2021 Fourth International Conference on Connected and Autonomous Driving (MetroCAD) | 978-1-6654-4594-8/21/$31.00 ©2021 IEEE | DOI: 10.1109/METROCAD51599.2021.00011

2021 Fourth International Conference on Connected and Autonomous Driving (MetroCAD)

Vehicular Edge Computing for Multi-Vehicle
Perception

Sihai Tang Zhaochen Gu

Song Fu Qing Yang

Computer Sci. & Engg. Dept. Computer Sci. & Engg. Dept. Computer Sci. & Engg. Dept. Computer Sci. & Engg. Dept.

University of North Texas
Denton, Texas 76203
SihaiTang @my.unt.edu

University of North Texas
Denton, Texas 76203
ZhaochenGu@my.unt.edu

Abstract—Autonomous vehicle systems require sensor data to
make crucial driving and traffic management decisions. Reliable
data as well as computational resources become critical. In
this paper, we develop a Vehicular Edge Computing Scheduling
Pipeline for connected and autonomous vehicles (CAVs) exploring
scheduling optimization, pipeline design and vehicle to edge inter-
actions. Through our pipeline, the data, generated by on-board
sensors, is used towards various edge serviceable tasks. Due to
the limited view of a vehicle, sensor data from one vehicle cannot
be used to perceive road and traffic condition of a larger area.
To address this problem, our pipeline facilitates data transfer
and fusion for cooperative object detection of multiple vehicles.
Through real-world experiments, we evaluate the performance
and robustness of our pipeline on different device architectures
and under different scenarios. We demonstrate that our pipeline
achieves a real-time deadline capable edge to vehicle interaction
via vehicle-edge data transfer and on-edge computation.

Index Terms—Resource Profiling, Connected and Autonomous
Vehicles, Workload optimization

I. INTRODUCTION

Autonomous vehicles are becoming more and more relevant
in today’s society. There is no denying the benefits of an
autonomous vehicle in terms of driver and pedestrian safety.
By delegating the driving decision to on-board computing
units, the driver-related issues such as driving under the
influence and other human operating errors are significantly
reduced. In addition to the safety benefits, we are also wit-
nessing a blossom of various other uses [25], [32], [38], with
amber alert detection and collision avoidance being the most
prominent [39].

To facilitate the self-driving process, various sensors need to
relay their sensing data of the surrounding environment to the
on-board computing unit. This is usually handled by an array
of sensors such as the LiDAR, cameras, radar, GPS, IMU,
and more. Due to the vast array of sensors, it is estimated
that an autonomous vehicle will generate 4 terabytes of data
or more in two hours [2]. To enhance driving, connected
and autonomous vehicle (CAV) technology enables raw-data
level and feature-map level data sharing among vehicles [6],
[9], [10], which utilizes extraneous data from other vehicles
to drastically improve the detection capabilities of a single
vehicle.

Currently, most car manufacturers focus on uploading their
data to the cloud. However, the expensive data transmission,

University of North Texas
Denton, Texas 76203
Song. Fu@unt.edu

University of North Texas
Denton, Texas 76203
Qing.Yang @unt.edu

exacerbated network congestion and prolonged latency be-
tween vehicles and the cloud make real-time object detection
inaccurate if not infeasible.

With these limitations, autonomous vehicle manufacturers
opt to use cellular connectivity to facilitate data between
vehicles and computing platforms [1]. With 5G infrastructure
yet to reach maturity in many regions of the country, the
information type, size and variety are often restricted due
to the availability and location. We typically see the use of
dedicated software and hardware such as dedicated short range
communication (DSRC) as a channel of data dissemination
between different vehicles, but this too is limited to the
information type and size. While DSRC can broadcast the
GPS, IMU and speed information for other vehicles to stay
aware, large sensor data from HD cameras and LiDAR requires
higher bandwidth which DSRC cannot provide. Those 2D
images and 3D point clouds are useful for improving the
perception range and accuracy of vehicles leveraging edge
computing [9].

Extensive research on how to improve the safety for all
parties involved in a autonomous car points to CAV as the
solution [33], [34]. Stemming from this, with communication
between vehicles, we open up the possibility of cooperative
perception, which eliminates many faults of a single vehicle
operating on its own sensors. However, as is with all things, we
face challenges in the area of cooperative perception as well.
Works such as [5], [9], [10], [17] present the limitations as well
as the advantages of sharing sensor data between vehicles.

While these works greatly improve the outlook of au-
tonomous vehicles, they still rely on the use of traditional
platforms of data sharing such as cellular or DSRC. With the
emerging edge computing paradigm, we find that although
works such as [9] are suitable for edge, there is no end-to-
end edge system that can address the challenges of using the
edge as well as the ability to fully facilitate the process of
cooperative perception on the edge.

In this paper, we design and evaluate our scheduling pipeline
for the transfer and fusion of different types of data between
vehicles and edge nodes to achieve cooperative perception. We
propose the use of edge nodes as a targeted and purposed sys-
tem to facilitate the exchange of large sensor data towards safer
driving. Through our pipeline, the data, generated by on-board

978-1-6654-4594-8/21/$31.00 ©2021 IEEE 9
DOI 10.1109/MetroCAD51599.2021.0001 1

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:15:15 UTC from |IEEE Xplore. Restrictions apply.

sensors, is used towards various edge serviceable tasks. Due
to the limited view of a vehicle, sensor data from one vehicle
cannot be used to perceive road and traffic condition of a larger
area. To address this problem, our pipeline facilitates data
transfer and fusion for cooperative object detection of multiple
vehicles. Through real-world experiments, we evaluate the
performance and robustness of our pipeline on different device
architectures and under different scenarios. We demonstrate
that our pipeline achieves a real-time deadline capable edge
to vehicle interaction via vehicle-edge data transfer and on-
edge computation.

The rest of the paper is organized as follows. Section II dis-
cusses the related research. Section III details vehicular edge
computing and our edge scheduling pipeline design. Section
IV presents the performance results from edge computing for
multi-vehicle cooperative perception. Section V and Section
VI discuss our design and results and point out directions of
future research. Section VII concludes the paper.

II. RELATED WORK

In this section, we investigate the existing literature on
vehicular edge computing for scheduling and pipeline design
in the connected autonomous vehicle (CAV).

Edge for vehicles. [25] provided us a comprehensive re-
view of development and challenges of autonomous vehicle in
edge environment. [16] proposed a vehicle-to-vehicle commu-
nication enhancement scheme by introduced the hierarchical
edge-based preemptive route creation, two-stage learning and
context-aware edge selection approach to improve the packet
forwarding performance. As edge computing becomes a main-
stream solution to process data remotely for autonomous, [28]
investigated the service migration and resource management
from intra- and inter-tier communication in edge and fog com-
puting. In addition, many existing works mentioned about edge
for vehicles but focused on MEC (Mobile-Edge-Computing).
[14] an [18] solved the offloading and caching computing in
vehicle networks for mobile-based edge separately.

Resource allocation and offloading. Resource allocation
plays an important role in CAV system optimization problem.
[27] studied the tradeoff between execution time and energy
consumption for the problem of computation offloading. They
also designed a game theory model to minimize the combi-
nation of energy overhead and delay. Similarly, Zhang [37]
designed a system to reduce the weighted cost of time latency
and energy consumption using mobile devices as the edge
ends. [22] also proposed a computation offloading technique
in terms of energy-efficiency in edge cloud computing. [13]
proposed a distributed offloading scheme by helping multiple
users learn their long-term offloading strategies and proved
a Nash equilibrium can be achieved. [21] propose a method
to allocate resources in a uncertain conditions improve the
reliability of Vehicle-to-infrastructure system.

Scheduling. Scheduling on edge side and between edge
to vehicle is a prevalent topic in recent years. Most of the
paper focused on communication and scheduling strategy
on mobile-based edge ends. [26] proposed a framework to

formulate the communication and resource computation jointly
and promote an optimal strategy on data scheduling using
deep reinforcement learning approach. [11] optimized the
task scheduling by designed a dynamic scheduling scheme
in regard to queue-based and time-based approach in order to
allocate tasks in hybrid mobile environments. [23] designed
a time-driven workflow scheduling mechanism to efficiently
improve the completion time of reasoning tasks in edge
environments by applying the Markov decision process and
Q-learning algorithm in their simulated annealing. In addition,
[36] also applied Markov decision process in their method but
combine with other optimization algorithm in deep reinforce-
ment learning. He also implemented a representative features
extraction by merging parameter-shared network architecture
together with convolutional neural network.

III. EDGE COMPUTING FOR CONNECTED AUTONOMOUS
VEHICLES

A main advantage of employing edge computing compared
with cloud computing to CAVs is the lower latency [30].
Although the cloud has more resources and is more powerful
than an edge device, processing data on edge devices is more
responsive than forwarding data over the Internet to the cloud.
For example, GM(general motors) has recently announced
their new electric vehicles line up with improved ultium
batteries that is supposed to eliminate emissions as well as be
more road friendly [3]. This move towards better on vehicle
energy allows for more energy to be devoted towards extra
protocols, such as edge communication. However, there is still
the need for an efficient approach to allow for mass adoption
of such protocols, especially due to the persistent nature of
such protocols.

I

Compatible

Merging
LIDAR n3,4

Compatible

Merging
LIDAR n1,2

Edge Node

Edge Node Edge Node

Results for
Broadcast

Detection Detection

Edge Node Edge Node

Fig. 1. The Vehicles designate cars with the capability of requesting service
from the edge node network. As the requests are received, the edge node
handling the message transactions will cluster the requests into potential
groups for further processing. Through this pipeline, a wide array of models
can then be deployed to the correct vehicle cluster for faster and more accurate
processing.

We argue that edge computing is probably the most suitable
computational paradigm to facilitate heterogeneous, large-

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:15:15 UTC from |IEEE Xplore. Restrictions apply.

scale, and agile data processing for CAVs [24]. Towards
this end, we design a data processing pipeline that utilizes
the benefits of vehicles’ close proximity to edge nodes to
achieve low-latency data processing and real-time decision
making, thereby opening up possibilities for various CAV
applications, including cooperative perception where sensor
data from multiple vehicles are exchanged and fused to detect
objects in a wider range and with a better accuracy [9], [10],
[12], [17], [20].

A. Data Communication in Vehicular Edge Computing for
CAVs

Before designing an edge computing pipeline for CAVs,
it is important to understand the state of the art of CAV
technologies, as well as the barriers that hamper the deploy-
ment of edge computing. Here, we briefly review the current
data exchange technologies used by CAVs, including their
major advantages and limitations. Starting off, we look at
the more traditional methods such as DSRC. This allows for
quick inter-vehicular communication of small packets with
other similarly equipped vehicles. However, the downsides
are also clear in that DSRC cannot support high amounts
of data flow. Recently, more efforts are focused on bringing
vehicle-to-everything (V2X) communication for autonomous
driving closer to reality. With companies such as Verizon
and T-Mobile experimenting with 5G in certain regions, it
is no longer a dream to have a connected environment for
connected and autonomous driving [4]. Although, despite the
higher bandwidth of the new 5G network, the transfer of large
amounts of HD map data and other data between multiple
vehicles will stress the local infrastructure unnecessarily. To
support the maintenance of data quality, it is estimated that
around 1 terabyte of data will be need to collected and
sent over the period of one hour [31]. The transfer of HD
maps and other crucial sensor data between vehicles can be
taxing, but if it is instead routed through a trusted edge device
with supporting applications, then we would avoid the issues
presented.

However, through utilizing the edge device, we open up
more challenges. As previously mentioned, trust, different data
types, hardware and software compatibility and versioning
support are all major impediments to an efficient vehicle to
edge data exchange paradigm. Therefore, it is crucial to design
efficient data transmission and data processing pipelines to
enable edge computing for CAVs.

For other vehicular communication solutions, e.g.,
DSRC [19] and WiFi Direct [7], we face more stringent
restrictions as both bandwidth as well as real-time deadlines
are heavily stressed without a proper processing pipeline on
the edge.

From vehicles to the cloud, there exists routing latency,
and in this situation, a direct connection between vehicles
and edge servers provides less communication latency [25],
[32]. Various other barriers such as cooperative perception and
object detection arise when vehicles are reliant on the cloud
to provide computational power towards such purposes. Not

Mehicle Edge

Service Request

MetaData Exchange(Subscribe) H

Acknowledgement

A

Data Exchange

= sub Topic Process

Edge|Node

> High Priority

[Scheduling Based
on Priority

Edge Node

» Low Priority

Fig. 2. This pipeline details the exchange between the vehicle and the edge
node in detail. The vehicle is assumed to have service access to the specified
edge node as a part of a service agreement between providers. The vehicle
can send the request contains the necessary metadata to the edge in the
handshaking process. After receiving acknowledgement from the edge, the
data transfer can then begin. After which, the edge will then designate the
vehicle request based on cluster and priority through a scheduling optimization
process before the work can begin. The final results are then broadcasted back
to the vehicle in need.

only does the cloud need to calculate the data, it will also
need to send out requests for the vehicles in the proximity of
the requesting vehicle. This multi-stage approach drastically
increases the overhead of performing such tasks.

B. Design Issues with Vehicular Edge Computing

As mentioned before, with the plethora of new cooperative
perception techniques designed for CAVs [6], [9], [10], we
require far more data to be transmitted than what the traditional
data transmission can support. For example, raw 3D LiDAR
data [10] and feature maps generated from the CNN models [9]
on multiple vehicles need to be consolidated through the
fusion process, however, it will require each vehicle handle
the handshaking process individually with every new vehicle.
The reason why handshaking is such an issue revolves around
the task at hand as well as the vehicles that are communicating.
Take for example a top end autonomous vehicle and a lower
end consumer model with the basic sensors. Should these two
vehicles request each other with data, the lower end will not
have the resources to process the data from the higher end
model. This handshake will result in a failure due to hardware
specifications. Another barrier exists in the number of vehicles
trying to handshake. With no guarantee of a unified standard,
the most challenging issue at hand is trust. Many manufactures
do not trust the information from another vehicle not made by
them due to liability issues, so they will not succeed in a
handshake for data, limiting the scope of available sources.

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:15:15 UTC from |IEEE Xplore. Restrictions apply.

Aside from these barriers, the overhead of repeatedly trying
to establish connection with surrounding vehicles will increase
with the number of vehicles. Just as a Distributed Denial of
Service attack can slow or halt access to a service all together,
the same situation is possible with repeated handshaking due
to connection or trust issues. This is a very costly process
both in on-board unit (OBU) computational resources as well
as network bandwidth, the OBU refers to the computing unit
on board the vehicle handling inference, vehicle status, and
other crucial tasks for autonomous driving.

This problem is compounded by the fact that significant
amount of data, at least tens of megabits per second per
vehicle, need to be transferred and processed within a CAV
system [10]. If stationary sensor data, generated from road-
side infrastructures, is included in the fusion process, more
localized data processing is required [6].

Therefore, it is crucial for an edge processing pipeline
to be data friendly in order to facilitate these data-heavy
communication and computation tasks.

With traditional methods, DSRC will keep broadcasting
WAVE short message (WSM) at a set frequency [19], regard-
less of whether the information broadcasted is acknowledged
by other cars; this holds both benefits and detriments. Al-
though it simplifies the data transmission protocol, which is
beneficial for safety message transmission, it does not support
the transmission of raw (or extracted) sensor data. While both
hold irrefutable merits, we believe that sharing either raw or
extracted data among autonomous vehicles is of great value, as
both can be used towards better perception and driving safety.
An encompassing system that addresses the aforementioned
new challenges is still missing in the literature.

C. Task Scheduling in Vehicular Edge Computing

To approach issue, the aforementioned encompassing sys-
tem needs both efficiency and stability to be a reliable platform
to serve critical operations such as real-time driving. Alongside
the challenges and current techniques, works that detail new
uses of edge for CAVs such as [8], [35], open up new
challenges; the first work examine the security aspect where
as the second work studies the effects of CAVs on a platoon
of vehicles for collaboration and fueling purposes.

Due to the massive scope of effective edge usage when
it comes to CAVs, we design an optimization algorithm
centered around the Edge side scheduling, with the primary
focus being on the profiling and establishing the baseline
performance of the native pipeline from F-Cooper. Through
this, we make the first step towards eliminating the challenges
of safe collaborative driving through the use of Edge, with the
focus on pipeline design and scheduling.

The problem formulation is as follows. At any given time
slot, the data of each vehicle can be:

o Processed locally: select features to send to edge (f;)

« In queue to be uploaded to the Edge: time restricted based
on speed (Certain time frame before the location data is
irrelevant.) (d;)

o On the Edge awaiting processing. (s;)

o Processed by the Edge awaiting either deletion or Archiv-
ing. (¢;)
At any given time, the Edge node will consider the following:
e Resources available (Possible consideration of Down
sampling) (1)
o Deadline assignment and tracking for each vehicle (D;)
o Tasks awaiting execution (Estimated execution time) (77)
o Tasks in execution (Estimated completion time) (£})
Factoring all the possible elements for analysis, we use the
following general equation:

Optimize fo(Xs;), (4,7) € w,
X
subject to X;; = M;;, (1)
X >0,
Where M;; = (di, si, fis @) W (R, D;, T, Ej),

where X is the set of all incoming requests with ¢ repre-
senting the vehicle and j representing the edge node. As long
as both vehicle and edge node are within service range , then
for each element of X, the corresponding set M; ; will be
processed as long as it is not empty. Each set of M; ; will be
consisted of elements from both the vehicle and edge.

IV. VEHICULAR EDGE COMPUTING FOR COOPERATIVE
PERCEPTION

We conduct experiments to evaluate the run-time process
of F-Cooper using the open-source code cited in [9]. Through
this, the vehicles are able to request for an extension of F-
Cooper to be performed. We then profile F-Cooper through
analysis of the current pipeline implemented to identify po-
tential points of optimization.

As F-Cooper is inherently a lightweight process capable of
running on an edge device, it has several components that we
analyse through our experiment. Since F-Cooper supports the
use of the GPU, we prioritize the utilization of the GPU over
the CPU in our experiment. In our experiment, we will profile
the following elements of the process in order to establish
a good baseline for future work on the optimization and
scheduling:

o GPU usage

« GPU energy consumption

o Total Run-time for a complete processing run of one
frame of data

o Algorithmic break down of the components as well as
their formulations

The overall condensed pipeline of the F-Cooper is shown
in Fig 3. As shown in the figure, we can see that the overall
processes of the F-Cooper is fairly linear in nature. In our
designed pipeline architecture, the data preprocessing for F-
Cooper is not necessary as the handshaking assumes that the
data is pre-compatible. Also, the model training step will also
be excluded as the Edge is assumed to have access to the latest
models available for servicing the compatible vehicles. With
these two big limiting factors removed from the F-Cooper
process, we now look specifically at the following steps of

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:15:15 UTC from |IEEE Xplore. Restrictions apply.

THE STATUS OF THE GPU WHEN NOT UNDER A WORKLOAD. HERE THE IDLE TEMPERATURE OF HAVING F-COOPER LOADED IN THE BACKGROUND IS
AROUND 39 CELSIUS WITH A POWER DRAW OF AROUND 27 WATTS. THE TOTAL MEMORY USAGE IS ALSO VERY LOW AT ONLY 300 MB.

Nvidia GPU Status (Before)
GPU Name Temperature Performance State | Persistence Mode Fan Speed
Information GeForce GTX 1060 39C P2 Off 38%
Usage Power Usage Power Capacity Memory Usage Memory Capacity | Volatile GPU Utilization—
Information 27TW 120W 301 MiB 6075 MiB 1%
GPU Index PID Type Process Name GPU Memory Usage
Processes 0 1314 G /usr/lib/xorg/Xorg 22 MiB
Information 0 2000 G /usr/lib/xorg/Xorg 190 MiB
0 5238 C Python3 63 MiB
TABLE T

Nvidia GPU Status (After)
GPU Name Temperature Performance State | Persistence Mode Fan Speed
Information GeForce GTX 1060 40C P2 Off 38%
Usage Power Usage Power Capacity Memory Usage Memory Capacity | Volatile GPU Utilization—
Information 2TW 120W 1927 MiB 6075 MiB 32%
GPU Index PID Type Process Name GPU Memory Usage
Processes 0 1314 G /usr/lib/xorg/Xorg 22 MiB
Information 0 2000 G /usr/lib/xorg/Xorg 190 MiB
0 5238 C Python3 1689 MiB
TABLE 1T

THE STATUS OF THE GPU WHEN UNDER A SINGLE F-COOPER WORKLOAD. HERE THE TEMPERATURE IS UP BY 1 DEGREES CELSIUS OVER THE IDLE
TEMPERATURE AND THE TOTAL MEMORY USAGE IS UP TO AROUND 2 GB AS COMPARED TO THE 300MB OF WHEN IT WAS IDLE.

voxel generation and forwarding as well as the inference
speed. However, as the main portion of training the model
for accuracy is calculation of the loss function, to gouge the
difference between the prediction to the ground true, we briefly
examine the process to estimate the impact of running such
on an Edge device. The loss function of F-Cooper used for
evaluation purposes is defined as follows. Suppose the model
proposes N,,s positive anchors and N,., negative anchors,
they define the loss function as follows:

Nneg

L=a— Z Lcls (pflegvo)

Nncg i—1

Npos

Z Lcls (p;mm 1)
Ny

> Ly (PG
i=1

1

N,

pos

+5 2

L1
Npos

where pf , and pﬁ,os are the probability of positive anchors
and negative anchors respectively, and N,,., and N,,, denote
the number of proposed negative and positive anchors respec-
tively. In regression loss, G indicates the ith ground truth
while P? means the corresponding predicted anchor. They use
« and [to balance these three losses. They also employ a
binary cross entropy loss for classification Loss and Smooth-
L1 loss function [15], [29].

As we can see from the equation, the amount of processing
time will increase linearly based on the amount of anchors
proposed through the Region Proposal process. This relation-
ship between the input data and the amount of processing time
required to run such calculations indicate that as more objects
enter the area of service, the more processing power is needed
should we require model updates during downtime.

A. GPU Usage

F-Cooper considers both the CPU and the GPU as a
potential source of computational power, however, to focus on
more realistic profiling, we opted to use the Nvidia GeForce
GTX 1060 GPU. This GPU has a maximum power draw of
120 watts and a total of 6 gigabytes of memory.

In our first task, we loaded all the process threads into the
edge system and profiled the overall GPU status. As we see
in Table. I, the status of the GPU when not under a workload.
Here the Idle temperature of having F-Cooper loaded in the
background is around 39 Celsius with a power draw of around
27 watts. The total memory usage is also very low at only 300
MB.

With this data as our baseline, we move on to the full
profiling of the GPU with F-Cooper running one frame of
data inference.

The status of the GPU when under a single F-Cooper
workload is shown in Table. II. Here the temperature is up by 1
degrees Celsius over the idle temperature and the total memory
usage is up to around 2 GB as compared to the 300MB
of when it was idle. This increase in both temperature and
memory usage is a big increase when taking into consideration
that we are just running inference for one frame of data.

As a continuous stream of data is fed through the F-Cooper’s
native pipeline, the amount of processes being loaded comes to
around 1.7 GB, which is very large to run a inference process.

In addition to the memory increase, we also saw the
increase in temperature. As one frame is very small, a realistic
workload will ramp up the temperature and thus force the GPU
to draw more power to both cool and process the workload
more efficiently. We this that this is a key factor to optimizing
the performance of the pipeline.

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:15:15 UTC from |IEEE Xplore. Restrictions apply.

LIDAR
Data

|
Vouel
Feature
Encoding

Data
Preprocessing

Voxel
Feature

R

Voxel
Generation
and
Sending

Fused
Voxel
Feature

Local

Inferencing
Sparse per Frame
Convolutional
Layer
Spatial
Feature
Detection
Results
X
Region
Proposal
Network
Detection
Results , |/

Fig. 3. Architecture of the feature based cooperative perception (F-Cooper).
F-Cooper has multiple vehicles’ (using two here for illustration) LiDAR
data inputs which are processed by the VFE layers respectively to generate
voxel features. To fuse 3D features from two cars, two fusion paradigms
are designed: voxel features fusion and spatial features fusion. In Paradigm
I, two sets of voxel features are fused first and then spatial feature maps
are generated. In Paradigm II, spatial features are first obtained locally on
individual vehicles and then fused together to generate the ultimate feature
maps. Symbol € indicates where the fusion takes place in each paradigm.
An RPN is employed for object detection on the ultimate feature maps in
both paradigms. We use dashed arrows to denote data flow and bold red lines
to present fusion connections. Best viewed in color.

B. Run Time Average

Just the physical hardware usage is not enough for a good
pipeline design, so we also conduct a profiling for the overall
speed of F-Cooper broken down into the following parts:

o Label Generation
o Total Run-time for a complete processing run of one
frame of data
o Algorithmic break down of the components as well as
their formulations
As seen in Table. III, the average time for a single F-Cooper
run is broken down. With Label generation and evaluation as
the two main components of interest. We observe the rapid
generation of the labels at around 0.85 iterations of tasks per

Avg Forward Time
of Infos (per example)
I 1 | 0.048 seconds
TABLE TIT
THE AVERAGE TIME FOR A SINGLE F-COOPER RUN IS BROKEN DOWN.
WITH LABEL GENERATION AND EVALUATION AS THE TWO MAIN
COMPONENTS OF INTEREST.

Avg Post-process Time
(per example)

0.191 seconds |

’ ‘ Remain Numbers

second. Following the label generation, the evaluation step
comes next. First, the Voxels are forwarded from the neural
network at a rate of 0.048 seconds per example. This is the
time that it takes for the native pipeline to extract and initiate
the process of sending the voxels to the target. After the
extraction and forwarding of the voxels per example, the native
pipeline then continues with the local inference portion, to
generate a prediction for the example at hand. As we see in
the figure, the average post process inference time per example
is around 0.191 seconds, which is fairly long when compared
to the voxel extraction and forwarding step.

However, as we only focus on profiling the native pipeline
of F-Cooper, the relative time it takes to receive and also
inference the example timing is not tested.

V. DISCUSSIONS

The profiling of the F-Cooper native pipeline has shown
possibilities for the use of an algorithm based scheduling
optimization. For example, the workload of the native pipe
gives credence to the heavy weight nature of the entire process.

In our approach, the background resource usage can be
optimized for much less usage towards the task at hand. For
example, in our profiling, the native F-Cooper pipe shows
around 30 percent GPU usage for just the inference of a single
frame. This is most likely using the GPU for tasks that can
be routed to the CPU, such as pre-loading the model weights
and other similar tasks.

Further observations made based on the profiling results
indicate that while F-Cooper achieves real-time speeds, it is
still linear in nature for the job execution order. As the voxels
forwarding is not a crucial step that is depended on by the
evaluation and prediction tasks later on, it can be separated
for variable scheduling instead of a static sequential order of
execution.

VI. POTENTIAL RESEARCH

Our results from the experiment proves that there exists
room for optimization in the native pipeline for F-Cooper. Our
proposed pipeline takes much of the heavy workload that F-
Cooper requires and boils it down to a constant background
process rather than the current design of load on use.

Additional factors that play a role in slowing down F-
Cooper can be explored as possible optimization tasks to
further extend the possibility of opening research potentials
for the integration between edge and autonomous vehicles.

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:15:15 UTC from |IEEE Xplore. Restrictions apply.

VII. CONCLUSIONS

In this paper, we identify that the existing literature does not
focus on the approach of integrating edge with autonomous ve-
hicles specifically. While efforts have been made towards this
end, we do not see the scalability for the existing works. We
believe that through optimization, a pipeline can be designed
and formalized for current and future efforts, thus allowing for
the easy transition for works such as F-Cooper to fully migrate
to various edge platforms without loss of performance.

In our experiment, we profile F-Cooper. Based on our exper-
imental analysis, we find that there exists many opportunities
to apply our proposed algorithm to optimize the existing native
pipeline of F-Cooper. We formulate a formal method that
allows for such a process to be adopted in this field.

ACKNOWLEDGMENT

This work has been supported in part by the National Sci-
ence Foundation grants CNS-1852134, OAC-2017564, ECCS-
2010332, CNS-2037982, and CNS-1563750. We thank the
anonymous reviewers for their constructive comments, which
helped us improve this paper.

REFERENCES

[1] Connectivity — tesla. https://www.tesla.com/support/connectivity.

[2] For self-driving cars, there’s big meaning behind one big number:
4 terabytes. https://newsroom.intel.com/editorials/self-driving-cars-big-
meaning-behind-one-number-4-terabytes/.

[3] Gm’s path to an all-electric future — general motors.
https://www.gm.com/electric-vehicles.html.

[4] Verizon vs at&t vs t-mobile vs sprint: Choose the best 5g car-
rier - cnet. https://www.cnet.com/how-to/verizon-vs-at-t-vs-t-mobile-vs-
sprint-choose-the-best-5g-carrier/.

[5] O. Altintas and T. Higuchi. Multi-level hybrid vehicle-to-anything
communications for cooperative perception, Oct. 24 2019. US Patent
App. 15/958,969.

[6] E. Arnold, M. Dianati, and R. de Temple. Cooperative perception for 3d
object detection in driving scenarios using infrastructure sensors, 2019.

[7] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano. Device-to-device
communications with wi-fi direct: overview and experimentation. /EEE
wireless communications, 20(3):96-104, 2013.

[8] C. Chen, J. Jiang, N. Lv, and S. Li. An intelligent path planning scheme
of autonomous vehicles platoon using deep reinforcement learning on
network edge. IEEE Access, 8:99059-99069, 2020.

[9]1 Q. Chen, X. Ma, S. Tang, J. Guo, Q. Yang, and S. Fu. F-cooper: feature
based cooperative perception for autonomous vehicle edge computing
system using 3d point clouds. In ACM/IEEE Symposium on Edge
Computing (SEC), 2019.

[10] Q. Chen, S. Tang, Q. Yang, and S. Fu. Cooper: Cooperative perception
for connected autonomous vehicles based on 3d point clouds. In /EEE
Intl Conference on Distributed Computing Systems (ICDCS), 2019.

[11] X. Chen, N. Thomas, T. Zhan, and J. Ding. A hybrid task scheduling
scheme for heterogeneous vehicular edge systems. [EEE Access,
7:117088-117099, 2019.

[12] L. Ding, Y. Wang, P. Wu, L. Li, and J. Zhang. Kinematic information
aided user-centric 5g vehicular networks in support of cooperative
perception for automated driving. IEEE Access, 7:40195-40209, 2019.

[13] T. Q. Dinh, Q. D. La, T. Q. Quek, and H. Shin. Learning for
computation offloading in mobile edge computing. /EEE Transactions
on Communications, 66(12):6353-6367, 2018.

[14] J. Du, E. R. Yu, X. Chu, J. Feng, and G. Lu. Computation offloading
and resource allocation in vehicular networks based on dual-side cost
minimization. IEEE Transactions on Vehicular Technology, 68(2):1079—
1092, 2018.

[15] R. Girshick. Fast r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 1440-1448, 2015.

[16] S. Guleng, C. Wu, Z. Liu, and X. Chen. Edge-based v2x communications
with big data intelligence. IEEE Access, 8:8603-8613, 2020.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

T. Higuchi, M. Giordani, A. Zanella, M. Zorzi, and O. Altintas. Value-
anticipating v2v communications for cooperative perception. In /EEE
Intelligent Vehicles Symposium, 2019.

R. Q. Hu et al. Mobility-aware edge caching and computing in
vehicle networks: A deep reinforcement learning. IEEE Transactions
on Vehicular Technology, 67(11):10190-10203, 2018.

J. B. Kenney. Dedicated short-range communications (dsrc) standards
in the united states. Proceedings of the IEEE, 99(7):1162-1182, 2011.
S. Kim and W. Liu. Cooperative autonomous driving: A mirror neuron
inspired intention awareness and cooperative perception approach. IEEE
Intelligent Transportation Systems Magazine, 8(3):23-32, 2016.

A. Kovalenko, R. F. Hussain, O. Semiari, and M. A. Salehi. Robust
resource allocation using edge computing for vehicle to infrastructure
(v2i) networks. In 2019 IEEE 3rd International Conference on Fog and
Edge Computing (ICFEC), pages 1-6. IEEE, 2019.

X. Li, Y. Dang, M. Aazam, X. Peng, T. Chen, and C. Chen. Energy-
efficient computation offloading in vehicular edge cloud computing.
IEEE Access, 8:37632-37644, 2020.

K. Lin, B. Lin, X. Chen, Y. Lu, Z. Huang, and Y. Mo. A time-driven
workflow scheduling strategy for reasoning tasks of autonomous driving
in edge environment. In 2019 IEEE Intl Conf on Parallel & Distributed
Processing with Applications, Big Data & Cloud Computing, Sustain-
able Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom), pages 124-131. IEEE, 2019.

L. Liu, S. Lu, R. Zhong, B. Wu, Y. Yao, Q. Zhang, and W. Shi. Com-
puting systems for autonomous driving: State-of-the-art and challenges.
IEEE Internet of Things Journal, pages 1-1, 2020.

S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi. Edge computing
for autonomous driving: Opportunities and challenges. Proceedings of
the IEEE, 107(8):1697-1716, 2019.

Q. Luo, C. Li, T. H. Luan, and W. Shi. Collaborative data scheduling
for vehicular edge computing via deep reinforcement learning. [EEE
Internet of Things Journal, 2020.

M.-A. Messous, H. Sedjelmaci, N. Houari, and S.-M. Senouci. Compu-
tation offloading game for an uav network in mobile edge computing. In
2017 IEEE International Conference on Communications (ICC), pages
1-6. IEEE, 2017.

L. Pacheco, H. Oliveira, D. Rosdrio, E. Cerqueira, L. Villas, and
T. Braun. Service migration for connected autonomous vehicles. In 2020
IEEE Symposium on Computers and Communications (ISCC), pages 1—
6. IEEE, 2020.

S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural
information processing systems, pages 91-99, 2015.

M. Satyanarayanan. The emergence of edge computing. Computer,
50(1):30-39, 2017.

H. G. Seif and X. Hu. Autonomous driving in the icity—hd maps as
a key challenge of the automotive industry. Engineering, 2(2):159-162,
2016.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision
and challenges. IEEE Internet of Things Journal, 3(5):637-646, 2016.

A. Talebian and S. Mishra. Predicting the adoption of connected
autonomous vehicles: A new approach based on the theory of diffusion
of innovations. Transportation Research Part C: Emerging Technologies,
95:363-380, 2018.

C. Wang, S. Gong, A. Zhou, T. Li, and S. Peeta. —Cooperative
adaptive cruise control for connected autonomous vehicles by factoring
communication-related constraints. Transportation Research Part C:
Emerging Technologies, 2019.

J. Xiong, R. Bi, M. Zhao, J. Guo, and Q. Yang. Edge-assisted privacy-
preserving raw data sharing framework for connected autonomous
vehicles. IEEE Wireless Communications, 27(3):24-30, 2020.

W. Zhan, C. Luo, J. Wang, C. Wang, G. Min, H. Duan, and Q. Zhu.
Deep reinforcement learning-based offloading scheduling for vehicular
edge computing. /EEE Internet of Things Journal, 2020.

K. Zhang, X. Gui, D. Ren, and D. Li. Energy-latency tradeoff for
computation offloading in uav-assisted multi-access edge computing
system. [EEE Internet of Things Journal, 2020.

Q. Zhang, Y. Wang, X. Zhang, L. Liu, X. Wu, W. Shi, and H. Zhong.
Openvdap: An open vehicular data analytics platform for cavs. In
Distributed Computing Systems (ICDCS), 2017 IEEE 38th International
Conference on. IEEE, 2018.

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:15:15 UTC from |IEEE Xplore. Restrictions apply.

[39] Q. Zhang, Q. Zhang, W. Shi, and H. Zhong. Distributed collaborative
execution on the edges and its application to amber alerts. /[EEE Internet
of Things Journal, 5(5):3580-3593, 2018.

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:15:15 UTC from |IEEE Xplore. Restrictions apply.

