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Abstract: Many problems in the study of dynamical systems—including identification of effective
order, detection of nonlinearity or chaos, and change detection—can be reframed in terms of assessing
the similarity between dynamical systems or between a given dynamical system and a reference.
We introduce a general metric of dynamical similarity that is well posed for both stochastic and
deterministic systems and is informative of the aforementioned dynamical features even when only
partial information about the system is available. We describe methods for estimating this metric in a
range of scenarios that differ in respect to contol over the systems under study, the deterministic or
stochastic nature of the underlying dynamics, and whether or not a fully informative set of variables
is available. Through numerical simulation, we demonstrate the sensitivity of the proposed metric to
a range of dynamical properties, its utility in mapping the dynamical properties of parameter space
for a given model, and its power for detecting structural changes through time series data.

Keywords: nonlinearity; model selection; chaos detection; change detection; model behavior map-
ping; dynamical similarity; causal discovery

1. Introduction

The term dynamical similarity refers to the degree to which the dynamics governing
the evolution of a system over a period of time resembles the dynamics of another system,
or the dynamics of the same system over a different period of time. Two fundamental
problems of time series analysis are how best to measure dynamical similarity, and how
to infer a given measure from noisy time series data. We address both problems, first by
presenting a new metric of dynamical similarity that is indicative of underlying causal
structure and that is well posed whether one is comparing two deterministic or two
stochastic dynamical systems, and then by providing a range of tools for estimating this
metric from data.

There is no uniquely best measure of dynamical similarity since the aptness of any
given measure is relative to its intended use. However, there is broad interest in measures
that are sensitive to the causal structure of a system in the sense of which variables directly
determine the values (or stochastic distributions over the values) of other variables and
with what functional form. For instance, the field of change detection is concerned with
determining if and when the causal structure of a dynamical system has changed, as
for example when an ecosystem (or climate) has been perturbed by external forcing,
or when a mechanical component has begun to fail [1]. This amounts to determining
whether one and the same system at a later time is dynamically similar to itself at an
earlier time. Classically, this problem has been pursued under the assumption that the
behavior of some stochastic system before and after a rapid change in parameter values
is stationary [2], though progress has been made on the problem without the assumption
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of stationarity [3]. From the perspective of deterministic complex systems, the problem
of change detection manifests as either the problem of detecting incipient bifurcations [4]
or transitions between regions of the system’s attractor [5]. The more general problem
encompassing both approaches is the detection of change in the structure of a dynamical
system without assumptions of determinism or stationarity, such as detecting incipient
bifurcation in an arbitrary stochastic dynamical system [6]. In general, we want to know
whether a given system will continue to evolve and respond to perturbations in the same
way as it did before.

It has been recognized for some time that it is often more important to know the
degree of difference in dynamics after a change rather than the mere fact of change [7].
While change detection is often treated as a binary statistical decision problem [8], explicit
measures of dynamical similarity have been used to assess whether a dynamical shift is
practically (as opposed to statistically) significant [7]. Implicitly, such a notion of dynamical
similarity plays a central role in system identification, where it is often important to know
at the outset whether the system in question can be described with sufficient fidelity using
a linear model [9], or in other words, whether the system is sufficiently dynamically similar
to a linear one. Similarly, it is important to know the effective order of the dynamical
process of interest in contexts where acquiring data points in a time series is expensive,
such as community ecology, in order to know how long of a time series will be needed
to fit a reliable model [10]. Relatedly, the degree of nonlinearity and chaos exhibited by
a system is essential for managing error in system control or prediction [11–14]. Each of
these problems—identifying effective order, nonlinearity, and chaos—can be seen in terms
of dynamical similarity. Whether a system is strongly nonlinear is equivalent to asking
whether and to what degree it is dynamically similar to a strongly nonlinear system and
mutatis mutandis for effective order and chaos.

Whatever the appropriate measure of dynamical similarity, the problem of estimating
its value from data is made more difficult with increasing sampling noise, and becomes
significantly more challenging to address for stochastic systems. Model validation is noto-
riously difficult for stochastic systems [15,16]. Model validation amounts to assessing the
similarity between one system—the model—whose dynamics is exactly characterized, and
a target system with unknown dynamical properties; a valid model is one whose dynamics
matches that of the target. The difficulty of this comparison is only compounded when one
attempts to determine the similarity between two systems, both with unknown dynamics.
Furthermore, existing techniques for detecting change or assessing, e.g., nonlinearity, are
highly sensitive to sampling noise [2,17].

We here describe a general metric of dynamical similarity that is well posed for both
stochastic and deterministic dynamical systems and which is sensitive to the effective
order of dynamics, the degree of nonlinearity, and the presence of chaos. Importantly, this
metric can be informative of these dynamical features even when only partial information
about the dynamical state of a system is tracked, or a lossy function of the dynamical
variables is observed, or in other words, if the system is only “partially observed” [18].
We introduce a variety of algorithms to show that this metric can be learned in a range
of contexts, from situations in which one has full control of the dynamical system and
complete dynamical information to situations in which only partial information is available
for passively observed systems. We also demonstrate how this metric can be applied to the
problem of change detection in this range of circumstances, and how it can be deployed to
rapidly map out the varieties of dynamical behavior as a function of parameter values for
a given dynamical model.

2. Related Work
2.1. Assessing Nonlinearity, Chaos, and Effective Order

The metric of dynamical similarity we describe is sensitive to the degree of nonlinearity
in that the greater the magnitude of nonlinear terms in the governing differential equations
of a system, the more it differs according to our metric from otherwise similar linear systems.
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Though not typically framed in terms of dynamical similarity, a number of measures of
dynamical properties that could be used as such have been introduced previously for
the purpose of detecting nonlinearity in time series data. In one prominent approach,
introduced by Theiler et al. [19], one or another of these dynamical measures is deployed
as a discriminative statistic for binary hypothesis testing where the null hypothesis is a
linearized dataset—the surrogate data—constructed with a model that preserves properties
such as the mean and variance of the original data. While Theiler et al. [19] used a battery
of statistics familiar from dynamical systems theory, including the correlation dimension,
Lyapunov exponent, and forecasting error, much recent work draws upon information
theoretic constructs. Paluš [20,21], for instance, pursues the method of surrogate data using
redundancy (the multidimensional generalization of mutual information). Unfortunately,
redundancy and similar information theoretic measures reflect not just the dynamical
relations among variables but also the apparent coordination imposed by their shared
history, forcing function, or boundary conditions. Other information theoretic entropies
have been pursued that better capture the causal relations among variables. The transfer
entropy [22,23], for example, considers the probabilities of state transitions rather than
of the states themselves. It has been applied as a discriminative statistic in the surrogate
data framework by Nichols et al. [24], and was shown to outperform time-delayed mutual
information. All of these methods, however, still depend upon the assumption that the
system being assessed is at most weakly nonstationary. Merging information theoretic
and dynamical systems approaches, Bandt and Pompe [25] introduced the permutation
entropy, which they describe explicitly as a measure of the complexity of system dynamics.
For a given n (typically chosen to be on the order of 10), the permutation entropy is an
information theoretic entropy based on the probability of each of the n! permutations of
the ordinal ranks of the elements in each n-sample long subsequence of a time series. It
closely tracks the Lyapunov exponent λ, and requires that a time series exhibit only a
very modest sort of stationarity. Typically, it is employed in the surrogate framework as a
discriminative statistic [26], as is the related quantity known as the “number of missing
ordinal patterns” [27]. More to the point, the permutation entropy allows for the sort of
comparison between dynamical systems that our metric does, though with one substantial
restriction: it vanishes uniformly for monotonic functions, whether nonlinear or not.

There is particular interest in distinguishing chaotic nonlinear systems from non-
chaotic systems. Some methods for doing so require comparison with an explicit contrast
class of models such as the method of comparing the predictive power of linear and
nonlinear models of Volterra-Wiener form [28], and the method of surrogate data using
the correlation dimension as the discriminative statistic [29]. Most, however, focus on
some endogenous property of a system that can be estimated directly from a time series.
Measures of this sort include (but are not exhausted by) Lyapunov exponents [30,31], the
correlation dimension itself [32], nonlinear forecasting [33] (which provides an estimate
of the largest Lyapunov exponent and has been found more robust than the correlation
coefficient [34]), the determinism test [35,36], Kolmogorov entropy [37], the noise titration
test [38], and the 0–1 test [39]. More recently, Kulp and Zunino [40] used the encoding
scheme of Bandt and Pompe [25] to construct a “symbolic spectrum” in the manner of
Yang and Zhao [41]. By examining the spectrum for a time series and looking for missing
ordinal patterns with zero standard deviation (a hallmark of determinism), deterministic
dynamics can be distinguished from stochastic, and by noting variation for some patterns,
chaos can be distinguished from periodicity. Because hyper-chaotic systems have fewer
forbidden patterns with zero variance, this test has the potential to yield an integral degree
of chaos. With the exception of the 0-1 test, all of the other endogenous measures indicate a
continuous-valued degree of chaos. Such a quantitative degree in turn admits an obvious
measure of dynamical similarlity, at least with respect to chaos: the closer two systems are
in their degree of chaos, the more dynamically similar they are.
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The final feature of system dynamics with which we are concerned is the effective
order or history dependence. Identifying the effective order of dynamics is an essential
component of model selection in statistical forecasting and system identification. How such
an identification can be made depends to a great deal on what is already known about the
functional form of the connection between some finite number of past values of the system
variables and the future values. Nonparametric system order identification techniques that
can be applied to the more challenging classes of systems to which our algorithm can be
applied, including nonlinear, stochastic systems, are diverse and well documented [42,43].
Broadly speaking, the problem is conceived as one of function estimation: the object is
to find the form of a function f (·) and values of the associated parameters θ such that
y(t) = f (~x(t), θ) + ε(t), where y(t) is the target time series, ~x(t) is the input vector, and ε(t)
is noise, typically presumed to be independent and identically distributed with constant
variance [43]. As with function estimation in general, learning model structure—including
model order—from a time series requires balancing the goodness of fit to the observed
data and model complexity. There are a diversity of general approaches to achieving this
balance, including cross-validation [44], stepwise selection (using measures such as AIC to
bound complexity and regularize the search) [45–47], structural risk minimization [48], and
LASSO [49]. A distinct approach is provided by methods for determining the embedding
dimension in dynamical systems [50,51].

2.2. Dynamical Similarity and Change

One straightforward application of a measure of dynamical similarity is the problem
of detecting a change in the behavior of a system over time. There are at least three specific
versions of this general problem recognized in the literature. The first concerns detection
of points or portions of a time series that are outliers with respect to an unknown but
stationary (or slowly changing) distribution. This is a species of the generic anomaly or
outlier detection problem [52,53]. The second problem is the detection of state change.
From a statistical perspective, this means identifying points in a time series at which the
parameters of a stationary or linearly changing distribution change suddenly [2,54]. From
a dynamical perspective, this means detecting changes from one stable state to another as
system parameters vary, or finding points at which an evolving system moves suddenly
into a different region of its attractor [5].

The third problem of behavior change—and that which concerns us here—is the
identification of a change in time of the dynamics of a system. Such a change may be
due to a change in parameter values, a change in the functional form of relationships
among variables, or even a change in the causal structure among the variables, and may
occur fast or slow relative to the timescale of observation. Before, during, and after
the change, the system need not exhibit a stationary distribution. In other words, the
problem is to determine when a system at one time is dynamically different or distant
from itself at an earlier time. A variety of approaches have been proposed for detecting
changes of this sort. The most straightforward involve time series similarity measures.
An overview and quantitative comparison of the similarity measures has been provided
in [55] and more recently in [56]. These include distance measures such as the family
of Minkowski distances (which include Manhattan and Euclidean distances) and the
Mahalonobis distance [57] that treat each time series as a point in a high-dimensional
space, as well as similarity indices constructed from correlation measures like Pearson’s
cross-correlation coefficient [58]. While these approaches work directly with time series
(though often normalized), related approaches involve an initial transformation of the
series, e.g., by replacing the data matrix with the first few principal components (linear
functions of the original variables) as a function of time [59], or shifting to the frequency
domain by FFT [60,61]. The point of these transformations is generally some combination
of dimension reduction and the increase in sensitivity to significant features. More recently,
efficient algorithms have been introduced for computing the matrix profile, which replaces
a time series with a series of values of the minimum Euclidean distance between a moving
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window and all similarly-sized sub-sequences [62]. In the resulting profile, anomalous
segments of a time series are indicated by high profile values, while repeating motifs
appear as minima. All of these metrics can be used as a measure of dynamical difference to
detect changes in behavior. Unfortunately, none of these approaches to change detection
can distinguish between dynamical changes and mere changes of state.

There are, however, alternative approaches in the literature that are specifically sen-
sitive to dynamical structure. One family of methods attempts to detect a variety of
symptoms of an incipient bifurcation, such as an increase in variance, slower recovery
from perturbations and a consequent increase in autocorrelation [63]. Methods of detec-
tion often focus on trends in fit coefficients of autoregressive models [4,64]. A different
sort of approach focuses on properties of the system attractor that are invariant for fixed
parameter values, such as the recurrence plot or density function of visitation over cells
in a discretized phase space or the fractal dimension [7,65,66]. Hively et al. [7], for ex-
ample, define two measures on the reconstructed phase space of a system that provide a
dynamical distance between a reference case time series and a test case. They first convert
each univariate time series, xi, into a sequence of integers, si between 0 and S − 1 via
the function INT[S(xi − xmin)/(xmax − xmin)]. If d is the embedding dimension of the
reconstructed phase space, this effectively divides the phase space into Sd hypercubes or
“bins.” They then compute the empirical distribution functions Qi and Ri reflecting the
population of the ith bin for the reference time series and base time series, respectively.
The measures of dynamical distance they introduce are: χ2 = ∑i(Qi − Ri)

2/(Qi + Ri), and
L = ∑i |Qi − Ri|. When applied to a simulated Bondarenko neuron model [67], both of
these measures increase monotonically as a key parameter is varied through a region of
known chaotic behavior. In other words, the degree of dynamical dissimilarity was shown
to track known structural dynamical changes. These measures (and related “connected”
variants) were also applied to EEG data as a tool for detecting incipient seizures.

2.3. Dynamical Kinds

Effective order, nonlinearity, and chaos are all aspects of the causal structure of a
dynamical system. The existing tests contrived to assess these aspects consider a target
system in isolation; the details of a particular system’s behavior are used to determine, e.g.,
the effective order of its dynamics, and only after the fact is it recognized that two systems
share such causal features in common. The theory of dynamical kinds offers an alternative
approach: by determining that two systems are of the same or different dynamical kinds,
we learn whether they share any of these dynamical properties. Information about any one
can then be transferred to the class.

Dynamical kinds were first defined in [68], and have since been applied explicitly to
problems of model validation [69] and causal discovery [70]. The dynamical kinds theory
partitions the space of dynamical systems into equivalence classes—dynamical kinds—on
the basis of dynamical symmetry. A dynamical symmetry is an intervention [71,72]—an
externally induced change in the values of some of the dynamical variables of a system—
that commutes with the time evolution of the system ([69], p. 162):

Definition 1. Let t be the variable representing time, let V be a set of dynamical variables, and let
Ω be the space of states that can be jointly realized by the variables in V. Let σ : Ω → Ω be an
intervention on the variables in Int ⊆ V, and Λt0,t1 the time-evolution operator that advances the
state of the system from t0 to t1. The transformation σ is a dynamical symmetry with respect to time
if and only if for all intervals ∆t and initial states ωi ∈ Ω, the final state of the system ω̃ f ∈ Ω is
the same whether σ is applied at some time t0 and the system evolved until t0 + ∆t, or the system
first allowed to evolve from t0 to t0 + ∆t and then σ is applied. This property is represented by the
following commutative diagram:
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ω̃i
Λt0,t0+∆−−−−→ ω̃ f

σ

x σ

x
ωi

Λt0,t0+∆−−−−→ ω f

(1)

Biological growth offers a simple illustration of the concept. For an exponentially grow-
ing population of bacteria, for which the population x changes according to dx/dt = rx, any
transformation that scales the population by a positive constant k is a dynamical symmetry
of the system—scaling by k and then allowing the bacteria to grow for ∆t versus growing
for ∆t and then scaling the resulting population by k results in the same final population.

The composition of any two dynamical symmetries (by successive intervention on
the variables of a system) is itself a dynamical symmetry, and for any given system, its
dynamical symmetries typically exhibit nontrivial algebraic structure under composition.
It is the collection of symmetries and their structure under composition that characterizes a
dynamical kind [68].

Jantzen [73] provides a method for determining whether or not two physical systems
with continuous deterministic dynamics belong to the same dynamical kind directly from
time series data without first constructing dynamical models of either system. The method
exploits two facts: (i) that a necessary condition for two systems to belong to the same
dynamical kind is that they share all of their dynamical symmetries, and (ii) that for every
state-determined system in the same dynamical kind, there is exactly one symmetry that
maps the unique trajectory passing through one point in phase space, ~x, to the trajectory
passing through another point ~̃x. That is, even if systems A and B exhibit different trajec-
tories given initial conditions ~x or ~̃x, the symmetry connecting these two trajectories for
system A must be the same as that for system B if they belong to the same dynamical kind.
Numerically estimating and then comparing these symmetries from time series data thus
provides a sensitive test for the sameness of dynamical kind that is robust under significant
sampling noise.

3. Theory and Algorithms
3.1. Stochastic Dynamical Kinds

Dynamical kinds partition the space of possible dynamical systems based on their
causal structure. However, as defined above, sameness of dynamical kind is binary; it
does not indicate the degree to which two systems that are not of the same kind differ in
their causal structure. It also fails to apply to systems with stochastic dynamics. This latter
problem can be addressed with a more expansive definition of dynamical kind. Previously,
it has been suggested that the definition of dynamical similarity should be generalized to
accommodate stochastic dynamics [69]. When restricted to dynamical symmetries with
respect to time (other types of symmetry are considered in [69]), that proposed definition
reduces to the following:

Definition 2. Let V be a set of random variables, Ω the set of states that can be jointly realized
by the variables in V, and Γ the space of probability distributions over Ω. Let σ : Γ → Γ be an
intervention on the variables in Int ⊂ V. The transformation σ is a dynamical symmetry with
respect to time if and only if σ has the following property: for all initial joint distributions γi ∈ Γ,
the final joint probability distribution over V, γ̃ f ∈ Γ, is the same whether σ is applied at time
t0 and then time evolution Λt0,t0+∆ : Γ → Γ evolves the joint distribution, or the system is first
allowed to evolve over an interval ∆, and then σ is applied. This property is represented in the
following commutative diagram:
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γ̃i
Λt0,t0+∆−−−−→ γ̃ f

σ

x xσ

γi
Λt0,t0+∆−−−−→ γ f

(2)

We accept this definition, and use it to develop a natural metric over dynamical
systems that solves the problem of degree. Specifically, we present a metric based on
Definition 2 that provides a well-grounded degree of causal difference, and show that it is
sensitive to variations in linearity, effective order, and the presence of chaos.

3.2. Constructing a Metric of Dynamical Similarity

Consider a dynamical system described by n variables, some of which may be deriva-
tives or time-lagged versions of other variables. The states of such a system can be repre-
sented by n-dimensional vectors ~x ∈ Ω. Let Γ be the space of probability density functions
over Ω. We say that such a system is stochastically state-determined (SSD) if and only if the
(possibly stochastic) dynamics of the system is such that the probability density γi ∈ Γ over
possible states at time ti > t1 is completely determined by the density γ1 ∈ Γ over states at
t1. In other words, for an SSD system there exists a map, Λt1,ti : Γ→ Γ that, for any ti > t1
advances the probability density over states of the system from γ1(~x) to γi(~x) (“random
dynamical systems” in the sense defined in [74] are thus SSD, though we do not insist that
SSD systems be measure preserving). According to Definition 2, any function, σ : Γ→ Γ
that commutes with this map is a dynamical symmetry of the system. More precisely, σ is
a dynamical symmetry of a system if, for every ti > t1

σ ◦Λt1,ti ◦ γ1(~x) = Λt1,ti ◦ σ ◦ γ1(~x) (3)

where σ ◦Λt1,ti ◦ γ1 is the probability distribution that results from successive application
of the maps Λt1,ti and then σ to the original distribution γ1 (and similarly for Λt1,ti ◦ σ ◦ γ1).
This property is represented in by the following commutative diagram:

γ̃1(~x) = σ ◦ γ1(~x)
Λt1,ti−−−−→ γ̃i(~x) = σ ◦Λt1,ti ◦ γ1(~x) = Λt1,ti ◦ σ ◦ γ1(~x)xσ

xσ

γ1(~x)
Λt1,ti−−−−→ γi(~x) = Λt1,ti ◦ γ(~x)

(4)

Consider two probability densities, γ1 and σ ◦ γ1, connected by one such dynamical
symmetry at time t1. We call a time series ~x(ti) untransformed if, for every ti, it is the value
of a random variable distributed according to γi(~x). In other words, an untransformed
time series is a time series for a system that evolves from an initial value selected according
to the distribution γ1. Similarly, we call a time series ~̃x(ti) transformed if, for every ti,
it is the value of a random variable distributed according to σ ◦ γi(~x). We focus on a
particular probability density function that relates the time evolution of untransformed
and transformed time series. Specifically, if one of n distinct times, ti, in the evolution of
the system is selected at random from a uniform distribution over the n possibilities, we
seek the probability density that any untransformed time series exhibits a system state ~x(ti)
and any given transformed time series presents a system state ~̃x(ti) at the same time. This
joint density is given by:

γ∗(~x, ~̃x) = ∑
i
(prob. that t = ti)(prob. of ~x given γi = Λt1,ti ◦ γ1)(prob. of ~̃x given γ̃i = σ ◦ γi)

= ∑
i

1
n

γi(~x)σ ◦ γi(~̃x). (5)
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Denote the cumulative distribution corresponding to γ∗ by cd f ∗. This distribution
for any given dynamical system is shaped by its causal structure. In order to compare the
degree to which dynamical structure differs between systems, our approach is to compare
cd f ∗. A suitable metric for doing so is the energy distance [75–77].

The energy distance for any two cumulative distributions, cd f A and cd f B over random
variables XA and XB is defined as follows:

D2
E(cd f A, cd f B) = 2E

[
||XA − XB||

]
+E

[
||XA − XA′ ||

]
−E

[
||XB − XB′ ||

]
, (6)

where XA′ and XB′ are equivalent in distribution to XA and XB. The square root of the right
hand side of Equation (6), DE, is a proper metric, and is zero if and only if cd f A = cd f B.

We define the dynamical distance, DD, according to the identity

DD ≡ DE(cd f ∗A, cd f ∗B) =
(

2E
[
||XA − XB||

]
+E

[
||XA − XA′ ||

]
−E

[
||XB − XB′ ||

])1/2
, (7)

where the random variable XA (equivalent in distribution to XA′ ) has values in the 2n-
dimensional space of joint states 〈~xA, ~̃xA〉, and similarly for XB. For two systems A and B,
if at each time index i, γA

i (~x) = γB
i (~x), then the difference between γA∗(~x, ~̃x) and γB∗(~x, ~̃x)

and thus any difference between cd f ∗A and cd f ∗B must be due entirely to the action of
the respective symmetries, σA and σB. In that case, measuring the dynamical distance
DD(cd f ∗A, cd f ∗B) provides a quantitative comparison of the symmetries of systems A and
B, and thus of the underlying casual structure that gives rise to them.

In general, an energy distance can be estimated by computing the sample mean for
each of the expectation values on the right-hand side of Equation (6). For a sample of p
points from system A and q from system B, there are p2 pairwise distances for estimating
E
[
||XA − XA′ ||

]
, q2 for estimating E

[
||XB − XB′ ||

]
, and pq for estimating the cross-term,

E
[
||XA − XB||

]
.

Accordingly, DD can be estimated using a sample of 2n-dimensional vectors,
〈~xA(ti),~̃xA(ti)〉 from system A and 〈~xB(ti),~̃xB(ti)〉 from system B, where ~xA(ti) is the i-th
point in a time series from system A beginning with an initial value~xA(t1) drawn according
to γA

1 (~x(t)) and ~̃xA(ti) is the contemporaneous i-th point in a time series from system A
beginning with an initial value ~̃xA(t1) drawn according to γ̃1

A(~x(t)), and similarly for
system B.

3.3. Temporal Scale Matching

The density γ∗ depends on both the time-evolution operators Λt1,ti and the particular
dynamical symmetry, σ, that maps γi to σ ◦ γi. In general, two distinct systems will differ
with respect to Λt1,ti , and so despite beginning with the same distribution it is impossible
to find later times t, t′ such that γA(~x(t)) = γB(~x(t′)). However, if Λ is sufficiently smooth
and the means of the two distributions overlap over some nonempty time interval, then
it is possible to find n times ti and t′i (such that ti+1 − ti = c1 and t′i+1 − t′i = c2 for some
positive constants c1, c2) for which γA(~x(ti)) ≈ γB(~x(t′i)). In particular, one could sample
each system over a sufficiently short interval of time relative to the natural scale of its
dynamics in order to limit the evolution of each system to within acceptable deviation from
the shared starting condition.

If the times ti = t′i are externally determined (as is often the case with data received for
analysis by someone other than the experimenter or for data acquired by instrumentation
with a fixed sampling period) but multiple time series are available from each system, then
the same end can be achieved approximately by truncating or clipping one of the two sets
of time series so as to effectively alter the time scale on which the corresponding system
is sampled. We introduce an algorithm based again on an energy distance as defined
in Equation (6). Suppose systems A and B are originally sampled at regular intervals
at t1, t2, . . . , tn, and for both systems, a number s of untransformed and a number s of
transformed time series are provided. Then we seek the index m for either A or B such
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that the following condition holds. If each time series in the untransformed set (from A or
B) is truncated at m < n and for each index i of the truncated set of time series and each
index, floor(i n

m+1 ), of the intact set of time series (from B or A) the energy distance between
the sets of values at those indices is computed and the results averaged over i, there is no
choice of m for either system A or system B that yields a lower average. The objective of
clipping in this way is similar in spirit to the objective of dynamic time warping (to select a
mapping of the indices of one time series to those of another that minimizes the sum of
distances between the matched pairs) [78]. However, dynamic time warping requires that
the first and last indices of the two time series compared coincide (leaving the overall time
interval over which the system evolves intact), and unevenly alters the sampling interval
throughout a given time series. Furthermore, dynamic time warping is not defined for
ensembles of replicates from each system, while the energy distance is apt for comparing
the similarity of γA(~x(ti)) and γB(~x(ti)) at each ti given multiple time series samples from
A and B. We therefore use the average energy distance over time to find an appropriate cut
point for one or the other ensemble of time series.

If the set of transformed time series replicates for each system are clipped to match
their corresponding untransformed curves, then the difference in DD between the two
systems is driven by the unknown dynamical symmetry, σ. For all numerical experiments
reported here, we used the clipping algorithm expressed in Algorithm 1 when comparing
time series from two systems. More specifically, we used Algorithm 1 to determine the
optimal length at which to cut untransformed time series samples from A with the samples
from B held fixed, and then repeated the process to determine the best length to cut samples
from B with A held fixed. We ultimately clipped the data of whichever of the two systems
resulted in the lowest value of DD after clipping.

Algorithm 1: Clipping for temporal scale matching.

Input: System states ~xA,~xB, a minimum sequence length lmin, and a step size
scalar s

Output: An optimal clipping index m

1 ∆← (len(~xA)−lmin)/s
2 distancemin ← in f
3 m← lmin
4 for i← lmin to len(~xA) step ∆ do
5 δ← (len(~xB)−lmin)/s
6 distances← ∅
7 for j← 0 to i do
8 k← bj ∗ δc
9 distancesj ← DE(~xA

j ,~xB
k )

10 distance← mean(distances)
11 if distance < distancemin then
12 distancemin ← distance
13 m← i

14 return m

3.4. Partial Information and Degrees of Control

To make use of the dynamical similarity metric DD to compare physical systems,
one needs an appropriate collection of time series. Ideally, one would obtain multiple
untransformed and transformed time series for each system beginning with initial values
identically and independently distributed according to γi(~x) and γ̃i(~x), respectively, and
where each system is sampled over a length of time such that for the pair of systems A and
B to be compared, γA

i (~x(ti)) u γB
i (~x(ti)) at each time index i. If one has control over the

initial conditions (the ability to intervene on the system), this is manageable. However, in
many cases of interest, this is impossible. Furthermore, it is often the case that the variables
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in terms of which systems are described fail to satisfy the SSD condition because the set is
incomplete or amounts to a noninvertible function of an SSD set. We describe methods for
estimating our dynamical symmetry metric for every combination of these conditions.

3.4.1. SSD Variable Set and Full Control of the Initial Distribution

At one extreme, we are provided full control over the initial conditions from which
each time series for an SSD set of variables begins. In this case, the simplest approach
is to take multiple time series samples from each system, half of which begin with an
untransformed initial value of ~x0 and half of which begin at the transformed initial value,
~̃x0 6= ~x0. The clipping algorithm described above can then be applied and the dynamical
distance DD estimated by using the resulting sets of time series to provide a sample of
contemporaneous untransformed and transformed states, 〈~xB(ti), ~̃xB(ti)〉, for each system.

3.4.2. SSD Variable Set and No Control of the Initial Distribution

Even if a set of variables is known or suspected to be SSD, it is often or typically
the case that time series are provided for analysis without the ability to manipulate the
system to select specific initial values. In the most difficult case, only a single extended
time series is available. While one cannot set the initial conditions of such a passively
observed system, one can—under the additional assumption that the dynamics of the
system are autonomous—imagine that subsequences within the given time series are each
an initialization of that system. By carefully selecting such subsequences as instances of a
system’s untransformed and transformed time series, it is still possible to estimate DD.

In describing the algorithm, we assume that two systems (A and B) are to be compared,
but the method generalizes straightforwardly to arbitrarily many systems for which one
seeks to estimate pairwise commensurable dynamical distances. First, the time series for
both systems A and B are broken into subsequences of uniform length l. To select a subset
of these sequences that will be treated as the untransformed set of replicates and the subset
that will be treated as the transformed set for each system, we pool the initial values of all
subsequences and compute the normalized eigenvector ~v with the largest eigenvalue λ
for the covariance matrix Σ as well as the overall mean ~µ of the pool. We then compute
two new means, ~µuntrans = ~µ − αλ~v and ~µtrans = ~µ + αλ~v where α is a metaparameter
controlling the degree of separation between the means of the two new distributions.
Throughout, we have used a default value of α = 1 unless otherwise noted. We compute
the singular value decomposition of the original n× n covariance matrix Σ = USVT where
U and VT are real, n × n orthogonal matrices and S is an n × n diagonal matrix with
the singular values of Σ along the diagonal. We then construct a new covariance matrix,
Σ′ = U(βS)VT where β is a second metaparameter determining the relative spread of
the constructed distributions. We use β = 0.2 unless otherwise indicated. Finally, for
each system A and B, a set of untransformed replicates is chosen by selecting from the
candidate subsequences those whose initial values have the highest density according
to the n-dimensional normal distribution with mean ~µuntrans and covariance matrix Σ′.
Likewise, a set of transformed replicates is selected based on their density according to
the n-dimensional normal distribution with mean ~µuntrans and covariance matrix Σ′. This
selection procedure is detailed in Algorithm 2. Once sets of replicates have been chosen
in this way, the dynamical distance can be estimated as usual. This procedure is shown
schematically in Figure 1 and presented in detail in Algorithm 2.
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Algorithm 2: Choose untransformed and transformed representatives from data.
Input: Time series data of a system, sequence length l, and hyperparameters α, β
Output: Untransformed replicates p, transformed replicates p̃

1 ~µ←mean(x0 ∈ ~x ∈ P ∈ data) // average of initial conditions
2 Σ←covariance(x0 ∈ ~x ∈ P ∈ data) // covariance matrix of initial

conditions
3 ~λ, v←eigendecomposition(Σ) // compute eigenvalues and right

eigenvectors
4 λ←sqrt(max(~λ)) // select largest eigenvalue
5 ~v← v[index_of(λ ∈ ~λ)] // select eigenvector paired with λ
6 ~µuntrans ← ~µ− α ∗ λ ∗~v
7 ~µtrans ← ~µ + α ∗ λ ∗~v
8 U, S, VT ←svd(Σ) // singular value decomposition of Σ
9 Σ‘ = U(βS)VT

10 p← ∅
11 p̃← ∅
12 foreach P ∈ data do
13 q← ∅
14 foreach ~x ∈ P do
15 append_a_to_b(N (x0|~µuntrans, Σ‘), q) // value of N at x0

16 idx =index_of(sort(q))[−r :] // select indices of r points with
densest value in N

17 p← [datai|i ∈ idx]
18 delete(datai|i ∈ idx) // remove already selected sequences from

candidates

19 foreach P̃ ∈ data do
20 q̃← ∅
21 foreach ~x ∈ P̃ do
22 append_a_to_b(N (x0|~µtrans, Σ‘), q̃)

23 ˜idx =index_of(sort(q̃))[−r :]
24 p̃← [datai|i ∈ ˜idx]

25 return p, p̃

3.4.3. Non-SSD Variable Set and Full Control of the Initial Distribution

Not every set of variables captures enough about the dynamically or causally relevant
aspects of a physical system to determine future states (or distributions over future states)
from the state (or distribution over states) at a given time. When dynamical variables go
unobserved or when an observed set of variables is a lossy function of a complete set then
the set of variables will generally fail to meet the SSD condition. We generically refer to such
a set of variables as “partial” and the systems they describe as “partially observed.” While
the methods described above for estimating DD do not work directly for partial variable
sets, it is still possible in many circumstances to use the dynamical distance to discriminate
among partially observed systems. For a system that is not SSD, the distribution over
states γ(~x(t)) at a time t does not uniquely determine the distribution at a later time t′ > t.
However, when the failure to meet the SSD condition is because the system is partially
observed, there exists an unknown set of variables the states of which would uniquely
determine γ(~x(t)) when supplemented by the observed variables. If transformed and
untransformed time series can be obtained for each of two systems where the marginal
distribution over the unobserved variables at t1 is the same for both sets of untransformed
series and the same for both sets of transformed series, then differences in the apparent
values of DD will still be driven by the dynamical symmetries of the systems.
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Figure 1. By fragmenting long time series, sets of appropriately selected fragments can serve as
untransformed and transformed sets for estimating DD. For two systems A and B, time series
are divided into fragments of equal length (top and bottom plots), and the initial values of each
segment from A and B are pooled in a common n-dimensional space (where n is the number of
variables for each system) (gray arrows to center figure). For the pooled initial values, an overall
mean is computed (black box, center figure) and the unit eigenvector ~v corresponding to the largest
eigenvalue of the covariance matrix Σ is determined (black arrow, center figure). The major and semi-
major axes of the gray ellipse at the center indicates the magnitude of the first and second singular
values of Σ. Two new means are determined by moving in opposite directions along ~v (indicated
by the centers of the green and orange ellipses), and two new covariance matrices constructed by
scaling the original (indicated with the major and semi-major axes of the green and orange ellipses).
Finally, a predetermined number of fragments are selected for inclusion in the untransformed and
transformed sets (orange +’s and green ×’s respectively) for both systems by identifying initial
values (points in the plane, center figure) with the highest density according to two n-dimensional
normal distributions with the newly determined means and covariance matrices.

Given control of the initial state of each system to be compared, it is often the case
that the procedure for setting the initial state in terms of the partial set of variables does fix
a distribution over the unobserved variables. While this cannot be guaranteed, it can be
tested given sufficient numbers of untransformed and transformed time series by verifying
a fixed distribution over later times for a given initial (partial) state. The procedure for
systems for which it is possible to intervene to set initial conditions but which are suspected
of failing the SSD condition is thus to acquire multiple time series samples for each system
for each initial condition, and then to estimate DD as above.

3.4.4. Non-SSD Variable Set and No Control of the Initial Distribution

The most difficult scenario for accurately assessing dynamical similarity, regardless
of the method used, is the case in which data are passively acquired such that there is no
opportunity to set initial conditions and partially observed such that the given system of
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variables is therefore non-SSD. Even in this context, it is still possible to estimate DD at the
price of some additional assumptions about the systems under consideration, namely that
the all dynamical variables are bounded, that the dynamics is such that given sufficient time
the system will pass nearby any system state previously observed, and that for any observed
state there is a stationary distribution over states of the unobserved variables. Such a
bounded system observed over a sufficiently long time will often exhibit an approximately
stationary “distribution of distributions” that makes it appear SSD. For example, observing
only the angular position of a pendulum does not determine its future position (angular
position alone is not a state-determined set of variables). However, watching the pendulum
swing for a while, one builds up a time series in which, from nonextremal positions, it
moves left half the time and right half the time. So the system, though not state-determined,
appears SSD. A similar situation obtains for stochastic dynamics.

Given that the available time series is long enough to meet these assumptions, then
the dynamical distance DD can be estimated using the same algorithm as described in
Section 3.4.2 for the case of a passively observed, SSD set of variables.

3.5. Change Detection

The methods for computing DD described above for conditions in which there is no control
over the initial distribution can be used to detect changes in dynamics manifest in an extended
time series. To identify such change points, a rolling window method can be used. For a window
width of w and a lag (the space between the leading and trailing window) of l and a discrete time
series,~x(ti), i ∈ {1, . . . , n}, we treat the subsequences 〈~xi, . . . ,~xi+w and 〈~xi+w+l〉, . . . ,~xi+2w+l〉
as time series from separate systems, and compute the value of DD(ti+w+l/2) between them
using the method of either Section 3.4.2 or Section 3.4.4, depending on whether the system is
thought to be SSD. The appropriate window width depends upon how many replicates
are required, and the minimum length of each. The best choice for the lag l will depend
on the time over which the change in dynamical structure occurs. If l is shorter than the
transition period, then both the leading and trailing windows will contain part of the
transitional dynamics as they pass over the change, which tends to suppress the elevation
of DD, making it easier to miss the transition. If l is overly large, then it limits one’s ability
to pinpoint the time of transition.

4. Numerical Experiments and Results
4.1. Difference in Dynamical Kind

We conducted numerical experiments with Lotka–Volterra ODE models and various
derivatives designed to isolate one or another dynamical aspect in order to assess the extent
to which DD is sensitive to linearity, effective order, chaos, and similarity of dynamical
kind. For assessing sensitivity to dynamical kind as defined in Section 2.3, we numerically
integrated a two-species instance of the general n-species Lotka–Volterra predator–prey
system [79]:

dxi
dt

= rixi

(
1−

∑n
j=0 aijxj

ki

)
, i = 0, 1, . . . , n, (8)

where xi denotes the population size of the ith species, ki denotes its carrying capacity,
ri denotes the intrinsic growth rate of the species, and aij is the interaction coefficient of
species j on species i. Any two systems related by scaling all ri by a positive constant share
the same dynamical symmetries and thus belong to the same dynamical kind. Conversely,
scaling the carrying capacities ki results in a different dynamical kind [73].

In order to demonstrate that the metric DD provides a degree of difference in dy-
namical kind (and so generalizes the binary decision process of [73]), we use a reference
system A with~rA ≡ [rA

1 , rA
2 ] = [1, 2],~kA ≡ [kA

1 , kA
2 ] = [100, 100] and a comparison system

B with~rB = sr ∗~rA and~kB = sk ∗~kA. For each test, we generate two time series for each
system: an untransformed series with an initial population of ~x = [5, 5], and a transformed
series with an initial state of [8, 8]. When sr is fixed at a value of 1 and sk is varied for
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system B, DD increases with increasing sk (Figure 2a) and thus indicates divergence in
dynamical kind, as expected. The same relationship is apparent in Figure 2b, for which
the experiment was repeated using time series to which normally distributed noise with
a mean of 0 and standard deviation of 5 (equivalent to 5% of the dynamical range of the
system) has been added. Note that DD approaches a maximum value. For any dynamical
system for which states are bounded (such that there is some c > 0 for which |~x| < c), DD
is bounded from above.

1 2 3 4 5
scale factor

0.0

2.5

5.0

D
D

(a)

varying ki
varying ri

1 2 3 4 5
scale factor

0.0

2.5

5.0

D
D

(b)

varying ki
varying ri

0.0 0.5 1.0 1.5
scale factor

0.0

2.5

5.0

D
D

(c)

0.0 0.5 1.0 1.5
scale factor

2.5

5.0

D
D

(d)

0 1 2 3
log(scale factor)

0.75

1.00

D
D

(e)

0 1 2 3
log(scale factor)

0.6

0.8

1.0

D
D

(f)

0.98 1.00 1.02
0.0

0.1

0.2

di
st

an
ce

(g)

DD
l2 norm

0.98 1.00 1.02
0.0

0.1

0.2

di
st

an
ce

Similarity of Dynamical Kind

Degree of Nonlinearity

Difference in Effective Order

Sensitivity to Chaos
(h)

DD
l2 norm

0

10

20

0

10

20

Figure 2. Sensitivity of DD to similarity of dynamical kind is demonstrated for two-species com-
petitive Lotka–Volterra systems measured without sampling noise (a) or with normally distributed
sampling noise with µ = 0 and σ = 5) (b). Relative to a system with growth rates of~r = [1, 2] and
carrying capacities,~k = [100, 100], DD increases as the carrying capacities~k of the comparison system
are multiplied by an increasing scaling constant such that the systems belong to diverging dynamical
kinds (×), but remains approximately 0 as the growth rates~r are scaled (+), which is a dynamical
symmetry connecting systems of the same dynamical kind. When sensitivity to nonlinearity is
assessed by multiplying the interaction matrix by a scale factor relative to the reference system with
α = [[1, 0.5], [0.7, 1]], giving a linear system at a scale factor of 0, DD increases as the nonlinearity of
the comparison system is increased (c), even in the presence of sampling noise (d). DD also increases
between systems as their effective order diverges. For a modified Lotka–Volterra system that is
second order with a scale factor of 1 and approaches first order as that scale factor tends to infinity,
DD increases rapidly from 0 relative to a reference system with a scale factor of 1, with sampling noise
(e) and without (f). DD also responds specifically to chaos, rising relative to a nonchaotic reference
system of similar nonlinearity and order as a four-species Lotka–Volterra system passes through a
chaotic transition in parameter space along the β direction (defined in Equation (11)) (+), both with
(g) and without (h) sampling noise. The l2 norm (·), on the other hand, changes monotonically across
the chaotic transitions.
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4.2. Nonlinearity

Of broader interest is the sensitivity of the proposed metric DD to the degree of
linearity of one system relative to a benchmark system. To assess this aspect of performance,
we contrived a modification of the Lotka–Volterra equations (Equation (8)) that allows us
to modulate the system’s degree of nonlinearity:

dxi
dt

= rixi

(
1−

∑n
j=0 aijlxj

ki

)
, i = 0...n (9)

where the factor l scales the degree of nonlinearity of the system. When l is 0, the system is
perfectly linear, while the nonlinear term dominates for large values of the scale factor l.
We numerically integrated two parameterizations of a two-species version of this model,
system A and system B. Both simulated systems are provided with identical growth rates
and carrying capacities (~r = [1, 2],~k = [100, 100]). System A’s value of l was fixed at 1,
while the value of the scale factor l for system B was varied from 0 to 1.8. As before,
the differential equations were numerically integrated from t = 0 to 15. Each system’s
untransformed initial population is 5 members, and each transformed initial population is
8. The calculation of DD was repeated for an experiment using identical systems but for
which normally distributed observation noise (σ = 5) was added.

As seen in Figure 2c,d, DD goes to 0 where the nonlinearity factor is 1 and both systems
are identical. It reaches a maximum when the nonlinearity factor is 0, and thus one system
is fully linear while the other involves substantial nonlinear interaction. As the value of l
increases above 1, DD appears to increase asymptotically as the nonlinear term comes to
dominate. The dynamical distance is thus sensitive to relative decreases and increases in
effective linearity of dynamics for this sort of system.

4.3. Effective Order

The effective order of a system determines its dependence on prior history and the
complexity of boundary conditions necessary to forecast the system. Isolating order
required constructing a second order version of the Lotka–Volterra equations (Equation (8))
outfitted with a scale factor (ω):

1
ω

d2xi
dt2 +

dx
dt
− rixi

(
1−

∑n
j=0 aijxj

ki

)
= 0 (10)

As ω approaches infinity, the system approaches first order dynamics. In this test,
the parameters of systems A and B are the same as the systems in Section 4.2, but for the
absence of l and the presence of ω. System A, whose ω value set to 1, was compared to
system B as its ω value grew exponentially. These systems were also run from t = 0 to 15
for our tests.

We expect to see that systems with diverging effective order are farther apart according
to the metric DD. This expected pattern is evident without sampling noise (Figure 2e)
and with sampling noise (Figure 2f). The distance between the two systems grows with
the order factor, leveling out as the large ω value causes system B to approximate first
order dynamics.

4.4. Chaos

Testing the sensitivity of our distance metric to the presence of chaos requires us to
compare a known chaotic system to similarly parameterized systems that, so far as possible,
hold constant the effective order and degree of nonlinearity. Ideally, one would identify a
single parameter that can be varied to move through the chaotic region of parameter space.

To meet these constraints, we use a four-species Lotka–Volterra system described by
Equation (8) (n = 4). This system is known to exhibit chaos for a range of parameterizations,
and a portion of this parameter space was explored in [80]. The latter identify three chaotic
points in parameter space, labeled (R1, A1), (R2, A2), and (R3, A3), where each Ri is a
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particular vector of intrinsic growth rates (~r in our notation), and the Ai are interaction
matrices (a in our notation). A 2-D plane in parameter space is then defined by linear
combination of these points determined by a pair of coefficients α and β as follows:

(R, A) = (R1, A1) + α(R2 − R1, A2 − A1) + β(R3 − R1, A3 − A1) (11)

In our experiments, we chose a nonchaotic reference system at α = 0.2, β = 1.0
and computed DD relative to systems along a slice through this parameter space from
α = 0, β = 0.975 to α = 0, β = 1.025. For these experiments, carrying capacities are fixed
at 1 for all species (equivalent to expressing each population as a fraction of its carrying
capacity). The untransformed time series begin with all species at a population of 0.1, and
0.2 for the transformed time series. The result in the absence of noise (Figure 2g, + marks)
is a clear rise in DD in the vicinity of β = 1 (where the behavior is known to be chaotic)
with relatively constant distance over variations in β on either side of the chaotic (and near-
chaotic) region. When the experiments are repeated with normally distributed observation
noise, N (0, 0.05), added to each time series, a nearly identical pattern is observed, albeit
shifted to a lower mean value of DD (Figure 2h, + marks).

As a benchmark, we also computed the l2-norm between the reference and comparison
time series (specifically, the untransformed time series) for each value of β (Figure 2g, •
marks). This provides a metric sensitive to differences in the gross shapes of trajectories.
The l2 norm declined monotonically over the chaotic region, providing no indication that
such a transition has taken place, regardless of whether or not sampling noise was included.

4.5. Model Mapping: Lotka–Volterra

A generic metric of dynamical similarity provides a common yardstick for comparing
arbitrarily many systems in a model-free way. Consequently, it offers the possibility of
mapping out a portion of the parameter space for a system of interest, summarizing the
overall similarity in dynamical behavior between any two such points. To demonstrate
the efficacy and utility of such a unique dynamical map, we computed values of DD for
all pairs of parameter values in a discretization of the parameter space of the four-species
Lotka–Volterra system described in Equation (8) and explored by [80].

Untransformed and transformed time series samples are collected from regularly
arranged points in the rectangular region of parameter space spanned by values of α
between 0 and 1.2, and β from −0.2 to 1.2, with 50 equally spaced divisions along each
axis. For all systems we sample, we set the carrying capacity of each species to 100 and
the initial populations for all species to 5 for the untransformed systems, and to 8 for the
transformed systems. Each system is simulated for 4000 time steps, with a ∆t of 0.5.

The result of these computations is a 2500× 2500 distance matrix. To visualize the
similarity relations implied by this matrix, we deploy multidimensional scaling (MDS)
to embed each point of our discrete parameter space in a continuous three-dimensional
geometric space. Positions in this space are then normalized (such that positions in all three
directions are within the interval [0, 1]), and interpreted as colors in a standard color space
(RGB color space). The map is thus constructed by coloring each cell of the 50× 50 grid in the
α− β parameter plane according to the color assigned by the MDS embedding. The result is
a map of parameter space for which the hue of any one pixel is meaningless, but for which
similarity of color corresponds to dynamical similarity, i.e., systems that are dynamically
indistinguishable according to DD are shown with the same color. In other words, the closer
two pixels are in hue, the closer they are in the dynamical space defined by DD.

The resulting map (Figure 3) can be directly compared with that in [80]. The latter
colored the plane in parameter space based on the number of species remaining at steady-
state. The dynamical similarity map captures much of the same broad structure, but
reflects significantly more nuance since the mere number of species at equilibrium is a poor
indicator of, e.g., effective order or degree of nonlinearity. Note that the chaotic points at
(0, 0), (0, 1) and (1, 1) do not stand out as distinct from surrounding points. This is likely
due to the coarse grain of our map and the extreme narrowness of the chaotic regions.
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Figure 3. Exploration of the parameter space of a four-species Lotka–Volterra model in the same
α-β plane explored in [80] and defined in Equation (11). The absolute hue of a pixel is meaningless.
However, the closer two pixels are in color, the smaller the dynamical distance DD between them.
This color mapping is achieved by using multidimensional scaling and the distance matrix of all
pairwise DD values to embed every point of the depicted parameter space in a three-dimensional
space that is then interpreted as RGB color space.

Using a low-dimensional embedding, constructed without normalization, we have
discovered well-structured regions of similar dynamical structure, demonstrating the
application of our algorithms as a novel method for exploring a system’s behavior.

4.6. Stochastic Dynamics and Partial Systems

The simulation experiments described above all involve state-determined systems,
with or without measurement noise. However, DD applies to and can be estimated for
systems that are only SSD. Furthermore, as described in Section 3.4.3, DD can be estimated
for systems that are SSD but only partially observed. To assess the effectiveness of these esti-
mation procedures, and the sensitivity of DD for SSD systems that are not state-determined,
we constructed a stochastic version of the Lotka–Volterra equations based on [81]:

∆xi(t) = xi(t)ri(t)
(

1−
n

∑
j=0

aijxj(t)
)

∆t + σixi(t)ξi(t)
√

∆t +
σ2

i
2

xi(t)
(
(ξi(t))2 − 1

)
∆t, (12)

where σi is the intensity of the noise for species i, and ξi is a Gaussian random variable of
the form N (0, 1).

We then numerically integrated the two-species version of this system in order to
reproduce one of the basic tests described in Section 4.1, namely the test of sensitivity to
the sameness of dynamical kind, in the context of stochastic systems in SSD and partially
observed circumstances. As in the experiments of Section 4.1, a reference system with
~r = [1, 2],~k = [100, 100] was compared with either a system for which the growth rates
had been multiplied by a scale factor (which does not impact dynamical kind for this
stochastic system), or a system for which the carrying capacities were multiplied by the
scale factor (which results in increasingly distinct dynamical kinds). For these stochastic
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experiments, ten replicates were included in each of the untransformed and transformed
sets of time series (rather than the single replicates used for state-determined systems). The
dynamical distance DD as a function of the value of the scale factor for the two conditions
(same dynamical kinds vs. different), depicted in Figure 4a, exhibits the expected pattern,
identical with that observed for the state-determined Lotka–Volterra system: varying
~r results in a constant DD ≈ 0 while varying ~k shows a rapid, apparently asymptotic
increase in DD. This test was repeated except only the average over species populations
was provided at each time step, amounting to a one-dimensional, non-SSD set of variables.
Nonetheless, when processed with the procedure indicated in Section 3.4.3, the same trend
was apparent (Figure 4b).
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Figure 4. (a) Dynamical distance DD between a stochastic, two-species Lotka–Volterra system with~r,
~k, and α as in Figure 2 and one for which~r is multiplied by the indicated scale factor (+), keeping
both systems in the same dynamical kind, or for which~k is varied (×), moving the systems into
increasingly distinct dynamical kinds. (b) The same comparison as in (a) except that only the
average of number of species in each system (a partial set of variables that is not SSD) is provided
for computing DD. (c) Dynamical distance between stochastic Lotka–Volterra systems of the same
dynamical kind (~r,~k, and α as in (a) for one system, and~r doubled for the other) described with an
SSD (+) or non-SSD (+) set of variables, and between systems in different dynamical kinds (~r,~k, and
α as in (a) for one system, and~k doubled for the other) as a function of the parameter σ which scales
the Brownian term in the governing stochastic differential equation (higher σ corresponds to greater
stochasticity, approaching a pure Brownian process as σ→ ∞).
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Finally, we examined the behavior of DD as the degree of stochasticity is increased.
Specifically, for 10 values of σ between 0 and 9, we generated 50 untransformed and
transformed time series for three two-species systems: a reference system A for which
~r = [1, 2],~k = [100, 100], a system B of the same dynamical kind for which ~r = [2, 4],
~k = [100, 100], and a system C of a distinct dynamical kind for which~r = [1, 2],~k = [200, 200].
We then computed DD for system A and system B (SSD systems of the same dynamical
kind; : marks in Figure 4c) and for Systems A and C (of different dynamical kind; 6 marks
in Figure 4c). When σ = 0, the system is state-determined and we merely replicate the
findings of Section 4.1: for systems of the same kind, DD ≈ 0 and systems of differing
kinds, DD ≈ 4. As σ increases, however, these differences diminish. One would expect
that as σ→ ∞ the systems would all behave as Brownian process and thus converge on a
distance of DD = 0. This is clearly the case, with all values of DD near 0 for σ ≥ 6.

A similar pattern is obtained when non-SSD systems are considered. Specifically, we
ran the same experiment for the same values of σ but provided only the mean value of
species populations for computing DD. Though the distances are somewhat suppressed for
low values of σ, the metric DD clearly distinguishes between systems of different dynamical
kinds (+ marks in Figure 4c) while systems of the same dynamical kind (× marks in
Figure 4c) exhibit distances near 0, and DD approaches 0 for all pairwise comparisons as
increasing σ results in a pure Brownian process.

4.7. Change Detection

One of the principal applications of a general metric of dynamical similarity is the
detection of shifts in the causal structure governing the behavior of a system. By computing
the dynamical distance between time-lagged fragments of a time series as described in
detail in Section 3.5, we can expect to find peaks of dissimilarity when the fragments
differ in their underlying generative dynamics. This indicates that a structural change
has occurred between the time of the first and second fragment. To test the specific
approach described in Section 3.5, we simulated a three-member Kuramoto phase-oscillator
system [82], generalized as:

dθi
dt

= ωi +
K
N

N

∑
j=0

sin(θj − θi), i = 0...N (13)

where θi is the phase of the ith oscillator, ωi is that oscillator’s natural frequency, N is
number of oscillators in the system, and K, the coupling coefficient, determines how much
the difference in angle between oscillators affects an oscillator’s future state. For this
experiment, the three-member Kuramoto system was numerically integrated for 200 time
units (with a step size of 5× 10−4), and began with a coupling value of K = 1. From
95 time units to 105, the value of K is decreased linearly until at t = 105 the oscillators
are completely uncoupled (K = 0) and so cannot influence one another. The data are
then converted into rectangular coordinates, recording the sine and cosine of each phase,
resulting in a 6-dimensional time series. A short segment of this series is shown in the inset
of Figure 5a, and the full time series for all six variables is shown in light gray in all three
panels of Figure 5.

As a benchmark for comparison, we computed the multidimensional matrix profile
for the time series using the Stumpy Python package [83]. The result is shown as the six
black curves in Figure 5a, and clearly demonstrates a false positive at a point (centered
around t ≈ 40) well before the actual start of the transition in causal structure at t = 95. For
using the rolling-window method of Section 3.5, we used a window size of 2× 104 time
steps (10 time units) with the leading window and trailing window separated by 100 time
steps (0.05 time units). At each step for which DD was computed, the time series of each
window was divided into 200 fragments and then processed as described in Section 3.4.2.
The resulting time series of DD values was smoothed as a rolling average with a window
width of 50 time steps (0.025 time units). The result is shown as the black curve in Figure 5b.
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The initial 6× 104 time steps (30 units of simulated time) was assumed to derive from
a constant dynamical structure and was used as a reference series to set a threshold for
anomalously high values of DD that would indicate a change in dynamics. The dashed
blue horizontal line shows this threshold, set at 3 standard deviations of the values of
DD for the reference series. The red dashed vertical lines indicate the location at which
DD crosses this anomaly threshold. This corresponds very closely with the onset of the
transition at t = 95.
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Figure 5. Comparison of change detection methods for a six-variable (3 phase-oscillator) Kuramoto
system that transitions from uncoupled to weakly coupled over a short interval centered at 100 time
units. (a) The matrix profile for each variable as a function of time (black lines); time series for all
six variables are shown in the background in light gray, and over a short span of time in the inset.
(b) For the same system and data as (a), the dynamical distance between two moving windows
symmetrically arranged around each time is shown in black. The three standard deviation threshold
for change detection is depicted as a dashed blue line while the vertical red dashed line indicates
a detected change in dynamics. (c) The moving-window dynamical distance is shown (black line)
for data from the same Kuramoto system but for which only one rectangular coordinate is provided
from each phase oscillator (shown in light gray). The detection threshold is depicted as a dashed
horizontal blue line, and the detected change event shown with a vertical dashed red line.

To assess the efficacy of using DD for change detection in the more realistic scenario
of a partially observed system, we repeated this experiment but discarded three of the six
rectangular coordinates describing the system (preserving only the cosines of the phases).
In order to compensate for the lost information, we increased the window width to 3× 104
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time steps (15 time units). As shown in Figure 5c, the only change detected again occurs at
the actual transition point at t = 95.

5. Discussion

The concept of a degree of dynamical similarity implicitly underwrites methods for
solving a variety of problems, including detection of structural change, model selection and
validation, and the discrimination of nonlinearity, effective order, and chaos in a system of
interest. While there exist a range of bespoke metrics, measures, and methods for probing
or comparing each of these aspects for one or more systems of interest, we propose the first
generic metric of dynamical similarity sensitive to all of these aspects.

The dynamical distance, DD is constructed of two parts. In the first place, we define
a special cumulative probability density, cd f ∗, for each dynamical system we wish to
compare, such that the density in question differs if and only if the two dynamical systems
differ with respect to their underlying dynamical symmetries. The latter are physical
transformations of a system that commute with its time evolution, and are diagnostic of
the underlying causal structure that generates the dynamics. Thus, the density cd f ∗ is an
indicator of causal structure. The second component of DD is the choice of a suitable metric
for comparing cd f ∗ between two systems. For this, we deploy the energy distance defined
by [75].

We have demonstrated that DD is an indicator of the degree of similarity of the so-
called dynamical kinds to which two systems belong. Specifically, DD = 0 if and only
two systems belong to the same dynamical kind and thus share a portion of their causal
structure. More importantly, the use of DD to assess dynamical kind improves upon the
binary test of [73] by providing a degree to which two systems differ in dynamical kind
and thus underlying causal structure. We have also demonstrated that DD is sensitive
to each of the traditional dynamical features mentioned above: nonlinearity, chaos, and
effective order. Specifically, DD increases as two systems diverge in character along one of
these dimensions, e.g., with respect to the degree of nonlinearity or the presence of chaos.

The proposed metric DD offers a number of unique advantages when it comes to
detecting differences in these dynamical features from time series data. The metric is model
free and domain general. It works in the presence of significant sampling noise, and the
very same metric applies to both state-determined and stochastic systems. A disadvantage,
however, lies in its comparative nature and the fact that a mere difference in DD cannot
be attributed to one or another aspect of dynamics (or the causal structure generating the
dynamics) without additional information. However, with suitable reference systems—
whether physical or modeled—or with assumptions about the plausible class of models,
this can be overcome. For instance, divergence in DD from a linear reference model for
a system known to be nonchaotic and first order suggests nonlinearity. This approach
requires no stronger assumptions than the specialist methods for detecting, e.g., linearity,
and comes with the advantage of robustness to noise and of having a single tool equally
applicable to state-determined and stochastic dynamics.

The greatest advantage of DD is that it reflects structural features of the dynamics,
whether deterministic or stochastic, and is otherwise indifferent to the shape or statistical
properties of time series. To make this point clear, consider time series from three different
Kuramoto oscillator systems, as shown in Figure 6. Each system, A, B, and C, comprises
three phase oscillators governed by the equation,

dθi
dt

= ωi +
K
3

3

∑
j=1

sin(θj − θi), (14)

where i ranges from 1 to 3 [84]. The figure shows each phase, θi, in rectangular coordinates
as a pair of curves corresponding to sin(θi) and cos(θi) as functions of time.



Entropy 2021, 23, 1191 22 of 27

0 5 10 15 20 25
time

1.0

0.5

0.0

0.5

1.0

am
pl

itu
de

A

0 5 10 15 20 25
time

1.0

0.5

0.0

0.5

1.0

am
pl

itu
de

B

0 5 10 15 20 25
time

1.0

0.5

0.0

0.5

1.0

am
pl

itu
de

C

Figure 6. Time series from three different Kuramoto phase oscillator systems (see Equation (14)) for
which each oscillator phase θi is represented by a pair of amplitudes sin(θi) and cos(θi). Despite the
superficial resemblance between the time series for systems A and B, the oscillators in System B are
uncoupled. Systems A and C are structurally identical (every oscillator influences every other), and
differ only in the set of natural frequencies, ω.

For Systems A and C, K = 1 and the oscillators are coupled. For System C, the natural
frequencies ωi are twice the corresponding values for System A. However, the causal
structure is the same; each oscillator influences every other oscillator. For System B, on the
other hand, K = 0 and the three oscillators are independent; none influences any other. Yet
in terms of the statistics and gross appearance of trajectories, System C stands out as the
exception. The dynamical distance proposed here is sensitive to the causal structure and
not the appearance of the trajectories. Table 1 shows the values of DD for each pairwise
comparison of the three systems, computed using the single time series given for each
system and the methods described in Section 3.4.2. The distances between A and B and
between B and C are an order of magnitude greater than that between A and C. In other
words, the dynamical distance DD sees A and C, the systems with coupled oscillators,
as similar and System B, which has the aberrant causal structure, as the standout. The
second column of the table shows that this is not a matter of simply comparing time series
statistics; the difference in mean values of the systems would suggest that A and B are most
similar. More compellingly, the third column shows the minimum value of the globalized
distance (the summed l2-norm normalized by path length) between each pair of time series
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after dynamical time warping using the dtw-python package [85]. This method, which is
effective at detecting the relative similarity of time series shapes, identifies Systems A and B
as the most similar. This is not wrong. Rather it is the correct answer to a question different
from that which DD addresses. The dynamical distance is concerned with similarity in
the underlying dynamics, not with the similarity of particular time series those dynamics
happen to produce.

Table 1. Distances between the systems represented in Figure 6. DD is the dynamical distance
computed between the indicated systems in each row using the methods described in Section 3.4.2 for
singly sampled observational time series. ∆µ is the difference in mean values between the indicated
time series, while DTW is the minimum global distance (normalized by path length) obtained after
dynamic time warping to align the indicated time series. Minimum values in each column are
bold-faced.

Systems Compared DD ∆µ DTW

A, B 3.38 0.014 294
A, C 0.575 0.032 425
B, C 3.36 0.028 426

There remain a number of open questions not addressed by the results reported here.
It is unclear how best to leverage simultaneously the strengths of a general metric like
DD and the power of specialized tests. It should be possible to systematically bootstrap
model identification by using DD to rapidly and robustly identify systems or models with
similar dynamics and then deploying more powerful but limited specialized methods
for determining, e.g., the effective order needed. Additionally, the methods described in
Section 3.4.4 for working with passively obtained data (in circumstances where intervening
on the system or controlling boundary conditions is impossible) rely on metaparameters
that must be tuned. How to do this efficiently, both in terms of computational complexity
and the amount of data, remains to be determined. There are also a variety of questions
concerning stochastic dynamical systems. It is known that the type of noise (additive or
multiplicative) in a stochastic differential equation can dramatically shape gross features
such as the onset of chaos and the types of bifurcations as well as the detailed evolution of
probability densities over time. The dynamical symmetries that underwrite the distance
DD are shaped by these time evolutions. However, the relative sensitivity of DD to the two
types of noise is unknown, as is the ability to distinguish such dynamical noise, i.e., stochas-
tic elements in the generating process of a time series, from noise in the measurement of a
system. A likely candidate for investigating these questions in simulation involves numeri-
cally extracting the time evolution of probability density functions for a given system of
stochastic differential equations using the Fokker–Planck equation [6]. However, it remains
uncertain whether these methods would suggest a means of using DD to distinguish the
underlying dynamical differences between systems with different types of dynamical noise
from empirically given time series.

Despite the aforementioned unknowns, the proposed metric is immediately useful
for a range of applications. As demonstrated in Figure 3, the dynamical distance DD can
be used to systematically identify regions of the parameter space of a family of models
with a common dynamical character, sometimes with surprising discontinuities. For
instance, there are a scattering of points in the region 0.2 < α < 0.4, 0.2 < β < 0.6 that are
similar in dynamical behavior to versions of the four-species Lotka–Volterra model with
radically different parameterizations (α ≈ 1). Similarly, DD can be used with empirical
time series data to cluster physical systems with unknown underlying causal structure into
classes likely to be described by similar dynamical models. This facilitates development
of such models. Additionally, DD can be used to validate models—especially stochastic
models—when the ground truth is unknown and only time series from a target system are
available, similar to the related approach of [69]. Insofar as time series produced with the
model diverge in DD from time series measured from the target system, one can determine
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whether a model correctly captures the causal structure regardless of how well the model
is able to mimic any particular trajectory. Finally, perhaps the most promising application
of the dynamical distance metric is detecting structural change. We demonstrated using
fully and partially observed Kuramoto phase oscillator systems (section 4.7) that DD can
identify points in a time series at which the underlying generative dynamics changes. The
dynamical distance is uniquely apt for detecting a genuine change in the underlying causal
structure rather than a shift to a previously unobserved portion of the system’s phase
space. This is precisely what is needed to identify, e.g., a change in ecosystem dynamics
portending collapse or recovery, or a shift in the behavior of a volcano system suggesting
worrisome internal structural changes. This list is only suggestive; there are myriad uses
for a general metric of dynamical similarity that is tied to underlying causal structure, can
be inferred from passively acquired time series observations, is robust under measurement
noise, and is applicable to state-determined and stochastic dynamics alike.
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