
Vehicular Edge Computing for Multi-Vehicle

Perception

Sihai Tang

Computer Sci. & Engg. Dept.

University of North Texas

Denton, Texas 76203

SihaiTang@my.unt.edu

Zhaochen Gu

Computer Sci. & Engg. Dept.

University of North Texas

Denton, Texas 76203

ZhaochenGu@my.unt.edu

Song Fu

Computer Sci. & Engg. Dept.

University of North Texas

Denton, Texas 76203

Song.Fu@unt.edu

Qing Yang

Computer Sci. & Engg. Dept.

University of North Texas

Denton, Texas 76203

Qing.Yang@unt.edu

Abstract—Autonomous vehicle systems require sensor data to
make crucial driving and traffic management decisions. Reliable
data as well as computational resources become critical. In
this paper, we develop a Vehicular Edge Computing Scheduling
Pipeline for connected and autonomous vehicles (CAVs) exploring
scheduling optimization, pipeline design and vehicle to edge inter-
actions. Through our pipeline, the data, generated by on-board
sensors, is used towards various edge serviceable tasks. Due to
the limited view of a vehicle, sensor data from one vehicle cannot
be used to perceive road and traffic condition of a larger area.
To address this problem, our pipeline facilitates data transfer
and fusion for cooperative object detection of multiple vehicles.
Through real-world experiments, we evaluate the performance
and robustness of our pipeline on different device architectures
and under different scenarios. We demonstrate that our pipeline
achieves a real-time deadline capable edge to vehicle interaction
via vehicle-edge data transfer and on-edge computation.

Index Terms—Resource Profiling, Connected and Autonomous
Vehicles, Workload optimization

I. INTRODUCTION

Autonomous vehicles are becoming more and more relevant

in today’s society. There is no denying the benefits of an

autonomous vehicle in terms of driver and pedestrian safety.

By delegating the driving decision to on-board computing

units, the driver-related issues such as driving under the

influence and other human operating errors are significantly

reduced. In addition to the safety benefits, we are also wit-

nessing a blossom of various other uses [25], [32], [38], with

amber alert detection and collision avoidance being the most

prominent [39].

To facilitate the self-driving process, various sensors need to

relay their sensing data of the surrounding environment to the

on-board computing unit. This is usually handled by an array

of sensors such as the LiDAR, cameras, radar, GPS, IMU,

and more. Due to the vast array of sensors, it is estimated

that an autonomous vehicle will generate 4 terabytes of data

or more in two hours [2]. To enhance driving, connected

and autonomous vehicle (CAV) technology enables raw-data

level and feature-map level data sharing among vehicles [6],

[9], [10], which utilizes extraneous data from other vehicles

to drastically improve the detection capabilities of a single

vehicle.

Currently, most car manufacturers focus on uploading their

data to the cloud. However, the expensive data transmission,

exacerbated network congestion and prolonged latency be-

tween vehicles and the cloud make real-time object detection

inaccurate if not infeasible.

With these limitations, autonomous vehicle manufacturers

opt to use cellular connectivity to facilitate data between

vehicles and computing platforms [1]. With 5G infrastructure

yet to reach maturity in many regions of the country, the

information type, size and variety are often restricted due

to the availability and location. We typically see the use of

dedicated software and hardware such as dedicated short range

communication (DSRC) as a channel of data dissemination

between different vehicles, but this too is limited to the

information type and size. While DSRC can broadcast the

GPS, IMU and speed information for other vehicles to stay

aware, large sensor data from HD cameras and LiDAR requires

higher bandwidth which DSRC cannot provide. Those 2D

images and 3D point clouds are useful for improving the

perception range and accuracy of vehicles leveraging edge

computing [9].

Extensive research on how to improve the safety for all

parties involved in a autonomous car points to CAV as the

solution [33], [34]. Stemming from this, with communication

between vehicles, we open up the possibility of cooperative

perception, which eliminates many faults of a single vehicle

operating on its own sensors. However, as is with all things, we

face challenges in the area of cooperative perception as well.

Works such as [5], [9], [10], [17] present the limitations as well

as the advantages of sharing sensor data between vehicles.

While these works greatly improve the outlook of au-

tonomous vehicles, they still rely on the use of traditional

platforms of data sharing such as cellular or DSRC. With the

emerging edge computing paradigm, we find that although

works such as [9] are suitable for edge, there is no end-to-

end edge system that can address the challenges of using the

edge as well as the ability to fully facilitate the process of

cooperative perception on the edge.

In this paper, we design and evaluate our scheduling pipeline

for the transfer and fusion of different types of data between

vehicles and edge nodes to achieve cooperative perception. We

propose the use of edge nodes as a targeted and purposed sys-

tem to facilitate the exchange of large sensor data towards safer

driving. Through our pipeline, the data, generated by on-board

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:15:15 UTC from IEEE Xplore. Restrictions apply.

sensors, is used towards various edge serviceable tasks. Due

to the limited view of a vehicle, sensor data from one vehicle

cannot be used to perceive road and traffic condition of a larger

area. To address this problem, our pipeline facilitates data

transfer and fusion for cooperative object detection of multiple

vehicles. Through real-world experiments, we evaluate the

performance and robustness of our pipeline on different device

architectures and under different scenarios. We demonstrate

that our pipeline achieves a real-time deadline capable edge

to vehicle interaction via vehicle-edge data transfer and on-

edge computation.

The rest of the paper is organized as follows. Section II dis-

cusses the related research. Section III details vehicular edge

computing and our edge scheduling pipeline design. Section

IV presents the performance results from edge computing for

multi-vehicle cooperative perception. Section V and Section

VI discuss our design and results and point out directions of

future research. Section VII concludes the paper.

II. RELATED WORK

In this section, we investigate the existing literature on

vehicular edge computing for scheduling and pipeline design

in the connected autonomous vehicle (CAV).

Edge for vehicles. [25] provided us a comprehensive re-

view of development and challenges of autonomous vehicle in

edge environment. [16] proposed a vehicle-to-vehicle commu-

nication enhancement scheme by introduced the hierarchical

edge-based preemptive route creation, two-stage learning and

context-aware edge selection approach to improve the packet

forwarding performance. As edge computing becomes a main-

stream solution to process data remotely for autonomous, [28]

investigated the service migration and resource management

from intra- and inter-tier communication in edge and fog com-

puting. In addition, many existing works mentioned about edge

for vehicles but focused on MEC (Mobile-Edge-Computing).

[14] an [18] solved the offloading and caching computing in

vehicle networks for mobile-based edge separately.

Resource allocation and offloading. Resource allocation

plays an important role in CAV system optimization problem.

[27] studied the tradeoff between execution time and energy

consumption for the problem of computation offloading. They

also designed a game theory model to minimize the combi-

nation of energy overhead and delay. Similarly, Zhang [37]

designed a system to reduce the weighted cost of time latency

and energy consumption using mobile devices as the edge

ends. [22] also proposed a computation offloading technique

in terms of energy-efficiency in edge cloud computing. [13]

proposed a distributed offloading scheme by helping multiple

users learn their long-term offloading strategies and proved

a Nash equilibrium can be achieved. [21] propose a method

to allocate resources in a uncertain conditions improve the

reliability of Vehicle-to-infrastructure system.

Scheduling. Scheduling on edge side and between edge

to vehicle is a prevalent topic in recent years. Most of the

paper focused on communication and scheduling strategy

on mobile-based edge ends. [26] proposed a framework to

formulate the communication and resource computation jointly

and promote an optimal strategy on data scheduling using

deep reinforcement learning approach. [11] optimized the

task scheduling by designed a dynamic scheduling scheme

in regard to queue-based and time-based approach in order to

allocate tasks in hybrid mobile environments. [23] designed

a time-driven workflow scheduling mechanism to efficiently

improve the completion time of reasoning tasks in edge

environments by applying the Markov decision process and

Q-learning algorithm in their simulated annealing. In addition,

[36] also applied Markov decision process in their method but

combine with other optimization algorithm in deep reinforce-

ment learning. He also implemented a representative features

extraction by merging parameter-shared network architecture

together with convolutional neural network.

III. EDGE COMPUTING FOR CONNECTED AUTONOMOUS

VEHICLES

A main advantage of employing edge computing compared

with cloud computing to CAVs is the lower latency [30].

Although the cloud has more resources and is more powerful

than an edge device, processing data on edge devices is more

responsive than forwarding data over the Internet to the cloud.

For example, GM(general motors) has recently announced

their new electric vehicles line up with improved ultium

batteries that is supposed to eliminate emissions as well as be

more road friendly [3]. This move towards better on vehicle

energy allows for more energy to be devoted towards extra

protocols, such as edge communication. However, there is still

the need for an efficient approach to allow for mass adoption

of such protocols, especially due to the persistent nature of

such protocols.

Fig. 1. The Vehicles designate cars with the capability of requesting service
from the edge node network. As the requests are received, the edge node
handling the message transactions will cluster the requests into potential
groups for further processing. Through this pipeline, a wide array of models
can then be deployed to the correct vehicle cluster for faster and more accurate
processing.

We argue that edge computing is probably the most suitable

computational paradigm to facilitate heterogeneous, large-

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:15:15 UTC from IEEE Xplore. Restrictions apply.

scale, and agile data processing for CAVs [24]. Towards

this end, we design a data processing pipeline that utilizes

the benefits of vehicles’ close proximity to edge nodes to

achieve low-latency data processing and real-time decision

making, thereby opening up possibilities for various CAV

applications, including cooperative perception where sensor

data from multiple vehicles are exchanged and fused to detect

objects in a wider range and with a better accuracy [9], [10],

[12], [17], [20].

A. Data Communication in Vehicular Edge Computing for

CAVs

Before designing an edge computing pipeline for CAVs,

it is important to understand the state of the art of CAV

technologies, as well as the barriers that hamper the deploy-

ment of edge computing. Here, we briefly review the current

data exchange technologies used by CAVs, including their

major advantages and limitations. Starting off, we look at

the more traditional methods such as DSRC. This allows for

quick inter-vehicular communication of small packets with

other similarly equipped vehicles. However, the downsides

are also clear in that DSRC cannot support high amounts

of data flow. Recently, more efforts are focused on bringing

vehicle-to-everything (V2X) communication for autonomous

driving closer to reality. With companies such as Verizon

and T-Mobile experimenting with 5G in certain regions, it

is no longer a dream to have a connected environment for

connected and autonomous driving [4]. Although, despite the

higher bandwidth of the new 5G network, the transfer of large

amounts of HD map data and other data between multiple

vehicles will stress the local infrastructure unnecessarily. To

support the maintenance of data quality, it is estimated that

around 1 terabyte of data will be need to collected and

sent over the period of one hour [31]. The transfer of HD

maps and other crucial sensor data between vehicles can be

taxing, but if it is instead routed through a trusted edge device

with supporting applications, then we would avoid the issues

presented.

However, through utilizing the edge device, we open up

more challenges. As previously mentioned, trust, different data

types, hardware and software compatibility and versioning

support are all major impediments to an efficient vehicle to

edge data exchange paradigm. Therefore, it is crucial to design

efficient data transmission and data processing pipelines to

enable edge computing for CAVs.

For other vehicular communication solutions, e.g.,

DSRC [19] and WiFi Direct [7], we face more stringent

restrictions as both bandwidth as well as real-time deadlines

are heavily stressed without a proper processing pipeline on

the edge.

From vehicles to the cloud, there exists routing latency,

and in this situation, a direct connection between vehicles

and edge servers provides less communication latency [25],

[32]. Various other barriers such as cooperative perception and

object detection arise when vehicles are reliant on the cloud

to provide computational power towards such purposes. Not

Fig. 2. This pipeline details the exchange between the vehicle and the edge
node in detail. The vehicle is assumed to have service access to the specified
edge node as a part of a service agreement between providers. The vehicle
can send the request contains the necessary metadata to the edge in the
handshaking process. After receiving acknowledgement from the edge, the
data transfer can then begin. After which, the edge will then designate the
vehicle request based on cluster and priority through a scheduling optimization
process before the work can begin. The final results are then broadcasted back
to the vehicle in need.

only does the cloud need to calculate the data, it will also

need to send out requests for the vehicles in the proximity of

the requesting vehicle. This multi-stage approach drastically

increases the overhead of performing such tasks.

B. Design Issues with Vehicular Edge Computing

As mentioned before, with the plethora of new cooperative

perception techniques designed for CAVs [6], [9], [10], we

require far more data to be transmitted than what the traditional

data transmission can support. For example, raw 3D LiDAR

data [10] and feature maps generated from the CNN models [9]

on multiple vehicles need to be consolidated through the

fusion process, however, it will require each vehicle handle

the handshaking process individually with every new vehicle.

The reason why handshaking is such an issue revolves around

the task at hand as well as the vehicles that are communicating.

Take for example a top end autonomous vehicle and a lower

end consumer model with the basic sensors. Should these two

vehicles request each other with data, the lower end will not

have the resources to process the data from the higher end

model. This handshake will result in a failure due to hardware

specifications. Another barrier exists in the number of vehicles

trying to handshake. With no guarantee of a unified standard,

the most challenging issue at hand is trust. Many manufactures

do not trust the information from another vehicle not made by

them due to liability issues, so they will not succeed in a

handshake for data, limiting the scope of available sources.

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:15:15 UTC from IEEE Xplore. Restrictions apply.

Aside from these barriers, the overhead of repeatedly trying

to establish connection with surrounding vehicles will increase

with the number of vehicles. Just as a Distributed Denial of

Service attack can slow or halt access to a service all together,

the same situation is possible with repeated handshaking due

to connection or trust issues. This is a very costly process

both in on-board unit (OBU) computational resources as well

as network bandwidth, the OBU refers to the computing unit

on board the vehicle handling inference, vehicle status, and

other crucial tasks for autonomous driving.

This problem is compounded by the fact that significant

amount of data, at least tens of megabits per second per

vehicle, need to be transferred and processed within a CAV

system [10]. If stationary sensor data, generated from road-

side infrastructures, is included in the fusion process, more

localized data processing is required [6].

Therefore, it is crucial for an edge processing pipeline

to be data friendly in order to facilitate these data-heavy

communication and computation tasks.

With traditional methods, DSRC will keep broadcasting

WAVE short message (WSM) at a set frequency [19], regard-

less of whether the information broadcasted is acknowledged

by other cars; this holds both benefits and detriments. Al-

though it simplifies the data transmission protocol, which is

beneficial for safety message transmission, it does not support

the transmission of raw (or extracted) sensor data. While both

hold irrefutable merits, we believe that sharing either raw or

extracted data among autonomous vehicles is of great value, as

both can be used towards better perception and driving safety.

An encompassing system that addresses the aforementioned

new challenges is still missing in the literature.

C. Task Scheduling in Vehicular Edge Computing

To approach issue, the aforementioned encompassing sys-

tem needs both efficiency and stability to be a reliable platform

to serve critical operations such as real-time driving. Alongside

the challenges and current techniques, works that detail new

uses of edge for CAVs such as [8], [35], open up new

challenges; the first work examine the security aspect where

as the second work studies the effects of CAVs on a platoon

of vehicles for collaboration and fueling purposes.

Due to the massive scope of effective edge usage when

it comes to CAVs, we design an optimization algorithm

centered around the Edge side scheduling, with the primary

focus being on the profiling and establishing the baseline

performance of the native pipeline from F-Cooper. Through

this, we make the first step towards eliminating the challenges

of safe collaborative driving through the use of Edge, with the

focus on pipeline design and scheduling.

The problem formulation is as follows. At any given time

slot, the data of each vehicle can be:

• Processed locally: select features to send to edge (fi)

• In queue to be uploaded to the Edge: time restricted based

on speed (Certain time frame before the location data is

irrelevant.) (di)

• On the Edge awaiting processing. (si)

• Processed by the Edge awaiting either deletion or Archiv-

ing. (qi)

At any given time, the Edge node will consider the following:

• Resources available (Possible consideration of Down

sampling) (Rj)

• Deadline assignment and tracking for each vehicle (Dj)

• Tasks awaiting execution (Estimated execution time) (Tj)

• Tasks in execution (Estimated completion time) (Ej)

Factoring all the possible elements for analysis, we use the

following general equation:

Optimize
X

f0(Xi,j), (i, j) ∈ ω,

subject to Xij = Mij ,

X � 0,

Where Mij = (di, si, fi, qi) ⊎ (Rj , Dj , Tj , Ej),

(1)

where X is the set of all incoming requests with i repre-

senting the vehicle and j representing the edge node. As long

as both vehicle and edge node are within service range , then

for each element of X, the corresponding set Mi,j will be

processed as long as it is not empty. Each set of Mi,j will be

consisted of elements from both the vehicle and edge.

IV. VEHICULAR EDGE COMPUTING FOR COOPERATIVE

PERCEPTION

We conduct experiments to evaluate the run-time process

of F-Cooper using the open-source code cited in [9]. Through

this, the vehicles are able to request for an extension of F-

Cooper to be performed. We then profile F-Cooper through

analysis of the current pipeline implemented to identify po-

tential points of optimization.

As F-Cooper is inherently a lightweight process capable of

running on an edge device, it has several components that we

analyse through our experiment. Since F-Cooper supports the

use of the GPU, we prioritize the utilization of the GPU over

the CPU in our experiment. In our experiment, we will profile

the following elements of the process in order to establish

a good baseline for future work on the optimization and

scheduling:

• GPU usage

• GPU energy consumption

• Total Run-time for a complete processing run of one

frame of data

• Algorithmic break down of the components as well as

their formulations

The overall condensed pipeline of the F-Cooper is shown

in Fig 3. As shown in the figure, we can see that the overall

processes of the F-Cooper is fairly linear in nature. In our

designed pipeline architecture, the data preprocessing for F-

Cooper is not necessary as the handshaking assumes that the

data is pre-compatible. Also, the model training step will also

be excluded as the Edge is assumed to have access to the latest

models available for servicing the compatible vehicles. With

these two big limiting factors removed from the F-Cooper

process, we now look specifically at the following steps of

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:15:15 UTC from IEEE Xplore. Restrictions apply.

Nvidia GPU Status (Before)

GPU
Information

Name Temperature Performance State Persistence Mode Fan Speed
GeForce GTX 1060 39C P2 Off 38%

Usage
Information

Power Usage Power Capacity Memory Usage Memory Capacity Volatile GPU Utilization—
27W 120W 301 MiB 6075 MiB 1%

Processes
Information

GPU Index PID Type Process Name GPU Memory Usage
0 1314 G /usr/lib/xorg/Xorg 22 MiB
0 2000 G /usr/lib/xorg/Xorg 190 MiB
0 5238 C Python3 63 MiB

TABLE I
THE STATUS OF THE GPU WHEN NOT UNDER A WORKLOAD. HERE THE IDLE TEMPERATURE OF HAVING F-COOPER LOADED IN THE BACKGROUND IS

AROUND 39 CELSIUS WITH A POWER DRAW OF AROUND 27 WATTS. THE TOTAL MEMORY USAGE IS ALSO VERY LOW AT ONLY 300 MB.

Nvidia GPU Status (After)

GPU
Information

Name Temperature Performance State Persistence Mode Fan Speed
GeForce GTX 1060 40C P2 Off 38%

Usage
Information

Power Usage Power Capacity Memory Usage Memory Capacity Volatile GPU Utilization—
27W 120W 1927 MiB 6075 MiB 32%

Processes
Information

GPU Index PID Type Process Name GPU Memory Usage
0 1314 G /usr/lib/xorg/Xorg 22 MiB
0 2000 G /usr/lib/xorg/Xorg 190 MiB
0 5238 C Python3 1689 MiB

TABLE II
THE STATUS OF THE GPU WHEN UNDER A SINGLE F-COOPER WORKLOAD. HERE THE TEMPERATURE IS UP BY 1 DEGREES CELSIUS OVER THE IDLE

TEMPERATURE AND THE TOTAL MEMORY USAGE IS UP TO AROUND 2 GB AS COMPARED TO THE 300MB OF WHEN IT WAS IDLE.

voxel generation and forwarding as well as the inference

speed. However, as the main portion of training the model

for accuracy is calculation of the loss function, to gouge the

difference between the prediction to the ground true, we briefly

examine the process to estimate the impact of running such

on an Edge device. The loss function of F-Cooper used for

evaluation purposes is defined as follows. Suppose the model

proposes Npos positive anchors and Nneg negative anchors,

they define the loss function as follows:

L = α
1

Nneg

Nneg
∑

i=1

Lcls

(

pineg, 0
)

+ β
1

Npos

Npos
∑

i=1

Lcls

(

pipos, 1
)

+
1

Npos

Nneg
∑

i=1

Lreg

(

P i, Gi
)

(2)

where pineg and pipos are the probability of positive anchors

and negative anchors respectively, and Nneg and Npos denote

the number of proposed negative and positive anchors respec-

tively. In regression loss, Gi indicates the ith ground truth

while P i means the corresponding predicted anchor. They use

α and β to balance these three losses. They also employ a

binary cross entropy loss for classification Loss and Smooth-

L1 loss function [15], [29].

As we can see from the equation, the amount of processing

time will increase linearly based on the amount of anchors

proposed through the Region Proposal process. This relation-

ship between the input data and the amount of processing time

required to run such calculations indicate that as more objects

enter the area of service, the more processing power is needed

should we require model updates during downtime.

A. GPU Usage

F-Cooper considers both the CPU and the GPU as a

potential source of computational power, however, to focus on

more realistic profiling, we opted to use the Nvidia GeForce

GTX 1060 GPU. This GPU has a maximum power draw of

120 watts and a total of 6 gigabytes of memory.

In our first task, we loaded all the process threads into the

edge system and profiled the overall GPU status. As we see

in Table. I, the status of the GPU when not under a workload.

Here the Idle temperature of having F-Cooper loaded in the

background is around 39 Celsius with a power draw of around

27 watts. The total memory usage is also very low at only 300

MB.

With this data as our baseline, we move on to the full

profiling of the GPU with F-Cooper running one frame of

data inference.

The status of the GPU when under a single F-Cooper

workload is shown in Table. II. Here the temperature is up by 1

degrees Celsius over the idle temperature and the total memory

usage is up to around 2 GB as compared to the 300MB

of when it was idle. This increase in both temperature and

memory usage is a big increase when taking into consideration

that we are just running inference for one frame of data.

As a continuous stream of data is fed through the F-Cooper’s

native pipeline, the amount of processes being loaded comes to

around 1.7 GB, which is very large to run a inference process.

In addition to the memory increase, we also saw the

increase in temperature. As one frame is very small, a realistic

workload will ramp up the temperature and thus force the GPU

to draw more power to both cool and process the workload

more efficiently. We this that this is a key factor to optimizing

the performance of the pipeline.

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:15:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Architecture of the feature based cooperative perception (F-Cooper).
F-Cooper has multiple vehicles’ (using two here for illustration) LiDAR
data inputs which are processed by the VFE layers respectively to generate
voxel features. To fuse 3D features from two cars, two fusion paradigms
are designed: voxel features fusion and spatial features fusion. In Paradigm
I, two sets of voxel features are fused first and then spatial feature maps
are generated. In Paradigm II, spatial features are first obtained locally on
individual vehicles and then fused together to generate the ultimate feature
maps. Symbol

⊕
indicates where the fusion takes place in each paradigm.

An RPN is employed for object detection on the ultimate feature maps in
both paradigms. We use dashed arrows to denote data flow and bold red lines
to present fusion connections. Best viewed in color.

B. Run Time Average

Just the physical hardware usage is not enough for a good

pipeline design, so we also conduct a profiling for the overall

speed of F-Cooper broken down into the following parts:

• Label Generation

• Total Run-time for a complete processing run of one

frame of data

• Algorithmic break down of the components as well as

their formulations

As seen in Table. III, the average time for a single F-Cooper

run is broken down. With Label generation and evaluation as

the two main components of interest. We observe the rapid

generation of the labels at around 0.85 iterations of tasks per

Remain Numbers

of Infos

Avg Forward Time

(per example)

Avg Post-process Time

(per example)

1 0.048 seconds 0.191 seconds
TABLE III

THE AVERAGE TIME FOR A SINGLE F-COOPER RUN IS BROKEN DOWN.
WITH LABEL GENERATION AND EVALUATION AS THE TWO MAIN

COMPONENTS OF INTEREST.

second. Following the label generation, the evaluation step

comes next. First, the Voxels are forwarded from the neural

network at a rate of 0.048 seconds per example. This is the

time that it takes for the native pipeline to extract and initiate

the process of sending the voxels to the target. After the

extraction and forwarding of the voxels per example, the native

pipeline then continues with the local inference portion, to

generate a prediction for the example at hand. As we see in

the figure, the average post process inference time per example

is around 0.191 seconds, which is fairly long when compared

to the voxel extraction and forwarding step.

However, as we only focus on profiling the native pipeline

of F-Cooper, the relative time it takes to receive and also

inference the example timing is not tested.

V. DISCUSSIONS

The profiling of the F-Cooper native pipeline has shown

possibilities for the use of an algorithm based scheduling

optimization. For example, the workload of the native pipe

gives credence to the heavy weight nature of the entire process.

In our approach, the background resource usage can be

optimized for much less usage towards the task at hand. For

example, in our profiling, the native F-Cooper pipe shows

around 30 percent GPU usage for just the inference of a single

frame. This is most likely using the GPU for tasks that can

be routed to the CPU, such as pre-loading the model weights

and other similar tasks.

Further observations made based on the profiling results

indicate that while F-Cooper achieves real-time speeds, it is

still linear in nature for the job execution order. As the voxels

forwarding is not a crucial step that is depended on by the

evaluation and prediction tasks later on, it can be separated

for variable scheduling instead of a static sequential order of

execution.

VI. POTENTIAL RESEARCH

Our results from the experiment proves that there exists

room for optimization in the native pipeline for F-Cooper. Our

proposed pipeline takes much of the heavy workload that F-

Cooper requires and boils it down to a constant background

process rather than the current design of load on use.

Additional factors that play a role in slowing down F-

Cooper can be explored as possible optimization tasks to

further extend the possibility of opening research potentials

for the integration between edge and autonomous vehicles.

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:15:15 UTC from IEEE Xplore. Restrictions apply.

VII. CONCLUSIONS

In this paper, we identify that the existing literature does not

focus on the approach of integrating edge with autonomous ve-

hicles specifically. While efforts have been made towards this

end, we do not see the scalability for the existing works. We

believe that through optimization, a pipeline can be designed

and formalized for current and future efforts, thus allowing for

the easy transition for works such as F-Cooper to fully migrate

to various edge platforms without loss of performance.

In our experiment, we profile F-Cooper. Based on our exper-

imental analysis, we find that there exists many opportunities

to apply our proposed algorithm to optimize the existing native

pipeline of F-Cooper. We formulate a formal method that

allows for such a process to be adopted in this field.

ACKNOWLEDGMENT

This work has been supported in part by the National Sci-

ence Foundation grants CNS-1852134, OAC-2017564, ECCS-

2010332, CNS-2037982, and CNS-1563750. We thank the

anonymous reviewers for their constructive comments, which

helped us improve this paper.

REFERENCES

[1] Connectivity — tesla. https://www.tesla.com/support/connectivity.
[2] For self-driving cars, there’s big meaning behind one big number:

4 terabytes. https://newsroom.intel.com/editorials/self-driving-cars-big-
meaning-behind-one-number-4-terabytes/.

[3] Gm’s path to an all-electric future — general motors.
https://www.gm.com/electric-vehicles.html.

[4] Verizon vs at&t vs t-mobile vs sprint: Choose the best 5g car-
rier - cnet. https://www.cnet.com/how-to/verizon-vs-at-t-vs-t-mobile-vs-
sprint-choose-the-best-5g-carrier/.

[5] O. Altintas and T. Higuchi. Multi-level hybrid vehicle-to-anything
communications for cooperative perception, Oct. 24 2019. US Patent
App. 15/958,969.

[6] E. Arnold, M. Dianati, and R. de Temple. Cooperative perception for 3d
object detection in driving scenarios using infrastructure sensors, 2019.

[7] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano. Device-to-device
communications with wi-fi direct: overview and experimentation. IEEE

wireless communications, 20(3):96–104, 2013.
[8] C. Chen, J. Jiang, N. Lv, and S. Li. An intelligent path planning scheme

of autonomous vehicles platoon using deep reinforcement learning on
network edge. IEEE Access, 8:99059–99069, 2020.

[9] Q. Chen, X. Ma, S. Tang, J. Guo, Q. Yang, and S. Fu. F-cooper: feature
based cooperative perception for autonomous vehicle edge computing
system using 3d point clouds. In ACM/IEEE Symposium on Edge

Computing (SEC), 2019.
[10] Q. Chen, S. Tang, Q. Yang, and S. Fu. Cooper: Cooperative perception

for connected autonomous vehicles based on 3d point clouds. In IEEE

Intl Conference on Distributed Computing Systems (ICDCS), 2019.
[11] X. Chen, N. Thomas, T. Zhan, and J. Ding. A hybrid task scheduling

scheme for heterogeneous vehicular edge systems. IEEE Access,
7:117088–117099, 2019.

[12] L. Ding, Y. Wang, P. Wu, L. Li, and J. Zhang. Kinematic information
aided user-centric 5g vehicular networks in support of cooperative
perception for automated driving. IEEE Access, 7:40195–40209, 2019.

[13] T. Q. Dinh, Q. D. La, T. Q. Quek, and H. Shin. Learning for
computation offloading in mobile edge computing. IEEE Transactions

on Communications, 66(12):6353–6367, 2018.
[14] J. Du, F. R. Yu, X. Chu, J. Feng, and G. Lu. Computation offloading

and resource allocation in vehicular networks based on dual-side cost
minimization. IEEE Transactions on Vehicular Technology, 68(2):1079–
1092, 2018.

[15] R. Girshick. Fast r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 1440–1448, 2015.
[16] S. Guleng, C. Wu, Z. Liu, and X. Chen. Edge-based v2x communications

with big data intelligence. IEEE Access, 8:8603–8613, 2020.

[17] T. Higuchi, M. Giordani, A. Zanella, M. Zorzi, and O. Altintas. Value-
anticipating v2v communications for cooperative perception. In IEEE

Intelligent Vehicles Symposium, 2019.

[18] R. Q. Hu et al. Mobility-aware edge caching and computing in
vehicle networks: A deep reinforcement learning. IEEE Transactions

on Vehicular Technology, 67(11):10190–10203, 2018.

[19] J. B. Kenney. Dedicated short-range communications (dsrc) standards
in the united states. Proceedings of the IEEE, 99(7):1162–1182, 2011.

[20] S. Kim and W. Liu. Cooperative autonomous driving: A mirror neuron
inspired intention awareness and cooperative perception approach. IEEE

Intelligent Transportation Systems Magazine, 8(3):23–32, 2016.

[21] A. Kovalenko, R. F. Hussain, O. Semiari, and M. A. Salehi. Robust
resource allocation using edge computing for vehicle to infrastructure
(v2i) networks. In 2019 IEEE 3rd International Conference on Fog and

Edge Computing (ICFEC), pages 1–6. IEEE, 2019.

[22] X. Li, Y. Dang, M. Aazam, X. Peng, T. Chen, and C. Chen. Energy-
efficient computation offloading in vehicular edge cloud computing.
IEEE Access, 8:37632–37644, 2020.

[23] K. Lin, B. Lin, X. Chen, Y. Lu, Z. Huang, and Y. Mo. A time-driven
workflow scheduling strategy for reasoning tasks of autonomous driving
in edge environment. In 2019 IEEE Intl Conf on Parallel & Distributed

Processing with Applications, Big Data & Cloud Computing, Sustain-

able Computing & Communications, Social Computing & Networking

(ISPA/BDCloud/SocialCom/SustainCom), pages 124–131. IEEE, 2019.

[24] L. Liu, S. Lu, R. Zhong, B. Wu, Y. Yao, Q. Zhang, and W. Shi. Com-
puting systems for autonomous driving: State-of-the-art and challenges.
IEEE Internet of Things Journal, pages 1–1, 2020.

[25] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi. Edge computing
for autonomous driving: Opportunities and challenges. Proceedings of

the IEEE, 107(8):1697–1716, 2019.

[26] Q. Luo, C. Li, T. H. Luan, and W. Shi. Collaborative data scheduling
for vehicular edge computing via deep reinforcement learning. IEEE

Internet of Things Journal, 2020.

[27] M.-A. Messous, H. Sedjelmaci, N. Houari, and S.-M. Senouci. Compu-
tation offloading game for an uav network in mobile edge computing. In
2017 IEEE International Conference on Communications (ICC), pages
1–6. IEEE, 2017.

[28] L. Pacheco, H. Oliveira, D. Rosário, E. Cerqueira, L. Villas, and
T. Braun. Service migration for connected autonomous vehicles. In 2020

IEEE Symposium on Computers and Communications (ISCC), pages 1–
6. IEEE, 2020.

[29] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural

information processing systems, pages 91–99, 2015.

[30] M. Satyanarayanan. The emergence of edge computing. Computer,
50(1):30–39, 2017.

[31] H. G. Seif and X. Hu. Autonomous driving in the icity—hd maps as
a key challenge of the automotive industry. Engineering, 2(2):159–162,
2016.

[32] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision
and challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.

[33] A. Talebian and S. Mishra. Predicting the adoption of connected
autonomous vehicles: A new approach based on the theory of diffusion
of innovations. Transportation Research Part C: Emerging Technologies,
95:363–380, 2018.

[34] C. Wang, S. Gong, A. Zhou, T. Li, and S. Peeta. Cooperative
adaptive cruise control for connected autonomous vehicles by factoring
communication-related constraints. Transportation Research Part C:

Emerging Technologies, 2019.

[35] J. Xiong, R. Bi, M. Zhao, J. Guo, and Q. Yang. Edge-assisted privacy-
preserving raw data sharing framework for connected autonomous
vehicles. IEEE Wireless Communications, 27(3):24–30, 2020.

[36] W. Zhan, C. Luo, J. Wang, C. Wang, G. Min, H. Duan, and Q. Zhu.
Deep reinforcement learning-based offloading scheduling for vehicular
edge computing. IEEE Internet of Things Journal, 2020.

[37] K. Zhang, X. Gui, D. Ren, and D. Li. Energy-latency tradeoff for
computation offloading in uav-assisted multi-access edge computing
system. IEEE Internet of Things Journal, 2020.

[38] Q. Zhang, Y. Wang, X. Zhang, L. Liu, X. Wu, W. Shi, and H. Zhong.
Openvdap: An open vehicular data analytics platform for cavs. In
Distributed Computing Systems (ICDCS), 2017 IEEE 38th International

Conference on. IEEE, 2018.

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:15:15 UTC from IEEE Xplore. Restrictions apply.

[39] Q. Zhang, Q. Zhang, W. Shi, and H. Zhong. Distributed collaborative
execution on the edges and its application to amber alerts. IEEE Internet

of Things Journal, 5(5):3580–3593, 2018.

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:15:15 UTC from IEEE Xplore. Restrictions apply.

