
OASD: An Open Approach to Self-Driving Vehicle

Sudip Dhakal, Deyuan Qu, Dominic Carrillo, Qing Yang, Song Fu

Computer Science and Engineering

University of North Texas

Denton, USA

{SudipDhakal, DeyuanQu, DominicCarrillo}@my.unt.edu

{Qing.Yang, Song.Fu}@unt.edu

Abstract—Building autonomous vehicles is an arduous task
and requires a lot of technical understanding and cognizance.
Grasping the essentials of such technologies and finding the
perfect combination of hardware and software implementation
is key to building autonomous vehicles. As we move towards
autonomous vehicles, How do we find a solution to building
an autonomous vehicle? To answer this question, we break it
down into different hardware and software requirements. We
present a hands-on solution for building autonomous vehicles
by using an open-source platform Autoware which is based
on ROS (Robot Operating System). Our initial implementation
consists of detailing the overall system requirements, sensors
calibration, point cloud map generation, waypoint generation
and following, and finally vehicle control. We have also conducted
the simulation test of localization and path following based on
the point cloud map and waypoint generated. We believe our
implementation provides a general understanding for building
autonomous vehicles in the academic as well as in research field.

Index Terms—Autoware, ROS, Autonomous vehicle, Calibra-
tion, Point Cloud Map, Waypoint, Simulation

I. INTRODUCTION

Autonomous vehicle is an emerging field and is quickly

becoming the next essence of mobility framework. From

social life to industrial, autonomous vehicles are destined to

be used extensively in the near future. Because they provide

easy maneuverability, we can think of diverse applications that

can benefit from the system. In terms of implementation, we

can find very few approaches that provide an uncomplicated

and basic overview of the entire autonomous vehicle system.

Despite the overwhelming popularity of autonomous vehicles

and well-studied architecture and approaches, not much is

known about the details of the development of autonomous

vehicles form ground level. In particular, there are very few

papers on development of autonomous vehicles, concerning

real problems of autonomous vehicles. These is largely due

to the fact that most of research focuses on higher level of

autonomous vehicle system and very few are concerned with

the hands-on accumulation of hardware and software systems

required for the development of autonomous vehicles. Hence,

our goal is to provide a solution to building autonomous

vehicles by breaking down the very basic software and

hardware components, how they are used in the system

and how they are in-cooperated with each other to build an

autonomous platform. We define this solution from both a

hardware and software perspective. The main contribution

from this project are as follows:

• hands on manual for building autonomous vehicle system

• detailed instruction on usage of Autoware for sensor

calibration, localization, waypoints generation and simulation

• SSC node for enabling control functionality on the

autonomous vehicle

Our implementation of AVS (Autonomous Vehicle System)

consists of high-end hardware components namely, AStuff-

Spectra, LiDAR, Camera, PACMod (Platform Actuation and

Control Module), and the vehicle. Similarly, software com-

ponents used in our AVS are an open source autonomous

platform called Autoware, Robot Operation System (ROS)

among others. Usually different functional components of

autonomous vehicles fall into sensing, computing, and actua-

tion. Examples of sensing devices or sensors include cameras,

LiDAR, radars and so on. For this purpose we are using

Velodyne VLP-16 LiDAR, Flir BFLY-PGE-31S4M/C Camera.

Our vehicle has PACMod integrated into the system, which

allows to add “by-wire” control functionality for controlling

vehicles and AStuff-Spectra as a computational platform.

Similarly, Autoware is the open source software program used

in our implementation. This platform has been extensively

used in research and industry with automotive manufacturers

considering it as a baseline for prototyping automated vehi-

cles.The main reason for selecting these components as part of

our implementation is their ease of use and availability. The

open source community working for research and develop-

ment of autonomous vehicles provide enough resource for all

these components. Especially for Velodyne VLP-16 Lidar, Flir

BFLY-PGE-31S4M/C Camera we can find abundant resources

and forums dedicated to answering questions and queries from

the research community. This provides ease for debugging and

implementation of our platform.

II. SYSTEM OVERVIEW

A. Vehicle and Sensors

”Mario” is our vehicle with various sensors and modules

for enabling autonomous driving . This vehicular platform

is a customizable vehicle with drive-by-wire functionality

using a module referred to as Platform Actuation and Control

Module (PACMod) [1][2]. Various features of the PACMod

include:-

• CAN communication interface for user control and feedback

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:18:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Autonomous vehicle system model

• ability to physically control the vehicle via control of the

actuators

• ability to send and receive CAN messages

• ability to update vehicle firmware via USB

For sensing the environment we are using Velodyne VLP-

16 LiDAR. LiDAR scanners illuminate a target with pulsed

lasers and based on the time taken to get the reflected pulses

from the target/object, they provide an approximation of the

distance to the object. We are using lidar to generate PCD (

Point Cloud Data) which can be used to generate digital 3D

representations of the different scanned objects as well as the

surrounding.

Autoware supports different versions of Point Grey, Baumer,

Allied Vision, and Generic UVC web cameras. Grasshopper

3 Point Grey and Ladybug 5 cameras are used to detect

objects. The Ladybug 5 camera is Omni-directional, covering a

360-degree view, whereas the Grasshopper 3 is unidirectional

running at a high rate. The first one can be used for detecting

moving objects, and the latter one is used for recognizing

traffic lights. Multiple Cameras are supported but they should

be configured separately for individual purposes [3]. Flir

BFLY-PGE-31S4M/C Point Grey camera is used as another

sensing device in our system. We can use cameras for object

detection as well as to recognize traffic lights.

B. Spectra

AStuff-Spectra is the world’s first industrial-grade GPU

computer supporting high-end graphics cards [4]. Because we

are dealing with complex algorithms for autonomous driving,

we need a high end computing device or computer that

supports intensive computing and data parallel algorithms.

This helps to increase the execution speed of those algorithms

significantly.

C. ROS

Robot Operating System (ROS) is a set of computer operat-

ing system architecture designed for robot software develop-

ment. It is an open source meta-level operating system (post-

operating system) that provides operating system services,

including hardware abstract description, step-by-step driver

management, execution of shared functions, message transfer

between programs, and program release package management.

It also provides some tools and libraries for acquiring, build-

ing, writing and executing multi-computer fusion programs

[5]. In this paper, we are using ROS 1 Melodic version.

III. AUTOWARE

Autoware is an open source platform or software for

autonomous driving technology, which provides algorithms

and alternatives for perception, location mapping, detection

and planning required for autonomous driving navigation, as

well as an easy-to-use graphical user interface (GUI) package

[6].In this paper, we are using Autoware.Ai master version.

Autoware provides runtime manager as shown in Fig.2 which

is the GUI that makes it easy for simulation and operation of

autonomous driving vehicle. We can launch ROS nodes using

runtime manager. Including the Autoware.ai version some of

the Autoware related projects currently used are as follows:

• Autoware.ai: This is the first version of the Autoware and is

developed on ROS 1. We can find a large group of researchers

and open source community contributing to this project.

• Autoware.io: This is an extended version of Autoware

also known as the interface project for Autoware. This is

designed to be extended with proprietary vehicle software and

other third-party libraries. This also allows us to work with

variant source of device drivers for sensors as well as by-wire

controllers for vehicle for example PACMod.

• Autoware.auto: This is a redesigned architecture of Auto-

ware.ai based on ROS 2. This version of Autoware follows the

accepted software engineering practices and industrial safety

standards such as ISO 26262[7][8]. The modules and APIs

used in this version of Autoware are similar but upgraded

version of those used in previous version and they provide

better support and overall performance to reproduce behaviors

live and on development machines.

Fig. 2. Autoware Runtime Manager

A. Sensing

Autoware supports camera, LiDAR, radar, and GPS/IMUs

primary sensors. These sensors helps to perceive the sur-

rounding environment as well as driving scenarios. LiDAR

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:18:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. X-axis Field of View

Fig. 4. Y-axis Field of View

scanners measure the distance to objects by illuminating a

target with pulsed lasers and measuring the time of the

reflected pulses [6]. Point cloud data obtained from LiDAR

can be used to create a 3D map or representation of the

surrounding environment. LiDAR sensor fused together with

camera sensor can be used to create refined and more accurate

3D representation that can help not only to create a 3D map but

also to recognize traffic lights, pedestrians, cycles and other

features of the scanned objects.

B. Localization and Mapping

Localization is one of the most basic and important prob-

lems in autonomous driving. The reliability of the autonomous

driving depends hugely upon localization. In autoware the

localization problem is solved by using the Normal Distri-

butions Transform (NDT) algorithm. To be precise, we use

the 3D version of NDT to perform scan matching over 3D

point-cloud data and 3D map data.3 As a result, localization

can perform at the order of centimeters, leveraging a high-

quality 3D Lidar sensor and a high-precision 3D map. We

chose the NDT algorithms because they can be used in 3D

forms and their computation cost does not suffer from map size

(the number of points).Localization is also a key technique to

build a 3D map. Because 3D Lidar sensors produce 3D point-

cloud data in real time, if our autonomous vehicle is localized

correctly, a 3D map is created and updated by registering the

3D point-cloud data at every scan. This is often referred to as

simultaneous localization and mapping [9].

C. Detection and Tracking

It is of the upmost priority for autonomous vehicles to

detect the surrounding objects such as pedestrians, traffic

signals, lights, motorcycles, and other vehicles. The reliability

and accuracy of autonomous system increases significantly as

the number of detected objects increases. Various approaches

supported by autoware for object detection include SSD,

YOLOv2, YOLOv3 algorithms.

Fig. 5. Size Field of View

Fig. 6. Skew Field of View

Since autonomous driving environment is volatile and un-

predictable with frequent changing behaviour shown by the

surrounding objects, tracking the trajectories of those objects

is very important for decision making. These trajectories are

input to the mission planning and path following modules and

helps to determine the appropriate direction of the moving

autonomous vehicle.

D. Mission Planning

Based on the input from the detection and tracking mod-

ule of autoware and also the 3D map obtained through

localization/mapping, path trajectories are determined through

mission planning module of autoware. This modules also

include navigation from the vehicle current position to the

the destination.The 3D map obtained through localization and

mapping module contains various features that can be used for

mission planning. On the top of the route generated by the map

navigation system, mission planner directs the autonomous

vehicle to follow the centre lines of the lanes. Lane changes,

turning and other important features of autonomous driving

are facilitated by mission planning module.

E. Motion Planning and Path Following

Given the global trajectories, the motion planning module

of autoware helps to generate local feasible trajectories. For

motion planning search algorithms such as A*, hybrid A*

are used in order to find the minimum cost path to the

destination. For trajectory generation autoware uses trajectory

generation algorithms such as lattice-based methods. Another

notable method implemented by autoware is waypoints gen-

eration/follower for trajectory based path following. In this

methods, waypoints are the trajectory points of the vehicle, a

series of position information formed by matching the vehicle

LiDAR data and the point cloud map. At first, the waypoints

are generated using the 3D map obtained through mapping

and saved in a file. This file contains the waypoints which can

be used for path following.

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:18:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Camera-LiDAR extrinsic

IV. SENSOR CALIBRATION

Autonomous Vehicle Systems (AVS) generally relies on

multiple sensors to perceive the environment. LiDAR sensor

helps to perceive the surroundings for object detection, local-

ization and mapping. Since, AVS are equipped with multiple

sensors, leveraging the power of all the sensors and fusing

them together can result in a more accurate and precise

measurement as well as object detection. LiDARs are fused

with cameras to improve the overall accuracy of 3D object

detection. However, the fusion should be carried out carefully

such that the perceived transformations from LiDAR and

camera have been assigned to a shared coordinate frame so

that we can fuse the sensor data. Hence, calibration of all the

sensors equipped in the system is required. Camera calibration

is done to find out the true parameters of the camera. These

parameters also known as camera intrinsic parameters include

focal length, principal point, lens distortion, projections and

so on. Camera calibration helps to tune in these parameters.

LiDAR Calibration, with respect to camera, is to estimate

the LiDAR extrinsic parameters. Extrinsic parameters repre-

sents the geometric relation between camera and the LiDAR.

Camera-Lidar extrinsic calibration is done to tune in the points

in the 3D-LiDAR points plane and pixels in the image plane.

Since we are using Velodyne-16 LiDAR and Flir camera,

our calibration include both the camera intrinsic and extrinsic

calibration.

A. Camera Intrinsic

For obtaining the camera intrinsic, we use the autoware

camera calibration script provided by autoware. Like typical

calibration methods, we are also using the chessboard (8x6).

This is a simple method used for camera calibration and is

very robust to implement.The method is robust over a range

of illumination and a complicated background [10]. They have

also proven in the past to yield accurate calibration results.

The chessboard provides features that can be computed as

intersection of lines.

This allows linear features to be detected accurately. Sim-

ilarly, one advantage of using chessboard pattern over a

traditional dotted pattern is that since we have line features,

Fig. 8. University of North Texas DP building Point Cloud Data

it is easier to infer distortion coefficient values, which is not

possible in case of dotted pattern. Hence, using the Autoware

camera calibration script along with the required parameters

for size of chessboard and also the camera topic which is

camera/image raw in our case we will obtain a camera stream.

In order to get a good calibration result we will need to provide

multiple field of view of the chessboard to the camera frame

as shown in Fig. 3, 4, 5 and 6. We have 4 different field of

views namely X, Y, size and skew such that:

• checkerboard on the camera’s left, right, top and bottom of

field of view

• X bar - left/right in field of view

• Y bar - top/bottom in field of view

• Size bar - toward/away and tilt from the camera

• checkerboard filling the whole field of view

• checkerboard tilted to the left, right, top and bottom (Skew)

As for the X- axis view we hold the chessboard in left and

right direction as shown in Fig. 3. For Y-axis, we place the

chessboard in top and bottom direction as shown in Fig. 4.

For size, we place the chessboard towards and away from the

camera sensor as shown in Fig. 5. Similary for skew, we place

the chessboard in tilted manner as shown in Fig. 6.

B. Camera Extrensics

For obtaining the camera extrinsics, we use the Autoware

camera LiDAR calibrator node. Executing this node provides

a camera and LiDAR stream in two seperate windows. In

autoware camera-LiDAR extrinsics are obtained by clicking

on the corresponding points in the image and the point cloud.

For camera instrinsic, the output file is obtained once all the

field of views required are executed by the script.

However for camera-LiDAR extrinsics, we have to click on

9 different corresponding points in the image and the points

cloud respectively. We used 9 sticky notes to pin 9 different

points in the camera stream and corresponding points were

identified carefully in the LiDAR stream and matched properly

to finally obtain the camera-LiDAR extrinsic file i.e camera-

LiDAR calibration. Our experimental setup for performing

camera-LiDAR calibration shown in Fig. 7.

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:18:12 UTC from IEEE Xplore. Restrictions apply.

V. LOCALIZATION BASED ON POINT COULD MAP

Localization is the core module of autonomous driving sys-

tem. The traditional method can use GPS/IMU for localization,

but this method is not suitable for use in urban areas because

the GPS signal will be weak, and the price will be relatively

high if high-precision GPS sensors are used. Another method

is to use conventional simultaneous localization and mapping

(SLAM), SLAM determines the position of the current vehicle

position by using the observed environmental features, but

it is difficult to apply to the field of autonomous driving.

Autonomous vehicles are fast and the road environment is

complicated. In long distances driving, as the distance increase

the deviation of SLAM localization will gradually increase.

Generally, for autonomous vehicles, it is best to achieve

centimeter-level positioning accuracy under current road con-

ditions. In actual localization, use the current LiDAR sen-

sor scanning and the pre-built high-precision map to match

the point cloud to determine the specific location of our

autonomous vehicle on the map. Registration and position-

ing based on high-precision point cloud images and LiDAR

usually account for a large proportion in the overall fusion

localization due to their high accuracy and reliability, and

are relatively reliable data sources in autonomous driving

localization systems. Therefore, creating a LiDAR-based point

cloud map is the first step in building a high-precision map

[11][12].

A. Record Rosbag for Point Cloud Data (PCD)

We recorded the rosbag around our lab inside the University

of North Texas (UNT) Discovery Park (DP) building. As you

can see the Fig. 8, first we drove the vehicle from point A

to point B slowly, and used the runtime manger provided by

Autoware to record the rosbag file while driving. Since we

only use LiDAR sensors, so just select /points raw topic in

the rosbag record interface and it will only save point cloud

data based on LiDAR sensor.

B. Normal Distribution Transform (NDT) Algorithm

In order to find the current position from the point could

map, usually we compare the point cloud scanned by Li-

DAR with the point cloud of the map. However, one of the

problems is that the point cloud scanned by LiDAR may be

slightly different from the point cloud from the map. The

deviation here may come from measurement errors, or the

change in scenarios (for example, pedestrians, vehicles). NDT

algorithm is used to solve these subtle deviation problems. It

does not compare the gap between the two-point clouds, but

converts the reference point cloud (ie, high-precision map)

into the normal distribution of multi-dimensional variables.

If the transformation parameters can make the two scanning

data match very well, then the probability density of the

transformation point in the reference frame will be very large

[13] [14].

Autoware provided two applications for NDT algorithm:

NDT Mapping and NDT Matching. Usually, we use NDT

Mapping for point cloud map generation, for localization we

select NDT Matching. Both are based on NDT algorithm, their

mainly difference are updating target map.

Fig. 9. Mapping Coordinate System

1) Normal Distribution Transform (NDT) Mapping: Before

generating the actual point cloud map we have to under-

stand the relationship between Autoware’s mapping coordinate

systems. There are four basic coordinate systems namely

world coordinate system, map coordinate system, base link

coordinate system and Velodyne coordinate system. Fig. 9

shows

Fig. 10. Point Cloud Map Generation by using NDT Mapping

Fig. 11. Localization Simulation by using NDT Matching

the conversion relationship between them. For coordinate

conversion from world to map and conversion from base link

to Velodyne we can use the ROS TF from the runtime manager.

As for the coordinate conversion from map to base link as

shown in the Fig. 9, it requries a scan-to-map algorithm also

known as Normal Distribution Transform (NDT) algorithm

which is also provided by the Autoware runtime manager [15].

Hence, once the point cloud data collection is completed, we

can make point cloud maps offline. The basic idea is to input

the point cloud data firstly, that means to load the previously

recorded rosbag file. Then as mentioned earlier Autoware

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:18:12 UTC from IEEE Xplore. Restrictions apply.

uses the Normal Distribution Transform (NDT) Mapping to

generate the point cloud map. The result of the point cloud

map is shown in Fig. 10.

2) Normal Distribution Transform (NDT) Matching: NDT

is the core localization algorithm of Autoware autonomous

driving open-source project, which is also widely used in the

field of real autonomous driving. After loading the point cloud

map, NDT Matching will continuously receive the point cloud

scanned in real-time and update the target asynchronously

map, and then use the NDT algorithm to continuously match-

ing to obtain the current position.

The objective function optimized by the NDT algorithm is

mainly the similarity of the probability distribution of the input

point cloud and the target point cloud. The computational com-

plexity of this registration algorithm is positively correlated

with two elements: Enter the point density of the point cloud

and Bias of initial position estimation [16]. In this project we

used voxel grid filter to down-sampling the density of the input

point cloud, and we used the default initial position which

provided by Autoware.

C. Simulation for Localization

After constructing the point cloud map, we can perform

the simulation test of localization based on the point cloud

map. First, upload the generated PCD map file, and then select

NDT matching in the runtime manager. Select voxel grid filter,

vehicle pose node, and default initial position from runtime

manager as well.

The simulation results shown in Fig. 11. In RViz, we can

see whether the LiDAR point cloud matches the existing point

cloud map after loading the NDT algorithm.

VI. WAYPOINTS GENERATION AND PLANNING

In this paper, waypoints are the trajectory of the vehicle, a

series of position information formed by matching the vehicle

LiDAR data and the point cloud map. So first we have to

use the runtime manager to load the generated PCD map file.

Then we also need to set the filter, select voxel grid filter in the

runtime manager, this is a down-sampling method. For a given

point cloud map, this method defines a 3D voxel grid.There

are multiple points inside each voxel. Usually, the centroid or

centre of all these points is used as approximation. This helps

to reduce the number of points in points cloud map and makes

the representation of the underlying surface more accurate and

fast.

Then we have to choose NDT matching algorithm, because

we need to convert the map coordinate system to the base

link car coordinate system. Finally start the vehicle pose

connect node and select the waypoint saver. Waypoints will

be automatically generated after done of rosbag file playing

[17]. Each waypoint has a specific value for velocity, x, y, z,

yaw and change flag information. An example of saved way-

points file is shown in Fig. 12. In the given example x, y,

z are values in the local East, North, Up (ENU) coordinate

system. Yaw value stands for direction/heading in radians of

a car along the lane. Velocity is target velocity for vehicle,

Fig. 12. Waypoint File Generated by Autoware

Fig. 13. Visualization for Waypoint Data

and change flag is basically stored as 0 (straight ahead), but if

you want to change the lane, you can modify by yourself (1

turn right, 2 turn left) [18]. The Autoware runtime manager

provides waypoint loader node through which we can visualize

these waypoints in RVIz. We also select other options such as

velocity-set, vel pose connect, pure parsuit, twist filter among

other for meticulous visualization. Once the waypoint file is

loaded and all the aforementioned nodes are selected we can

run the motion planning simulation for visualization in RViz

shown in Fig. 13. The waypoints data are clearly visible as

the vehicle moves along the given path.

VII. VEHICLE CONTROL

A. Speed and Steering Control (SSC) to PACMod

There is no direct communication between Autoware and

Polaries Gem vehicle, although the software of PACMod is

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:18:12 UTC from IEEE Xplore. Restrictions apply.

also based on ROS. It can be seen from the Fig. 14 that the

control signal sent by Autoware Speed and Steering Controller

interface (SSC interface) node belongs to the high level

command, but the control command required by PACMod

node belongs to the low level command.

Based on the Fig. 14, We develop a Speed and Steering Con-

trol (SSC) node (written by C++) which acts as an interface

for latitudinal and longitudinal control of vehicles [19]. This

node helps to convert the high level control commands from

Autoware SSC interfce node such as desired speed, desired

curvature into low level control commands such as throttle,

break and steering wheel control messages as required by the

lower level drive-by-wire control system. We need to make

this conversion because the PACMod only understands the low

level commands and currently there are no ways to manually

do the conversion. This is one of the main contributions from

this paper.

B. PACMod to Vehicle

PACMod is a general-purpose electronic controller, which

has been integrated into the vehicle wiring. It is an inter-

mediate component that communicates original equipment

manufacturer (OEM) sensors with external software. The on-

board computer uses CAN to send commands and read sensor

data from PACMod. This allows users to control and feedback

through the CAN communication interface [20]. In addition,

AutonomouStuff provided open source ROS package for de-

veloping [21]. Our final overview of Autoware Architecture

and our Implementation is shown in Fig. 15.

Fig. 14. Overview of SSC Structure

VIII. FUTURE WORK

The project presented in this paper is a foundation for

building autonomous vehicle. The sections that we have pre-

sented here fulfils the initial requirement only. Improvement

to each section including addition of other principal features

of AVS are planned for future work. Object detection is a key

Fig. 15. Overview of Autoware Architecture and our Implementation

component and we plan to implement it along with obstacle

detection and avoidance. In order to get more accuracy posi-

tion in localization, we will add GPS/IMU sensor. In our future

work we also plan to integrate the control functionality of

the vehicle with sensing and computing. Currently our vehicle

control system i.e. SSC node is a standalone node. We plan

to blend SSC node with all the other nodes and functionalities

required for AVS.

IX. CONCLUSION

This project expands the usefulness of the current solution

to building autonomous vehicles. We have presented Autoware

and Astuff-Spectra on board. This paper will provide a hands

on solution to building autonomous vehicles. One step further

from the available Autoware support we are adding a control

functionality into the platform by building a SSC node, which

will provide an interface for lateral and longitudinal control

of the vehicle. We believe our implementation will provide a

comprehensive and sturdy foundation for building AVS.

ACKNOWLEDGEMENT

The work has been supported in part by the National Science

Foundation grants CNS-1852134, OAC-2017564, and ECCS-

2010332.

REFERENCES

[1] URL: https://autonomoustuff.com/product/astuff-nev/.

[2] URL: https://autonomoustuff.com/product/pacmod/.

[3] Vysyaraju Manikanta Raju, V. Gupta, Shailesh Lomate, “Performance
of Open Autonomous Vehicle Platforms: Autoware and Apollo” in
IEEE 5th International Conference for Convergence in Technology
(I2CT),2019.

[4] URL: https://autonomoustuff.com/product/astuff-spectra/.

[5] URL: https://en.wikipedia.org/wiki/Robot Operating System

[6] URL: https://www.autoware.ai/

[7] International Standardization Organization, “ISO 26262-10:2018 road
vehicles – functional safety – part 10: Guidelines on ISO 26262,” Inter-
national Standardization Organization, Tech. Rep. ISO 26262- 10:2018,
2018.

[8] A. Carballo, D. Wong, Y. Ninomiya, S. Kato and K. Takeda, ”Training
Engineers in Autonomous Driving Technologies using Autoware,” 2019
IEEE Intelligent Transportation Systems Conference (ITSC), Auckland,
New Zealand, 2019, pp. 3347-3354, doi: 10.1109/ITSC.2019.8917152.

[9] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and T.
Hamada, “An open approach to autonomous vehicles,” IEEE Micro, vol.
35, no. 6, pp. 60–69, 2015.

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:18:12 UTC from IEEE Xplore. Restrictions apply.

[10] Yu, Chunsheng Peng, Qingjin. (2006). Robust recognition of checker-
board pattern for camera calibration. Optical Engineering - OPT ENG.
45. 10.1117/1.2352738.

[11] URL: https://adamshan.blog.csdn.net/article/details/79230612
[12] URL: https://adamshan.blog.csdn.net/article/details/106739856
[13] URL: https://zhuanlan.zhihu.com/p/77623762
[14] P. Biber and W. Straßer, ”The Normal Distributions Transform: A New

Approach to Laser Scan Matching,” in IEEE/RJS Intern. Conf. on
Intelligent Robots and Systems, 2003.

[15] URL: https://www.cnblogs.com/hgl0417/p/11130747.html
[16] URL: https://adamshan.blog.csdn.net/article/details/106739856
[17] URL: https://www.cnblogs.com/hgl0417/p/11144203.html
[18] Tun, Wai Nwe, Sangho Kim, Jae-Woo Lee, and Hatem Darweesh.

”Open-Source Tool of Vector Map for Path Planning in Autoware
Autonomous Driving Software.” In 2019 IEEE International Conference
on Big Data and Smart Computing (BigComp), pp. 1-3. IEEE, 2019.

[19] URL: https://github.com/Autoware-AI/autoware.ai/pull/1945
[20] Autonomoustuff, “PACMod 2.0 Startup Guide”, Version 2.2.0, 2018.
[21] URL: https://github.com/astuff

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:18:12 UTC from IEEE Xplore. Restrictions apply.

