2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) | 978-1-6654-3577-2/20/$31.00 ©2021 IEEE | DOI: 10.1109/IPDPSW52791.2021.00052

2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

Characterizing Job-Task Dependency in Cloud
Workloads Using Graph Learning

Zhaochen Gu
Computer Sci. & Engg. Dept.
University of North Texas
Denton, Texas

Sihai Tang
Computer Sci. & Engg. Dept.
University of North Texas
Denton, Texas

Beilei Jiang
Computer Sci. & Engg. Dept.
University of North Texas
Denton, Texas

ZhaochenGu@my.unt.edu SihaiTang @my.unt.edu BeileiJiang@my.unt.edu
Song Huang Qiang Guan Song Fu
Big Data Development Computer Science Department Computer Sci. & Engg. Dept.
Allstate Kent State University University of North Texas
Irving, Texas Kent, Ohio Denton, Texas
SongHuang @my.unt.edu qguan@kent.edu Song.Fu@unt.edu

Abstract—Modeling and scheduling diverse and dynamic
workloads effectively has become a crucial issue due to the
ever increasing scale and complexity of systems and applications
in modern data centers. A large-scale cloud system consists
of a large number of computing nodes, storage nodes and
networking devices, running diverse workloads. Existing works
analyzed execution traces in terms of resource usage by ap-
plying statistical methods. Cloud workloads, especially batch
jobs, are composed of tens to thousands of tasks with complex
dependency which can be represented by directed acyclic graphs
(DAGs). Those workloads and their dependencies have not been
thoroughly studied. Understanding the characteristics of batch
cloud workload helps us foresee resource demands and execution
time of new jobs and make better decisions in job scheduling.
In this paper, we investigate batch jobs in production cloud
computing environments with dependencies from the perspective
of topological characteristics and structural patterns. We design
a graph learning approach for job classification based on jobs’
topological similarity. We evaluate our methods using traces
collected from a production data center and discover insightful
properties and patterns of batch jobs in real-world scenarios.
To the best of our knowledge, this is the first such work that
leverages graph learning to explore the topological structures for
cloud workflow for characterization and analysis.

Index Terms—Cloud computing, Workload characterization,
Graph learning, Job dependency, Classification.

I. INTRODUCTION

Applications run on large-scale cloud computing platforms
contain various numbers of tasks with dependencies that can
be expressed by directed acyclic graphs (DAGs). DAG jobs are
widely seen in big data analytics workloads. There is a depen-
dency hierarchy in these batch jobs. However, the composition
of DAG batch jobs can differ significantly. Then the question
comes up: How can we characterize these various workflows in
an effective manner that helps maximize the efficiency of task
scheduling and resource utilization? To answer this question,
we consider two aspects in cloud workload analysis: resource
management and topological structure-based optimization.

There are existing works on resource utilization analysis for
cloud workloads. Conventional statistical analysis approaches
have been applied to characterize workload on production
clouds [4], [12], [14]. However, the dependencies in batch
jobs have not been analyzed in depth. Existing works do not
consider the structural patterns and resource needs of multiple
jobs co-run on a node. There are gaps between the traditional
resource analysis and graph learning based characterization
scheduling, which provides a holistic view among jobs in
cloud.

In this paper, we aim to bridge this gap and provide an in-
depth analysis of DAG-described batch workloads to enable
effective job scheduling decisions in large-scale, co-located
cloud environments. We not only explore the inner properties
of task dependencies among jobs, but also explore the inter-job
structural relationships based on DAG topology among various
jobs in the cloud. Our main contributions are as follows.

1) We automate the construction of DAGs for more than 3
million batch jobs with dependencies from a production
data center and transform these graphs into a vector
representation for graph learning.

2) We perform graph learning and discover important pat-
terns with regard to job-task-node dependency which
provides crucial information for job scheduling.

3) We leverage graph clustering to group cloud jobs for
workflow classification and scheduling.

The rest of the paper is organized as follows. Section 2
describes the background on cloud management. Section 3
presents the graph abstraction and data processing. Section
4 characterizes the structural patterns of batch cloud jobs
and Section 5 details the graph-based clustering method and
presents the analytical results. Section 6 concludes the paper
with remarks on future work.

978-1-6654-3577-2/21/$31.00 ©2021 IEEE 288
DOI 10.1109/IPDPSW52791.2021.00052

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:26:55 UTC from |IEEE Xplore. Restrictions apply.

Special Colocation Online Service Domain Co-Location Management Offline Service Domain
Management
Level 2
Ry ree Scheduli ;
esource Scheduling e e o b
Service-Oriented Ll] Co-location Unified Batch Job SF:llccluler
i Online Resource Resource Management (Fuxi)
Scheduler (Sigma)
Scheduling layer ‘ Sigma Agent ‘ Unified Agent Fuxi Agent
R I Containers Virtual Machines
e | Resource Pools | * —
I it ==
Infrastructure layer I Physical Nodes | I Network l | Monitoring | | Troubleshooting

Fig. 1: System architecture. There are five layers in the cloud system. Above from the scheduling layer, there are there major
components for cloud management: (1) unified controller. (2) cloud schedulers [42]. (3) upper level scheduling software, for

example, Hippo Manager [43].

II. BACKGROUND AND MOTIVATION

Cloud computing has become a mainstream investment in
the modern business market. Enterprises adopt various state-
of-the-art technologies to improve their competitiveness in a
reliable economic-friendly manner and to better adapt to the
rapidly changing business environments. The higher level of
virtualization, automation, and security of cloud data centers
provides larger capacity and greater convenience of manage-
ment compared with conventional data centers. According to
the prediction from Cisco [1], 94% of workloads and compute
instances will be processed by cloud data centers in 2021.

The increasing scale of cloud services in data centers has led
to the development of advanced systems and infrastructures.
Meanwhile, the complexity is rising dramatically. Workloads
in production cloud environments are heterogeneous and dy-
namic. A wide variety of applications are serviced by large-
scale data centers. These applications include but not limited
to live streaming services, Internet of things, transactions on
e-commerce platforms, machine learning, data management
and storage services. Due to miscellaneous capacity require-
ments and diverse performance characteristics of resources
consolidation in data centers, the efficient management of
these common shared infrastructures remains an important
challenge. Cloud services providers, such as Alibaba cloud,
Amazon Web Service (AWS), Google Cloud, IBM cloud
and Microsoft Azure, are seeking solutions to improve their
computing services for customers from different technical
perspectives: infrastructures, platforms, and software. Cloud
computing systems co-allocate online services and batch jobs
to improve the server utilization as well as reduce the cost of
energy and management. [2]

289

A. System Architecture

Before service co-location, different types of workloads
ran on separate subsystems, which caused more financial
cost and energy cost for data centers. The co-location ar-
chitecture in cloud management systems is designed based
on the needs of serving multiple different types of services,
such as Online user-interactive services and offline computing
services. Client-end job submissions such as transactions or
searching requests are examples of online services. Online
services require real-time responses with low latency and high
performance. These jobs are usually hosted on containers.
Offline services aim for executing large scale batch jobs
which can support big data processing, computing services
and statistical analysis. These server-end services are latency
insensitive. Due to the characteristics of these two types of
services, online jobs usually have a higher priority than offline
services to ensure the quality of service (QoS) at run time.
Co-location technology integrates the resource pool for both
services in order to properly handle the resource allocation and
competition in the scheduling layers. In a co-located cloud,
resources are shared by online and offline jobs.

A hierarchical structure exists in the overall co-location
architecture. Figure 1 presents a five-layer structure. In the
infrastructure layer, servers, networking equipment, and stor-
age resources needs to be well-planned and executed. On top
of that, a centralized manager for resource pools is deployed
at the resource layer. Furthermore, there are three levels of
schedulers: Level-0 scheduler is responsible for allocating re-
sources for both online and offline jobs, Level-1 schedulers are
dedicated to managing online and offline services individually.
Moreover, upper level scheduling software is deployed in the
level-2 scheduler for specific resource needs.

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:26:55 UTC from |IEEE Xplore. Restrictions apply.

B. Batch Workload

Batch jobs run without user interaction and involve job
scheduling on multiple nodes and run tasks in parallel. Unlike
online stream processing, a large volume of data needs to be
processed for a long time and mostly follow diurnal patterns.
In addition, the latency is insensitive for batch jobs. However,
the lower priority of offline batch processing leads to uncer-
tainty in execution. For example, when resource competition
happens, the running batch jobs may be either suspended
or killed to retain more computational resources for online
streaming jobs. They are then rescheduled to run on other
nodes.

Moreover, dependency is common in batch jobs. An increas-
ing proportion of jobs with dependencies play an important
role in the batch workloads. There are around 50% of batch
jobs have dependencies in the production data center that we
study and they consume 70% to 80% resources among all
batch jobs.

Dependency of batch jobs exist among their tasks. Batch
jobs with dependencies follow a job-task-instance hierarchical
paradigm that each job consists of one or more tasks. A task is
a computation unit of manifold distributed computing models
such as MapReduce, Spark, and SQL. There is at least one
instance for each task within a job. Resource requests can be
similar among instances of a task, and their input data are
usually distinct [2]. We use Directed Acyclic Graphs (DAGs)
to present the dependency relationship among tasks in batch
jobs. The completion time of a job is the total amount of time
it spends from the earliest time of starting the first task(s) to
the latest time of finishing the last task(s). Resulting from the
increasing complexity of varying jobs in the batch workload, it
becomes challenging to manage these long-running jobs with
dependencies in multiplexing cloud environments.

III. CLOUD AND WORKLOAD DATA

The data of Alibaba’s cloud trace was released in 2018
and contains co-located jobs from about 4000 nodes over 8
days. It provides comprehensive data and information collected
from machines, containers and batch jobs. Machines’ meta and
usage files were collected from servers. Configuration and run-
time resource usage are included. Each server ran multiple
containers that enabled distinct services to co-locate different
type of jobs.

Our study focuses on analyzing batch cloud jobs. There are
more than 4 million batch jobs run in the cloud during the 8-
day period. Batch workloads were generated by internal users
[12] to run jobs of MapReduce, SQL, and Flink ([6], [46],
[45]), and machine learning. Batch jobs follow the job-
task-instance hierarchical paradigm that each job includes
one or more tasks and each task has multiple instances.
Our work concentrates on job-level analysis of batch cloud
workload. Task dependency in a job is represented by DAGs.
We create a graph for each job and the vertices in the job
graph represent tasks. In our traces, batch job data is stored
in two files: batch_task and batch_instance. Batch task data
contains information at the task level, including task names

290

under their lead jobs, instance number for each task, duration
and planned resource usage. This dataset helps us determine
the dependencies among various types of tasks and is used
to build job DAGs for graph learning. Batch instance data
provides the detail about instances’ execution information of
all tasks. It also contains temporal records for each instance
and the actual resource consumption information (CPU and
DRAM).

IV. GRAPH REPRESENTATION AND DATA PROCESSING

In this section, we create a graph to represent batch jobs
from raw data and analyze the characteristics of DAG jobs
with dependencies.

A. Batch Job DAGs Graph

DAG is an unique form to represent a batch job with de-
pendencies. It provides an intuitive view of job representations
and their interrelationships. In our study, most of the batch
workloads constitute DAGs while others are independent. In
the workload, task dependency is denoted in the field of
Task_Name. For instance, the DAG of a job with job ID
1001388 in figure 8(a) consists of 5 tasks (M1, M3, R2,
R4, RS5) with some dependencies. In accordance with the
dependency, each task named differently in the dataset. M1
and M3 are “Map” tasks that can start individually without
waiting for other tasks to be finished. R2 and R4 are two
“Reduce” tasks that are named with R2_1 and R4_3, which
indicate that task 2 (R2) has dependency with task 1 (M1) and
task 2 can only start running when task 1 is finished. Similar
to task 4 (R4), it can only run after task 3 (M3) is completed.
Moreover, the last task (R5) with name R5_4_3_2_1 denotes
that task RS can only start running after all previous tasks are
accomplished.

Batch workloads graph representation enables us to perceive
the scale of jobs that running in the cluster from the overall
collection and it provides us with an intuitive view of topolog-
ical structure based on tasks dependency. Moreover, it allows
us to detect the relative distribution of jobs according to their
volumes and concurrency degree.

We display the result in Figure 2. Each vertex represents a
task that indicates stage of a running job. We applied direct
edges to demonstrate the link dependency between stages. The
dependency indicated that the succeeding task can only start
running after its precedent task finished. We labeled nodes
using the combination of their job and task name to distinguish
tasks from different jobs. In addition, we take account the
resource usage of CPU and memory and instances information
including amounts, running time and periods as attributes to
the running tasks.

B. Feature Vector Selection

In the subsequent experiments, we sample 100 DAG batch
jobs arbitrarily from the overall data set to illustrate our
method and display the result. To maintain the fairness of data

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:26:55 UTC from |IEEE Xplore. Restrictions apply.

Fig. 2: Sample of job-level abstraction of DAG batch workload

sampling, we select our job entities based on the following
criteria:

Integrity. Not all batch jobs in the workloads are end
completely without any interruption. Some jobs still run during
the process of data acquisition cut off. Besides, some jobs are
canceled resulting from resource competition or erratic hard-
ware issues. Thus, we are intention to filtrate the terminated
jobs within the active interval of overall data to remain the
job completeness.

Availability. Despite the fact that selected jobs with ter-
minated status uphold the integrity of job graphs relatively,
the evidence of existing running tasks collected before the
starting point is missing. Original data source acquisition by
administrators my happen while cluster servers provide normal
services to the public. In this case, the actual running period of
a job is no longer reliable which would affect the authenticity
and effectiveness of the follow up analysis and the resultant
model. We aims to keep the sampling data with effectual
resource information in addition to the structural completeness
of DAG jobs.

Variability. It is important to preserve the variability of
DAG jobs by having manifold topological structures and
sizes. Data-intensive jobs running in the cluster exhibit strong
features on dependency. The dependency associated with tasks
presents temporal and spatial information in the workloads.
Additionally, all jobs vary in patterns on the basis of paral-
lelism and temporal distribution. Overall, we have 17 different
size types in our experimental set where the number of tasks
ranging from 2 to 31 nodes.

291

C. Node Conflation

In the large-scale batch workload, jobs with smaller size
are more likely to appear repetitively in terms of their simple
topological structure. However, recurrent structure occurred
partially in larger jobs. Some tasks perform the same kind of
operations without sophisticated dependency to other nodes.
Hence, we can consolidate them together to reduce the com-
plexity of large jobs in the workload. In this way, we can
improve the efficiency of estimating the DAG jobs’s structure
for further operations. As shown in Figure 3, the ratio of
smaller jobs increases compared before doing merge operation.

Before Merge
After Merge

4 5 6 7 B 9 10 12 13 14 17 18 19 24 31

Number of Tasks per Job

Fig. 3: Size of DAG jobs before and after node conflation

V. CHARACTERIZATION OF JOB GRAPHS
A. Structural Quantification

To better understand the characteristics of batch jobs, we
measure our data by taking account the following features: 1)
batch job size, 2) job critical path, and 3) job maximum width.
The number of tasks each job has determines batch job size. In
our experiment set, we obtain 17 different job volumes from
raw data. The results are shown in Figure 4 and Figure 5.
The amount of jobs in each size group are decreasing as the
batch size increases. For example, the larger size jobs have
appeared fewer times than the smaller size jobs.

Quantity
I

ndexcf lob SzeType

e DR OF TEEKS AMOUNnt Of jODS == Max imium cr tical path #— Traew idth

Fig. 4: Job features before node conflation

The job critical path defined by the longest depth of a job
DAG graph which also illustrate the level that each job has.
We calculate the depth from each individual job and obtain the
maximum one from distinct dimensional groups. The length
of critical path varies from 2 to 8 in the experimental set. The

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:26:55 UTC from |IEEE Xplore. Restrictions apply.

—a—

ndex of lob Site Type

—s— Mumiber of tasks Treswidth

Amount of jobs =i I aximum critical pach

Fig. 5: Job features after node conflation

result shows that the maximum critical path does not increase
linearly as the job size grows. In other words, some larger
jobs have more tasks running in parallel. The overall length
of maximum critical path of each size group are relatively
small.

Furthermore, we compute the largest width of every single
DAG graphs and select the maximum one from each size
group. From our investigation, the parallelism of a job is quite
positively correlated to the size of jobs. As shown in Figure 4,
the extreme case occurs when there are 30 out of 31 tasks
running in parallel and only one existing node perform the
reduce operation. Even though jobs with larger size has higher
parallelism, there is no guarantee that smaller jobs must have
lower parallelism. For instance, the maximum width of a job
from group 10, which consists of 12 nodes in the graph, is
larger than the values of a job from group 14, which has a
total 18 tasks.

B. Common Graph Patterns

In practice. many DAG batch jobs have complex dataflow
intermixing with multi-hierarchical levels and various parallel
tasks in the clusters. It made resource allocation and schedul-
ing in a more efficient way become a challenge. Sometimes,
the system needs to adopt a greedy approach to allot resources
which could cause long waiting time and over provision
issues on hardware. To better reveal the problems of batch
jobs under co-located environment, we find several prevalent
graphical patterns of DAG batch jobs. These components are
fundamental structure to form a job. Also, some jobs are
the synthesis of multiple components together. We categorize
them into shape-based fundamental patterns: inverted triangle,
straight chain, diamond.

Inverted Triangle: Jobs with inverted triangle structure are
convergent from input vertices to the terminated node. Input
vertices are nodes with in-degree of zero. Some of these tasks
may running simultaneously while others may work separately.
The number of inputs vertices are larger than the existing
nodes. Most inverted triangle jobs end with a single node that
perform a summary operation. A very easy example of this
type of job is a simple MapReduce job. In the beginning, there
are two map tasks and they finally merge to the reduce task.
This type of job has second highest frequency (37%) appeared
in the dataset.

292

Straight Chain: There are 58% of DAGs are straight chain
jobs which means that all the tasks are running one after
another. The number of inputs and output nodes are identical
and restricted to one. Parallel tasks are not existing in this
type of job. Tasks in the straight chain jobs need to wait to
start after its parent tasks finish running. Every single task
within the job is strongly reliant upon the performance of the
previous task.

Diamond: Jobs in diamond topological structure have rela-
tively low frequency than inverted triangle- and straight chain-
type of jobs appeared in our data set. These jobs have same
amount of input and output nodes such that they usually start-
ing and ending with a single task. However, their intermediate
level has multiple tasks running in parallel and the width is
larger than the number of two edge nodes.

In addition, we investigate other pattern components and
they also play an important role in the overall cluster workload.
hourglass and trapezium style jobs have also been detected.
They are basically the combination of formerly mentioned pat-
terns or the alternatives with minor changes from fundamental
components. The hourglass type of jobs have similar numbers
of nodes in the beginning and ending stage but only have a few
tasks running in the intermediate stage. The trapezium-type
jobs have more ending tasks than input ones. There are also
jobs with combination style such as having inverted triangle
in the beginning, but following tasks are running sequentially
with long tail. Learning job-based topological shape can help
us understand the job structure according to their distribution
and trend of how the tasks are arranged. This would further
help with clustering and incoming job predictions.

C. Exploratory Investigation of Task Types

The subsequent question is how assigned tasks are organized
in the DAG jobs? To answer this, we investigate the internal
organization along with the structure of DAG jobs to explore
the pattern of tasks. Large scale computing usually uses
multi-level pipeline based parallel computing framework [4],
for instance, Apache Hadoop [38]. Alibaba cloud developed
their own platform for multi-tenancy data processing called
MaxCompute [37]. It is also supporting computation jobs such
as SQL, MapReduce, and Spark. We observe that there are
some common batch programming modes has appeared in
our data: map-reduce [6], map-join-reduce [7], and map-
reduce-merge [8].

Map-Reduce is a programming model and best used for
handling homogeneous data in the cloud environment. Most
search-engine related jobs and some machine learning based
applications use this model to process data with large volumes.
Map function in the Map-Reduce framework splits input data
into smaller blocks and then processes and releases them
to an intermediate phase called shuffle, which could operate
on different machines in the cluster. The framework shuffles
and sorts the results to the reducer in the reduce phase.
Additionally, Map-Join-Reduce is an extended version of
MapReduce that improves the runtime efficiency on processing

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:26:55 UTC from |IEEE Xplore. Restrictions apply.

Jobs M-R-J Distribution

EEEEEEEEEER

Fig. 6: Distribution of Map-Join-Reduce tasks

heterogeneous data analytic. It is designed for multi-way join
and allows to partition multiple data sets to the reducers in
one pass [7]. Map-Reduce-Merge [8] adds a Merge phase
after applying the map and reduce function and it reads data
in an organized manner. This programming model can also
support join operation on multiple dataset and it is helpful for
processing relational data.

To understand the relationship between task type and the
structure of DAG jobs, we measure the amount of different
task types among each job. As shown in figure 6. There are
three types of tasks appearing in our data: M, J, or R. There
might be other types of tasks in the original dataset. However,
those tasks are either jobs without DAG structure or they are
not fully terminated jobs. So we did not conclude them in
our test. M represents the tasks are either Map or Merge. R
indicates that the reduce function is applied in the task. J is
the join operations. The original cluster trace does not provide
the detailed description on specific task type, unlike trace data
from other organizations, like Google [10]. Regardless, these
jobs follow some common patterns that we can infer their
types based on the framework infrastructure. Many smaller
sized jobs that their length of critical path is less or equal to
two which exploit fundamental Map-Reduce framework that
only map and reduce functions deployed. Note that the job id
with 1011266 has the largest number of M tasks and just a
single R task.

Other than that, the majority of jobs present Map-Reduce
with join operations. Interestingly, there are different kinds
of Joins in the jobs. To distinguish the joins in different
algorithms, we find out that “join” in the general MapReudce
can be performed in either map or reduce side. The join
occurs before reaching the map function is the map-side join.
The shuffle phase sorts and merges the intermediate file from
mapper to reducer. It’s a one-to-one strategy that the data in
the intermediate node can only pass data to another node
[9]. Basically, if the join operations are performed in the
map or reduce phases are implementing the general MapRe-

293

duce. However, “join” in Map-Join-Reduce is an independent
stage that introduces a filtering-join-aggregation programming
model which allows the one-to-many shuffling activated [9].
The reduce functions read the input from the output of the last
join function [7].

In our observation, nearly all chain-structured jobs per-
formed MapReduce without join operations. The amount of R
tasks in most of the chain-structure cases are deployed more
than M tasks except those jobs who have less than four task
nodes in job graphs. In relatively larger jobs, the form of task
deployed is even more complicated. Map-Reduce and Map-
Join-Reduce framework are used in combination. We also find
that jobs with higher parallelism have more reduced tasks after
the node conflation process.

Performing clustering analysis is a critical step for exploring
the topological features of batch jobs DAG. Before applying
classification techniques, a similarity measurement is needed
for graph-structured data. A conventional idea is to calculate
the edit distance of transforming one graph to another. How-
ever, the computational cost is exponential depending on the
number of nodes, which is less effective. We adopt graph
kernels, in particular Weisfeiler-Lehman kernel [18] in our
method to conduct the graph clustering tasks for the batch
jobs.

D. The Kernel-Based Approach

The Weisfeiler-Lehman (WL) graph kernels break down a
connected graph into subtrees. and then, a similarity function
is defined according to the number of common substructures
across pairs of graphs. The common patterns are also discov-
ered in our batch job DAGs as we introduced in section 5.

A graph kernel is a kernel function over a set of graphs. It
is similar to an inner product of the embedding. Weisfeiler-
Lehman can effectively compare if two graphs are isomorphic.
It builds on top of the substructure-based kernel such as
subtree kernel or shortest path kernel. The Weisfeiler-Lehman
is defined as follows:

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:26:55 UTC from |IEEE Xplore. Restrictions apply.

Let G and G* be graphs for comparison. Assume G', G2,
..., G are graphs emerging from G at the iteration 1, 2, ..., n
of the Weisfeiler-Lehman algorithm. We define the Weisfeiler-
Lehman kernel as follows:

(GG = > kGG 6))
i,j=0

In equation (1), k represents a base kernel function, such as
subtree or shortest path kernel. The base kernels, k(G, G’),
compare the substructure of two graphs that usually takes
polynomial time. We define that 3 represents the set of labels
of graph G and G’. The set of original labels of both graphs is
represented by Xy, whereas, ¥, is the set of labels after nth
iteration of the Weisfeiler-Lehman algorithm. Assume that all
%, are pairwise disjoint and all elements (oy1, ..., 04x,|)
inside ,, is ordered. The subtree kernel on graph G and G’
with n iterations is defined as:

(n)

(n) _ (n)
kwlsubtree(G7 G,) - (wlsubtree(G)’ ¢wlsubtree(G/)> (2)
where ¢gll)subtree(G) and (bg;)subtree(G/) are sets of maps

that count the number of occurrences of the label (o;;) in the
graph G and G’ respectively, such that

(G) = (mo(G,001), ..., mo (G, 00|53,))
e (1 (G Tn)y o1 (G O)

¢(")
wlsubtree

and

(G") = (mo(G’,001), ..., mo (G, 00)53,))

o (M (G 001)5 oy i (G 055, 1)

Graph kernels employ re-labeling technique to the graph
in each iteration and obtain the new kernel values. Then, the
current nodes in both graphs will be re-labeled based on the
new values. When iterations end, if vertices in two graphs get
the same labels, the two graphs are isomorphic. If they are
not completely same, similarity scores are calculated. We have
shown the correlation map of our experimental data based on
the similarity score in Fig 7. The x- and y-axis of the map are
index values from 100 job samples randomly selected from the
dataset for demonstration purpose. Values of similarity scores
are float numbers ranging from 0 (darker blue) to +1 (red),
where 1 indicates that two job graphs are identical in terms
of the topological structure. In other words, the smaller the
value, the less similar the two graphs are. We ignore the results
of the red solid block along the diagonal since they are self-
comparison of the same job graphs. We found out that smaller
graphs with short tails and low-level parallelism usually have
higher similarity scores. For larger graphs, parallelism, tail
length, and degree of nodes in subgraphs among jobs are
comprehensively examined based on the calculation using
proposed method. We then use them for clustering to have
a deeper insight into the implication of outcomes.

d)(")
wlsubtree

294

VI. GRAPH SIMILARITY AND CLASSIFICATION ANALYSIS

Fig. 7: Similarity score map formed by pairwise comparison
between batch job DAGs.

A. Job Graph Clustering

In order to discover the representative pattern from existing
DAG jobs, we perform an exploratively analysis by applying
unsupervised learning methods on the received similarity map
to cluster jobs with multiple topological characteristics into
groups. In particular, we explore spectral clustering method
based on the generated jobs correlation map. Spectral clus-
tering aims to classify items into clusters through the eigen
decomposition of a similarity matrix. Due to the nature of
our circumstance, we implement spectral clustering because
it can capture the characteristics of geometrics from graph-
based data and can apply affinity measures directly from
the formatted input matrix. In a typical spectral clustering
algorithm, it needs to construct a similarity graph defined by
each pair of data points as input and it will then calculate
the clusters based on the affinity matrix instead of defining
specific attributes to train the model for clusters.

Conventional spectral clustering algorithm usually performs
on the task-level (or node-level in graph theory). In our
experiment, we apply the spectral clustering algorithm to a
pairwise graph comparison of sampling jobs and discover the
clusters based on the similarity scores between each pair of
jobs. In the experimental results, job graphs are clustered into
five groups in terms of DAG topological structure. We display
statistical analysis in Fig 9 according to the clustering results.
Various job sizes based on the number of tasks appear in

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:26:55 UTC from |IEEE Xplore. Restrictions apply.

(o)

()

(e)

Fig. 8: Clustering Groups. Five different groups have been detected. Some representative jobs from each group are selected
to show above. (a) Group A with job id 1001496 (b) Group B with job id 1012962 (c¢) Group C with job id 1001510 (d)
Group D with job id 1011877 (e) Group E with job id 1012867

each cluster group which is shown in Figure 9(a). 75% of
jobs are clustered in the group A. The majority (90.6%) of
jobs inside group A are short jobs which have less than three
nodes (tasks) in each job DAG. Their length of critical path
and parallelism are smaller compared to other groups. Small
chain-structure jobs are frequently seen (91%) in this group.
This is because smaller jobs have relatively simple structure.
In addition, the intermediate parallel running tasks of non-
chained jobs in group A are more likely to converge into
one ending node in the last step. The topological shape of
jobs in Group A involves inverted triangle, straight chain, and
diamonds.

The scale of jobs in the clustered group B increases as
the average size raises about approximately 1.55 times in
respect of group A. The overall extent of critical path and
parallelism of jobs enhances as well. It appears that more
jobs contain chain-structured subgraphs closely tied to its
distributed tasks within the graph. These jobs still follow
the style of convergence but with longer tails in their hybrid
structure.

295

Furthermore, due to the increasing complexity, jobs in group
D have higher average values among the metrics. Subgraph
after distributed tasks in each job not only has chains but also
successive serial tasks appear before the aggregation. Group
C and Group E have a few different properties than other
groups. Unlike jobs in the other clusters follow a convergence
structure, Jobs in group C and E are diffuse. Based on the
depth of graphs, the number of tasks in the last level are more
than its precedent level. In group E, the extreme case, 8 tasks
are released from a single node at the ending level. For the jobs
in Group C, task intersection exists, for instance, all the ending
nodes are fully connected to every node in their previous level.

VII. RELATED WORK

Workload analysis and resource management. Cluster
workload analysis can provide valuable insight to the system
performance and utilization. [25] characterized the resource
usage of both online and offline production jobs from Al-
ibaba’s cluster data of 2017. [26] also analyzed the same
sets of data but they focused on discovering the characteristic

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:26:55 UTC from |IEEE Xplore. Restrictions apply.

|2~
&

GroupA GroupB GroupC GroupD GroupE

(b)

(a)

Masimurn Job Parallelism
L S

Length of critical path

D_| .
|
il

GroupA GrowpB GroupC GroupD GroupE

(©)

GroupA Group® GroupC GroupD GrowpE

(d)

Fig. 9: Properties of job DAGs in cluster groups. (a) Population
of jobs in groups. (b) Distribution of job size across groups. (c)
Distribution of the length of the longest critical path of jobs
across groups. (d) Distribution of the maximum parallelism
among jobs across groups.

of imbalance from overall workload in terms of resource
demands and job duration. [14] provided statistical analysis on
workload behavior and applied k-Means clustering algorithm
to grouping the similar job with similar properties on resource
demands and duration. [12] provided an overall analysis on
newly released data from Alibaba. [13] performed a character
analysis on DAG jobs and innovated a synthesis method to
generate simulated workloads. In addition, [34] introduced a
fractal-based model to investigate and characterize the self-
similarity and non-stationarity property of cloud workloads
for optimal control.

Algorithm design of dependency-aware scheduling in dis-
tributed clusters is another prevalent topic to improve effi-
ciency of data center. [16] developed a tool, called Decima, to
automatically learn the scheduling policies in the cluster using
reinforcement learning technique. Another group [15] imple-
mented the deep reinforcement learning approach to optimize
the scheduling of dependency-based jobs. However, their job
only focused on the task level optimization. [27]applied a task
duplication strategy to improve the performance of solving
multi-clusters DAG mapping problem.

Graph-based learning. Moreover, the literature of graph-
based learning provides a variety of intriguing approaches
and applications. In terms of graph similarity analysis, [20]
proposed a new graph matching networks model based on
graph neural networks. It can effectively learn the similarity
reasoning and identify differences among graphs by com-
puting similarity scores through cross-graph attention mech-
anisms. SIMGNN [19] is a neural network-based approach
to solve the graph similarity search problems by combining
embedding function with attention mechanism and pairwise
node comparison in graph-level embedding. On top of that,
instead of using the fixed-dimensional embedding in graph-

296

level representations, node embedding matching technique was
applied to obtain the fine-grained differences between graphs
for similarity computation. [21]

More specifically, the following works adopted the
Weisfeiler-Lehman algorithm [18] in their design to im-
prove the performance of graph learning. [22] developed a
graph neural network-based framework in accordance with
transform-sum-concatenation pattern which considered the
continuous similarity in the neighborhood aggregation. [23]
presented two algorithms for both labeled and unlabeled
graphs aiming to capture the global properties of graph com-
parison. The first algorithm employed indefinite kernels based
on SVM classification and the second algorithm consolidated
Pyramid Match Kernel and Weisfeiler-Lehman framework to
enhance the accuracy of graph classification. In addition, [24]
proposed a graph kernel method on the basis of topolog-
ical properties that leverages iterative variants of persistent
Weisfeiler-Lehman procedure to improve model generalizabil-
ity and predictive performance by capturing the features of
connected components and cycles in non-attributed graphs.

Furthermore, a wide range of applications of graph learning
have been explored in real-world scenarios. [28] and [29] ap-
plied graph similarity analysis in storage workload and cloud
migration pattern generation, respectively. [30] developed a
graph-kernel based structure feature selection method to clas-
sify connectivity networks for brain disease. Similarly, [31]
applied WL-align technique to evaluate the brain atlases based
on topological structure similarity in connectome. Besides,
[32] and [33] also adopted the principles from WL kernel to
detect program resemblance and improve clustering outcome
of source code, correspondingly.

VIII. CONCLUSIONS

In this work, we perform a job-level graph-based batch
workload analysis with an aim towards understanding the
hidden information of job topological structure in the large-
scale cluster. We execute a comparative character analysis
on dependable jobs to study the performance in terms of
common patterns and task type. Finally, we contribute a graph
similarity approach that learns from the sub-patterns of each
job and clustering them into multiple groups. The result shows
that our method bridges the gap that can effectively capture
the properties of topological structure of batch jobs in a co-
located cloud environment. In the future, we plan to extend
the analysis by combining resource analysis techniques for job
scheduling optimization.

ACKNOWLEDGMENT

This work has been supported in part by the National Sci-
ence Foundation grants CCF-1563750, CNS-1828105, CNS-
1852134, OAC-2017564, and CNS-2037982. We thank the
anonymous reviewers for their constructive comments, which
helped us improve this paper.

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:26:55 UTC from |IEEE Xplore. Restrictions apply.

[1]

2

[3]

[4]

[5]

[6]
[71

[8]

[9]

[10]

[11]

[12

&

[14]

[15]

[17]

[18]

[19]

[20]

[21]

REFERENCES

Global Cloud Index Projects Cloud Traffic to Represent 95 Percent of
Total Data Center Traffic by 2021 https:/newsroom.cisco.com/press-
release-content?type=webcontent&articleld=1908858

C. Jiang, G. Han, J. Lin, G. Jia, W. Shi and J. Wan, "Characteristics of
Co-Allocated Online Services and Batch Jobs in Internet Data Centers:
A Case Study From Alibaba Cloud,” in IEEE Access, vol. 7, pp. 22495-
22508, 2019.

Malte Schwarzkopf. 2017. Cluster Scheduling for Data Centers: Expert-
curated Guides to the Best of CS Research: Distributed Cluster Schedul-
ing. Queue 15, 5, pp. 78-89, 2017.

Y. Cheng, A. Anwar and X. Duan, ”Analyzing Alibaba’s Co-located
Datacenter Workloads,” IEEE International Conference on Big Data (Big
Data), 2018.

https://github.com/alibaba/clusterdata

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data
processing on large clusters. Commun. ACM 51, 1, pp. 107-113, 2008.
D. Jiang, A. K. H. Tung and G. Chen, "MAP-JOIN-REDUCE: Toward
Scalable and Efficient Data Analysis on Large Clusters,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 23, no. 9, pp. 1299-1311,
2011.

Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker.
Map-reduce-merge: simplified relational data processing on large clus-
ters. In Proceedings of the 2007 ACM SIGMOD international conference
on Management of data (SIGMOD). 2007.

J. Ren, L. Liu, F. Liu, W. Zhou and S. Lii, ”An Executable Specification
of Map-Join-Reduce Using Haskell,” in IEEE Access, vol. 7, pp. 10892-
10904, 2019.

Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and
Michael A. Kozuch. Heterogeneity and dynamicity of clouds at scale:
Google trace analysis. In Proceedings of the Third ACM Symposium
on Cloud Computing (SoCC). 2012.

C. Lu, K. Ye, G. Xu, C. Xu and T. Bai, "Imbalance in the cloud: An
analysis on Alibaba cluster trace,” 2017 IEEE International Conference
on Big Data (Big Data), 2017.

Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang
Mao, and Yungang Bao. 2019. Who limits the resource efficiency of
my datacenter: an analysis of Alibaba datacenter traces. In International
Symposium on Quality of Service IWQoS), 2019.

Huangshi Tian, Yunchuan Zheng, and Wei Wang. 2019. Characterizing
and Synthesizing Task Dependencies of Data-Parallel Jobs in Alibaba
Cloud. In ACM Symposium on Cloud Computing (SoCC ’19). 2019.
W. Chen, K. Ye, Y. Wang, G. Xu and C. Xu, "How Does the Workload
Look Like in Production Cloud? Analysis and Clustering of Workloads
on Alibaba Cluster Trace,” in IEEE International Conference on Parallel
and Distributed Systems (ICPADS), 2018.

Z. Hu, J. Tu and B. Li, ”Spear: Optimized Dependency-Aware Task
Scheduling with Deep Reinforcement Learning,” in IEEE International
Conference on Distributed Computing Systems (ICDCS), 2019.
Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan,
Zili Meng, and Mohammad Alizadeh. Learning scheduling algorithms
for data processing clusters. In ACM Special Interest Group on Data
Communication (SIGCOMM), 2019.

Z. Hu, D. Li, Y. Zhang, D. Guo and Z. Li, ”Branch Scheduling:
DAG-Aware Scheduling for Speeding up Data-Parallel Jobs,” in IEEE
International Symposium on Quality of Service (IWQoS), 2019.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt
Mehlhorn, and Karsten M. Borgwardt, Weisfeiler-Lehman Graph Ker-
nels. Journal of Machine Learning Research, 12(77), pp. 2539-2561,
2011.

Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and
Wei Wang. 2019. SimGNN: A Neural Network Approach to Fast
Graph Similarity Computation. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining (WSDM °19).
Association for Computing Machinery, 2019.

Li, Y., Gu, C., Dullien, T., Vinyals, O. amp; Kohli, P.. (2019). ”Graph
Matching Networks for Learning the Similarity of Graph Structured
Objects.” Proceedings of the 36th International Conference on Machine
Learning, in Proceedings of Machine Learning Research.

Bai, Y., Ding, H., Gu, K., Sun, Y., Wang, W. "Learning-Based Efficient
Graph Similarity Computation via Multi-Scale Convolutional Set Match-
ing”. Proceedings of the AAAI Conference on Artificial Intelligence,
2020.

[22]

[23

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

138
[39

[40
[41
[42
[43
[44
[45
[46
[47

297

Ok, Seongmin. "A Graph Similarity for Deep Learning.” In Advances
in Neural Information Processing Systems 2020 (NeurIPS 2020).
Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis.
Matching node embeddings for graph similarity. In Proceedings of
International Conference on Artificial Intelligence (AAAI), 2017.
Rieck B, Bock C, Borgwardt K. A persistent weisfeiler-lehman proce-
dure for graph classification. In International Conference on Machine
Learning, 2019.

Cheng, Yue, Ali Anwar, and Xuejing Duan. ”Analyzing alibaba’s co-
located datacenter workloads.” In 2018 IEEE International Conference
on Big Data (Big Data), 2018.

C. Lu, K. Ye, G. Xu, C. Xu and T. Bai, "Imbalance in the cloud: An
analysis on Alibaba cluster trace,” 2017 IEEE International Conference
on Big Data (Big Data), 2017.

Chaudhuri, P, Elcock, J. (2010). Scheduling DAG-based applications
in multicluster environments with background workload using task
duplication. International Journal of Computer Mathematics, 87(11),
2387-2397. 4

Y. Zhou, L. Liu, S. Seshadri and L. Chiu, "Analyzing Enterprise Storage
Workloads With Graph Modeling and Clustering,” in IEEE Journal on
Selected Areas in Communications, vol. 34, no. 3, pp. 551-574, 2016.
Z. Wan, F. J. Meng, J. M. Xu and P. Wang, "Service Composition
Pattern Generation for Cloud Migration: A Graph Similarity Analysis
Approach,” 2014 IEEE International Conference on Web Services, 2014.
M. Wang et al., "Graph-Kernel Based Structured Feature Selection for
Brain Disease Classification Using Functional Connectivity Networks,”
in IEEE Access, vol. 7, pp. 35001-35011, 2019.

Matteo Frigo, Emilio Cruciani, David Coudert, Rachid Deriche,
Emanuele Natale, Samuel Deslauriers-Gauthier, “Network alignment
and similarity reveal atlas-based topological differences in structural
connectomes”, bioRxiv 2020.12.16.422501;

Wenchao Li, Hassen Saidi, Huascar Sanchez, Martin Schif, and Pascal
Schweitzer. 2016. Detecting Similar Programs via The Weisfeiler-Leman
Graph Kernel. In Proceedings of the 15th International Conference on
Software Reuse: Bridging with Social-Awareness - Volume 9679 (ICSR
2016). Springer-Verlag, Berlin, Heidelberg, 315-330.

Hoppner F., Jahnke M. (2020) Enriched Weisfeiler-Lehman Kernel for
Improved Graph Clustering of Source Code. In: Berthold M., Feelders
A., Krempl G. (eds) Advances in Intelligent Data Analysis XVIII. IDA
2020. Lecture Notes in Computer Science, vol 12080. Springer, Cham.
Chen, M. Ghorbani, Y. Wang, P. Bogdan and M. Pedram, “Trace-Based
Analysis and Prediction of Cloud Computing User Behavior Using the
Fractal Modeling Technique,” 2014 IEEE International Congress on
Big Data, Anchorage, AK, USA, 2014, pp. 733-739, doi: 10.1109/Big-
Data.Congress.2014.108.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering:
analysis and an algorithm. In Proceedings of International Conference
on Neural Information Processing Systems (NIPS). 2001.

Google Omega: Schwarzkopf, Malte, Andy Konwinski, Michael Abd-El-
Malek, and John Wilkes. "Omega: flexible, scalable schedulers for large
compute clusters.” In Proceedings of the 8th ACM European Conference
on Computer Systems, pp. 351-364. 2013.

Alibaba Maxcompute data processing
https://www.alibabacloud.com/product/maxcompute
Apache Hadoop Framework: https://hadoop.apache.org/
Yarn: https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-
site/YARN.html

Mesos: http://mesos.apache.org/

Docker Swarm: https://docs.docker.com/engine/swarm/swarm-tutorial/
Alibaba Cloud: https://us.alibabacloud.com/

Hippo Manager: https://www.hippomanager.com/

Apollo: https://www.apollographql.com/docs/

Flink: https:/flink.apache.org/

Spark SQL: https://spark.apache.org/sql/

Apache Spark: https://spark.apache.org/

platform:

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2021 at 21:26:55 UTC from |IEEE Xplore. Restrictions apply.

