2021 IEEE International Conference on Multimedia and Expo (ICME) | 978-1-6654-3864-3/20/$31.00 ©2021 IEEE | DOI: 10.1109/ICME51207.2021.9428397

LEARNING CONNECTED ATTENTIONS FOR CONVOLUTIONAL NEURAL NETWORKS

Xu Ma', Jingda Guo', Sihai Tang', Zhinan Qiao", Qi Chen', Qing Yang', Song Fu',
Paparao Palacharla®, Nannan Wang?, Xi Wang*

'University of North Texas, 2Fujitsu Network Communications
{xuma, jingdaguo, sihaitang, zhinangiao, gqichen} @my.unt.edu; {qing.yang, Song.Fu} @unt.edu;
{Paparao.Palacharla, Nannan.Wang, Xi.Wang} @fujitsu.com

ABSTRACT

While self-attention mechanism has shown promising results
for many vision tasks, it only considers the current fea-
tures at a time. We show that such a manner cannot take
full advantage of the attention mechanism. In this paper,
we present Deep Connected Attention Network (DCANet),
a novel design that boosts attention modules in a CNN
model without any modification of the internal structure.
To achieve this, we interconnect adjacent attention blocks,
making information flow among attention blocks possible.
With DCANet, all attention blocks in a CNN model are
trained jointly, which improves the ability of attention learn-
ing. Our DCANet is generic. It is not limited to a spe-
cific attention module or base network architecture. Exper-
imental results on ImageNet and MS COCO benchmarks
show that DCANet consistently outperforms the state-of-the-
art attention modules with a minimal additional computa-
tional overhead in all test cases. The code is available at:
https://github.com/13952522076/DCANet .

Index Terms— Convolutional neural network, self-
attention mechanism, computer vision

1. INTRODUCTION

In the last few years, we have witnessed a flourish of self-
attention mechanism in the vision community. As a com-
mon practice in self-attention design, the attention modules
are integrated sequentially with each block in a base CNN
architecture, in pursuit of an easy and efficient implementa-
tion. Benefiting from the inherent philosophy and this simple
design, self-attention mechanism performs well in a diverse
range of visual tasks. In spite of the improvement achieved
by the existing designs, a question we ask is: do we take full
advantage of self-attention mechanism? We can address this
question from two aspects: human visual attention system and
empirical insights from SENet [1].

Previous studies in the literature provided deep insights
into the human visual attention system. In [3], experimental
results indicate that two stimuli present at the same time in
the human cortex are not processed independently. Instead
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Fig. 1: Illustration of our DCANet. Top and middle lines: we
visualize the class activation maps [2]. Vanilla SE-ResNet50
varies its focus dramatically at different stages. In contrast,
our DCA enhanced SE-ResNet50 progressively and recur-
sively adjusts focus, and closely pays attention to the target
object. Bottom line: Corresponding histogram of SE atten-
tion values. Clearly, the values of SE are concentrated around
0.5, resulting in little discrimination. With DCANet, the dis-
tribution becomes relatively uniform.

they interact with each other. Moreover, research in physiol-
ogy discovers that human visual representations in the cortex
are activated in a parallel fashion, and the cells participating
in these representations are engaged by interacting with each
other [4]. These works show the important interaction among
attention units. However, this critical property of human vi-
sual attention has not been considered in the existing designs
of self-attention modules. Existing attention networks only
include an attention block following a convolutional block,
which makes the attention block only learn from current fea-
ture maps without sharing information with others. As a re-
sult, the independent attention blocks cannot effectively de-
cide what to pay attention to.

Additionally, we study self-attention using SENet [1]
which is a simple module that investigates the channel rela-
tionships. We visualize the intermediate attention maps as
shown in Fig. 1 (top line) at each stage in SE-ResNet50 [5].
Interestingly, we observe that SE block can hardly adjust the
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attention to the key regions, and it even changes focus dra-
matically at different stages. We plot a histogram of SE’s
attention value for each block, as shown in Fig. 1 (bottom
line). We find that SE’s values cluster around 0.5, showing
an insufficient learning ability of the attention modules. A
reasonable explanation is that a lack of extra information in
learning from self-attention affects its discrimination ability.
This in turn motivates us to connect attention blocks.

Both human visual attention and our study of SENet show
an insufficient exploitation of self-attention, and a new design
that allows attention blocks to cooperate with each other is de-
sirable. In this paper, we present a Deep Connected Attention
network (DCANet) to address the problem. DCANet gathers
information from precedent attention and transmits it to the
next attention block, making attention blocks cooperate with
each other, which improves attention’s learning ability.

DCANet is conceptually simple and generic and empir-
ically powerful. We apply DCANet to multiple state-of-
the-art attention modules and a number of base CNN archi-
tectures to evaluate its performance for visual tasks. With-
out bells and whistles, the DCA-enhanced networks out-
perform all of the original counterparts. For ImageNet
2012 classification [6], DCA-SE-MobileNetV2 outperforms
SE-MobileNetV2 by 1.19%, with negligible parameters and
FLOPs increase. We also employ the DCA-enhanced at-
tention network as a backbone for object detection on the
MS COCO dataset [7]. Experimental results show that the
DCANet-enhanced attention networks outperform the vanilla
networks with different detectors.

2. RELATED WORK

Self-attention mechanisms. Self-attention mechanism ex-
plores the interdependence within the input features for a bet-
ter representation. To the best of our knowledge, applying
self-attention to explore global dependencies was first pro-
posed in [8] for machine translation. More recently, self-
attention has gathered much more momentum in the field of
computer vision. SENet [1] leverages self-attention to inves-
tigate channel interdependencies. For global context infor-
mation, NLNet [9] and GCNet [10] introduce self-attention
to capture long-range dependencies in non-local operations.
CBAM [11] considers both channel-wise and spatial atten-
tions. Beyond channel and spatial dependencies, SKNet [12]
applies self-attention to kernel size selection.

Residual connections. By introducing a shortcut connection,
neural networks are decomposed into biased and centered
subnets to accelerate gradient descent. ResNet [5, 13] adds an
identity mapping to connect the input and output of each con-
volutional block, which drastically alleviates the degradation
problem [5] and opens up the possibility for deep convolu-
tional neural networks. Instead of connecting adjacent convo-
lutional blocks, DenseNet [14] connects each block to every
other block in a feed-forward fashion. Despite the fact that

residual connections have been well studied for base network
architectures, they are still fairly new when it comes to inte-
gration with attention mechanisms. For example, RANet [15]
utilizes residual connections in attention block. In contrast to
leveraging residual connection in attention blocks, we explore
residual connections between attention blocks.

Connected Attention. Recently, there has been a growing in-
terest for building connections in attention blocks. In [16], a
new network structure named RA-CNN is proposed for fine-
grained image recognition; RA-CNN recurrently generates
attention region based on current prediction to learn the most
discriminative region. By doing so, RA-CNN obtains an at-
tention region from coarse to fine. In GANet [17], the top
attention maps generated by customized background atten-
tion blocks are up-sampled and sent to bottom background
attention blocks to guide attention learning. Different from
the recurrent and feed-backward methods, our DCA module
enhances attention blocks in a feed-forward fashion, which is
more computation-friendly and easier to implement.

3. DEEP CONNECTED ATTENTION

By analyzing the inner structure of various attention blocks,
we design a generic connection scheme that is not confined to
any particular attention block. Fig. 2 illustrates the pipeline.

3.1. Revisiting Self-Attention Blocks

As a common practice, we boost the base CNN architecture
by adding extra attention blocks laterally. However, different
attention blocks are tailored for different purposes, their im-
plementations are also diverse. For instance, SE block com-
poses of two fully-connected layers, while GC block includes
several convolutional layers. Therefore, it is not easy to di-
rectly provide a standard connection schema that is generic
enough to cover most attention blocks. To tackle this prob-
lem, we study the state-of-the-art attention blocks and sum-
marize their processing and components.

Inspired by recent works [10, 9] that formulate attention
modules and their components, we study various attention
modules and develop a generalized attention framework, in
which an attention block consists of three components: con-
text extraction, transformation, and fusion. These compo-
nents are generic and not confined to a particular attention
block. Figure 3 exemplifies four well-known attention blocks
and their modeling by using the three components.
Extraction is designed for gathering feature information
from a feature map. For a given feature map X € RC>*WxH
produced by a convolutional block, we extract features from
X by an extractor g: G = g (X, wy), where w, is the parame-
ter for the extraction operation and G is the output. When g is
a parameter-free operation, w, is not needed (like pooling op-
erations). The flexibility of g makes G take different shapes
depending on the extraction operation. For instance, SENet
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Fig. 3: We model an attention block by three components:
Feature extraction, Transformation and Fusion. “@” denotes
element-wise summation, “®” represents element-wise mul-
tiplication, and “®” performs matrix multiplication.

and GCNet gather feature map X as a vector (G € R®) while
the spatial attention module in CBAM gathers feature map to
atensor (G € R2XWxH),

Transformation processes the gathered features from extrac-
tion and transforms them into a non-linear attention space.
Formally, we define ¢ as a feature transformation, and the out-
put of an attention block can be expressed as T = ¢ (G, wy).
Here w; denotes the parameters used in the transform opera-
tion, and T is the output of the extraction module.

Fusion integrates the attention map with the output of the
original convolutional block. An attention guided output X’
can be presented as X'; = T; ® X, where i is the index in a
feature map and “®” denotes a fusion function; “®” performs
element-wise multiplication when the design is scaled dot-
product attention [12, 1, 11], and summation otherwise [10].

3.2. Attention Connection

We present a generalized attention connection schema by us-
ing the preceding attention components. Regardless of the
implementation details, an attention block can be modeled as:

X' =1t(g9(X,wy),w) ®X. (1)

As explained in the previous section, the attention maps
generated by the transformation component is crucial for at-

tention learning. To construct connected attention, we feed
the previous attention map to the current transformation com-
ponent, which merges previous transformation output and the
current extraction output. This connection design ensures
the current transformation module learns from both ex-
tracted features and previous attention information. The
resulting attention block can be described as:

X' —¢ (f (aG,BT) ,wt) ® X, )

where f (-) denotes the connection function, o and /3 are
learnable parameters, and T is the attention map generated
by the previous attention block. In some cases (e.g., SE block
and GE block), T is scaled to the range of (0, 1). For those at-
tention blocks, we multiply T by E to match the scale, where
E is the output of the Extraction component in the previous at-
tention block. We also note that if cvis setto 1 and [ is setto 0,
the attention connections are not used and the DCA enhanced
attention block is reduced to the vanilla attention block. That
is the vanilla network is a special case of our DCA enhanced
attention network. Next, we present two schemas that instan-
tiate the connection function f (-).

Direct Connection. We instantiate f (-) by adding the two
terms directly. The connection function can be presented as:

f (aGi, b”i‘l) =aG; + B’i‘i, where 7 is the index of a fea-
ture. T can be considered as an enhancement of G.
Weighted Connection. Direct connection can be augmented

by using weighted summation. To avoid introducing extra pa-
rameters, we calculate weights using G and 8T. The con-

. . . ) ~ ) o |OCG1 ‘2
nection function is represented as f (aGZ, 5TZ) = qG, a1, T
T, |2 . ) .
%. Compared to the direct connection, the weighted

connection introduces a competition between oG and BT.
Besides, it can be easily extended to a softmax form, which is
more robust and less sensitive to trivial features. By default,
we use a direct connection in our method.
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Table 1: Single-crop classification accuracy (%) on the ImageNet validation set. The best performances are marked as bold.
means no experiments since our DCA is designed for attention blocks, which are not existent in base networks.

[T3R2]

Re-implementation DCANet

Top-1 Top-5 GFLOPs Params Top-1 Top-5 GFLOPs Params

MoibleNetV2 [18]  71.03 90.07 0.32 3.50M - - - -
+SE [1] 72.05 90.58 0.32 3.56M 73.24 91.14 0.32 3.65M
+ SK [12] 74.05 91.85 0.35 5.28M 74.45 91.85 0.36 591M
+ GEf#~ [19] 72.28 90.91 0.32 3.50M 72.47 90.68 0.32 3.59M
+ CBAM [11] 71.91 90.51 0.32 3.57TM 73.04 91.18 0.34 3.65M

Mnas1.0 [20] 71.72 90.32 0.33 4.38M - - - -
+SE [1] 69.69 89.12 0.33 4.42M 71.76 90.40 0.33 4.48M
+ GE6™ [19] 72.72 90.87 0.33 4.38M 72.82 91.18 0.33 4.48M
+ CBAM [11] 69.13 88.92 0.33 4.42M 71.00 89.78 0.33 4.56M

ResNet50 [5] 75.90 92.72 4.12 25.56M - - - -
+SE [1] 77.29 93.65 4.13 28.09M 77.55 93.77 4.13 28.65M
+ SK [12] 77.79 93.76 5.98 37.12M 77.94 93.90 5.98 37.48M
+ GEfO™ [19] 76.24 92.98 4.13 25.56M 76.75 93.36 4.13 26.12M
+ CBAM [11] 77.28 93.60 4.14 28.09M 77.83 93.72 4.14 30.90M

3.3. Size Matching

Feature maps produced at different stages in a CNN model
may have different sizes. We match the shape of attention
maps along the channel and spatial dimensions adaptively.
For the channel, we match sizes using a fully-connected layer
to convert C’ channels to C' channels, where C’ and C refer
to the number of previous and current channels, respectively.
To further reduce the number of parameters in attention con-
nections, we re-formulate the direct fully-connected layer by
two lightweight fully-connected layers; the output sizes are
C'/r and C, respectively, where r is reduction ratio. In all our
experiments, we use two fully-connected layers with r = 16
to match channel size, unless otherwise stated. To match the
spatial resolutions, a simple yet effective strategy is to adopt
an average-pooling layer. We set stride and receptive field
size to the scale of resolution reduction.

3.4. Multi-dimensional attention connection

We note that some attention blocks focus on more than one
attention dimension, like CBAM [11]. Inspired by Mo-
bileNet [21], we design attention connections for one atten-
tion dimension at a time. To build a multi-dimensional at-
tention block, we connect attention maps along with each di-
mension and assure connections in different dimensions are
independent of one another (as shown in Fig. 2). This de-
coupling of attention connections brings two advantages: 1)
it reduces the number of parameters and computational over-
head; 2) each dimension can focus on its intrinsic property.

4. EXPERIMENTS

We evaluate DCANet for image recognition and object de-
tection. Experimental results on ImageNet [6] and MS-

COCO [7] benchmarks demonstrate the effectiveness.

4.1. Classification on ImageNet

We apply our DCANet to a number of state-of-the-art at-
tention blocks, including SE [1], SK [12], GE [19], and
CBAM [11]. We train all models on the ImageNet 2012 train-
ing set and measure the single-crop (224 x 224 pixels) top-1
and top-5 accuracy on the validation set. We train models
for 100 epochs on 8 Tesla V100 GPUs with 32 images per
GPU (the batch size is 256). All models are trained using syn-
chronous SGD with Nesterov momentum of 0.9 and a weight
decay of 0.0001. The learning rate is set to 0.1 initially and
lowered by a factor of 10 every 30 epochs. For lightweight
models like MnasNet and MobileNetV2, we take cosine de-
cay method [22] to adjust the learning rate and train the mod-
els for 150 epochs with 64 images per GPU.

Table 1 presents the results on the validation set. We ob-
served that integrating the DCA module improves the classi-
fication accuracy in all cases when compared to the vanilla
attention models. Of note is that we are comparing with
corresponding attention networks, which is stronger than the
base networks. Among the tested networks, DCA-CBAM-
ResNet50 improves the top-1 accuracy by 0.51% com-
pared with CBAM-ResNet50, and DCA-SE-MobileNetV2
improves the top-1 accuracy by 1.19% compared with SE-
MobileNetV2, but the computation overhead is comparable.

4.2. Ablation Evaluation

Connection Schema. As shown in Table 2a, all three connec-
tion schemas outperform vanilla SE-ResNet50. This indicates
the improvements come from the connections between atten-
tion blocks, rather than particular connection schema. Be-
sides, only minimal differences are observed in the top-1 and
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Table 2: Ablation studies on the ImageNet 2012 validation set.

(a) DCA connection schemas.

Model Top-1 Top-5 GFLOPs  Params
SE 7729  93.65 4.13 28.09M
+Direct 77.55  93.77 4.13 28.65M
+Softmax ~ 77.52 93.71 4.13 28.65M
+Weighted 7749  93.69 4.13 28.65M
(b) Multiple Attention dimensions.
Model Top-1 Top-5 GFLOPs  Params
CBAM 77.28  93.60 4.14 28.09M
+DCA-C 7779 93.71 4.14 30.90M
+DCA-S 77.58  93.80 4.14 28.09M
+DCA-All  77.83 93.72 4.14 30.90M

top-5 accuracy of these three connection schemas (77.55%
vs. 77.52% vs. 77.49%). By default we use direct connection
which eases the implementation compared to others.

Size matching. For matching the number of channels, we
use SE-ResNet50 for illustration due to its pure concerns on
channel dependencies. Table 2d presents the results. Directly
applying one FC layer can achieve the best top-1 accuracy,
while, on the other hand, setting reduction rate r to 16 in two
FC layers can reduce the number of parameters and achieve
a comparable result. For spatial resolution, we adopt average
pooling to reduce the resolution. We also compare with max
pooling and present the results in Table 2c. The performance
of max pooling is slightly inferior compared to the perfor-
mance of average pooling, indicating that all attention infor-
mation should be passed to the succeeding attention blocks.

Multiple Attention dimensions. For illustration, we use
CBAM-ResNet50 as a baseline. We use DCA-C/DCA-S to
present applying DCANet on channel/spatial attention, and
DCA-AIll indicates we apply DCA module on both attention
dimensions for CBAM-ResNet50. Table 2b shows the results
of DCANet applied on two dimensions. From the table, we
notice that applying DCANet on either dimension will cer-
tainly improve the accuracy. When enhancing both attention
dimensions, we achieve a 0.54% improvement. When we
work on spatial and channel dimensions separately, the im-
provement is 0.51% and 0.29%, respectively.

4.3. Object Detection on MS COCO

We further evaluate the performance of DCANet for object
detection. We measure the average precision of bounding
box detection on the challenging COCO 2017 dataset [7]. We
adopt the settings used in [23] and train all models with a total
of 16 images per mini-batch (2 images per GPU). We employ
two state-of-the-art detectors: RetinaNet [23] and Cascade R-
CNN [24] as the detectors, with SE-ResNet50, GC-ResNet50

(c) Spatial size matching.

Model Top-1 Top-5 GFLOPs  Params
CBAM 7728  93.60 4.14 28.09M
Max Pooling  77.43  93.77 4.14 28.09M
Avg Pooling  77.58  93.80 4.14 28.09M

(d) Channel matching based on SE-ResNet50.

Model Top-1 Top-5 GFLOPs  Params
SE 7729  93.66 4.13 28.09M
1FC 77.64 93.74 4.13 30.90M
2FC (r=16) 77.55 93.77 4.13 28.65M
2 FC (r=8) 77.50 9372 4.13 29.8TM
2 FC (r=4) 7742 93.75 4.13 32.31M

and their DCANet variants as the corresponding backbone
respectively. All backbones are pre-trained using ImageNet
and are directly taken from Table 1. The detection models
are trained for 24 epochs using synchronized SGD with a
weight decay of 0.0001 and a momentum of 0.9. The results
are reported in Table 3. Although DCANet introduces almost
no additional calculations, we observe that DCANet achieves
the best performance for all IoU threshold values and most
object scales (DCA-SE-ResNet50 obtains +1.5% AP5¢.95 on
ResNet50 and +0.3% APsg.95 on SE-ResNet50 in RetinaNet;
DCA-GC-ResNet50 obtains +0.8% AP5g.95 on ResNet50 and
0.3% APs50.95 on GC-ResNet50 in Cascade R-CNN).

5. CONCLUSION

In this paper, we aim to address a critical issue, that is the
capacity of self-attention mechanism is not fully exploited.
To achieve a higher utilization, we present Deep Connection
Attention Network, which adaptively propagates information
among attention blocks via attention connections. We have
demonstrated that DCANet consistently improves various at-
tention designs and base CNN architectures on the ImageNet
benchmark with a minimal computational overhead. More-
over, experimental results on the MS-COCO dataset show that
DCANet generalizes well for other vision tasks, such as ob-
ject detection. The novel design and feed-forward approach
make DCANet easy to be integrated with various attention
designs using the mainstream frameworks.
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Table 3: Detection performances (%) with different backbones on the MS-COCO validation dataset.
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Detector Backbone AP50.95 AP50 APr5 APg AP s AP,
ResNet50 36.2 55.9 38.5 19.4 39.8 48.3
RetinaNet [23] + SE 37.4 57.8 39.8 20.6 40.8 50.3
+ DCA-SE 37.7 58.2 40.1 20.8 40.9 50.4
ResNet50 40.6 58.9 44.2 224 43.7 54.7
Cascade R-CNN [24] + GC 41.1 59.7 44.6 23.6 44.1 54.3
+ DCA-GC 414 60.2 44.7 22.8 45.0 54.2
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