  rutin-
tectorigenin  7-O-xylosylglucoside)  at  the  RNA-binding  site  of  RdRp  (Table  S5).  Taken  all 
together, as a potential QPD molecular mechanism to treat COVID-19, active compounds from 
different herbs may simultaneously bind the viral proteins and generate additional or synergistic 
inhibitory effects.

Discussion
From the drug discovery perspective, some of the SARS-CoV-2 proteins can be difficult targets 
for structure-based design, given their less well-defined (like in the S protein) or generally very 
large binding pockets (like in the RdRp). Thus, it can be a challenge to identify specific and 
selective compounds. From ensemble docking and molecular simulations, we identified several 
compounds  contained  in  QPD that  potentially  bind  to  the  viral  proteins,  but  most  of  them 
displayed  only  medium  affinity  with  multiple  possible  binding  poses,  which  renders  these 
compounds less attractive as potential drug candidates. However, with ensemble/cooperative 
docking combined with extensive MD simulations, we have examined the possibility of multi-
compound interactions at the same binding site. We found that binding of one compound (i.e. 
rutin) from QPD ingredients to a viral protein can favorably influence the binding of another 
compounds (i.e. another flavonoid or a triterpene) from the same or different ingredients, mostly 
likely  through  π–π-stacking  interactions.  Cooperativity  of  ligand  binding  through  direct 
interaction between stacked molecules, often referred to as heterotropic cooperativity, has been 
long known in model proteins like P450 3A4.42, 44 Interestingly, the stacking stability can change 
with different assignments of the first and second ligands (or the docking order of cooperative 
compounds). Regarding the cooperativity of rutin and lucenin3 when binding to 3CLpro (Table S5 
and Figure S3), the stacking between lucenin3 and rutin were much stronger (centroid distance 
of 7.6 ± 0.3 Å), with lucenin3 directly bound to 3CLpro as the first ligand (RMSD of 1.2 ± 0.2 Å). 
However, with rutin as the first ligand (RMSD of 6.2 ± 0.3 Å), the complex appeared less stable 
and the stacking was much weaker (centroid distance of 10.6 ± 0.3 Å). The complex that is 
more thermodynamically stable will be likely dominant, and further theoretical and experimental 
studies may be needed in the future to fully explore this phenomenon. In addition to cooperative 
binding, we also found different compounds that may bind to the large interface of the S protein 
and ACE2, which generates a joint effect stronger than a single compound. Overall, our work 
shows that QPD provides a rich source of active small molecules that may synergistically inhibit  
the key players in the processes of SARS-CoV-2 entry, assembly, and replication. 

Although we only gained proof of concept for possible synergy among selected compounds in a 
1:1 stoichiometry, more complex binding (e.g. more than two different molecules, or different 
stoichiometry) is possible. Our ensemble and cooperative docking approach (Figure 5) can be 
utilized  to  further  explore  these possibilities  at  an affordable  computational  cost.  Moreover, 
although only selected SARS-CoV-2 proteins with crystal structures were studied in this work, 
the methodology presented here opens the door to more comprehensive studies to cover (i) 
other viral and even human protein targets (with experimental structures or theoretical models), 
and/or (ii) more small molecules (e.g. from databases). Notably, our results suggested only 12 
of 20 QPD  ingredients that may be directly associated with SARS-CoV-2 interactions. Some 
other herbal ingredients may be involved to regulate the human immune system, and interact 
with human therapeutic targets. It  is  viable to establish more comprehensive studies on the 
methodology in this work, which can complement current efforts in computer-aided discovery for 
COVID-19 treatments.



Conclusions
We have systematically modeled the interactions between eight related proteins and more than 
600 small molecules from herbal ingredients of a Chinese medicine against SARS-CoV-2. Our 
results suggest that several natural compounds may be able to inhibit the viral proteins, and 
thus key processes in  the viral  life  cycle.  We also found compelling  evidence that  selected 
compounds may simultaneously bind to the same viral protein as the Spike protein and the RNA 
polymerase, leading to synergistic effects in blocking the protein targets. While the synergy of 
identified  compounds  will  be  validated  in  the  future  experimentally,  we  provide  a  novel 
computational protocol to discover synergistic agents to target large protein binding sites, as a 
valuable tool to discover new COVID treatments.

Methods and Models.

Small-Molecule  Ligand  Selection  and  Preparation. Distinct  from  prior  studies  to  screen 
compounds from databases,13 we collected a set of 625 small-molecules (compound names and 
3D models  provided  in  the  SI  for  download)  from a thorough  literature  search from recent 
analytical  studies of bioactive compounds of 20 herbs in QPD (Table S2).  After referring to 
records in PubChem,45 volatile or toxic compounds were excluded, so that we could focus on 
the  chemically  relevant  ingredients.  Notably,  QPD  is  prepared  by  boiling  the  dried  herbal 
components  in  the  gypsum  aqueous  solution  for  20-30  minutes,  and  the  small,  volatile 
compounds are likely lost during the drying and/or boiling processes. Non-volatile compounds 
are  more likely  to  be dominant  in  the  active  ingredients  of  QPD.  The 3D models  of  these 
compounds  were either  built  in  Maestro (Schrödinger  Inc.)  or  downloaded  from PubChem, 
followed by  structure  cleanup  and prediction  of  the favorable  tautomeric  states in  the  Epik 
program.46 The qualitative  assessment  of  absorption,  deposition,  metabolism,  excretion  and 
toxicity  (ADMET)  profile  of  selected  hits  were  predicted  computationally  by  using  the 
SwissADME server47 (Table S6).

Ensemble and Cooperative Docking Approaches. We have created an original approach for 
ensemble docking, which efficiently assesses the potential interactions between a large number 
of compounds (ligands) and conformations of multiple protein targets (receptors). The work flow 
of this approach, illustrated in Figure 5, was designed to balance the computational efficiency 
and accuracy in a systems chemistry study. The eight PDB structures (Tables 1 and S1) of 
protein  receptors  (six  SARS-CoV-2  proteins,  the  human  ACE2,  and  the  cat  ACE2)  were 
prepared  by  the  Protein  Preparation  Wizard  in  Maestro (Schrödinger,  Inc.),  to  assign 
protonation states and to fill incomplete side chains and loop gaps.48-49 

After preparation of the small-molecule compounds and the protein receptors, our approach 
starts with virtual screening using one model for each receptor. Notably, most selected PDB 
structures in this work have co-crystalized ligands and known binding interfaces, so that we 
could readily define the ligand-binding sites. The docked ligand is confined to the enclosing box 
centered at the binding-site center (10 Å for the inner box; 10 or 15 Å for the outer box). While 
all the 625 compounds were prescreened using the Virtual Screening Wizard (Schrödinger Inc.), 
the top 10% with the best Glide XP scores were then promoted to ensemble docking. To do so, 
we could filter the compounds that are too small or too bulky for binding, and allow only the 
most  relevant  compounds  for  the  costly  ensemble  docking  and  subsequent  stages  in  our 
workflow. Visualization of the docking results was carried out in Maestro (version 2020-2) and 
Pymol (version 2.3.4).



Figure 5. Cartoon illustration of our workflow. Prescreening used the Virtual Screening Wizard 
and ensemble/cooperative docking was performed with Glide with the Glide XP scoring function. 

In parallel to prescreening, the receptor conformations for ensemble docking were generated by 
clustering the conformations sampled in the ligand-free protein simulations (Table S3). These 
simulations were performed with the Desmond-GPU version (Schrödinger Inc.) and analysis for 
clustering was carried out by the Desmond Trajectory Clustering Tool in Maestro. We chose the 
clusters of receptor conformations based on the local dynamics of the ligand-binding site (local 
RMSD),  in  order  to  select  the  most  relevant  conformations  and  provide  an  affordable 
computational  cost  for  ensemble  docking.  Clustering  was  based  on  heavy-atom  RMSD  of 
residues within 4 Å of the ligand-binding site. Only representative conformations of clusters with 
> 10 members were selected for ensemble docking. We had 2-6 clusters (Table S1) for each 
protein receptor in this work. Next, the top compounds from prescreening were docked to each 
of  the  cluster  representative  conformations  in  Glide (Schrödinger  Inc.).  The  best  Glide  XP 
score50 and the corresponding pose from all the docking tests of these representative models 
are considered the ensemble docking score and pose respectively (Table S4). The stability of 
the complex models from ensemble docking was further evaluated by MD simulations for 120-
250 ns with two trajectories for each complex.

Finally,  selected complexes with one ligand were setup for  cooperative docking (Table S5), 
which docked the top 10% of compounds from prescreening as the second ligand at the same 
binding site of each top complex model from ensemble docking by Glide (12 Å for the inner box; 
15 Å for the outer box). For example, three clusters were identified for RdRp, and from each 
cluster  a  representative  structure  was  used  to  provide  the  three  structures  for  ensemble 
docking.  The top complex models with  saikosaponin  I,  macedonoside B,  licoricesaponin  F3 
respectively  were  employed  for  cooperative  docking  (Table S5).  Among  all  these  complex 
models with two ligands bound,  the best Glide XP score and the corresponding pose were 
reported  as  the  cooperative  docking  results.  To  evaluate  the  stability  and  confirm  the 
cooperativity,  these complex  models were simulated with two trajectories for  120-250 ns in 
Desmond, to further understand the potential cooperative binding. The simulations (i.e. RMSD, 
RMSF, and center of  mass distance) were visualized and analyzed using  Maestro (version 
2020-2), VMD (version 1.9.3), and our in-house Python and Tcl scripts. 

System Construction and Simulation Setup of Molecular Dynamics (MD). We used MD 
simulations (i) to sample  apo protein conformations for ensemble docking, and (ii) to validate 
complex structures from ensemble/cooperative  docking.  All  the constructs were prepared in 
System Builder  (Schrödinger  Inc.)  and relaxed using a  multistage protocol  which has been 



described in our previous work.51-52 Parameters from the OPLS3e53 force field and the SPC 
water model54 were assigned.

Our production runs were performed in the NPT ensemble (300 K, 1 bar, Martyna–Tobias–Klein 
coupling scheme) with a time step of 2 fs in the Desmond MD engine. The particle mesh Ewald 
technique  was  used  for  the  electrostatic  calculations.  Van  der  Waals  and  short-range 
electrostatics were cut  off  at  9.0 Å.  The long-ranged electrostatics was updated every third 
simulation step. Each construct was simulated with two trajectories for 120-250 ns, and most of 
the systems showed consistent RMSF (Figure S4), which suggests sufficient sampling within 
our simulated length. Our total MD sampling reached 16 microseconds, with details provided in 
Table S3-S5.
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