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ABSTRACT

While self-attention mechanism has shown promising results

for many vision tasks, it only considers the current fea-

tures at a time. We show that such a manner cannot take

full advantage of the attention mechanism. In this paper,

we present Deep Connected Attention Network (DCANet),

a novel design that boosts attention modules in a CNN

model without any modification of the internal structure.

To achieve this, we interconnect adjacent attention blocks,

making information flow among attention blocks possible.

With DCANet, all attention blocks in a CNN model are

trained jointly, which improves the ability of attention learn-

ing. Our DCANet is generic. It is not limited to a spe-

cific attention module or base network architecture. Exper-

imental results on ImageNet and MS COCO benchmarks

show that DCANet consistently outperforms the state-of-the-

art attention modules with a minimal additional computa-

tional overhead in all test cases. The code is available at:

https://github.com/13952522076/DCANet .

Index Terms— Convolutional neural network, self-

attention mechanism, computer vision

1. INTRODUCTION

In the last few years, we have witnessed a flourish of self-

attention mechanism in the vision community. As a com-

mon practice in self-attention design, the attention modules

are integrated sequentially with each block in a base CNN

architecture, in pursuit of an easy and efficient implementa-

tion. Benefiting from the inherent philosophy and this simple

design, self-attention mechanism performs well in a diverse

range of visual tasks. In spite of the improvement achieved

by the existing designs, a question we ask is: do we take full

advantage of self-attention mechanism? We can address this

question from two aspects: human visual attention system and

empirical insights from SENet [1].

Previous studies in the literature provided deep insights

into the human visual attention system. In [3], experimental

results indicate that two stimuli present at the same time in

the human cortex are not processed independently. Instead
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Fig. 1: Illustration of our DCANet. Top and middle lines: we

visualize the class activation maps [2]. Vanilla SE-ResNet50

varies its focus dramatically at different stages. In contrast,

our DCA enhanced SE-ResNet50 progressively and recur-

sively adjusts focus, and closely pays attention to the target

object. Bottom line: Corresponding histogram of SE atten-

tion values. Clearly, the values of SE are concentrated around

0.5, resulting in little discrimination. With DCANet, the dis-

tribution becomes relatively uniform.

they interact with each other. Moreover, research in physiol-

ogy discovers that human visual representations in the cortex

are activated in a parallel fashion, and the cells participating

in these representations are engaged by interacting with each

other [4]. These works show the important interaction among

attention units. However, this critical property of human vi-

sual attention has not been considered in the existing designs

of self-attention modules. Existing attention networks only

include an attention block following a convolutional block,

which makes the attention block only learn from current fea-

ture maps without sharing information with others. As a re-

sult, the independent attention blocks cannot effectively de-

cide what to pay attention to.

Additionally, we study self-attention using SENet [1]

which is a simple module that investigates the channel rela-

tionships. We visualize the intermediate attention maps as

shown in Fig. 1 (top line) at each stage in SE-ResNet50 [5].

Interestingly, we observe that SE block can hardly adjust the
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attention to the key regions, and it even changes focus dra-

matically at different stages. We plot a histogram of SE’s

attention value for each block, as shown in Fig. 1 (bottom

line). We find that SE’s values cluster around 0.5, showing

an insufficient learning ability of the attention modules. A

reasonable explanation is that a lack of extra information in

learning from self-attention affects its discrimination ability.

This in turn motivates us to connect attention blocks.

Both human visual attention and our study of SENet show

an insufficient exploitation of self-attention, and a new design

that allows attention blocks to cooperate with each other is de-

sirable. In this paper, we present a Deep Connected Attention

network (DCANet) to address the problem. DCANet gathers

information from precedent attention and transmits it to the

next attention block, making attention blocks cooperate with

each other, which improves attention’s learning ability.

DCANet is conceptually simple and generic and empir-

ically powerful. We apply DCANet to multiple state-of-

the-art attention modules and a number of base CNN archi-

tectures to evaluate its performance for visual tasks. With-

out bells and whistles, the DCA-enhanced networks out-

perform all of the original counterparts. For ImageNet

2012 classification [6], DCA-SE-MobileNetV2 outperforms

SE-MobileNetV2 by 1.19%, with negligible parameters and

FLOPs increase. We also employ the DCA-enhanced at-

tention network as a backbone for object detection on the

MS COCO dataset [7]. Experimental results show that the

DCANet-enhanced attention networks outperform the vanilla

networks with different detectors.

2. RELATED WORK

Self-attention mechanisms. Self-attention mechanism ex-

plores the interdependence within the input features for a bet-

ter representation. To the best of our knowledge, applying

self-attention to explore global dependencies was first pro-

posed in [8] for machine translation. More recently, self-

attention has gathered much more momentum in the field of

computer vision. SENet [1] leverages self-attention to inves-

tigate channel interdependencies. For global context infor-

mation, NLNet [9] and GCNet [10] introduce self-attention

to capture long-range dependencies in non-local operations.

CBAM [11] considers both channel-wise and spatial atten-

tions. Beyond channel and spatial dependencies, SKNet [12]

applies self-attention to kernel size selection.

Residual connections. By introducing a shortcut connection,

neural networks are decomposed into biased and centered

subnets to accelerate gradient descent. ResNet [5, 13] adds an

identity mapping to connect the input and output of each con-

volutional block, which drastically alleviates the degradation

problem [5] and opens up the possibility for deep convolu-

tional neural networks. Instead of connecting adjacent convo-

lutional blocks, DenseNet [14] connects each block to every

other block in a feed-forward fashion. Despite the fact that

residual connections have been well studied for base network

architectures, they are still fairly new when it comes to inte-

gration with attention mechanisms. For example, RANet [15]

utilizes residual connections in attention block. In contrast to

leveraging residual connection in attention blocks, we explore

residual connections between attention blocks.

Connected Attention. Recently, there has been a growing in-

terest for building connections in attention blocks. In [16], a

new network structure named RA-CNN is proposed for fine-

grained image recognition; RA-CNN recurrently generates

attention region based on current prediction to learn the most

discriminative region. By doing so, RA-CNN obtains an at-

tention region from coarse to fine. In GANet [17], the top

attention maps generated by customized background atten-

tion blocks are up-sampled and sent to bottom background

attention blocks to guide attention learning. Different from

the recurrent and feed-backward methods, our DCA module

enhances attention blocks in a feed-forward fashion, which is

more computation-friendly and easier to implement.

3. DEEP CONNECTED ATTENTION

By analyzing the inner structure of various attention blocks,

we design a generic connection scheme that is not confined to

any particular attention block. Fig. 2 illustrates the pipeline.

3.1. Revisiting Self-Attention Blocks

As a common practice, we boost the base CNN architecture

by adding extra attention blocks laterally. However, different

attention blocks are tailored for different purposes, their im-

plementations are also diverse. For instance, SE block com-

poses of two fully-connected layers, while GC block includes

several convolutional layers. Therefore, it is not easy to di-

rectly provide a standard connection schema that is generic

enough to cover most attention blocks. To tackle this prob-

lem, we study the state-of-the-art attention blocks and sum-

marize their processing and components.

Inspired by recent works [10, 9] that formulate attention

modules and their components, we study various attention

modules and develop a generalized attention framework, in

which an attention block consists of three components: con-

text extraction, transformation, and fusion. These compo-

nents are generic and not confined to a particular attention

block. Figure 3 exemplifies four well-known attention blocks

and their modeling by using the three components.

Extraction is designed for gathering feature information

from a feature map. For a given feature map X ∈ R
C×W×H

produced by a convolutional block, we extract features from

X by an extractor g: G = g (X, wg), where wg is the parame-

ter for the extraction operation and G is the output. When g is

a parameter-free operation, wg is not needed (like pooling op-

erations). The flexibility of g makes G take different shapes

depending on the extraction operation. For instance, SENet
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Fig. 2: An overview of our Deep Connected Attention Network. We connect the output of transformation module in the

previous attention block to the output of extraction module in the current attention block. In the context of multiple attention

dimensions, we connect attentions along each dimension. Here we show an example with two attention dimensions.
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Fig. 3: We model an attention block by three components:

Feature extraction, Transformation and Fusion. “⊕” denotes

element-wise summation, “⊗” represents element-wise mul-

tiplication, and “⊙” performs matrix multiplication.

and GCNet gather feature map X as a vector (G ∈ R
C) while

the spatial attention module in CBAM gathers feature map to

a tensor (G ∈ R
2×W×H ).

Transformation processes the gathered features from extrac-

tion and transforms them into a non-linear attention space.

Formally, we define t as a feature transformation, and the out-

put of an attention block can be expressed as T = t (G, wt).
Here wt denotes the parameters used in the transform opera-

tion, and T is the output of the extraction module.

Fusion integrates the attention map with the output of the

original convolutional block. An attention guided output X′

can be presented as X′

i = Ti ⊛Xi, where i is the index in a

feature map and “⊛” denotes a fusion function; “⊛” performs

element-wise multiplication when the design is scaled dot-

product attention [12, 1, 11], and summation otherwise [10].

3.2. Attention Connection

We present a generalized attention connection schema by us-

ing the preceding attention components. Regardless of the

implementation details, an attention block can be modeled as:

X
′ = t (g (X, wg) , wt)⊛X. (1)

As explained in the previous section, the attention maps

generated by the transformation component is crucial for at-

tention learning. To construct connected attention, we feed

the previous attention map to the current transformation com-

ponent, which merges previous transformation output and the

current extraction output. This connection design ensures

the current transformation module learns from both ex-

tracted features and previous attention information. The

resulting attention block can be described as:

X
′ = t

(

f
(

αG, βT̃
)

, wt

)

⊛X, (2)

where f (·) denotes the connection function, α and β are

learnable parameters, and T̃ is the attention map generated

by the previous attention block. In some cases (e.g., SE block

and GE block), T̃ is scaled to the range of (0, 1). For those at-

tention blocks, we multiply T̃ by Ẽ to match the scale, where

Ẽ is the output of the Extraction component in the previous at-

tention block. We also note that if α is set to 1 and β is set to 0,

the attention connections are not used and the DCA enhanced

attention block is reduced to the vanilla attention block. That

is the vanilla network is a special case of our DCA enhanced

attention network. Next, we present two schemas that instan-

tiate the connection function f (·).

Direct Connection. We instantiate f (·) by adding the two

terms directly. The connection function can be presented as:

f
(

αGi, βT̃i

)

= αGi + βT̃i, where i is the index of a fea-

ture. T̃ can be considered as an enhancement of G.

Weighted Connection. Direct connection can be augmented

by using weighted summation. To avoid introducing extra pa-

rameters, we calculate weights using αG and βT̃. The con-

nection function is represented as f
(

αGi, βT̃i

)

=
|αGi|

2

αGi+βT̃i

+

|βT̃i|
2

αGi+βT̃i

. Compared to the direct connection, the weighted

connection introduces a competition between αG and βT̃.

Besides, it can be easily extended to a softmax form, which is

more robust and less sensitive to trivial features. By default,

we use a direct connection in our method.
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Table 1: Single-crop classification accuracy (%) on the ImageNet validation set. The best performances are marked as bold.

“-” means no experiments since our DCA is designed for attention blocks, which are not existent in base networks.

Re-implementation DCANet

Top-1 Top-5 GFLOPs Params Top-1 Top-5 GFLOPs Params

MoibleNetV2 [18] 71.03 90.07 0.32 3.50M - - - -

+ SE [1] 72.05 90.58 0.32 3.56M 73.24 91.14 0.32 3.65M

+ SK [12] 74.05 91.85 0.35 5.28M 74.45 91.85 0.36 5.91M

+ GEθ− [19] 72.28 90.91 0.32 3.50M 72.47 90.68 0.32 3.59M

+ CBAM [11] 71.91 90.51 0.32 3.57M 73.04 91.18 0.34 3.65M

Mnas1 0 [20] 71.72 90.32 0.33 4.38M - - - -

+ SE [1] 69.69 89.12 0.33 4.42M 71.76 90.40 0.33 4.48M

+ GEθ− [19] 72.72 90.87 0.33 4.38M 72.82 91.18 0.33 4.48M

+ CBAM [11] 69.13 88.92 0.33 4.42M 71.00 89.78 0.33 4.56M

ResNet50 [5] 75.90 92.72 4.12 25.56M - - - -

+ SE [1] 77.29 93.65 4.13 28.09M 77.55 93.77 4.13 28.65M

+ SK [12] 77.79 93.76 5.98 37.12M 77.94 93.90 5.98 37.48M

+ GEθ− [19] 76.24 92.98 4.13 25.56M 76.75 93.36 4.13 26.12M

+ CBAM [11] 77.28 93.60 4.14 28.09M 77.83 93.72 4.14 30.90M

3.3. Size Matching

Feature maps produced at different stages in a CNN model

may have different sizes. We match the shape of attention

maps along the channel and spatial dimensions adaptively.

For the channel, we match sizes using a fully-connected layer

to convert C ′ channels to C channels, where C ′ and C refer

to the number of previous and current channels, respectively.

To further reduce the number of parameters in attention con-

nections, we re-formulate the direct fully-connected layer by

two lightweight fully-connected layers; the output sizes are

C/r and C, respectively, where r is reduction ratio. In all our

experiments, we use two fully-connected layers with r = 16
to match channel size, unless otherwise stated. To match the

spatial resolutions, a simple yet effective strategy is to adopt

an average-pooling layer. We set stride and receptive field

size to the scale of resolution reduction.

3.4. Multi-dimensional attention connection

We note that some attention blocks focus on more than one

attention dimension, like CBAM [11]. Inspired by Mo-

bileNet [21], we design attention connections for one atten-

tion dimension at a time. To build a multi-dimensional at-

tention block, we connect attention maps along with each di-

mension and assure connections in different dimensions are

independent of one another (as shown in Fig. 2). This de-

coupling of attention connections brings two advantages: 1)

it reduces the number of parameters and computational over-

head; 2) each dimension can focus on its intrinsic property.

4. EXPERIMENTS

We evaluate DCANet for image recognition and object de-

tection. Experimental results on ImageNet [6] and MS-

COCO [7] benchmarks demonstrate the effectiveness.

4.1. Classification on ImageNet

We apply our DCANet to a number of state-of-the-art at-

tention blocks, including SE [1], SK [12], GE [19], and

CBAM [11]. We train all models on the ImageNet 2012 train-

ing set and measure the single-crop (224 × 224 pixels) top-1

and top-5 accuracy on the validation set. We train models

for 100 epochs on 8 Tesla V100 GPUs with 32 images per

GPU (the batch size is 256). All models are trained using syn-

chronous SGD with Nesterov momentum of 0.9 and a weight

decay of 0.0001. The learning rate is set to 0.1 initially and

lowered by a factor of 10 every 30 epochs. For lightweight

models like MnasNet and MobileNetV2, we take cosine de-

cay method [22] to adjust the learning rate and train the mod-

els for 150 epochs with 64 images per GPU.

Table 1 presents the results on the validation set. We ob-

served that integrating the DCA module improves the classi-

fication accuracy in all cases when compared to the vanilla

attention models. Of note is that we are comparing with

corresponding attention networks, which is stronger than the

base networks. Among the tested networks, DCA-CBAM-

ResNet50 improves the top-1 accuracy by 0.51% com-

pared with CBAM-ResNet50, and DCA-SE-MobileNetV2

improves the top-1 accuracy by 1.19% compared with SE-

MobileNetV2, but the computation overhead is comparable.

4.2. Ablation Evaluation

Connection Schema. As shown in Table 2a, all three connec-

tion schemas outperform vanilla SE-ResNet50. This indicates

the improvements come from the connections between atten-

tion blocks, rather than particular connection schema. Be-

sides, only minimal differences are observed in the top-1 and
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Table 2: Ablation studies on the ImageNet 2012 validation set.

(a) DCA connection schemas.

Model Top-1 Top-5 GFLOPs Params

SE 77.29 93.65 4.13 28.09M

+Direct 77.55 93.77 4.13 28.65M

+Softmax 77.52 93.71 4.13 28.65M

+Weighted 77.49 93.69 4.13 28.65M

(b) Multiple Attention dimensions.

Model Top-1 Top-5 GFLOPs Params

CBAM 77.28 93.60 4.14 28.09M

+DCA-C 77.79 93.71 4.14 30.90M

+DCA-S 77.58 93.80 4.14 28.09M

+DCA-All 77.83 93.72 4.14 30.90M

(c) Spatial size matching.

Model Top-1 Top-5 GFLOPs Params

CBAM 77.28 93.60 4.14 28.09M

Max Pooling 77.43 93.77 4.14 28.09M

Avg Pooling 77.58 93.80 4.14 28.09M

(d) Channel matching based on SE-ResNet50.

Model Top-1 Top-5 GFLOPs Params

SE 77.29 93.66 4.13 28.09M

1 FC 77.64 93.74 4.13 30.90M

2 FC (r=16) 77.55 93.77 4.13 28.65M

2 FC (r=8) 77.50 93.72 4.13 29.87M

2 FC (r=4) 77.42 93.75 4.13 32.31M

top-5 accuracy of these three connection schemas (77.55%

vs. 77.52% vs. 77.49%). By default we use direct connection

which eases the implementation compared to others.

Size matching. For matching the number of channels, we

use SE-ResNet50 for illustration due to its pure concerns on

channel dependencies. Table 2d presents the results. Directly

applying one FC layer can achieve the best top-1 accuracy,

while, on the other hand, setting reduction rate r to 16 in two

FC layers can reduce the number of parameters and achieve

a comparable result. For spatial resolution, we adopt average

pooling to reduce the resolution. We also compare with max

pooling and present the results in Table 2c. The performance

of max pooling is slightly inferior compared to the perfor-

mance of average pooling, indicating that all attention infor-

mation should be passed to the succeeding attention blocks.

Multiple Attention dimensions. For illustration, we use

CBAM-ResNet50 as a baseline. We use DCA-C/DCA-S to

present applying DCANet on channel/spatial attention, and

DCA-All indicates we apply DCA module on both attention

dimensions for CBAM-ResNet50. Table 2b shows the results

of DCANet applied on two dimensions. From the table, we

notice that applying DCANet on either dimension will cer-

tainly improve the accuracy. When enhancing both attention

dimensions, we achieve a 0.54% improvement. When we

work on spatial and channel dimensions separately, the im-

provement is 0.51% and 0.29%, respectively.

4.3. Object Detection on MS COCO

We further evaluate the performance of DCANet for object

detection. We measure the average precision of bounding

box detection on the challenging COCO 2017 dataset [7]. We

adopt the settings used in [23] and train all models with a total

of 16 images per mini-batch (2 images per GPU). We employ

two state-of-the-art detectors: RetinaNet [23] and Cascade R-

CNN [24] as the detectors, with SE-ResNet50, GC-ResNet50

and their DCANet variants as the corresponding backbone

respectively. All backbones are pre-trained using ImageNet

and are directly taken from Table 1. The detection models

are trained for 24 epochs using synchronized SGD with a

weight decay of 0.0001 and a momentum of 0.9. The results

are reported in Table 3. Although DCANet introduces almost

no additional calculations, we observe that DCANet achieves

the best performance for all IoU threshold values and most

object scales (DCA-SE-ResNet50 obtains +1.5% AP50:95 on

ResNet50 and +0.3% AP50:95 on SE-ResNet50 in RetinaNet;

DCA-GC-ResNet50 obtains +0.8% AP50:95 on ResNet50 and

0.3% AP50:95 on GC-ResNet50 in Cascade R-CNN).

5. CONCLUSION

In this paper, we aim to address a critical issue, that is the

capacity of self-attention mechanism is not fully exploited.

To achieve a higher utilization, we present Deep Connection

Attention Network, which adaptively propagates information

among attention blocks via attention connections. We have

demonstrated that DCANet consistently improves various at-

tention designs and base CNN architectures on the ImageNet

benchmark with a minimal computational overhead. More-

over, experimental results on the MS-COCO dataset show that

DCANet generalizes well for other vision tasks, such as ob-

ject detection. The novel design and feed-forward approach

make DCANet easy to be integrated with various attention

designs using the mainstream frameworks.
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Table 3: Detection performances (%) with different backbones on the MS-COCO validation dataset.

Detector Backbone AP50:95 AP50 AP75 APS APM APL

ResNet50 36.2 55.9 38.5 19.4 39.8 48.3

RetinaNet [23] + SE 37.4 57.8 39.8 20.6 40.8 50.3

+ DCA-SE 37.7 58.2 40.1 20.8 40.9 50.4

ResNet50 40.6 58.9 44.2 22.4 43.7 54.7

Cascade R-CNN [24] + GC 41.1 59.7 44.6 23.6 44.1 54.3

+ DCA-GC 41.4 60.2 44.7 22.8 45.0 54.2
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