On the geometric construction of a stabilizing time-invariant
state feedback controller for the nonholonomic integrator

Shen Zeng?

& Department of Electrical & Systems Engineering,
Washington University, St. Louis, MO, USA
email: s.zengQ@Quustl.edu

Abstract

The paper presents a rather natural and elementary geometric construction of a stabilizing time-invariant state feedback law
for the nonholonomic integrator. The key features of the particular construction are the direct inclusion of certain classical
optimality considerations pertaining to the geodesics of the nonholonomic integrator, the confinement of all discontinuities in
the feedback law to the z-axis, as well as a uniform exponential convergence result for the closed-loop system. The results of
this treatment also have interesting implications for the control of nonholonomic systems in general, e.g., they highlight that
for nonholonomic systems even the most natural seeming stabilizing feedback laws may not be amenable to a closed-form
expression and may need to be formulated in more elaborate and implicit terms.
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1 Introduction

Ever since its introduction in the 1980s as a first example
of a nonlinear control system that is fully controllable
but for which no stabilizing continuous time-invariant
state feedback exists (Brockett, 1983), the nonholonomic
integrator (also often referred to as the Brockett integra-
tor or the Heisenberg system, cf. the Heisenberg group)
described by
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with states x,y, z, and inputs u, v, has prevailed as a
prime example of nonlinear control that nicely encapsu-
lates the intriguing peculiarities of general nonlinear con-
trol systems in a particularly simple and pure form. In
the decades to follow, the nonholonomic integrator has
served as a constant source of inspiration that spurred
numerous further investigations and studies aimed at
both gaining a better understanding of the fundamental
limitations, as well as finding viable alternative strate-
gies for its asymptotic stabilization in practice.

1 Section 2 of the present manuscript is adapted from Sec-
tion 2 in the conference paper (Zeng, 2019). This work was
supported by the NSF grant CMMI-1933976.

Given the nowadays well-known fundamental obstruc-
tion that no continuous time-invariant stabilizing state
feedback exists for the nonholonomic integrator (Brock-
ett, 1983), subsequent works have set themselves to
finding viable solutions outside the class of continuous
time-invariant state feedback, e.g., by considering dis-
continuous time-invariant feedback laws (Astolfi, 1994;
Bloch and Drakunov, 1996; Astolfi, 1998; Hespanha
and Morse, 1999; Bloch et al., 2000; Liberzon, 2003;
Dolgopolik and Fradkov, 2016) that all involve some
explicit switching-based component, by considering
time-varying state feedback (Morgansen and Brockett,
1999; Zuyev, 2016), or by its direct generalization of
embedding the original system in a higher-dimensional
space and then implementing time-invariant feedback
using the extended state (Khaneja and Brockett, 1999).

In this paper, we revisit the classical problem of stabiliz-
ing the nonholonomic integrator by time-invariant state
feedback. We first illuminate the problem in a very ex-
plicit geometric light, which although very elementary,
appears to not have been given any considerations be-
fore. The simple insights gained from these geometric
considerations very quickly point us towards what one
may regard as a naturally occuring stabilizing feedback
law for the nonholonomic integrator. We further build
on the geometric insights by adding more analytical con-
siderations into the picture, and establish a less intu-
itive uniform exponential convergence result that goes
beyond the purely geometrical considerations.



2 The nonholonomic integrator

In this section, we first show how the nonholonomic in-
tegrator can be quite naturally recovered from a simple
geometric consideration of planar curves. This connec-
tion will provide a particularly clear description of the
key steering mechanism of the nonholonomic integrator.

Given a planar C'-curve t — (z(t),y(t)) € R?\ {0}, it
is an interesting thought to attach to a point (x(t), y(t))
on the curve an angle via ¢(t) = arctan (%) , where

we ignore the singularity for z(¢) = 0 for a moment, cf.
the illustration in Figure 1.
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Fig. 1. Definition of the angle for a planar curve.

Formally differentiating ¢ with respect to time yields
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which is well-defined for all (x,y) € R?\ {0}. At this
point, one could already additionally impose that the
curve t — (z(t),y(t)) be produced by a single integrator

T=u, Y=

to introduce external control inputs into the picture.
This would then already provide us with an interesting
and at the same time very manageable nonlinear control
system with inputs to analyze.

But, instead, let us rearrange the equation for ¢ to
(2 +y*)p = 2y — iy (1)

to eliminate the singularity. By the same line of argu-
ment as before, this now directly corresponds to the con-
trol system
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which we recognize as the nonholonomic integrator.

While the influence of the control (u, v) to (x,y) is clear,
our previous geometric considerations, specifically the
relation (1), also shed light on the dynamics of the state
z in terms of a certain area generated by the (z,y) curve,
as illustrated in Figure 2.
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Fig. 2. The (signed) area A of the highlighted red sector
formed by the curve segment (x(t), y(t)):e|to,t,) and the ori-

ginis A = %ffof zy — dydt = 3(2(ty) — 2(to)).

By comparing the dynamics of the nonholonomic inte-
grator with the introductory geometric consideration,
we can explain many known facts in an elementary way,
as has already been done in numerous prior works, see,
e.g., Brockett (1982); Vdovin et al. (2004). For instance,
the frequently studied geodesics of the Heisenberg group
(viewed as a sub-Riemannian manifold) can be readily
interpreted in terms of an optimal control problem of
minimizing the cost functional

J:/tf\/u(t)2+v(t)2dt:/tf\/:'c(t)Qer(t)?dt

subject to initial and terminal conditions given by
(%0, Y0, 20) and (xr,yy, zy), respectively. Using the geo-
metric viewpoint, we can in turn interpret this optimal
control problem as finding a planar curve t — (x(¢), y(¢))
in the zy-plane with minimal length that connects
(x0,y0) and (zf,ys) with a specified area of the corre-
sponding sector A = 1(z(t;) — z(t)). The planar curves
connecting two points with a specified sector area and
a minimal arc length are, of course, circular arcs (cf.
the famous isoperimetric problem, see, e.g., Liberzon
(2011)), except for when the sector area that needs to
be generated is zero, where the planar curves are lines,
which can, however, be regarded as arcs of circles with
infinite radius.

Given the distinguished role of (generalized) circular arcs
within the study of the Heisenberg group and related
studies in nonlinear control theory Brockett (1982), it
seems only natural to also give special consideration to
the elementary geometric approach within the solution
to the problem of stabilizing the nonholonomic integra-
tor. This geometric formulation is examined in the next
section.



3 Constructing the state feedback law from ge-
ometric considerations

Consider an initial state (x,y, 2z) € R?, where for the mo-
ment, we exclude the cases of (z,y) # (0,0), as well as
the cases of z = 0. Figure 3 describes a simple geomet-
ric illustration for solving the task of steering the non-
holonomic integrator from the initial state to the origin
by tracing out a circle segment with area %\z| We note
that when (z,y) # (0,0), the construction of that circle
segment is unique.

(u(z,y, z),v(z,y, 2))

Fig. 3. Circle segment that connects (z,y) with (0,0) and
has an area of %|z\ The red arrow indicates the instanta-
neous velocity vector (u,v) at the point (x,y). The figure
also establishes an elementary geometric relation for the an-
gle a between (u,v) and (x,y). In the depicted situation, we
have z > 0, which is why the rotation is clockwise.

The shaded circle segment can be split up into a triangle
and a circular sector. The area of the triangle is given by

1
Agriangle = R? sin(«) cos(a) = §R2 sin(2«),

and the area of the circular sector is given by

Ascctor - (7T - Oé)RQ.
The area of the shaded circle segment is thus given by

1 1 5, .
Agegment = §\z| = iR (sin(2a) + 2(7 — ), (2)

where the radius R can be seen to satisfy
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By plugging in (3) into (2), we obtain an analytical de-
scription for the relevant angle v as the solution to the
transcendental equation

(2% + 9?)(sin(2a) + 2(7 — ) = 4|z|sin®(a).  (4)

For (22 4+ y?) # 0 and 2z # 0, the transcendental equa-
tion (4) admits a unique solution within the open inter-
val (0, 7). This solution cannot, however, be written in
closed form as a function of 2% 4+ y2 and |z| due to the
transcendental nature but that it is straightforward to
compute the solution numerically. To see the existence
of a unique solution of (4) for all (z2+%2) # 0 and z # 0,
we can rewrite (4) as

sin(2a) +2(m —a) 42|
T2 + 92’

sin? ()
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which also highlights that we can view « as a function of
merely the ratio of 22 + y? and |z|. A direct inspection
shows that the function ¢ : (0,7) — (0,00) defined

above is bijective and further satisfies %1/) < 0 for all

a € (0,7) so that we may write o = wil(ng?bz ), which

is further smooth in (z, y, z) with 22+4? > 0 and |2| > 0.

Figure 4 illustrates closed-loop solutions obtained from
implementing the naturally associated preliminary feed-
back law

(u) _ < cos(w) sgn(z)sin(a)) \/miﬁ
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where « is the unique solution of (4) within (0, 7).

We note that depending on the initial angle of (z,y) in
the zy-plane, the solutions stay on distinct “leaves” or
“branches” and that these constitute a foliation of the
three-dimensional state space. Along these lines, it is also
interesting to observe that trajectories resulting from
initial states with y/22 4+ y2 > |z| can be directly viewed
as the end pieces of trajectories originating from some
corresponding initial states (Z, g, £) with /22 + 2 < 1
but non-zero and |Z| > 1, cf. Figure 4 (c).

By inspecting Figure 4 (a), the issue with points
(0,0,2) € R? also quickly becomes apparent. Besides
the more superficial observation that the proposed
feedback law is simply not well-defined in these cases,
Figure 4 highlights very clearly that solutions starting
at points (x,y, z) with 1/22 4+ y2 < 1 in the close vicin-
ity of points (0,0, z) are branching out in all different
directions depending on the initial angle of (z,y) in
the zy-plane. This is also in accordance with the well-
known fact that there are infinitely many geodesics of
the Heisenberg group connecting the origin with any
given point on the z-axis. As a result, it is impossible to
find a continuous extension. A simple resolution is given
by simply selecting one branch, say the dark blue one
in Figure 4 (b), which will extend the feedback law to
all points (0,0, z) with z € R, by setting (u,v) = (1,0).



Regarding the extension of the feedback law to the zy-
plane, observe that as |z| — 0, the solution of the tran-
scendental equation approaches 7, which when plugged
into the feedback law initially only defined for 22442 # 0

and z # 0 yields
u\ x
v y)

The main theorem of the paper builds on the prelimi-
nary considerations and establishes a suitable modifica-
tion of the control law that yields a uniform exponential
decay of the closed-loop trajectories. The preliminary
feedback law proposed so far admits a constant magni-
tude of the input signal, i.e., ||(u(t),v(t))|| = 1 and the
challenge in establishing an exponential stability result
is the determination of a suitable state-dependent gain.

Theorem 1 For all points (z,y,z) € R3 that satisfy
both 2% + 3% # 0 and z # 0, define the feedback law
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Fig. 4. (a) Closed-loop solutions obtained from the proposed

feedback law and initial states (z,y, z) with /22 + y? < 1
but non-zero. (b) The top view of the upper plot verifies
that the closed-loop trajectories are indeed tracing out cir-
cles as described in the geometric construction. (c) Several
trajectories that are all associated with one particular leaf
(in blue) along with their xy-projections (in grey).

The nature of the discontinuities on the z-axis as being
due to the presence of infinitely many paths branching
out for different (0,0, €) is reminiscent of other related
examples highlighting fundamental topological obstruc-
tions for asymptotic stabilization with continuous time-
invariant state feedback. One such classical example is
given in terms of the inability to find a continuous vec-
tor field on the circle so that the south pole is asymp-
totically stable, see, e.g., Liberzon (2003). Moreover, the
type of discontinuity, as well as the simple resolution via
assigning a specific branch of the infinitely many can be
considered very harmless when compared with discon-
tinies that could produce non-differentiable solutions of
the system or chattering.

where the occuring angle o is given as the unique solution
of the transcendental equation

(2% 4 y?)(sin(2a) + 2(7 — )) = 4|z| sin*(«)

in the interval (0, 7). The natural extension of this feed-
back law to the z-axis and the xy-plane via

u 4./|z| u x
= , and =— ,
v 0 v Y
respectively, yields a globally stabilizing feedback law for
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that is smooth almost everywhere except for discontinu-
ities along the z-axis and non-differentiability on the xy-
plane.

The closed-loop trajectories further exhibit uniform ex-

ponential convergence to the origin in the sense that with
the positive definite and radially unbounded function

N(z,y,2) = V22 +y2 + 4|7

one has the (uniform) exponential decay

N((t),y(t), z(t)) < 3 e~ N(x(0),y(0),2(0)).



PROOF. The proof of the theorem can be split up into
the two cases where z(0) = 0 and 2(0) # 0.

Regarding the case z(0) = 0, we can observe that as
|z| = 0, the solution of the transcendental equation ap-
proaches 7, which when plugged into the feedback law
initially only defined for 22 + y? # 0 and z # 0 yields

u) x

v Y ’
showing that the above definition yields a continuous
extension of the original feedback law to the xy-plane.

The feedback law clearly leaves the zy-plane invariant
and results in an exponential convergence to the origin.

To study the case of z(0) # 0, we recall that by the con-
struction of the feedback law from the elementary geo-
metric consideration presented in the foregoing section,
the closed-loop solutions will trace out boundaries of
circle segments of area 1[2(0)| that connect (2(0), y(0))
with (0,0) in the xy-plane. In this non-degenerate case,
we can express the quantities /2 + y2? and \/ﬂ in
terms of functions of the variable a. More specifically,
by using the relations (2) and (3) from the geometric
consideration, we end up with

N(z,y,z) = \/$2+y2+4\/m

= 2Rsin(a) + 4R+/sin(2a) + 2(7 — a).

Recall that this is also the gain that determines the mag-
nitude of the (u,v) velocity vector in Figure 3 that in
turn determines the angular speed

N(z,y,z)
) = ———
wlt) =
of (x(t),y(t)) about the center of the circle. This insight
together with the linear relationship

a(t) = (1/2)w(t)

could be directly used to show that o converges to m ex-
ponentially, which means that in the zy-plane, the (z, y)-
curve rotates into the origin in an exponential manner.
However, to simplify arguments in the following, we will
instead examine the dynamics of e(t) := m — a(t) and
show that e(t) — 0 exponentially.

It is straightforward to rewrite all the functions of « in
terms of functions of the new variable e, e.g.,

N(e(t)) := 2Rsin(e(t)) + 4R\/2e(t) — sin(2e(t)). (5)

Moreover, we find that the dynamics of e is given by

: . 1 I
¢=—a=—jw= —ﬁN(e)

— —(sin(e) +2y/2¢ — sin(2e)) = — ().
An analysis of the function
¢:[0,71] = R, erssin(e)+2y/2e —sin(2e)  (6)
shows that ¢ is a sector nonlinearity with
e < ¢(e) < 3e.

The lower bound immediately yields

Starting with the relationship

N(e(t)) = 2R (e(t)),

which can be readily inferred from comparing the two
equations (5) and (6), we first use ¢(e) < 3e to obtain

N(e(t)) < (2R) x 3e~te(0).
Applying e < ¢(e), we have
N(e(t)) < (2R) x 3e~"(e(0)).
Since 2R¢(e(0)) = N(e(0)), we arrive at the claim
N(e(t)) < 3e tN(e(0)). O
Remark 1 We emphasize that the specific definition of
the gain N(x,y,z) is what facilitates that the resulting

dynamics for e is independent of R, which is critical for
obtaining a uniform bound of the form

N(z(t),y(t), 2(t)) <3 e™" N(x(0),y(0), 2(0)).

In more detail, the specific choice of the orders in

V&% +y? and +/|z| is what facilitates that both terms in
(5) contain a factor of R that is cancelled when consid-

ering the dynamics é = 7i]\~[(e) = —¢(e).

At the same time, this particular choice is also ultimately
the cause of the failure of N to qualify as a proper norm
due to a lack of absolute homogeneity.



Figure 5 shows the evolution of the nonholonomic in-
tegrator under the proposed state feedback law for the
initial state (x(0),y(0), 2(0)) = (0,0,1). In this specific
instance, we can also see that N(z,y, z) is actually in-
creasing in the beginning before it starts decreasing. This
provides further context regarding the need for a more
specialized treatment instead of a standard Lyapunov-
based argument in the foregoing proof.
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Fig. 5. Top: The closed-loop state trajectory. Middle: The
resulting input signals u and v. Bottom: The evolution of
N(z(t),y(t),z(t)) (solid) along with the established upper
bound given by 3e~*N(z(0),y(0), 2(0)) (dashed).

4 Summary and discussion

We have revisited the classical example of the nonholo-
nomic integrator and examined it in an elementary geo-
metric light. This rather naturally led to the elementary
construction of a geometric solution the problem of sta-
bilizing the nonholonomic integrator with time-invariant
state feedback. We built on the geometric insights and
established a less intuitive uniform exponential conver-
gence result by employing systems theoretic arguments
that go beyond the purely geometrical considerations.

From a broader perspective, the results of this paper
highlight interesting points in the control of certain non-
holonomic control systems, such as the possibility of even
the most natural seeming feedback law to fundamentally
refuse a description in terms of a closed expression.
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