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Abstract. Program slicing is a common technique to help reconstruct
the path of execution a program has taken. It is beneficial for assisting
developers in debugging their programs, but its usefulness depends on
the slice accuracy that can be achieved, which is limited by the sources
of information used in building the slice. In this paper, we demonstrate
that two sources of information, namely program logs, and stack traces,
previously used in isolation to build program slices, can be combined to
build a program slicer capable of handling more scenarios than either
method individually. We also demonstrate a sample application of our
proposed slicing approach by showing how our slicer can deduce integer
inputs that will recreate the detected error’s execution path.

Keywords: Code analysis - Log analysis - Program slicing.

1 Introduction

Finding the root cause of an error is one of the most time consuming and tedious
tasks a developer must face. As a result, many methods have been explored to
improve the debugging process. One such method depends on program slicing.
Program slicing is the process of narrowing down a program’s source code to an
increasingly-narrow selection. When applied to the problem of debugging, the
goal of program slicing is to narrow the code down to the section of code that
was actually executed during the erroneous run of the program. This reduces the
amount of code that must be analyzed to find the error source, either through
manual analysis or through other automated techniques.

While program slices can be constructed using the source code alone, in or-
der to slice a program based on an actual given execution of the program, a
source of additional information about the runtime data is needed. One such
source of information is the stack trace a program produces when an unhandled
runtime exception occurs. The stack trace provides a definite endpoint for the
program slice and a cross-section of the functions that were currently executing,
so a method based on stack trace analysis already has a good start for building
its slice. Another source of data that can be utilized for program slicing is the
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application log. Logging statements are commonly used in code to provide in-
formation about the program’s execution by printing errors or other interesting
events in a place where developers can read and interpret the messages. Log mes-
sages can also be analyzed as part of an automated process, and, if the analyzer
has access to the source code that generated them, the log messages can serve
as checkpoints in the code. Using the presence of log messages compared to the
log statements in the code, a program slicer can more accurately identify which
paths were possible for a given execution. Developers already use this technique
manually, not knowing it is program slicing; they read log messages and search
for its location and meaning in the code to narrow down the problem’s location.

Program logs and stack traces have both been used as a source of data to
improve the accuracy of program slicing [15,1,10,14,2,13,9,5,14,5]. However, no
existing work has combined the two techniques to use simultaneously. In order to
narrow down a program slice as much as possible, every available source that can
provide information about the execution should be used. We propose a method
that uses both the stack trace of an exception and any log messages that have
been generated up until the point the exception occurred to create a program
slice more accurately than using either data source in isolation.

To demonstrate our method and a potential application for the resulting pro-
gram slice, we describe an implementation for the Go language. It creates the
program slice for a runtime exception and uses it in conjunction with a Satisfi-
ability Modulo Theories (SMT) solver to suggest program inputs that produce
the same path through the program as the exception, thus reproducing the error.
In section 2, we give our motivation. Section 3 reviews prior work. Sections 4
and 5 explain our proposed method and sample implementation, respectively.
We show an example usage in section 5 and offer conclusions in section 6.

2 Motivation

While usually unstructured and designed for human consumption, program logs
represent a rich source of information that can be tapped to learn about an
application and its operation. When combined with static source code analy-
sis, log analysis techniques can be used to extract insights about a program’s
performance using log timing information, the presence of anomalies, and er-
ror localization within a distributed system. One particular application of log
analysis is improving the accuracy of program slicing. If the locations of log
statements in the code are matched with logs collected from the application, the
program slice representing a particular execution of the application can be more
accurately narrowed down.

Other methods have been used to increase the accuracy of program slicing.
One method is to use the information contained in stack traces. If a runtime
exception occurs and no exception handler is found for it, the stack trace is
usually routed to the logging mechanism to prevent the entire program from
crashing. If this stack trace is available post-mortem to an analyzer, its contents
can be used to narrow down the slice further, based on the functions it contains.
This method has been shown to improve the accuracy of a program slice, lending
itself to applications such as improving fault localization.
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Both log and stack trace analysis can improve program slice accuracy. How-
ever, the two techniques have not yet been combined. Since uncaught exceptions
are usually printed to the log, having access to stack traces usually means having
access to the program logs as well. If the goal is to build as accurate of a program
slice as possible without introducing more overhead to the program itself, every
possible source of information should be utilized; if access to the program log is
available, then there is no need to depend solely on the stack trace to build the
program slice, and vice versa. Our goal is to show that these two techniques can
be used in conjunction to build a program slice, and the resulting program slice
can be used as the basis for further analysis, in this case, providing the user with
program inputs that will recreate the execution path that caused the error.

3 Related Work

Automated log analysis is the process of extracting some insights from a pro-
gram’s logs, and it has been used for detecting performance anomalies, fault
localization, and identifying security anomalies [3]. A subset of log analysis meth-
ods consists of those that map logs to the corresponding location in source code.
The general approach is to traverse an Abstract Syntax Tree (AST), creating
regular expressions from the logging statements in the source code to match
against gathered logs once the program has run. These regular expressions are
associated with their location in the code, and when matched with seen logs,
give the location in source code, providing partial observation of program execu-
tion. This is a common approach [13,15,8,1,2,12,7,6,4], with some variations. For
example, in [2], the regular expressions augment to denote that the log occurs
inside a loop or conditional branch. In [8], the regular expressions are associated
with the class or method they are used in, not the source line itself.

Program slicing is a technique to narrow down a code base to a particular
subset, usually a subset that can affect a particular statement, performed by cre-
ating a reachability graph between the program’s statements [11]. The variant of
program slicing we consider is dynamic program slicing. In this method, a pro-
gram slice is constructed regarding a single execution of the program, resulting
in the subset of the program’s code that could have affected a particular line of
code in a particular execution [11]. When applied to a part of a program known
to have failed, this technique helps in debugging and fault localization [11].

Many works [15,1,10,14,2,13,9,5] utilize log analysis to assist with program
slicing. The approach we adopt is inspired by Chen et al. [2]. Statements in the
code are assigned labels to determine which lines were executed. The labels used
in this study are: "may”, "must-have”, or "must-not”, and are assigned on the
basis of whether a certain log appeared during execution. The approach accounts
for conditional execution and surrounding code having related execution status.
If a log appears in a conditional branch, the entire block of statements in that
branch is labeled ”must-have”; any code in the opposing branch is consequen-
tially labeled as "must-not” have been executed. Similarly, logs that appear in
code but not in the output must not have executed and labeled as such. If no
logs are present in either branch, it cannot be known which branch was executed
without further analysis and is labeled as "may” have executed. A similar ap-
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proach is taken by [14], with different names for labels being used. The limitation
of this method is that the information needed to construct the slice is entirely
dependent on the frequency/location of matchable logs within the source code.

Another method used for program slicing is to analyze stack traces to gener-
ate method-level execution paths. This is fairly straightforward, as it is known
from a complete stack trace a majority of the functions currently executing at
the point it is printed. This information gives a good starting point for building
a slice. The approach is used by several works that specifically use the informa-
tion to help localize faults [14,5]. The authors of [9] supplement this call graph
generated from the stack trace with information mined from the internet to con-
struct a complete call-graph that could be used to show more program execution
information. The drawback of this approach is that the inner workings of each
function’s execution are not known.

While these two methods do work in isolation, our goal is to show these
two sources of information can be used to enhance each others’ coverage, more
accurately revealing which paths through a program could have been executed.
With the stack trace analysis, we gain an overview of program execution that
is then supplemented by the more detailed execution trace given by the log
analysis. This way, we have a detailed execution path to analyze.

4 Method

Utilizing printed logs matching statements in the source code will let us slice
down the program into the paths that must have or may have executed, further
allowing us to perform value analysis on the variables along the path. To meet
our goal of extracting the executed path and its conditions in a program, our
approach takes to input the stack trace produced by an unhandled error, the
logs produced from the program before the error occurred, and the source code
that produced the error and logs.

The provided stack trace is parsed to find the functions on the stack when
the error occurred. This parsed information also provides the root level function
for constructing the control-flow graph (CFG), which represents the different
execution paths for a given function. This root function has its CFG constructed
and is then expanded. To expand the CFG, we find all of the function calls inside
of some function and then replace each one with the code inside of its function
declaration, meaning we are in-lining the function’s contained statements. We
also map the arguments passed into the function call to the parameters from
the function declaration. This allows us to determine where parameters used in
the in-lined statements get their values from. Having the CFG expanded allows
us to backtrack from the point of the exception and slice the program based on
printed logs matching log templates along the paths we find.

During the backtracking phase of our method, we use the stack trace in
conjunction with the provided logs to slice the program’s CFG into the paths that
must have, may have, or must not have executed. Our log templates are regular
expressions created from a log statement in the program. We account for static
and dynamic information in the log so that any message produced from that log
statement will match the regular expression. Any time a printed log matches a
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log template from the CFG, that block is labeled as must have executed. Once
a block is labeled as must have executed, any other alternative branches (i.e.,
conditional control flow) that do not have a log statement matching a printed log
are then labeled as must not have executed. Any time we encounter a conditional
control flow in the CFG, if the preceding block is labeled as must-have executed,
both outgoing branches are labeled as may have executed. May have labels can
be overwritten to must-have labels if a printed log matching a log template is
encountered.

For the sliced execution path, we also extract the conditions for each possible
branch combination within the sliced execution path. This includes expressions
within a conditional statement and assignments to variables since these are rel-
evant to the SMT solver for determining possible input values. These conditions
are recorded during the backtracking phase when each path is being traversed.

Once we have the execution path along with its conditions that need to be
analyzed, we use an SMT solver to perform value analysis on the variables found
in the path conditions. The only variables reported to the user calling our method
are those that are user input (in our method using the heuristic that any variable
never assigned or is a program argument is user input). By doing this, we can
report to the user the variable values necessary to recreate the erroneous path
of execution, which allows us to create a more accurate program slice overall.

5 Implementation

Here we describe an implementation of our method for the Go programming
language to demonstrate the effectiveness of our approach.

Stack trace parsing The first step in our process is to analyze the stack trace
written to standard output when an exception is unhandled. This stack trace
contains the functions that were currently on the stack when the exception oc-
curred, giving a definite list of functions that were at least partially executed and
a definite end point for the path (the line where the exception was thrown). Ad-
ditionally, the stack trace provides the file names that the functions are located
in; since the Go language does not compile to an intermediate representation
(such as Java’s bytecode), the source files themselves are necessary to perform
the analysis, as the exact execution path through the code is not recoverable
from the executable.

In Go stack traces, lines can contain either a file path and line number or a
function call. We used these two types of lines to detect all of the functions that
were on the stack and their corresponding file names and line numbers. We then
stored the function information into a structure for later use in constructing the
CFG and labeling. Once the functions from the stack trace and point of original
error are found, we move on to constructing the CFG.

CFG construction Our approach to creating a CFG for some input program is
to create a wrapper type around the existing CFG package in the Go standard
library. We create wrapper types around the native Go CFG because it only
parses on a per-function basis, and our analysis requires a CFG that includes all
function calls connected together so we can view an entire execution trace. We
created a wrapper interface with two concrete implementations. The function
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wrapper is the entry point of a function, representing the function signature
along with its entry block. The block wrapper wraps the Go CFG package’s block
representation and has parent and child connections to other wrapper blocks,
mimicking the structure of the Go CFG so it can be traversed in a similar way,
while also allowing us to store extra information.

We construct the wrapped CFG by first building the Go CFG for the function,
then recursively traversing its blocks and creating a block wrapper for each.
Every time we create a block wrapper, we replicate the wrapped block’s children
with a wrapper substitute, allowing us to keep the sequence of the original blocks
within our wrappers. The parent relation is also set to the current wrapper on
the successor wrapper. As a result, we have a series of blocks where we can
traverse through both its ancestors and descendants.

To connect the CFG across functions, we replace function calls with parsed

function itself. Beginning with the function wrapper at the root of the stack
trace, we search the chain of block wrappers for function calls. Upon finding a
call expression, we split the current block in two halves, and search the code
for the function declaration matching the call expression. We then construct the
called function’s function wrapper, passing in the list of arguments found via the
call expression in order to map the arguments to the function parameters. The
new function is given the first half of the original block as its parent and the
second half of the original block as its child. After repeating this for all function
calls, a connected CFG for the given stack trace has been created.
Log matching The next step is to find log statements within the source code
and construct regular expressions to match them. We extract log statements
by examining AST nodes and looking for call expressions that match the log
statements’ format. In our implementation, we currently detect log calls from
the Zerolog library® as well as the standard Go logging library and generate a
regular expression for the log message that matches both the static part of the
message and the dynamic portions. The dynamic portions are variable values
that are interspersed in a log message. For example, the dynamic portion in a
string ”%d is an odd number” would be %d, and the regex generated would
include a ‘\d*‘ to match that portion.

Our log-matching functionality is used later during the labelling phase. Given
a set of observed log messages, we attempt to match the messages to each log
statement’s regular expression. If we identify a match between a log message
and a regular expression, we can identify that log statement and the branch it
is in as having executed. This gives us better filtering of execution paths that
may or may not have occurred.

Path labeling The next step is to attach labels to each of our wrappers specify-
ing whether the block of code it represents must have or may have executed. This
is accomplished using both the stack trace and log matching. Our approach la-
bels the tree bottom-up, starting with the block containing the line in the source
that caused an exception. From here, as long as there is only one parent block,
we label that parent as a must because there is no deviation in execution. A

® https://github.com/rs/zerolog
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block with two parents indicates its parents are part of a conditional statement,
which may be arbitrarily nested. We navigate up the tree until all conditional
branches have converged, reaching the topmost condition. We then traverse down
each branch, labeling every branch as may-have, and stopping when the original
block with two parents, mentioned above, is reached. We then resume labeling
parents starting with the block above all of the branches just analyzed. If the
log matching described above finds a log statement that matches a log seen in
the particular execution, its branch is changed to must-have, and any opposing
branches are treated as not having been executed.

The next problem we needed to address is a limitation of the Z3 solver.
The 73 solver analyzes assertions as one unit, which means order is ignored,
so conditions such as in this set of statements, 7if (x < 0) x = 1; if (x >
0) return”, will contradict. The solver tries to solve a system of equations
wherex < 0, x = 1, x > 0, which is unsolvable. Our solution is to convert the
variables in the conditions to a single static assignment form (SSA). SSA treats
each reassignment of a variable as if it were a new variable, giving it a unique
name. This is necessary because every new value needs to be considered in the
conditions. We accomplish this by traversing the tree again and adding numeric
values to the beginning of identifiers, incrementing the value for every instance
of reassignment seen for a particular variable. Our solution would transform the
statements to look like this 7if (x < 0) 1x = 1; if (1x > 0) return”. This
allows the solver to assert that x < 0, 1x = 1, and 1x > 0, which is solvable.

SMT Analysis After the renaming, we extract the conditions along the exe-
cution paths identified by the labeling stage. Following the path of must-have
blocks, we add all conditions and assignments of variables to a list, and when
necessary, create a new path when a branch is reached to construct every possi-
ble route through the code. Any conditions in branches that oppose the branch
taken (e.g., an ”if” condition that was false when an ”else if” condition was true)
are negated to provide the most correct set of constraints for the path.

The extracted conditionals (Go AST expressions) along the execution path
from the backtracking stage are each passed into a function that recursively con-
verts them into a format that Z3 can recognize. After all of these are converted,
they are used as assertions with Z3 to build a model.

If the Z3 solver was able to solve the constraints, we filter the returned value
assignments that satisfy the conditions down to only those variables presumed to
be user input. We used a heuristic to define user input as any variable that was
never given a value assignment in the path conditions. If the argument variable
was user input, then the parameter is treated as user input, and vice versa.
Command-line arguments were also recognized as user input despite there being
an assignment to the variable in the path conditions.

To demonstrate the effectiveness of our method, we show its results of operat-
ing on code samples. First example given in Listing 1.1. The listing shows the logs
output during the particular execution that would lead to the panic statement
on line 24, as well as the simple stack trace generated by the panic. The condi-
tions that are collected include the ones that branch to the locations of collected
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Listing 1.1: Example code

package ifelse

func main() {
num, _ := strconv.Atoi(os.Args[1])
num *= 2
if num > 4 {
log.Log().Msgf("%d > 4", num)
} else {
log.Log() .Msgf("%d <= 4", num)

}
X := num * 4
if x < 9 {
log.Log() .Msgf("%d < 9", num)
}
num -= 2

if num < 0 {
log.Log().Msgf (")d is negative", num)
} else if num < 10 {
log.Warn().Msgf ("%d has 1 digit", num)
panic (errors.New("has 1 digit"))
} else {
log.Log () .Msgf ("%d has multiple digits", num)
}
}

Stack Trace:
ifelse.main ()
/workspaces/test/test.go:32

Log Output:

2 <=4

8 <9

0 has 1 digit

Project root: /workspaces/test/

logs in the source code, and the negations of ones that lead to logs that were not
collected. The following expressions are given to the Z3 Solver after SSA reassign-
ment has been performed: imain.num == main.num * 2, !(imain.num > 4),
main.x == Ilmain.num * 4, main.x < 8, 2main.num == I1main.num - 2,
! (2main.num < 0), and 2main.num < 10. After these statements are asserted
with the Z3 Solver, the variables are filtered to show only variables that are
described as user input, as discussed earlier. The final output shows a possible
value for the variable 'num’ is 1, thus, the expected input given for this example.
Discussion We present two primary contributions. First, combining two previ-
ous approaches to program slicing creates a more robust system. The success of
any technique that depends on program slicing depends greatly on the accuracy
of the slice that can be achieved. Using multiple sources of information increases
the likelihood that the slice can be further narrowed down, as each source of
information by itself may not contain the full picture. While they will not be
applicable in every situation, the program logs and stack trace can be mutually
beneficial to each other. Further information sources, such as static configura-
tion files or code from third-party libraries, could be brought into the process to
increase the number of scenarios the program slicer can adequately address.
Second, we demonstrate a sample application using our program slicing
method. By representing the program slice’s path as a series of conditionals,
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we were able to obtain a list of constraints that can be programmatically ana-
lyzed, in this case, by using an SMT solver. In this case, the output was relatively
simple, being input values that could recreate the path taken through the pro-
gram; there is room for more complex solutions to be built upon this concept,
such as recommending ranges of values, as well as considering non-integer values.
Threats to validity As a proof-of-concept prototype work, an in-depth case
study has yet to be done to address several threats to the validity of our work.
Our prototype’s performance on large codebases has yet to be determined,
though optimizations may address performance issues to the implementation,
rather than the method itself. A case study or series of studies is also necessary
to determine how many scenarios the combination of program logs and stack
traces affects in the broader corpus of code in the industry.

There a limitation of a CFG in describing modern program execution. While
analyzing conditionals as the primary program flow indicator is a good baseline,
it leaves out approaches used in emerging software trends, e.g., aspect-oriented
programming, interceptors, and distributed programs, all of which defy descrip-
tion by a traditional CFG representation of a piece of code. The new potential
execution paths these alternative methods present will have to be analyzed using
new tools and techniques; if they could be analyzed and merged into an inter-
mediate representation with the rest of the code flow, common techniques (e.g.,
our labeling approach using logs and stack traces) could be used on the result.

6 Conclusion

In this paper, we have presented a novel approach to program slicing by combin-
ing two sources of information that have previously remained separate, program
logs, and stack traces. We have shown that these proven approaches to program
slicing are able to be used simultaneously to complement each others’ coverage
by sharing our implementation of the combined methods. We also presented a
sample application of this novel technique in using an SMT solver and the paths
of conditional constraints found in the program slice to assist the programmer
in recreating the program’s execution path.
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tional Science Foundation under Grant No. 1854049 and a grant from Red Hat
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