2021 Fourth International Conference on Connected and Autonomous Driving (MetroCAD) | 978-1-6654-4594-8/21/$31.00 ©2021 IEEE | DOI: 10.1109/METROCAD51599.2021.00017

2021 Fourth International Conference on Connected and Autonomous Driving (MetroCAD)

OASD: An Open Approach to Self-Driving Vehicle

Sudip Dhakal, Deyuan Qu, Dominic Carrillo, Qing Yang, Song Fu
Computer Science and Engineering
University of North Texas
Denton, USA
{SudipDhakal, DeyuanQu, DominicCarrillo} @my.unt.edu
{Qing.Yang, Song.Fu} @unt.edu

Abstract—Building autonomous vehicles is an arduous task
and requires a lot of technical understanding and cognizance.
Grasping the essentials of such technologies and finding the
perfect combination of hardware and software implementation
is key to building autonomous vehicles. As we move towards
autonomous vehicles, How do we find a solution to building
an autonomous vehicle? To answer this question, we break it
down into different hardware and software requirements. We
present a hands-on solution for building autonomous vehicles
by using an open-source platform Autoware which is based
on ROS (Robot Operating System). Our initial implementation
consists of detailing the overall system requirements, sensors
calibration, point cloud map generation, waypoint generation
and following, and finally vehicle control. We have also conducted
the simulation test of localization and path following based on
the point cloud map and waypoint generated. We believe our
implementation provides a general understanding for building
autonomous vehicles in the academic as well as in research field.

Index Terms—Autoware, ROS, Autonomous vehicle, Calibra-
tion, Point Cloud Map, Waypoint, Simulation

I. INTRODUCTION

Autonomous vehicle is an emerging field and is quickly
becoming the next essence of mobility framework. From
social life to industrial, autonomous vehicles are destined to
be used extensively in the near future. Because they provide
easy maneuverability, we can think of diverse applications that
can benefit from the system. In terms of implementation, we
can find very few approaches that provide an uncomplicated
and basic overview of the entire autonomous vehicle system.
Despite the overwhelming popularity of autonomous vehicles
and well-studied architecture and approaches, not much is
known about the details of the development of autonomous
vehicles form ground level. In particular, there are very few
papers on development of autonomous vehicles, concerning
real problems of autonomous vehicles. These is largely due
to the fact that most of research focuses on higher level of
autonomous vehicle system and very few are concerned with
the hands-on accumulation of hardware and software systems
required for the development of autonomous vehicles. Hence,
our goal is to provide a solution to building autonomous
vehicles by breaking down the very basic software and
hardware components, how they are used in the system
and how they are in-cooperated with each other to build an
autonomous platform. We define this solution from both a
hardware and software perspective. The main contribution

from this project are as follows:

* hands on manual for building autonomous vehicle system

e detailed instruction on usage of Autoware for sensor
calibration, localization, waypoints generation and simulation
* SSC node for enabling control functionality on the
autonomous vehicle

Our implementation of AVS (Autonomous Vehicle System)
consists of high-end hardware components namely, AStuff-
Spectra, LiDAR, Camera, PACMod (Platform Actuation and
Control Module), and the vehicle. Similarly, software com-
ponents used in our AVS are an open source autonomous
platform called Autoware, Robot Operation System (ROS)
among others. Usually different functional components of
autonomous vehicles fall into sensing, computing, and actua-
tion. Examples of sensing devices or sensors include cameras,
LiDAR, radars and so on. For this purpose we are using
Velodyne VLP-16 LiDAR, Flir BFLY-PGE-31S4M/C Camera.
Our vehicle has PACMod integrated into the system, which
allows to add “by-wire” control functionality for controlling
vehicles and AStuff-Spectra as a computational platform.
Similarly, Autoware is the open source software program used
in our implementation. This platform has been extensively
used in research and industry with automotive manufacturers
considering it as a baseline for prototyping automated vehi-
cles.The main reason for selecting these components as part of
our implementation is their ease of use and availability. The
open source community working for research and develop-
ment of autonomous vehicles provide enough resource for all
these components. Especially for Velodyne VLP-16 Lidar, Flir
BFLY-PGE-31S4M/C Camera we can find abundant resources
and forums dedicated to answering questions and queries from
the research community. This provides ease for debugging and
implementation of our platform.

II. SYSTEM OVERVIEW
A. Vehicle and Sensors

”Mario” is our vehicle with various sensors and modules
for enabling autonomous driving . This vehicular platform
is a customizable vehicle with drive-by-wire functionality
using a module referred to as Platform Actuation and Control
Module (PACMod) [1][2]. Various features of the PACMod
include:-

* CAN communication interface for user control and feedback

978-1-6654-4594-8/21/$31.00 ©2021 IEEE 54
DOI 10.1109/MetroCAD51599.2021.00017

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:18:12 UTC from |IEEE Xplore. Restrictions apply.

14 \ I/

|
|
|
|

| Ethernet, |

|:{>|

LAStuﬂ- Spectra)

—_—

| Ethernet

||:(>

|

|

| il
| 3D-LDAR

|

|

|

CAN

|
|
|
|
|
|
|
|

L HD Camera J
e s

Fig. 1. Autonomous vehicle system model

e ability to physically control the vehicle via control of the
actuators

* ability to send and receive CAN messages

e ability to update vehicle firmware via USB

For sensing the environment we are using Velodyne VLP-
16 LiDAR. LiDAR scanners illuminate a target with pulsed
lasers and based on the time taken to get the reflected pulses
from the target/object, they provide an approximation of the
distance to the object. We are using lidar to generate PCD (
Point Cloud Data) which can be used to generate digital 3D
representations of the different scanned objects as well as the
surrounding.

Autoware supports different versions of Point Grey, Baumer,
Allied Vision, and Generic UVC web cameras. Grasshopper
3 Point Grey and Ladybug 5 cameras are used to detect
objects. The Ladybug 5 camera is Omni-directional, covering a
360-degree view, whereas the Grasshopper 3 is unidirectional
running at a high rate. The first one can be used for detecting
moving objects, and the latter one is used for recognizing
traffic lights. Multiple Cameras are supported but they should
be configured separately for individual purposes [3]. Flir
BFLY-PGE-31S4M/C Point Grey camera is used as another
sensing device in our system. We can use cameras for object
detection as well as to recognize traffic lights.

B. Spectra

AStuff-Spectra is the world’s first industrial-grade GPU
computer supporting high-end graphics cards [4]. Because we
are dealing with complex algorithms for autonomous driving,
we need a high end computing device or computer that
supports intensive computing and data parallel algorithms.
This helps to increase the execution speed of those algorithms
significantly.

C. ROS

Robot Operating System (ROS) is a set of computer operat-
ing system architecture designed for robot software develop-
ment. It is an open source meta-level operating system (post-
operating system) that provides operating system services,
including hardware abstract description, step-by-step driver
management, execution of shared functions, message transfer
between programs, and program release package management.
It also provides some tools and libraries for acquiring, build-
ing, writing and executing multi-computer fusion programs
[5]. In this paper, we are using ROS 1 Melodic version.

III. AUTOWARE

Autoware is an open source platform or software for
autonomous driving technology, which provides algorithms
and alternatives for perception, location mapping, detection
and planning required for autonomous driving navigation, as
well as an easy-to-use graphical user interface (GUI) package
[6].In this paper, we are using Autoware.Ai master version.
Autoware provides runtime manager as shown in Fig.2 which
is the GUI that makes it easy for simulation and operation of
autonomous driving vehicle. We can launch ROS nodes using
runtime manager. Including the Autoware.ai version some of
the Autoware related projects currently used are as follows:

* Autoware.ai: This is the first version of the Autoware and is
developed on ROS 1. We can find a large group of researchers
and open source community contributing to this project.

* Autoware.io: This is an extended version of Autoware
also known as the interface project for Autoware. This is
designed to be extended with proprietary vehicle software and
other third-party libraries. This also allows us to work with
variant source of device drivers for sensors as well as by-wire
controllers for vehicle for example PACMod.

* Autoware.auto: This is a redesigned architecture of Auto-
ware.ai based on ROS 2. This version of Autoware follows the
accepted software engineering practices and industrial safety
standards such as ISO 26262[7][8]. The modules and APIs
used in this version of Autoware are similar but upgraded
version of those used in previous version and they provide
better support and overall performance to reproduce behaviors
live and on development machines.

Runtime Manager x

‘Qul:kstar(Setup Map Sensing Computing Interface Database Simulation Status Topics State
Localization home/user/autow aifsrc/autow cumentation/autow
-
Motion Planning ome/user/autoware.ai/s e/docume
Android Tablet Oculus Rift Vehicle Gateway Remote Control Cloud Data
Auto Pilot ROSBAG RViz RQT
14.3% 21.4% 8.3% 14.3% Just/bin/gnome-shell (23.1 %CP
top (23.1%CPU)
[rcu_sche: u)
Justflib/xorg/Xorg (7.7 %CPU)
python2 (7.7 %CPU)
[] - [] 1GB/31GB(6%)
CPUD cPU1 cPu2 cPU3 Memoryll
& Autoware
Fig. 2. Autoware Runtime Manager
A. Sensing

Autoware supports camera, LiDAR, radar, and GPS/IMUs
primary sensors. These sensors helps to perceive the sur-
rounding environment as well as driving scenarios. LiDAR

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:18:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Y-axis Field of View

scanners measure the distance to objects by illuminating a
target with pulsed lasers and measuring the time of the
reflected pulses [6]. Point cloud data obtained from LiDAR
can be used to create a 3D map or representation of the
surrounding environment. LiDAR sensor fused together with
camera sensor can be used to create refined and more accurate
3D representation that can help not only to create a 3D map but
also to recognize traffic lights, pedestrians, cycles and other
features of the scanned objects.

B. Localization and Mapping

Localization is one of the most basic and important prob-
lems in autonomous driving. The reliability of the autonomous
driving depends hugely upon localization. In autoware the
localization problem is solved by using the Normal Distri-
butions Transform (NDT) algorithm. To be precise, we use
the 3D version of NDT to perform scan matching over 3D
point-cloud data and 3D map data.3 As a result, localization
can perform at the order of centimeters, leveraging a high-
quality 3D Lidar sensor and a high-precision 3D map. We
chose the NDT algorithms because they can be used in 3D
forms and their computation cost does not suffer from map size
(the number of points).Localization is also a key technique to
build a 3D map. Because 3D Lidar sensors produce 3D point-
cloud data in real time, if our autonomous vehicle is localized
correctly, a 3D map is created and updated by registering the
3D point-cloud data at every scan. This is often referred to as
simultaneous localization and mapping [9].

C. Detection and Tracking

It is of the upmost priority for autonomous vehicles to
detect the surrounding objects such as pedestrians, traffic
signals, lights, motorcycles, and other vehicles. The reliability
and accuracy of autonomous system increases significantly as
the number of detected objects increases. Various approaches
supported by autoware for object detection include SSD,
YOLOvV2, YOLOv3 algorithms.

56

Fig. 6. Skew Field of View

Since autonomous driving environment is volatile and un-
predictable with frequent changing behaviour shown by the
surrounding objects, tracking the trajectories of those objects
is very important for decision making. These trajectories are
input to the mission planning and path following modules and
helps to determine the appropriate direction of the moving
autonomous vehicle.

D. Mission Planning

Based on the input from the detection and tracking mod-
ule of autoware and also the 3D map obtained through
localization/mapping, path trajectories are determined through
mission planning module of autoware. This modules also
include navigation from the vehicle current position to the
the destination.The 3D map obtained through localization and
mapping module contains various features that can be used for
mission planning. On the top of the route generated by the map
navigation system, mission planner directs the autonomous
vehicle to follow the centre lines of the lanes. Lane changes,
turning and other important features of autonomous driving
are facilitated by mission planning module.

E. Motion Planning and Path Following

Given the global trajectories, the motion planning module
of autoware helps to generate local feasible trajectories. For
motion planning search algorithms such as A*, hybrid A*
are used in order to find the minimum cost path to the
destination. For trajectory generation autoware uses trajectory
generation algorithms such as lattice-based methods. Another
notable method implemented by autoware is waypoints gen-
eration/follower for trajectory based path following. In this
methods, waypoints are the trajectory points of the vehicle, a
series of position information formed by matching the vehicle
LiDAR data and the point cloud map. At first, the waypoints
are generated using the 3D map obtained through mapping
and saved in a file. This file contains the waypoints which can
be used for path following.

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:18:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Camera-LiDAR extrinsic

IV. SENSOR CALIBRATION

Autonomous Vehicle Systems (AVS) generally relies on
multiple sensors to perceive the environment. LiDAR sensor
helps to perceive the surroundings for object detection, local-
ization and mapping. Since, AVS are equipped with multiple
sensors, leveraging the power of all the sensors and fusing
them together can result in a more accurate and precise
measurement as well as object detection. LiDARs are fused
with cameras to improve the overall accuracy of 3D object
detection. However, the fusion should be carried out carefully
such that the perceived transformations from LiDAR and
camera have been assigned to a shared coordinate frame so
that we can fuse the sensor data. Hence, calibration of all the
sensors equipped in the system is required. Camera calibration
is done to find out the true parameters of the camera. These
parameters also known as camera intrinsic parameters include
focal length, principal point, lens distortion, projections and
so on. Camera calibration helps to tune in these parameters.
LiDAR Calibration, with respect to camera, is to estimate
the LiDAR extrinsic parameters. Extrinsic parameters repre-
sents the geometric relation between camera and the LiDAR.
Camera-Lidar extrinsic calibration is done to tune in the points
in the 3D-LiDAR points plane and pixels in the image plane.
Since we are using Velodyne-16 LiDAR and Flir camera,
our calibration include both the camera intrinsic and extrinsic
calibration.

A. Camera Intrinsic

For obtaining the camera intrinsic, we use the autoware
camera calibration script provided by autoware. Like typical
calibration methods, we are also using the chessboard (8x6).
This is a simple method used for camera calibration and is
very robust to implement.The method is robust over a range
of illumination and a complicated background [10]. They have
also proven in the past to yield accurate calibration results.
The chessboard provides features that can be computed as
intersection of lines.

This allows linear features to be detected accurately. Sim-
ilarly, one advantage of using chessboard pattern over a
traditional dotted pattern is that since we have line features,

57

Fig. 8.

University of North Texas DP building Point Cloud Data

it is easier to infer distortion coefficient values, which is not
possible in case of dotted pattern. Hence, using the Autoware
camera calibration script along with the required parameters
for size of chessboard and also the camera topic which is
camera/image raw in our case we will obtain a camera stream.
In order to get a good calibration result we will need to provide
multiple field of view of the chessboard to the camera frame
as shown in Fig. 3, 4, 5 and 6. We have 4 different field of
views namely X, Y, size and skew such that:

e checkerboard on the camera’s left, right, top and bottom of
field of view

e X bar - left/right in field of view

* Y bar - top/bottom in field of view

e Size bar - toward/away and tilt from the camera

* checkerboard filling the whole field of view

* checkerboard tilted to the left, right, top and bottom (Skew)
As for the X- axis view we hold the chessboard in left and
right direction as shown in Fig. 3. For Y-axis, we place the
chessboard in top and bottom direction as shown in Fig. 4.
For size, we place the chessboard towards and away from the
camera sensor as shown in Fig. 5. Similary for skew, we place
the chessboard in tilted manner as shown in Fig. 6.

B. Camera Extrensics

For obtaining the camera extrinsics, we use the Autoware
camera LiDAR calibrator node. Executing this node provides
a camera and LiDAR stream in two seperate windows. In
autoware camera-LiDAR extrinsics are obtained by clicking
on the corresponding points in the image and the point cloud.
For camera instrinsic, the output file is obtained once all the
field of views required are executed by the script.

However for camera-LiDAR extrinsics, we have to click on
9 different corresponding points in the image and the points
cloud respectively. We used 9 sticky notes to pin 9 different
points in the camera stream and corresponding points were
identified carefully in the LiDAR stream and matched properly
to finally obtain the camera-LiDAR extrinsic file i.e camera-
LiDAR calibration. Our experimental setup for performing
camera-LiDAR calibration shown in Fig. 7.

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:18:12 UTC from IEEE Xplore. Restrictions apply.

V. LOCALIZATION BASED ON POINT COULD MAP

Localization is the core module of autonomous driving sys-
tem. The traditional method can use GPS/IMU for localization,
but this method is not suitable for use in urban areas because
the GPS signal will be weak, and the price will be relatively
high if high-precision GPS sensors are used. Another method
is to use conventional simultaneous localization and mapping
(SLAM), SLAM determines the position of the current vehicle
position by using the observed environmental features, but
it is difficult to apply to the field of autonomous driving.
Autonomous vehicles are fast and the road environment is
complicated. In long distances driving, as the distance increase
the deviation of SLAM localization will gradually increase.

Generally, for autonomous vehicles, it is best to achieve
centimeter-level positioning accuracy under current road con-
ditions. In actual localization, use the current LiDAR sen-
sor scanning and the pre-built high-precision map to match
the point cloud to determine the specific location of our
autonomous vehicle on the map. Registration and position-
ing based on high-precision point cloud images and LiDAR
usually account for a large proportion in the overall fusion
localization due to their high accuracy and reliability, and
are relatively reliable data sources in autonomous driving
localization systems. Therefore, creating a LiDAR-based point
cloud map is the first step in building a high-precision map
[11][12].

A. Record Rosbag for Point Cloud Data (PCD)

We recorded the rosbag around our lab inside the University
of North Texas (UNT) Discovery Park (DP) building. As you
can see the Fig. 8, first we drove the vehicle from point A
to point B slowly, and used the runtime manger provided by
Autoware to record the rosbag file while driving. Since we
only use LiDAR sensors, so just select /points raw topic in
the rosbag record interface and it will only save point cloud
data based on LiDAR sensor.

B. Normal Distribution Transform (NDT) Algorithm

In order to find the current position from the point could
map, usually we compare the point cloud scanned by Li-
DAR with the point cloud of the map. However, one of the
problems is that the point cloud scanned by LiDAR may be
slightly different from the point cloud from the map. The
deviation here may come from measurement errors, or the
change in scenarios (for example, pedestrians, vehicles). NDT
algorithm is used to solve these subtle deviation problems. It
does not compare the gap between the two-point clouds, but
converts the reference point cloud (ie, high-precision map)
into the normal distribution of multi-dimensional variables.
If the transformation parameters can make the two scanning
data match very well, then the probability density of the
transformation point in the reference frame will be very large
[13] [14].

Autoware provided two applications for NDT algorithm:
NDT Mapping and NDT Matching. Usually, we use NDT
Mapping for point cloud map generation, for localization we

58

select NDT Matching. Both are based on NDT algorithm, their
mainly difference are updating target map.

TF NDT_MAPPING TF
}—>| }—b{ Base_link H Velodyne ‘

Fig. 9. Mapping Coordinate System

| World Map

1) Normal Distribution Transform (NDT) Mapping: Before
generating the actual point cloud map we have to under-
stand the relationship between Autoware’s mapping coordinate
systems. There are four basic coordinate systems namely
world coordinate system, map coordinate system, base link
coordinate system and Velodyne coordinate system. Fig. 9
shows

Fig. 11. Localization Simulation by using NDT Matching

the conversion relationship between them. For coordinate
conversion from world to map and conversion from base link
to Velodyne we can use the ROS TF from the runtime manager.
As for the coordinate conversion from map to base link as
shown in the Fig. 9, it requries a scan-to-map algorithm also
known as Normal Distribution Transform (NDT) algorithm
which is also provided by the Autoware runtime manager [15].

Hence, once the point cloud data collection is completed, we
can make point cloud maps offline. The basic idea is to input
the point cloud data firstly, that means to load the previously
recorded rosbag file. Then as mentioned earlier Autoware

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:18:12 UTC from IEEE Xplore. Restrictions apply.

uses the Normal Distribution Transform (NDT) Mapping to
generate the point cloud map. The result of the point cloud
map is shown in Fig. 10.

2) Normal Distribution Transform (NDT) Matching: NDT
is the core localization algorithm of Autoware autonomous
driving open-source project, which is also widely used in the
field of real autonomous driving. After loading the point cloud
map, NDT Matching will continuously receive the point cloud
scanned in real-time and update the target asynchronously
map, and then use the NDT algorithm to continuously match-
ing to obtain the current position.

The objective function optimized by the NDT algorithm is
mainly the similarity of the probability distribution of the input
point cloud and the target point cloud. The computational com-
plexity of this registration algorithm is positively correlated
with two elements: Enter the point density of the point cloud
and Bias of initial position estimation [16]. In this project we
used voxel grid filter to down-sampling the density of the input
point cloud, and we used the default initial position which
provided by Autoware.

C. Simulation for Localization

After constructing the point cloud map, we can perform
the simulation test of localization based on the point cloud
map. First, upload the generated PCD map file, and then select
NDT matching in the runtime manager. Select voxel grid filter,
vehicle pose node, and default initial position from runtime
manager as well.

The simulation results shown in Fig. 11. In RViz, we can
see whether the LiDAR point cloud matches the existing point
cloud map after loading the NDT algorithm.

VI. WAYPOINTS GENERATION AND PLANNING

In this paper, waypoints are the trajectory of the vehicle, a
series of position information formed by matching the vehicle
LiDAR data and the point cloud map. So first we have to
use the runtime manager to load the generated PCD map file.
Then we also need to set the filter, select voxel grid filter in the
runtime manager, this is a down-sampling method. For a given
point cloud map, this method defines a 3D voxel grid.There
are multiple points inside each voxel. Usually, the centroid or
centre of all these points is used as approximation. This helps
to reduce the number of points in points cloud map and makes
the representation of the underlying surface more accurate and
fast.

Then we have to choose NDT matching algorithm, because
we need to convert the map coordinate system to the base
link car coordinate system. Finally start the vehicle pose
connect node and select the waypoint saver. Waypoints will
be automatically generated after done of rosbag file playing
[17]. Each waypoint has a specific value for velocity, x, vy, z,
yaw and change flag information. An example of saved way-
points file is shown in Fig. 12. In the given example X, Yy,
z are values in the local East, North, Up (ENU) coordinate
system. Yaw value stands for direction/heading in radians of
a car along the lane. Velocity is target velocity for vehicle,

59

Text Import - [saved_waypoints_2021020.csv] =

Import
Character set: | Unicode (UTF-8) et
Language: Default - English (USA) G
From row: 1) |t

Separator Options

Fixed width © separated by
Tab Comma Semicolon Space Other
Merge delimiters String delimiter: " Pt

Other Options

Format quoted Field as text Detect special numbers

Fields
Column type -~
|standard |standard |standard [Standard |Standard |standard |

1 17 z yaw velocity change_fIag
2 .e270 0.8012 -0.0265 -0.0009 © e
3 .0893 ©.0060 -0.01606 -©.0012 2.9347 (]
4 2.0918 ©0.0076 ©0.0012 -9.0023 3.8024 (]
5 .1e75 0.0153 9.08311 -0.0045 4.2903 2]
6 .1935 0.08033 0.e280 -90.0048 4.2501 e
7 5.2769 -0.0021 0.0407 -0.0015 3.7346 e
8 6.3996 -0.0055 ©0.0390 ©.0030 4.5117 2]
K .5221 0.0210 0.8540 0.0042 4.6572 2]
.5328 ©0.0171 ©.0754 ©.0069 4.0858 (]
.6730 ©.0526 ©.0875 ©.0093 5.3349 (]
.7998 ©0.0696 ©.1133 ©.0117 4.6437 (]
.9179 ©.0879 8.130e2 0.0141 4.2634 2]
.9194 ©.1026 ©.1112 ©.0148 4.2146 (]
.1138 ©.1261 ©.1219 ©.0138 4.4898 (]
.2165 0.1400 ©.1392 ©.0109 4.8758 (]

OK Cancel

Fig. 12. Waypoint File Generated by Autoware

Fig. 13. Visualization for Waypoint Data

and change flag is basically stored as O (straight ahead), but if
you want to change the lane, you can modify by yourself (1
turn right, 2 turn left) [18]. The Autoware runtime manager
provides waypoint loader node through which we can visualize
these waypoints in RVIz. We also select other options such as
velocity-set, vel pose connect, pure parsuit, twist filter among
other for meticulous visualization. Once the waypoint file is
loaded and all the aforementioned nodes are selected we can
run the motion planning simulation for visualization in RViz
shown in Fig. 13. The waypoints data are clearly visible as
the vehicle moves along the given path.

VII. VEHICLE CONTROL
A. Speed and Steering Control (SSC) to PACMod

There is no direct communication between Autoware and
Polaries Gem vehicle, although the software of PACMod is

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:18:12 UTC from IEEE Xplore. Restrictions apply.

also based on ROS. It can be seen from the Fig. 14 that the
control signal sent by Autoware Speed and Steering Controller
interface (SSC interface) node belongs to the high level
command, but the control command required by PACMod
node belongs to the low level command.

Based on the Fig. 14, We develop a Speed and Steering Con-
trol (SSC) node (written by C++) which acts as an interface
for latitudinal and longitudinal control of vehicles [19]. This
node helps to convert the high level control commands from
Autoware SSC interfce node such as desired speed, desired
curvature into low level control commands such as throttle,
break and steering wheel control messages as required by the
lower level drive-by-wire control system. We need to make
this conversion because the PACMod only understands the low
level commands and currently there are no ways to manually
do the conversion. This is one of the main contributions from
this paper.

B. PACMod to Vehicle

PACMod is a general-purpose electronic controller, which
has been integrated into the vehicle wiring. It is an inter-
mediate component that communicates original equipment
manufacturer (OEM) sensors with external software. The on-
board computer uses CAN to send commands and read sensor
data from PACMod. This allows users to control and feedback
through the CAN communication interface [20]. In addition,
AutonomouStuff provided open source ROS package for de-
veloping [21]. Our final overview of Autoware Architecture
and our Implementation is shown in Fig. 15.

| Autoware.ai thicIeCmd |
| ‘ $SSC interface node |
L _sewesimsl |dssonmuecass | ||
________ —_ L
r SSC speed |
curvature
| ‘ Speed and Steering Controller (SSC) node |
| . desire
| desire desire steering |
throttle | brake whesl
I pedal (4] | pedal (4| angle (ra0) |
TV I R T A
Vehicle ‘ PACMod node steering wheel angle

| |
I [oo | |
| .) |
| |
| |

Throttle pedal Steering wheel system

|_ Brake pedal |

Fig. 14. Overview of SSC Structure

VIII. FUTURE WORK

The project presented in this paper is a foundation for
building autonomous vehicle. The sections that we have pre-
sented here fulfils the initial requirement only. Improvement
to each section including addition of other principal features
of AVS are planned for future work. Object detection is a key

60

Sensing Computing Actuation
Perception Planning
Flir o= [BN SEC
Camera I b . !
I H
1
Velodyne -: U | [mm)|| PACMod
| I - 1
! | Localizati |, | | Waypoint_| | U
GPS/IMU § on ,: l\ loader ,,' Mato

Fig. 15. Overview of Autoware Architecture and our Implementation

component and we plan to implement it along with obstacle
detection and avoidance. In order to get more accuracy posi-
tion in localization, we will add GPS/IMU sensor. In our future
work we also plan to integrate the control functionality of
the vehicle with sensing and computing. Currently our vehicle
control system i.e. SSC node is a standalone node. We plan
to blend SSC node with all the other nodes and functionalities
required for AVS.

IX. CONCLUSION

This project expands the usefulness of the current solution
to building autonomous vehicles. We have presented Autoware
and Astuff-Spectra on board. This paper will provide a hands
on solution to building autonomous vehicles. One step further
from the available Autoware support we are adding a control
functionality into the platform by building a SSC node, which
will provide an interface for lateral and longitudinal control
of the vehicle. We believe our implementation will provide a
comprehensive and sturdy foundation for building AVS.

ACKNOWLEDGEMENT

The work has been supported in part by the National Science
Foundation grants CNS-1852134, OAC-2017564, and ECCS-
2010332.

REFERENCES
[1]

[2]
[3]

URL: https://autonomoustuff.com/product/astuff-nev/.

URL: https://autonomoustuff.com/product/pacmod/.

Vysyaraju Manikanta Raju, V. Gupta, Shailesh Lomate, “Performance
of Open Autonomous Vehicle Platforms: Autoware and Apollo” in
IEEE 5th International Conference for Convergence in Technology
(12CT),2019.

URL: https://autonomoustuff.com/product/astuff-spectra/.

URL: https://en.wikipedia.org/wiki/Robot_Operating_System

URL: https://www.autoware.ai/

International Standardization Organization, “ISO 26262-10:2018 road
vehicles — functional safety — part 10: Guidelines on ISO 26262,” Inter-
national Standardization Organization, Tech. Rep. ISO 26262- 10:2018,
2018.

A. Carballo, D. Wong, Y. Ninomiya, S. Kato and K. Takeda, "Training
Engineers in Autonomous Driving Technologies using Autoware,” 2019
IEEE Intelligent Transportation Systems Conference (ITSC), Auckland,
New Zealand, 2019, pp. 3347-3354, doi: 10.1109/ITSC.2019.8917152.
S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and T.
Hamada, “An open approach to autonomous vehicles,” IEEE Micro, vol.
35, no. 6, pp. 60-69, 2015.

[4]
[5]
[6]
[71

[8]

[9]

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:18:12 UTC from IEEE Xplore. Restrictions apply.

[10] Yu, Chunsheng Peng, Qingjin. (2006). Robust recognition of checker-
board pattern for camera calibration. Optical Engineering - OPT ENG.
45.10.1117/1.2352738.

[11] URL: https://adamshan.blog.csdn.net/article/details/79230612

[12] URL: https://adamshan.blog.csdn.net/article/details/106739856

[13] URL: https://zhuanlan.zhihu.com/p/77623762

[14] P. Biber and W. Strafler, ”The Normal Distributions Transform: A New
Approach to Laser Scan Matching,” in IEEE/RJS Intern. Conf. on
Intelligent Robots and Systems, 2003.

[15] URL: https://www.cnblogs.com/hgl0417/p/11130747 .html

[16] URL: https://adamshan.blog.csdn.net/article/details/106739856

[17] URL: https://www.cnblogs.com/hgl0417/p/11144203.html

[18] Tun, Wai Nwe, Sangho Kim, Jae-Woo Lee, and Hatem Darweesh.
”Open-Source Tool of Vector Map for Path Planning in Autoware
Autonomous Driving Software.” In 2019 IEEE International Conference
on Big Data and Smart Computing (BigComp), pp. 1-3. IEEE, 2019.

[19] URL: https://github.com/Autoware-Al/autoware.ai/pull/1945

[20] Autonomoustuff, “PACMod 2.0 Startup Guide”, Version 2.2.0, 2018.

[21] URL: https://github.com/astuff

61

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:18:12 UTC from IEEE Xplore. Restrictions apply.

