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1. INTRODUCTION

Describing and analyzing complex systems in mathemati-
cal models is a challenging problem. Networks are a nat-
ural representation for many kinds of complex systems,
where networks are sets of nodes or vertices joined together
in pairs by links or edges. There are several types of
networks. For example, Facebook is a large social network,
where more than one billion people are connected via
virtual acquaintanceship. Another common example is the
internet, the physical network of computers, routers, and
modems which are linked via cables or wireless signals.
Many other examples come from biology, physics, engi-
neering, computer science, ecology, economics, marketing,
etc.

Real-world networked systems often have a community
structure, which is the division of network nodes into
groups such that the network connections are denser
within the groups and are sparser between the groups,
see (Newman and Girvan, 2004). These groups are called
communities, or modules. Detecting community structure
in a network is a powerful tool for understanding and
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exploiting the structure of networks, and it has various
practical applications (Girvan and Newman, 2002).

A variety of community detection algorithms have been
developed in recent years, such as the GN algorithm
(Newman, 2004), the spectral modularity maximization
algorithm (Newman, 2006b), the Louvain method (Blon-
del et al., 2008), the Infomap algorithm (Rosvall and
Bergstrom, 2008), statistical inference (Newman and Le-
icht, 2007), deep learning (Yang et al., 2016). Modularity
optimization approaches have been shown to be highly
effective in practical applications (Fortunato, 2010). Re-
cently, optimization over Riemannian manifolds has drawn
much attention because of its application in many different
fields. Almost all of the manifold optimization methods
require computing the derivatives of the objective function
and do not apply to the case where the objective function is
nonsmooth. In (Chen et al., 2020), the authors proposed a
Riemannian proximal gradient method called ManPG for a
class of nonsmooth nonconvex optimization problems over
a Stiefel manifold

minF (X) := f(X) + g(X), (1)

s.t. X ∈ M := St(q, n) = {X : X ∈ Rn×q, XTX = Iq},

where Iq denotes the q × q identity matrix (q < n), f
is smooth, possibly nonconvex, and its gradient ∇f is
Lipschitz continuous, g is convex, possibly nonsmooth, and
is Lipschitz continuous and the proximal mapping of g is
easy to find.

In (Huang and Wei, 2019), the authors extended the fast
iterative shrinkage-thresholding (FISTA) algorithm (Beck
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where Iq denotes the q × q identity matrix (q < n), f
is smooth, possibly nonconvex, and its gradient ∇f is
Lipschitz continuous, g is convex, possibly nonsmooth, and
is Lipschitz continuous and the proximal mapping of g is
easy to find.

In (Huang and Wei, 2019), the authors extended the fast
iterative shrinkage-thresholding (FISTA) algorithm (Beck

and Teboulle, 2009) to solve (1), and the accelerated Rie-
mannian manifold proximal gradient algorithm performed
better than ManPG. In (Huang and Wei, 2021), they
developed and analyzed a generalization of the proximal
gradient methods with and without acceleration for nons-
mooth Riemannian optimization problems.

In this paper, we propose the accelerated Riemannian
manifold projected proximal gradient (ARPPG) method
for community detection, and we solve the community
detection problem using a constrained nonsmooth opti-
mization problem over a Stiefel manifold.

The paper is organized as follows. In Section 2, we de-
fine assignment matrices and show that the ideal graph
assignment is a global maximal solution of the modularity
function. In Section 3, we show the connection between
the modularity matrix and the Stiefel manifold, and then
transform the community detection problem to the con-
strained Stiefel optimization problem. Because the con-
straint defines a feasible set that is a subset of the Stiefel
manifold, we must apply a projection to the proximal
result. This leads to the accelerated Riemannian manifold
projected proximal gradient (ARPPG) algorithm. Exten-
sive numerical experiments on synthetic and real world
networks are described in Section 4. Finally, conclusions
and future work are stated in Section 5.

2. DERIVATION OF GLOBAL MAXIMUM OVER
ASSIGNMENT MATRICES

2.1 Assignment matrices

We will denote a q dimensional vector with all entries being
1 by 1q and denote the q× q permutation matrices by Pq.

A matrix in the set of assignment matrices, An,q, is defined
as

Definition 1. The matrix X ∈ {0, 1}n×q, with n ≥ q, is an
assignment matrix if it satisfies

(i) X1q = 1n,
(ii) XTX = diag(n1, · · · , nq) where ni = ||Xei||1.

X is said to be in canonical ordering if the rows are
permuted so that

X =





1n1

1n2

. . .
1nq



 .

Of course, the column ordering is not unique for the canon-
ical form, i.e., XPq is the same community assignment but
with a different correspondence between the sets and the
columns of the assignment matrix. For essential unique-
ness, the additional constraint of n1 ≥ n2 ≥ . . . ≥ nq

can be imposed. The columns are orthogonal, but not
orthonormal, and X has exactly n nonzero elements all
of which have the value of 1. As a result, X defines a
partitioning of the indices 1, . . . , n into q disjoint sets.

2.2 The Modularity Cost Function

From (Newman, 2006a), the scalar cost function f(X)
called modularity (up to a scalar 1

2m ) can be written as

a quadratic function over n × q matrices defined by the
matrix

M = A− A1n1T
nA

2m
, f(X) = trace(XTMX),

where A is the adjacency matrix of the graph, M is the
modularity matrix, m is the number of edges, n is the
number of vertices in the graph and the total degree of
the graph is 2m = 1T

nA1n.

The value of f(X) is invariant under permutations on
the columns of the assignment matrix X, i.e., f(XPq) =
trace(PT

q XTMXPq). So there are multiple optimal ways
of specifying the same community assignment.

2.3 Maximal of the Modularity Function on Ideal Graphs

We consider in this section so-called ideal graphs. An ideal
graph is a graph where the communities are cliques and
there are no edges between the cliques.

When A is an ideal graph with q communities we know it
can be written (Marchand, 2017)

A = Z̃∗Z̃
T
∗

where Z̃∗ ∈ An,q is not necessarily in canonical form and
there exists a row permutation P so that

PAPT = AP = Z∗Z
T
∗

where AP is block diagonal with diagonal blocks 1ni1
T
ni

=
zizTi for 1 ≤ i ≤ q and

Z∗ =





1n1

1n2

. . .
1nq



 =





z1
z2

. . .
zq





is in canonical form.

The corresponding modularity matrices for an ideal A and
the corresponding block diagonal AP are given by

M = MT = A− A1n1T
nA

2m

= Z̃∗Z̃
T
∗ − Z̃∗Z̃T

∗ 1n1T
n Z̃∗Z̃T

∗
2m

= Z̃∗(Iq −
s̃s̃T

2m
)Z̃T

∗ ,

and

MP = Z∗(Iq −
ssT

2m
)ZT

∗ ,

where s = ZT
∗ 1n = (n1 . . . nq)

T
, and 2m = 1T

nAP1n =
sT s =

∑q
i=1 n

2
i .

The cost function f(X) is invariant under reorderings of
A, so we can analyze any row ordering of Z∗ denoted
generically as Z below. The following result for the value
of f(Z), i.e., the cost function at the assignment matrix
that generates the ideal matrix A, follows directly from
the definitions.

Lemma 2. If A = ZZT for Z ∈ An,q then

f(Z) =
q∑

i=1

n2
i −

∑q
i=1 n

4
i∑q

i=1 n
2
i
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and Teboulle, 2009) to solve (1), and the accelerated Rie-
mannian manifold proximal gradient algorithm performed
better than ManPG. In (Huang and Wei, 2021), they
developed and analyzed a generalization of the proximal
gradient methods with and without acceleration for nons-
mooth Riemannian optimization problems.

In this paper, we propose the accelerated Riemannian
manifold projected proximal gradient (ARPPG) method
for community detection, and we solve the community
detection problem using a constrained nonsmooth opti-
mization problem over a Stiefel manifold.

The paper is organized as follows. In Section 2, we de-
fine assignment matrices and show that the ideal graph
assignment is a global maximal solution of the modularity
function. In Section 3, we show the connection between
the modularity matrix and the Stiefel manifold, and then
transform the community detection problem to the con-
strained Stiefel optimization problem. Because the con-
straint defines a feasible set that is a subset of the Stiefel
manifold, we must apply a projection to the proximal
result. This leads to the accelerated Riemannian manifold
projected proximal gradient (ARPPG) algorithm. Exten-
sive numerical experiments on synthetic and real world
networks are described in Section 4. Finally, conclusions
and future work are stated in Section 5.

2. DERIVATION OF GLOBAL MAXIMUM OVER
ASSIGNMENT MATRICES

2.1 Assignment matrices

We will denote a q dimensional vector with all entries being
1 by 1q and denote the q× q permutation matrices by Pq.
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(i) X1q = 1n,
(ii) XTX = diag(n1, · · · , nq) where ni = ||Xei||1.

X is said to be in canonical ordering if the rows are
permuted so that

X =





1n1

1n2

. . .
1nq



 .

Of course, the column ordering is not unique for the canon-
ical form, i.e., XPq is the same community assignment but
with a different correspondence between the sets and the
columns of the assignment matrix. For essential unique-
ness, the additional constraint of n1 ≥ n2 ≥ . . . ≥ nq

can be imposed. The columns are orthogonal, but not
orthonormal, and X has exactly n nonzero elements all
of which have the value of 1. As a result, X defines a
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2.2 The Modularity Cost Function

From (Newman, 2006a), the scalar cost function f(X)
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2m ) can be written as

a quadratic function over n × q matrices defined by the
matrix

M = A− A1n1T
nA

2m
, f(X) = trace(XTMX),

where A is the adjacency matrix of the graph, M is the
modularity matrix, m is the number of edges, n is the
number of vertices in the graph and the total degree of
the graph is 2m = 1T

nA1n.
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the columns of the assignment matrix X, i.e., f(XPq) =
trace(PT

q XTMXPq). So there are multiple optimal ways
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When A is an ideal graph with q communities we know it
can be written (Marchand, 2017)

A = Z̃∗Z̃
T
∗
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The cost function f(X) is invariant under reorderings of
A, so we can analyze any row ordering of Z∗ denoted
generically as Z below. The following result for the value
of f(Z), i.e., the cost function at the assignment matrix
that generates the ideal matrix A, follows directly from
the definitions.

Lemma 2. If A = ZZT for Z ∈ An,q then

f(Z) =
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.
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We show that the value f(X) for any X ∈ An,q is bounded
above by f(Z) in Theorem 5. The following lemmas are
easily proven and are useful in proving the main result.

Lemma 3. If A = ZZT for Z ∈ An,q then for any X ∈
An,q

f(X) = trace(XTZ(Iq −
ssT

2m
)ZTX) ≤

q∑

i=1

γiv
T
i XXT vi,

where s = (n1 . . . nq)
T
, vi = Zei,

2m =
q∑

i=1

n2
i , γi := 1− n2

i

2m
,

where 0 ≤ γi < 1.

Lemma 4. Given Z ∈ An,q, any X ∈ An,q satisfies

vTi XXT vi ≤ vTi ZZT vi, 1 ≤ i ≤ q

where vi = Zei. Equality holds only when X = ZPq, i.e.,
a column permutation of Z.

The desired result is stated as Theorem 5.

Theorem 5. If A = ZZT for Z ∈ An,q is an ideal adjacency
matrix then for any X ∈ An,q

f(X) ≤ f(Z),

where f(X) = trace(XTZ(Iq− ssT

2m )ZTX), s = (n1 . . . nq)
T
,

2m =
∑q

i=1 n
2
i .

Proof. The series of lemmas above yields

f(X) ≤
q∑

i=1

(
1− n2

i

2m

)
vTi ZZT vi.

Note that
q∑

i=1

(
1− n2

i

2m

)
vTi ZZT vi

=
q∑

i=1

vTi ZZT vi −
q∑

i=1

n2
i

2m
vTi ZZT vi

=
q∑

i=1

n2
i −

∑q
i=1 n

4
i

2m

=
q∑

i=1

n2
i −

∑q
i=1 n

4
i∑q

i=1 n
2
i

= f(Z).

Theorem 5 shows that the ideal graph assignment is a
global maximum of the modularity function over An,q.

3. STIEFEL MANIFOLD ALGORITHMS FOR
COMMUNITY DETECTION

The algorithms discussed here assume the cost function

f(X) = trace(XTMX),

where M = A− A1n1T
nA

1T
nA1n

.

3.1 The connection between the modularity matrix and the
Stiefel manifold St(q, n)

Lemma 6. Let Z ∈ An,q and define M = A− A11TA
1TA1 . If A

is the adjacency matrix of an ideal graph, then A = ZZT

and
R(A) = R(Z) = (R(M)⊕⊥ R(1n)), (2)

N (M) = (N (ZT )⊕⊥ R(1n)) = (N (A)⊕⊥ R(1n)), (3)
where R(A) denotes the range of A, N (A) denotes the
null space of A, and ⊕⊥ denotes the direct sum of two
perpendicular spaces.

Proof. Note that the symmetry of A and M implies
N (M) = R(M)⊥ and N (A) = R(A)⊥. Therefore (2) and
(3) are equivalent. It follows from the definition of M that

M = Z(Iq −
ssT

sT s
)ZT = Z(Iq −

ssT

sT s
)2ZT

= [Z(Iq −
ssT

sT s
)][(Iq −

ssT

sT s
)ZT ].

This implies that

R(M) = R(Z(Iq −
ssT

sT s
)), N (M) = N ((Iq −

ssT

sT s
)ZT ),

and we also have

R(A) = R(Z), N (A) = N (ZT ).

Since the projector (Iq− ssT

sT s ) has rank n−1, it follows that
the ranges and null spaces of A and M have dimensions
that can only differ by 1 at most. Now consider the vector
1n. Since s = ZT1n, we have M1n = 0 and since M is
symmetric, 1n is orthogonal to R(M). Since 1n = Z1q, we
have 1n ∈ R(Z) = R(A). Together, these two properties
prove (2), and hence also (3).

Since rank(M) = q − 1 and M = MT , we have the
eigendecomposition

M = X∗ΓX
T
∗ ,

where

X∗ ∈ St(q − 1, n), Γ = diag(γ1, . . . , γq−1), γi %= 0.

It then follows by Lemma 6 that
[
X∗

1n√
n

]
∈ St(q, n) since

R(X∗) is a subspace of R(M).

3.2 An Important Basis for an Ideal R(A)

For the modularity matrix, the relationship between A and
M is one of deflation of range that allows the characteri-
zation of the part of R(A) = R(Z) that is removed when
considering R(M) as shown in (2).

Therefore, we can now get the anticipated result ofR(Z) =

R
([

X∗
1n√
n

])
.

3.3 A Constrained Stiefel Optimization Problem

Multiple Extrema: Note that if a space B of dimension
q has a basis that is an assignment matrix then it has
q! such bases all of which are of the form ZPq where Z
is any assignment matrix basis and P ∈ {0, 1}q×q is a
permutation matrix. All of these matrices have exactly n
nonzero elements which is the minimum count possible for
bases of the space. If the columns of such a matrix, Z, are
normalized in Euclidean 2-norm length then an element of
St(q, n) is produced with ni elements in column i all with
the value 1/

√
ni with

∑q
i=1 ni = n. These are the global

minima of
min

X∈St(q,n),R(X)=B
‖X‖1,

where the l1 norm is defined as ‖X‖1 =
∑

ij‖Xij‖
imposing the sparsity of X.

In practical numerical computation, even on ideal matrices
and certainly on problems for which noise perturbs A and
Z from ideal, some projection is needed to take a matrix
in St(q, n) to the “nearest” matrix in An,q.

A Constrained Stiefel Optimization Problem: The con-
strained Stiefel optimization problem used to perform
community detection is

X∗ = argmax
X∈St(q,n), 1n∈R(X)

trace(XTMX)− λ‖X‖1, (4)

where λ > 0 is a tuning parameter controlling the balance
between variance and sparsity. The approach to compute
X∗ is given in Algorithm 1.

Algorithm 1 Algorithm for the Constrained Stiefel Op-
timization Problem
1: Step 1: Compute Y∗ ∈ St(q − 1, n) where

Y∗ = argmax
X∈St(q−1,n)

trace(XTMX).

and set the initial guess for Step 2 as

X0 =

[
Y∗

1n√
n

]
.

2: Step 2: Compute X∗ ∈ St(q, n),1n ∈ R(X) where

X∗ = argmax
X∈St(q,n), 1n∈R(X)

trace(XTMX)− λ‖X‖1,

with X0 as the initial guess.
3: Step 3: Get the assignment matrix X̂∗ by setting the

element with the largest magnitude in each row of
X∗ as 1, and the others as 0 when X∗ is sufficiently
sparse. Assess the assignment matrix X̂∗ and deter-
mine whether it is acceptable as a solution to the
community detection problem or if the parameter λ
should be updated. If λ is updated then return to Step
2.

Step 1 can be computed using any trace maximization
algorithm. Our code uses RNewton in ROPTLIB (Huang
et al., 2018). A projection is needed to define a Rieman-
nian projected proximal gradient algorithm to solve this
problem in Step 2. In fact, this projection can be used for
any line search based algorithm where Yk = R(αDk) for a
Riemannian retraction R must be feasible. The projection
used in the proposed algorithm is described below.

In Step 3, we use the idea of continuation to choose the
parameter λ that defines the cost function. We can get
the optimal X∗

1 after setting the initial λ0 and X0. We
then increase λ0 and use X∗

1 as the initial matrix to get
X∗

2 . We continue this procedure until the cost function
trace(XTMX)− λ‖X‖1 does not improve anymore.

Step 2 is the main part of the algorithm, and it is inspired
by (Huang and Wei, 2019). In (Huang and Wei, 2019), the
authors generalized the FISTA from the Euclidean space
to the Riemannian setting and considered the general
nonconvex optimization problem

min
X∈M

F (X) = f(X) + g(X), (5)

where M ⊂ Rn×q is a Riemannian submanifold, f :
Rn×q → R is L-continuously differentiable (may be non-

convex) and g is continuous and convex but may not be
differentiable.

The optimization problem (4) is a special case of prob-
lem (5), where f(X) = trace(XTMX) is L-continuously
differentiable and g(X) = −λ‖X‖1 is continuous, convex,
but not differentiable. However, there is an essential dif-
ference between (5) and (4) in that there is a constraint
1n ∈ R(X) that defines a feasible set F ⊂ St(q, n).
The accelerated Riemannian manifold proximal gradient
method (Huang and Wei, 2019) is modified to define
the accelerated Riemannian manifold projected proximal
gradient (ARPPG) method by adding the projection (7)
derived in the next section. The details of ARPPG are in
Algorithm 2.

Algorithm 2 Accelerated Riemannian Manifold Pro-
jected Proximal Gradient Method(ARPPG)

Input: Lipschitz constant L on ∇f , parameter
µ ∈ (0, 1/L] in the proximal mapping, line search
parameter σ ∈ (0, 1), shrinking parameter in line search
β ∈ (0, 1), positive integer N for safeguard;

1: t0 = 1, y0 = x0, z0 = x0;λ = λ0

2: for k = 0, ... do
3: if mod(k, N) = 0 then % Invoke safeguard

every N iterations
4: Invoke Algorithm 3: [zk+N , xk, yk, tk] =

Algo3(zk, xk, yk, tk, F (xk));
5: end if
6: Compute

ηyk = argmin
η∈Tyk

M
〈gradf(yk), η〉+

1

2µ
||η||2F + g(yk + η);

7: xk+1 = Ryk(ηyk);
8: xk+1 = proj(xk+1);

9: tk+1 =
√

4t2
k
+1+1

2 ;
10: Compute

yk+1 = Rxk+1(
1− tk
tk+1

R−1
xk+1

(xk));

11: Compute yk+1 = proj(yk+1).
12: end for
13: X∗ = xk+1

There are several retractions that can be constructed for
the Stiefel manifold. Algorithm 2 uses the efficient retrac-
tion based on the singular value decomposition (SVD):

[Q,R] = qr(X + ηX), [U, S, V ] = svd(R),

RX(ηX) = Q(UV T ),

where qr and svd mean computing the compact QR de-
composition and SVD of a matrix, respectively. R−1

X (Y ) =
Y S−X, where S is the solution of the Lyapunov equation
(XTY )S + S(Y TX) = 2Iq.

The Projection: Given X ∈ St(q, n), the task is to find
a Y ∈ St(q, n) with 1n ∈ R(Y ) that minimizes ‖X−Y ‖2F .
Letting f(Y ; X) = trace(XTY ) denote a cost function
parameterized by X, the problem can be formulated in an
equivalent form by noting

min
Y ∈F

‖X − Y ‖2F ↔ max
Y ∈F

f(Y ; X)
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where the l1 norm is defined as ‖X‖1 =
∑

ij‖Xij‖
imposing the sparsity of X.

In practical numerical computation, even on ideal matrices
and certainly on problems for which noise perturbs A and
Z from ideal, some projection is needed to take a matrix
in St(q, n) to the “nearest” matrix in An,q.

A Constrained Stiefel Optimization Problem: The con-
strained Stiefel optimization problem used to perform
community detection is

X∗ = argmax
X∈St(q,n), 1n∈R(X)

trace(XTMX)− λ‖X‖1, (4)

where λ > 0 is a tuning parameter controlling the balance
between variance and sparsity. The approach to compute
X∗ is given in Algorithm 1.

Algorithm 1 Algorithm for the Constrained Stiefel Op-
timization Problem
1: Step 1: Compute Y∗ ∈ St(q − 1, n) where

Y∗ = argmax
X∈St(q−1,n)

trace(XTMX).

and set the initial guess for Step 2 as

X0 =

[
Y∗

1n√
n

]
.

2: Step 2: Compute X∗ ∈ St(q, n),1n ∈ R(X) where

X∗ = argmax
X∈St(q,n), 1n∈R(X)

trace(XTMX)− λ‖X‖1,

with X0 as the initial guess.
3: Step 3: Get the assignment matrix X̂∗ by setting the

element with the largest magnitude in each row of
X∗ as 1, and the others as 0 when X∗ is sufficiently
sparse. Assess the assignment matrix X̂∗ and deter-
mine whether it is acceptable as a solution to the
community detection problem or if the parameter λ
should be updated. If λ is updated then return to Step
2.

Step 1 can be computed using any trace maximization
algorithm. Our code uses RNewton in ROPTLIB (Huang
et al., 2018). A projection is needed to define a Rieman-
nian projected proximal gradient algorithm to solve this
problem in Step 2. In fact, this projection can be used for
any line search based algorithm where Yk = R(αDk) for a
Riemannian retraction R must be feasible. The projection
used in the proposed algorithm is described below.

In Step 3, we use the idea of continuation to choose the
parameter λ that defines the cost function. We can get
the optimal X∗

1 after setting the initial λ0 and X0. We
then increase λ0 and use X∗

1 as the initial matrix to get
X∗

2 . We continue this procedure until the cost function
trace(XTMX)− λ‖X‖1 does not improve anymore.

Step 2 is the main part of the algorithm, and it is inspired
by (Huang and Wei, 2019). In (Huang and Wei, 2019), the
authors generalized the FISTA from the Euclidean space
to the Riemannian setting and considered the general
nonconvex optimization problem

min
X∈M

F (X) = f(X) + g(X), (5)

where M ⊂ Rn×q is a Riemannian submanifold, f :
Rn×q → R is L-continuously differentiable (may be non-

convex) and g is continuous and convex but may not be
differentiable.

The optimization problem (4) is a special case of prob-
lem (5), where f(X) = trace(XTMX) is L-continuously
differentiable and g(X) = −λ‖X‖1 is continuous, convex,
but not differentiable. However, there is an essential dif-
ference between (5) and (4) in that there is a constraint
1n ∈ R(X) that defines a feasible set F ⊂ St(q, n).
The accelerated Riemannian manifold proximal gradient
method (Huang and Wei, 2019) is modified to define
the accelerated Riemannian manifold projected proximal
gradient (ARPPG) method by adding the projection (7)
derived in the next section. The details of ARPPG are in
Algorithm 2.

Algorithm 2 Accelerated Riemannian Manifold Pro-
jected Proximal Gradient Method(ARPPG)

Input: Lipschitz constant L on ∇f , parameter
µ ∈ (0, 1/L] in the proximal mapping, line search
parameter σ ∈ (0, 1), shrinking parameter in line search
β ∈ (0, 1), positive integer N for safeguard;

1: t0 = 1, y0 = x0, z0 = x0;λ = λ0

2: for k = 0, ... do
3: if mod(k, N) = 0 then % Invoke safeguard

every N iterations
4: Invoke Algorithm 3: [zk+N , xk, yk, tk] =

Algo3(zk, xk, yk, tk, F (xk));
5: end if
6: Compute

ηyk = argmin
η∈Tyk

M
〈gradf(yk), η〉+

1

2µ
||η||2F + g(yk + η);

7: xk+1 = Ryk(ηyk);
8: xk+1 = proj(xk+1);

9: tk+1 =
√

4t2
k
+1+1

2 ;
10: Compute

yk+1 = Rxk+1(
1− tk
tk+1

R−1
xk+1

(xk));

11: Compute yk+1 = proj(yk+1).
12: end for
13: X∗ = xk+1

There are several retractions that can be constructed for
the Stiefel manifold. Algorithm 2 uses the efficient retrac-
tion based on the singular value decomposition (SVD):

[Q,R] = qr(X + ηX), [U, S, V ] = svd(R),

RX(ηX) = Q(UV T ),

where qr and svd mean computing the compact QR de-
composition and SVD of a matrix, respectively. R−1

X (Y ) =
Y S−X, where S is the solution of the Lyapunov equation
(XTY )S + S(Y TX) = 2Iq.

The Projection: Given X ∈ St(q, n), the task is to find
a Y ∈ St(q, n) with 1n ∈ R(Y ) that minimizes ‖X−Y ‖2F .
Letting f(Y ; X) = trace(XTY ) denote a cost function
parameterized by X, the problem can be formulated in an
equivalent form by noting

min
Y ∈F

‖X − Y ‖2F ↔ max
Y ∈F

f(Y ; X)
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Algorithm 3 Safeguard for Algorithm ARPPG

Input: [zk, xk, yk, tk, F (xk)];
Output: [zk+N , xk, yk, tk];

1: Compute

ηzk = argmin
η∈Tzk

M
〈gradf(zk), η〉+

1

2µ
||η||2F + g(zk + η);

2: Set α = 1;
3: while F (proj(Rzk(αηzk))) > F (zk)− σα||ηzk ||2F do
4: α = βα;
5: end while
6: if F (proj(Rzk(αηzk))) < F (xk) then % Safeguard

takes effect
7: xk = Rzk(αηzk), yk = Rzk(αηzk), and tk = 1;
8: xk = proj(xk), yk = proj(yk);
9: else

10: xk, yk and tk keep unchanged;
11: end if
12: zk+N = xk; % Update the compared iterate

where F = {Y ∈ St(q, n), 1n ∈ R(Y )}. The maximum
value of f(Y ; X) is q and is achieved when X ∈ F and the
problem is invariant with respect to Q ∈ O(q) where O(q)
is the orthogonal group consisting of q-by-q orthogonal
matrices, i.e.,

f(Y ; X) = f(Y Q; XQ).

Note that the cost function changes for this invariance. In
general, f(Y ; X) %= f(Y Q; X).

For an element of the feasible set F , there must exist
Q ∈ O(q) such that Ŷ = Y Q =

[
1̃n Ỹ

]
with 1̃n = 1n/

√
n,

Ỹ ∈ St(q − 1, n) and R(Ỹ ) ⊥ 1̃n. There are, of course,
many such Ŷ possible. This can be seen from

Q = [q1 Q⊥] , Ŷ =
[
1̃n Ỹ

]
= [Y q1 Y Q⊥] .

Given Y , the vector q1 is uniquely defined but Q⊥ is any
orthonormal completion of q1 and Ỹ = Y Q⊥ varies with
the choice of Q⊥. This can be used to parameterize the
cost function over F to give an alternative form of the
optimization problem defining the projection and reveal a
constructive form of the solution Y∗.

The two forms of the optimization problem are

Y∗ = argmax
Y ∈F

trace(XTY ),

where F = {Y ∈ St(q, n), 1n ∈ R(Y )};

(
Ŷ∗, Q∗

)
= argmax

Ŷ ∈G, Q∈O(q)

trace(QTXT Ŷ ),

G = {Ŷ =
[
1̃n Ỹ

]
| Ỹ ∈ St(q − 1, n), 1n ⊥ R(Ỹ )}.

The second form can be solved analytically and a solution
for the first form recovered easily. The cost function for
the second form can be expanded as

trace(QTXT Ŷ ) = qT1 X
T 1̃n + trace(QT

⊥X
T Ỹ ).

The first term of the sum in the cost function is indepen-
dent of the second term while the second term is essentially
determined by the choice of q1. For any q1 and orthonormal
completion Q⊥, the maximum value of q1 for the second
term is achieved by Ỹ = XQ⊥.

Given this optimal choice of Ỹ parameterized by Q, the
problem then becomes finding the optimal q∗ for

max
q1∈St(1,n)

qT1 X
T 1̃n

and Q∗ = [q∗ Q∗
⊥] where Q∗

⊥ is any orthonormal comple-
tion of q∗. This has a maximum value of 1 if and only if
1̃n ∈ R(X). Otherwise it is maximized by

q∗ =
XT 1̃n

‖XT 1̃n‖2
.

There are several maximizers given by

q∗ =
XT 1̃n

‖XT 1̃n‖2
Q∗

⊥ ∈ St(q − 1, n) is any orthonormal completion of q∗

Ỹ∗ = XQ∗
⊥, Ŷ∗ =

[
1̃n Ỹ∗

]
.

Finally, Y∗, the maximizer for the original parameterized
form of f(Y ; X) can be determined from Ŷ∗

Y∗ = Ŷ∗Q
T
∗ =

[
1̃n Ỹ∗

]
[q∗ Q∗

⊥]
T
= 1̃nq

T
∗ +XQ∗

⊥(Q
∗
⊥)

T .

This form shows that the choice of Q∗
⊥, i.e., the basis for

R⊥(q∗), that determines Ŷ∗ does not result in multiple Y∗
since the projector Q∗

⊥(Q
∗
⊥)

T is invariant.

Therefore, a computationally efficient form of the unique
solution is given by

Y∗ = argmax
Y ∈F

f(Y ; X) = 1̃nq
T
∗ +XQ∗

⊥(Q
∗
⊥)

T (6)

= 1̃nq
T
∗ +X(I − q∗q

T
∗ ), (7)

q∗ =
XT 1̃n

‖XT 1̃n‖2
. (8)

4. NUMERICAL EXPERIMENTS

4.1 Empirical Evaluation Techniques

ARPPG was evaluated using a family of synthetic bench-
mark networks and real-world networks by comparing its
performance to that of three state-of-the-art algorithms for
community detection: the GN algorithm (Newman, 2004),
the Infomap algorithm (Rosvall and Bergstrom, 2008) and
the Louvain method (Blondel et al., 2008). GN and Lou-
vain methods were applied to maximizing the modularity
Q = 1

2m trace(XTMX), where X is an assignment matrix
that specifies a partitioning of the nodes into communities.
Even though the Infomap method was not designed to
maximize the modularity, it is one of the best performing
methods out of the framework, see (Lancichinetti et al.,
2011). So, we also compare our algorithm with the Infomap
method. ARPPG maximized the cost function defined
earlier based on modularity and a sparsity penalty term.

The assignments of nodes to communities produced by
each algorithm for a given problem were compared using
their modularity values. However, since the modularity
used here is one of many cost functions in the literature
that heuristically define preferred assignments, a metric
independent of the cost function was used to assess the
quality of the assignments. A ground truth assignment of
nodes to communities is associated with each benchmark

graph. Given the ground truth, normalized mutual infor-
mation (NMI) (Danon et al., 2005) and adjusted mutual
information (AMI) (Vinh et al., 2010) were used to com-
pare the quality of the communities. The values of NMI
and AMI are in [0, 1] with larger values indicating higher
similarity.

AMI is introduced in addition to NMI to correct the
measures for randomness by specifying a model by which
random partitions are generated. AMI is defined as

AMI(X,Y ) =
I(X,Y )− E{I(X,Y )}

max {H(X), H(Y )}− E{I(X,Y )} ,

where

E{I(X,Y )} =
∑

u,v

min(au,bv)∑

nuv=(au+bv−N)+

nuv

N
log

(
N · nuv

aubv

)
×

au!bv!(N − au)!(N − bv)!

N !nuv!(au − nuv)!(bv − nuv)!(N − au − bv + nuv)!

by adopting a hypergeometric model of randomness, where
(au + bv − N)+ denotes max(1, au + bv − N), and au =∑

v nuv and bv =
∑

u nuv.

The synthetic benchmarks have clearly defined ground
truth based on intracommunity connectivity graphs that
are strongly connected but not necessarily completely con-
nected as in our ideal case defined above. The members of
the family of networks are defined by a parameter that
makes the network have an increasingly ill-defined com-
munity structure. As a result, any reasonable algorithm
should detect community structure accurately when it is
well-defined and the discrimination ability of the algorithm
is tested as the definition degrades. Additionally, we must
consider the robustness of the combinatorial algorithms
relative to their runtime choices, e.g., the particular ran-
dom walks used in Infomap or the order and manner
in which one-node moves are considered in the Louvain
method. Similarly, ARPPG and other algorithms based on
optimization over a continuous domain are dependent on
their initial conditions or other strategies to avoid finding
an unacceptable local maximum.

For a network representing real-world relationships there
can be ground truth based on a clear definition of the
entities that define the nodes, empirical observations such
as observed social behavior, or classifications based on
opinions of human observers who may or may not be
experts in a discipline related to the information. As a
result, different cost functions may characterize the desired
ground truth with different levels of accuracy. The use
of the geometry, the sparsity constraint and continuation
is an attempt to improve the robustness and aid in the
selection of parameters such as the number of communities
and the penalty parameter.

4.2 Synthetic Benchmarks

The generalized LFR benchmark graphs (Lancichinetti
and Fortunato, 2009) were used as the synthetic network
benchmarks. These subsume the well-known benchmark
proposed by Girvan and Newman (Girvan and Newman,
2002) and are more challenging for community detection
algorithms. For the LFR benchmarks we used in this

paper, the networks have N = 1000 nodes, the average
node degree is 20, the maximum node degree is 50, the
communities have between 20 and 100 nodes, the exponent
of the degree power law distribution is −2, and the
exponent of the community size power law distribution is
−1. The numbers of communities for the LFR benchmarks
are around 20.

In the construction of the benchmark graphs, the mixing
parameter µ determines the difficulty level to detect com-
munities. Setting µ = 0, gives a graph defining a ground
truth where the communities are strongly connected com-
ponents and there are no edges between the communities.
This is more challenging than the ideal ground truth of
communities that are cliques used to motivate the opti-
mization problem. For any value of µ > 0, the graph also
has an associated ground truth but the mixing causes the
community structure to be less clearly defined.

For the LFR benchmarks we used in this paper, the
networks have N = 1000 nodes, the average node degree is
20, the maximum node degree is 50, the communities have
between 20 and 100 nodes, the exponent of the degree
power law distribution is −2, and the exponent of the
community size power law distribution is −1. The numbers
of communities for the LFR benchmarks are around 20.

Results for the LFR networks: For the LFR benchmark
with µ = 0, as expected and required, all four algorithms
have NMI = 1, the same modularity value and the same
assignment to qtrue = 24 strongly connected communities.
ARPPG requires the desired number of communities as
a parameter value and in this case it was taken as q =
qtrue = 24. The choice of an initial q and the development
of a dynamic adaptation strategy are key ongoing tasks for
ARPPG. There is promising evidence that it is possible.
For µ = 0 and ARPPG run with q = 25 and q = 26,
i.e., near qtrue, the modularity decreases as q increases.
The final values of NMI for q = 25 and q = 26 change
only slightly 0.99 and 0.98 respectively. Of course this
information is not available for the algorithm to use, but
it is due to the fact that the partitioning for q = 25 and
q = 26 are nested in the partitioning for q = qtrue = 24,
i.e., the extra communities are refinements of the 24 by
splitting without crossing the ideal community boundaries.
Any nodes that are not in the same community in the
ideal partitioning remain in different communities in the
refined partitions. This information can be detected by
the algorithm and used to guide adjustment of q while
revealing a hierarchical structure relevant to discussion of
resolution limits (Fortunato and Barthelemy, 2007) and
alternative cost functions, e.g., the constant Potts model
(Traag et al., 2011).

The algorithms were also tested with multiple nonzero
values of µ. The values of NMI and modularity are shown
in Table 1 where ARPPG uses q = qtrue determined by the
network for each value of µ. All four methods determine
the ground truth community assignments for the networks
with µ ≤ 0.3. For µ = 0.4 and µ = 0.5 three methods
determine the associated ground truths and one comes
very close: GN with NMI = 0.99, AMI = 0.99 and
ARPPG with NMI = 0.99, AMI = 0.99 respectively.
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graph. Given the ground truth, normalized mutual infor-
mation (NMI) (Danon et al., 2005) and adjusted mutual
information (AMI) (Vinh et al., 2010) were used to com-
pare the quality of the communities. The values of NMI
and AMI are in [0, 1] with larger values indicating higher
similarity.

AMI is introduced in addition to NMI to correct the
measures for randomness by specifying a model by which
random partitions are generated. AMI is defined as

AMI(X,Y ) =
I(X,Y )− E{I(X,Y )}

max {H(X), H(Y )}− E{I(X,Y )} ,

where

E{I(X,Y )} =
∑
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N · nuv
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)
×

au!bv!(N − au)!(N − bv)!
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by adopting a hypergeometric model of randomness, where
(au + bv − N)+ denotes max(1, au + bv − N), and au =∑

v nuv and bv =
∑

u nuv.

The synthetic benchmarks have clearly defined ground
truth based on intracommunity connectivity graphs that
are strongly connected but not necessarily completely con-
nected as in our ideal case defined above. The members of
the family of networks are defined by a parameter that
makes the network have an increasingly ill-defined com-
munity structure. As a result, any reasonable algorithm
should detect community structure accurately when it is
well-defined and the discrimination ability of the algorithm
is tested as the definition degrades. Additionally, we must
consider the robustness of the combinatorial algorithms
relative to their runtime choices, e.g., the particular ran-
dom walks used in Infomap or the order and manner
in which one-node moves are considered in the Louvain
method. Similarly, ARPPG and other algorithms based on
optimization over a continuous domain are dependent on
their initial conditions or other strategies to avoid finding
an unacceptable local maximum.

For a network representing real-world relationships there
can be ground truth based on a clear definition of the
entities that define the nodes, empirical observations such
as observed social behavior, or classifications based on
opinions of human observers who may or may not be
experts in a discipline related to the information. As a
result, different cost functions may characterize the desired
ground truth with different levels of accuracy. The use
of the geometry, the sparsity constraint and continuation
is an attempt to improve the robustness and aid in the
selection of parameters such as the number of communities
and the penalty parameter.

4.2 Synthetic Benchmarks

The generalized LFR benchmark graphs (Lancichinetti
and Fortunato, 2009) were used as the synthetic network
benchmarks. These subsume the well-known benchmark
proposed by Girvan and Newman (Girvan and Newman,
2002) and are more challenging for community detection
algorithms. For the LFR benchmarks we used in this

paper, the networks have N = 1000 nodes, the average
node degree is 20, the maximum node degree is 50, the
communities have between 20 and 100 nodes, the exponent
of the degree power law distribution is −2, and the
exponent of the community size power law distribution is
−1. The numbers of communities for the LFR benchmarks
are around 20.

In the construction of the benchmark graphs, the mixing
parameter µ determines the difficulty level to detect com-
munities. Setting µ = 0, gives a graph defining a ground
truth where the communities are strongly connected com-
ponents and there are no edges between the communities.
This is more challenging than the ideal ground truth of
communities that are cliques used to motivate the opti-
mization problem. For any value of µ > 0, the graph also
has an associated ground truth but the mixing causes the
community structure to be less clearly defined.

For the LFR benchmarks we used in this paper, the
networks have N = 1000 nodes, the average node degree is
20, the maximum node degree is 50, the communities have
between 20 and 100 nodes, the exponent of the degree
power law distribution is −2, and the exponent of the
community size power law distribution is −1. The numbers
of communities for the LFR benchmarks are around 20.

Results for the LFR networks: For the LFR benchmark
with µ = 0, as expected and required, all four algorithms
have NMI = 1, the same modularity value and the same
assignment to qtrue = 24 strongly connected communities.
ARPPG requires the desired number of communities as
a parameter value and in this case it was taken as q =
qtrue = 24. The choice of an initial q and the development
of a dynamic adaptation strategy are key ongoing tasks for
ARPPG. There is promising evidence that it is possible.
For µ = 0 and ARPPG run with q = 25 and q = 26,
i.e., near qtrue, the modularity decreases as q increases.
The final values of NMI for q = 25 and q = 26 change
only slightly 0.99 and 0.98 respectively. Of course this
information is not available for the algorithm to use, but
it is due to the fact that the partitioning for q = 25 and
q = 26 are nested in the partitioning for q = qtrue = 24,
i.e., the extra communities are refinements of the 24 by
splitting without crossing the ideal community boundaries.
Any nodes that are not in the same community in the
ideal partitioning remain in different communities in the
refined partitions. This information can be detected by
the algorithm and used to guide adjustment of q while
revealing a hierarchical structure relevant to discussion of
resolution limits (Fortunato and Barthelemy, 2007) and
alternative cost functions, e.g., the constant Potts model
(Traag et al., 2011).

The algorithms were also tested with multiple nonzero
values of µ. The values of NMI and modularity are shown
in Table 1 where ARPPG uses q = qtrue determined by the
network for each value of µ. All four methods determine
the ground truth community assignments for the networks
with µ ≤ 0.3. For µ = 0.4 and µ = 0.5 three methods
determine the associated ground truths and one comes
very close: GN with NMI = 0.99, AMI = 0.99 and
ARPPG with NMI = 0.99, AMI = 0.99 respectively.
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Table 1. Performance on LFR Bechmark Networks

Methods Measurements
The mixing parameter µ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

GN
NMI 1 1 1 0.9972 0.8694 0.6679 0.4932 0.4886
AMI 1 1 1 0.9962 0.7202 0.2539 0.0142 0.0031

Modularity 0.8254 0.7268 0.6283 0.5280 0.3579 0.1230 0.0393 0.0329

Infomap
NMI 1 1 1 1 1 0 0 0
AMI 1 1 1 1 1 0 0 0

Modularity 0.8254 0.7268 0.6283 0.5288 0.4440 0 0 0

Louvain
NMI 1 1 1 1 1 0.9527 0.2192 0.0677
AMI 1 1 1 1 1 0.9107 0.1748 0.0267

Modularity 0.8254 0.7268 0.6283 0.5288 0.4440 0.3390 0.2093 0.1921

ARPPG
NMI 1 1 1 1 0.9935 0.8811 0.3422 0.0967
AMI 1 1 1 1 0.9927 0.8651 0.3014 0.0473

Modularity 0.8254 0.7268 0.6283 0.5288 0.4427 0.3239 0.1712 0.1355

ARPPG using q != qtrue for µ ≤ 0.4 demonstrates trends
like those for µ = 0 upon which a q adaptation strategy
might be built. As q increases from qtrue, NMI, AMI and
modularity decrease at a rate that increases as µ increases.
The partitions are nested, then only slightly not nested
with one or two nodes crossing communities of the ground
truth assignment, and finally with a significant loss of
nesting.

For the noisy cases in Table 1, GN degrades quickly while
ARPPG and the Louvain method degrade more slowly.
Infomap achieves an NMI = 1, AMI = 1 until µ = 0.5
then drops to near 0. The performance of Infomap and the
Louvain method are sensitive to their runtime decisions,
e.g., the Infomap performance here uses the heuristic
available in the publicly distributed code of running the
method multiple times and choosing the “best” result.
ARPPG, on the other hand, with its continuation strategy
and initial condition selection using RNewton was seen to
be remarkably robust even in the noisy situations.

4.3 Real World Networks

Three widely used real-world networks were used to assess
the performance of ARPPG. The first is an American
college football network (Girvan and Newman, 2002), in
which the nodes represent football teams, and an edge
exists between the nodes if there is a match between two
teams. The ground truth community assignment is given
by the membership in the same athletic conference, i.e.,
indisputable observations. The second is Zachary’s karate
club network (Zachary, 1977), which is an undirected so-
cial network of friendship between 34 members of a karate
club at a university. Edges connect individuals who were
observed to interact outside the activities of the karate
club. The ground truth is based on the splitting of the
membership into 2 new disjoint karate clubs. However,
there is a second ground truth based of 4 communities
of 2 disjoint social groups within each of the 2 new clubs.
The 2 community ground truth is defined by indisputable
observation, the 4 community ground truth is based on less
precise social interaction data. The third is the Polbooks
network (Newman, 2006b) of books about US politics
published around the time of the 2004 presidential election
and sold by the online bookseller Amazon.com. Edges
between books represent frequent co-purchasing of books
by the same buyers. The ground truth is determined by the
subjective classification of the books by a non-expert hu-

man observer. Given the difference in the level of certainty
becoming increasingly debatable in these benchmarks, it
is expected that detecting communities should be more
difficult and dependent on cost function selection and
algorithm tuning for each of the three in turn.

Table 2 summarizes the performance on the real-world
networks. Note that overall modularity values for the
community assignments produced are significantly lower
than those for the synthetic networks and the different
assignments produced all have similar modularity values
with significantly different quality as measured by NMI
and AMI. This is most pronounced for the opinion-based
ground truth of the Polbooks network as expected. For the
football network, ARPPG using q = qtrue produces an as-
signment close to the ground truth. Infomap produces the
same 12 community assignment but requires multiple runs,
some of which produce significantly different assignments.
GN and the Louvain method do not get the correct number
of communities despite achieving a value of modularity
close to that from the other algorithms. ARPPG run with
q != qtrue exhibits the same trends on modularity and
nesting discussed for the synthetic networks as desired.

For the karate club network, only ARPPG with q =
qtrue = 2 produces the ground truth with 2 communities.
When ARPPG is run with q != qtrue it exhibits the
desired nesting trends and, in particular, for q = 4 it
produces the second ground truth known for the network.
(The NMI and AMI in the table is not 1 for that case
because it is the 4 community ground truth compared to
the 2 community ground truth.) The Louvain algorithm
produces different 4 community assignments depending
on the order of traversal of the nodes. The 4 community
ground truth is one of them but the one in the table
are not quite the same as is seen from the NMI and
AMI differing from that of ARPPG. Infomap produces
different community assignments with varying numbers of
communities in different runs. The result in the table is the
best one. As expected, the Polbooks network is the most
difficult. Modularity does not predict well the quality of
the assignment measured by NMI and AMI. Even ARPPG
with q = qtrue does not produce an assignment as close
to ground truth as it does for the other two networks.
The fact that modularity does not clearly indicate the
ground truth is also seen in the trends for ARPPG with
q != qtrue. Nesting is not observed and the best modularity
is observed for q = 5 != qtrue = 3.

Table 2. Performance on Real-World Networks (the best performance is in bold), where n is the
number of nodes, m is the number of edges, qtrue is the number of ground truth communities
and numbers in parentheses are the numbers of communities detected. For ARPPG the numbers

in parentheses are also the values used for ARPPG’s parameter q.

Datasets n m qtrue Measurements GN Infomap Louvain ARPPG

Football 115 613 12
NMI 0.879(10) 0.924(12) 0.890(10) 0.924(12) 0.911(13) 0.912(14) 0.882(10)
AMI 0.802(10) 0.898(12) 0.821(10) 0.898(12) 0.861(13) 0.848(14) 0.813(10)

Modularity 0.600(10) 0.601(12) 0.605(10) 0.601(12) 0.581(13) 0.566(14) 0.596(10)

Karate 34 78 2
NMI 0.580(5) 0.700(3) 0.587(4) 1.000(2) 0.811(3) 0.687(4) 0.542(5)
AMI 0.402(5) 0.579(3) 0.425(4) 1.000(2) 0.672(3) 0.505(4) 0.364(5)

Modularity 0.401(5) 0.402(3) 0.419(4) 0.372(2) 0.373(3) 0.420(4) 0.382(5)

Polbooks 105 441 3
NMI 0.559(5) 0.494(6) 0.537(5) 0.565(3) 0.503(4) 0.465(5) 0.439(6)
AMI 0.488(5) 0.390(6) 0.458(5) 0.535(3) 0.424(4) 0.362(5) 0.323(6)

Modularity 0.517(5) 0.523(6) 0.527(5) 0.508(3) 0.504(4) 0.510(5) 0.505(6)

5. CONCLUSION

This paper proposes a new Riemannian projected proximal
gradient method applied to modularity with a convex
nonsmooth sparsity penalty term for community detec-
tion. Numerical results show that ARPPG is competitive
with state-of-the-art algorithms in terms of quality of as-
signment and robustness. Observations of performance as
algorithm parameters vary provide leading evidence that a
parameter adaptation strategy and an efficient implemen-
tation are feasible.
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5. CONCLUSION

This paper proposes a new Riemannian projected proximal
gradient method applied to modularity with a convex
nonsmooth sparsity penalty term for community detec-
tion. Numerical results show that ARPPG is competitive
with state-of-the-art algorithms in terms of quality of as-
signment and robustness. Observations of performance as
algorithm parameters vary provide leading evidence that a
parameter adaptation strategy and an efficient implemen-
tation are feasible.
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