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Abstract—In metropolitan areas with heavy transit demands,
electric vehicles (EVs) are expected to be continuously driving
without recharging downtime. Wireless Power Transfer (WPT)
provides a promising solution for in-motion EV charging. Nev-
ertheless, previous works are not directly applicable for the
deployment of in-motion wireless chargers due to their different
charging characteristics. The challenge of deploying in-motion
wireless chargers to support the continuous driving of EVs in
a metropolitan road network with the minimum cost remains
unsolved. We propose CatCharger to tackle this challenge. By
analyzing a metropolitan-scale dataset, we found that traffic
attributes like vehicle passing speed, daily visit frequency at
intersections (i.e., landmarks) and their variances are diverse, and
these attributes are critical to in-motion wireless charging perfor-
mance. Driven by these observations, we first group landmarks
with similar attribute values using the entropy minimization
clustering method, and select candidate landmarks from the
groups with suitable attribute values. Then, we use the Kernel
Density Estimator (KDE) to deduce the expected vehicle residual
energy at each candidate landmark and consider EV drivers’
routing choice behavior in charger deployment. Finally, we
determine the deployment locations by formulating and solving
a multi-objective optimization problem, which maximizes vehicle
traffic flow at charger deployment positions while guaranteeing
the continuous driving of EVs at each landmark. Trace-driven
experiments demonstrate that CatCharger increases the ratio of
driving EVs at the end of a day by 12.5% under the same
deployment cost.

Index Terms—Vehicle wireless charging, charger deployment,
mobile data analysis, kernel density estimation

I. INTRODUCTION

Lectric Vehicle (EV) industry has been burgeoning in

recent years because of the quick depletion of fossil
fuels [1], [2]. In countries like China, India and USA, gov-
ernments are establishing new policies to replace gasoline-
based vehicles with electric ones [3]-[5]. Due to the limit
of battery capacity, the driving range of most EVs is still
quite limited (e.g., 100 miles) [2]. Hence, most EVs must be
recharged frequently during service time and their recharge
time generally takes more than 30 minutes. However, to
fulfill metropolitan transit demands, EVs, especially public
service EVs, are expected to be continuously operable without
recharging downtime [6]. Driven by this expectation, multiple
Wireless Power Transfer (WPT) techniques for in-motion EV
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charging have been proposed [6]. Specifically, the wireless
chargers are deployed in certain road segments to serve as
charging lanes. As long as an EV drives through a charging
lane, its State-of-Charge (SoC) can be charged dynamically
[7], [8]. However, a grave challenge remains unsolved: how fo
determine the deployment plan of in-motion wireless chargers
(i.e., charger locations and charger lengths) for a metropolitan
road network that minimizes the deployment cost while main-
taining the continuous operability of EVs on the roads. By
operability, we mean that an EV’s SoC is maintained above
some level throughout its driving.

Many works have been proposed for the optimal deployment
of plug-in charging stations [9]-[15]. Some of them [9]-[11]
focus on developing models to infer EVs’ charging demands
and aim to deploy charging stations to maximally meet the
inferred charging demands of the EVs with the minimum
deployment cost. However, the inferred demands output by the
methods may not reflect the real situation with sufficiently high
accuracy. The other works focus on developing traffic flow
models based on fine-grained analysis of historical traffic data.
The deployment positions of charging stations are determined
to maximally cover the traffic flows with the minimum de-
ployment cost under several constraints (e.g., battery capacity,
traffic flow) [12]-[15].

However, these works are not directly applicable for the
deployment of in-motion wireless chargers due to the differ-
ent charging characteristics between plug-in chargers and in-
motion wireless chargers. Specifically, the charged amount of
energy of an in-motion wireless charger is determined by the
driving speed that the EVs pass through the charger and the
charging lane length. The slower speed an EV passes through
the charging lane, the lower deployment cost is required for
fully charging the EV, and vice versa. However, such charging
characteristics are not considered in the previous works for
deploying plug-in charging stations.

It is preferable to deploy in-motion wireless chargers at
locations with relatively slower EV passing speed and higher
vehicle visit frequency to reduce the deployment cost and
increase the service ability of the chargers [16]. Also, the
deployment plan of in-motion wireless chargers must take into
account multiple sources of vehicle traffic that constitute the
public transit services in a metropolitan city, such as taxicabs,
buses, and customized transit vehicles (e.g., UberPool) [17].
Although there have been some researches on the optimal
deployment of wireless charging lanes on small-scale road
networks (mostly no more than 20 road segments) with syn-
thetic traffic [7], [18]-[28], the challenge of deploying wireless
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charging lanes in a metropolitan road network with different
sources of traffic and many roads has not been studied, which
however is much more formidable.

In this paper, we propose CatCharger to tackle this chal-
lenge. Based on the metropolitan-scale charging demands
reflected by multiple sources of EVs, CatCharger uses
Categorization and clustering of vehicle traffic attributes (i.e.,
driving speed, visit frequency) to determine the deployment
positions of in-motion wireless Chargers. Specifically, we
first analyze a metropolitan-scale mobility dataset collected in
Shenzhen, China, which includes the status (e.g., timestamp,
GPS position, speed) of 14262 buses, 15610 taxicabs, 12386
customized transit vehicles in every 30 seconds from July 1
to July 31, 2015. Since intersections determine traffic volumes
of the road segments they connect [29], [30], we represent
the road network as a directed graph, and extract intersections
(i.e., landmarks) as candidate locations for deploying chargers.
The traffic statistics we measured are vehicles’ average passing
speed at each landmark, which determines the charging lane
length required for fully charging an EV [7], and average daily
vehicle visit frequency at each landmark, which determines the
potential service ability of the charging lane. We observed that
the traffic attributes of the landmarks are widely distributed,
and the traffic attributes at some landmarks have quite high
variance. Moreover, we also observed that vehicle flow rate
at a landmark (i.e., number of vehicles driving through the
landmark per unit time [31]) is important for maximizing the
charging capacity of deployed chargers.

To group the landmarks with similar average passing speed
and visit frequency into their respective clusters, we adopt
an entropy-based algorithm [32] which could effectively clus-
ter items with similar attributes together. Then we extract
candidate landmarks from these clusters. Landmarks in each
group are ranked base on their average daily visit frequency
and the estimated lane length required for fully charging an
EV. To ensure the extracted landmarks have constantly high
vehicle visit frequency and slow vehicle passing speed, we also
consider the variance of the two traffic attributes in ranking.
Consequently, the rank of a landmark represents its suitability
for deploying a charging lane. Some groups are not suitable
for deployment because of either too high vehicle passing
speed or too low vehicle visit frequency. From groups suitable
for charging lane deployment, we select landmarks with the
highest ranking scores as candidate deployment locations.

To guarantee the continuous operation of EVs in a
metropolitan road network, the EVs need to have a certain
level of residual energy when arriving at each landmark.
Therefore, we aim to first infer the EVs’ expected level of
residual energy at each landmark given a certain deployment
plan of charging lanes, and then find the optimal deployment of
charging lanes. Specifically, since the EVs’ mobility across the
landmarks is not uniformly distributed, we first use the Kernel
Density Estimator (KDE) [33] to infer the EVs’ probability
of reaching each landmark in the road network. Then, we
use the inferred probabilities to estimate the expected residual
energy of EVs at each landmark. Moreover, we also consider
EVs’ routing choice behavior given a certain charger deploy-
ment plan. Finally, a multi-objective optimization problem is
formulated and solved, which aims at minimizing the entire
cost of deployment, maximizing the vehicle traffic flow at
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the landmarks with chargers and ensuring that the residual
energy of EVs would remain above a certain level at each
landmark. The main difference between our approach and
the state-of-the-art wireless chargers deployment methods is
that we take into account multiple real-world constraints in
formulating the multi-objective optimization problem and the
proposed approach is able to obtain the effective wireless
charger deployment solution for metropolitan road networks.

In summary, our contributions include:

(1) We comprehensively study a metropolitan-scale, long-term
mobility dataset consisting of multiple vehicles for collecting
traffic statistics relevant to in-motion wireless charging, which
serves as the foundation of CatrCharger.

(2) We propose CatCharger, which utilizes categorization and
clustering of landmarks by their traffic flow attributes (i.e.,
vehicle passing speed, vehicle visit frequency), a KDE based
traffic model, and EV drivers’ routing choice behavior to deter-
mine the landmarks for deploying in-motion wireless chargers
and the charger length. It minimizes the total deployment
cost, maximizes the vehicle traffic flow at the landmarks with
chargers, and meanwhile ensures the continuous driving of
EVs at each landmark.

(3) We have conducted extensive trace-driven experiments to
show the effectiveness of CatCharger in supporting continuous
operability of EVs on a metropolitan road network. Compared
with previous methods, CatCharger increases the ratio of
operable EVs at the end of a day by 12.5% under the same
charger deployment cost.

To our knowledge, CatCharger is the first work to handle
the in-motion wireless charger deployment in a metropolitan
scenario with various sources of EVs. The remainder of our
paper is organized as follows. Section II presents literature
review. Section III presents the result of our metropolitan-
scale dataset measurement. Section IV gives the details of
CatCharger design. Section V presents trace-driven evalua-
tions. Section VI gives conclusion with future work plan.

II. RELATED WORK

Plug-in charging station deployment. Many works have been
proposed for the optimal deployment of plug-in charging sta-
tions. Some of them [9]-[11] focus on inferring EVs’ charging
demands and deploy charging stations to maximally meet the
EVs’ charging demands with the minimum deployment cost.
For example, Bae er al. [9] proposed to utilize the M/M/s
queueing theory and the fluid dynamic model for estimating
the EVs’ charging demand and deploying charging stations.
Zheng et al. [10] considered the life cycle cost of charging sta-
tions, and formulated an optimization problem to maximize the
number of charged EVs with the minimum deployment cost.
Eisel et al. [11] considered EV drivers’ charging preference
in determining charging station deployment.

Meanwhile, some charging station deployment methods that
aim to maximally cover EV traffic flows by taking into account
multiple constraints have been proposed [12]-[15]. Lam et
al. [12] summarized the deployment of charging stations as
a vertex cover problem, and proposed several methodologies
to solve the problem. Wang et al. [13] designed and solved a
multi-objective optimization problem that takes into account
multiple EV mobility constraints (e.g., driving range, traffic
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volume) to maximally cover the charging demand of EVs.
Sanchez-Martin et al. [14] takes into account the distribution
of EVs’ parking events and their parking time length to
deploy charging stations with the minimum deployment cost
and meanwhile offer sufficient charging opportunities for the
EVs. Yao et al. [15] formulated an optimal charging station
deployment method for a 20-node road network. These works
are not directly applicable for the deployment of in-motion
wireless chargers due to the different charging characteristics
between plug-in chargers and in-motion wireless chargers.

Optimal deployment of wireless chargers for EVs. Several
works have been proposed for the optimal deployment of
wireless charging lanes on road networks. Jang et al. [7]
formulated an optimization problem, which considers battery
capacity and charging lane length as constraints, to deploy
wireless charging lanes to maintain the SoC of buses on a
single determined route with the minimum cost. He et al. [18]
proposed two pricing models and formulated a mathematical
program to optimize the deployment of wireless charging tolls.
Ko et al. [19] designed a mathematical optimization model
to allocate the in-motion wireless chargers and determine
buses’ battery size given specific bus driving routes. Rie-
mann et al. [20] proposed a mixed-integer nonlinear program
model to maximize the captured traffic flow of deployed
in-motion wireless chargers through applying the stochastic
user equilibrium to describe EVs’ route choice. Fuller et al.
[21] considered various combinations of charging power and
EV driving range, and formulated and solved a flow-based
set covering problem to determine the number of wireless
charging infrastructures required in California. Chen et al.
[22] developed a user equilibrium model for describing the
equilibrium flow distribution across a road network, and for-
mulated a mathematical program to optimize the charging lane
deployment. Hwang efr al. [23] proposed a Particle Swarm
Optimization (PSO) method to solve a mathematical model
that optimizes the economical allocation of charging lanes,
given the battery size and multi-route environment. Chen ef al.
[24] further studied the deployment problem of both stationary
and in-motion wireless chargers through considering different
scenario requirements. Liu et al. [25] proposed a deterministic
model and a robust model to address the problem of optimizing
the charging lane locations for a real-world bus system that
consists of 8 bus lines. Bi ef al. [26] proposed a novel multi-
objective optimization model framework based on life cycle
assessment (LCA) to solve the deployment problem of in-
motion wireless chargers in a multi-route electric bus system.
Manshadi et al. [27] proposed a decentralized optimization
framework to address the impact of wireless charging on
electricity and transportation networks. Li et al. [28] designed
a bi-objective model considering both traffic delay and charger
utilization rate to optimize the deployment of wireless chargers
on urban road networks with traffic signals. These works are
established on small-scale road networks (mostly no more than
20 road segments) with synthetic traffic and cannot handle the
metropolitan-scale deployment of wireless charging lanes.

ITII. METROPOLITAN-SCALE DATASET ANALYSIS
A. Dataset Description and Data Processing System

Our datasets for Shenzhen record the status (e.g., timestamp,
position) of vehicles for one year (Jan 1 — Dec 31, 2015), with
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a recording period less than 30 seconds, which include:
(1) Taxicab Dataset. It is collected by the Shenzhen Transport
Committee, which records the status (e.g., timestamp, position,
speed) of 15,610 taxicabs. The daily size of the uploaded data
is around 2GB.
(2) Bus Dataset. It is also collected by the Shenzhen Transport
Committee, which records the status of 14,262 buses (e.g.,
timestamp, GPS position).
(3) Dada bus Dataset. It is provided by the Dada Bus corpora-
tion (a customized transit service similar to UberPool), which
records the status (e.g., timestamp, position, speed) of 12,386
reserved service buses.
(4) Road Map. The road map of Shenzhen is obtained from
OpenStreetMap [34]. According to the municipal information
of Shenzhen [35], we use a bounding box with coordinate
(lat = 22.4450,lon = 113.7130) as the south-west corner,
and coordinate (lat = 22.8844, lon = 114.5270) as the north-
east corner, which covers an area of around 2,926km?, to crop
the road map data.

For efficient management of such large datasets, we utilized
a 34 TB Hadoop Distributed File System (HDFS) [36] on
a cluster consisting of 10 nodes, each of which is equipped
with 16 cores and 64 GB RAM. For data processing, we
utilized Apache Spark [37], which is a fast in-memory cluster
computing system, alongside the Hadoop cluster.

B. Important Issues

There are two main issues that need to be addressed in
handling the charging lane deployment challenge:
(1) Reducing charging lane length. On the one hand, the
length of a charging lane should be sufficiently long to ensure
that the passing EVs can be fully charged. On the other hand,
the charging lane length needs to be minimized to reduce
the deployment cost. The objective of selecting the optimal
locations for charging lane deployment is non-trivial.
(2) Reducing the number of deployed charging lanes. The
number of deployed charging lanes should be able to sup-
port the continuous driving of EVs on roads and meanwhile
minimized to save cost. The determination of charging lane
locations considering the above objectives is also non-trivial.

1) Vehicle Velocity at Charging Lanes Matters: The amount
of energy transmitted to an EV from a wireless charging
lane (E) equals: E = L - r/v, where L denotes the length
of the charging lane, r denotes its energy supply rate, and
v denotes the vehicle’s speed passing through the charging
lane. Since EVs with different battery capacities may pass
a charging lane with various speeds, to ensure that any EV
can be charged certain amount of energy after it passes a
charging lane with a speed slower than a certain value (average
vehicle passing speed in this paper), we can manually specify
an expected minimum charge amount threshold E,,;,, (e.g., the
50%, 80%, or 100% of the EVs’ maximum battery capacity).
That is, any EV can be charged with at least E,,;,, if it passes
through the charging lane with a speed slower than the average
vehicle passing speed at the charging lane. A larger E,;,
enables the charging lanes to maintain higher SoC levels in
application, but requires higher cost (i.e., longer charging lane
length) and is limited by technology issues [23], and vice
versa. Thus, the value of E,,;, should be adjusted according
to city planner’s expectations. Therefore, when a landmark @
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with average passing speed v; is chosen to deploy a charging
lane, its length is determined to meet the above condition:

Emin _
Li == m Vi. (1)
T

Emin

Note that is a constant, so the charging lane length
(L;) is directly determined by vehicle average passing speed
(v;). Therefore, the positions with the slowest EV passing
speed are more suitable for charging lane deployment because
they can fully charge passing EVs with shorter charging lanes
(i.e., lower deployment cost) [7], [8], [16].

2) Vehicle Visit Frequency and Multi-source Vehicle Traffic
Matter: To keep the continuous driving of EVs in the city
road network, the deployed charging lanes must offer sufficient
charging opportunities to most of the EV traffic. Therefore, the
determination of charging lane positions must fully consider
the EVs’ visit frequency at the landmarks. Moreover, consider-
ing that the EV-based public transit system consists of multiple
sources of vehicle traffic, we must consider all sources of
public service vehicle traffic in determining the deployment
of charging lanes to avoid bias. Our datasets can reflect the
charging demand of multiple sources of public service EVs.

C. Dataset Analysis

We represent the road network with a directed graph, in
which vertices represent landmarks (i.e., intersections) and
edges represent road segments [38]. The movement records
of a vehicle are continuous. If a vehicle stops at a location
for more than 10 minutes, we presume that it has ended its
previous trajectory. Thus, the movement records of the vehicle
are split into separate trajectories. Considering that vehicles
can only change movement direction at intersections, we
normalize the original GPS positions to their respective nearest
landmarks (in Euclidean distance) as in previous methods [39].
Specifically, we define vehicle trajectory as:

Definition 1. A  vehicle n;’s trajectory is a
sequence of time-ordered spatial positions, Tr;
{(Po,t0), (P1,t1),- -, (Pm,tm)}, where each position is
represented by a latitude and a longitude p; = (lat;,lon;).
Through measurement, we found that the range and
the average of vehicle visit frequency at a landmark are
[Ovehveh/day, 96, 637veh/day] and 3,840veh/day, and the
range and the average of vehicle passing speed in a landmark
are [0km/h,142km/h] and 20km/h. Figure 1 shows the
Cumulative Distribution Function (CDF) of average vehicle
passing speed and average vehicle visit frequency per day of
each landmark. Figure 2 plots the density distribution of vehi-
cle passing speed with respect to (w.r.t.) vehicle visit frequency
to illustrate the distribution of positions with both slow vehicle
passing speed and high vehicle visit frequency. In Figure 1, we
see that the landmarks with vehicle visit frequency higher than
10*veh /day only take less than 25% of all the landmarks, and
the landmarks with vehicle passing speed less than 60km/h
take up about 80% of all the landmarks. In Figure 2, we can see
the landmarks with both low vehicle passing speed (60km/h)
and high vehicle visit frequency (10*veh/day) take up a small
portion within the red square circle. Additionally, even for
the landmarks with high average vehicle visit frequency, their
actual vehicle visit frequency may vary a lot. Considering that
the charging lane length is determined after deployment, a
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landmark with a relatively more stable vehicle visit frequency
is more suitable for deploying wireless charging lanes since
there will be continuous flows of EVs passing through them
(e.g., landmarks nearby train station, airport). Therefore, we
also measured the variance of the vehicle visit frequency of the
landmarks in the square circle of Figure 2. The measurement
results are illustrated in Figure 3. We can see that although the
standard deviation of vehicle visit frequency at around 80%
of the landmarks is lower than 1,000, the standard deviation
of vehicle visit frequency at the other 20% landmarks can
be as high as 10,000 in the worst case. Even for some
landmarks with extremely high average vehicle visit frequency,
their actual vehicle visit frequency can vary significantly.
This means that the variance (standard deviation) of vehicle
visit frequency of the landmarks needs to be considered in
measuring the suitability of deploying wireless charging lanes.

In addition, we also measured the variance of vehicles’
passing speed at the landmarks. The results are illustrated in
Figure 4. We can see that the variances of vehicles’ passing
speed differ a lot in different regions. More than 40% of the
positions have a variance of vehicle passing speed higher than
20km/h, and the variance can be as high as 50km/h. It
means that if we solely determine the charging lane length
by vehicles’ average passing speed at these positions, the
deployed charging lane may not be able to fully charge
most vehicles passing through the positions. However, simply
deploying charging lanes with the maximum possible length
to ensure all the vehicles can be fully charged is unrealistic
due to high deployment cost. Therefore, in addition to average
vehicle passing speed, we need to also consider the variance
of vehicle passing speed at the potential charging positions.
The above observations motivate us to find an innovative
method to properly extract candidate charging lane placement
positions considering the diversity in vehicle passing speed
and visit frequency, and their distribution in different regions.
The details will be elaborated in Section I'V-C.

Average vehicle flow rate of a landmark is defined as the
average number of vehicles driving through the landmark per
unit time [31]. From the definition of average vehicle flow
rate of a landmark, it equals to the product of average vehicle
density and average vehicle passing speed on the landmark.
A landmark with a high vehicle flow rate means that there
are many vehicles that pass through the landmark per unit
time, and the vehicles can pass the landmark with a relatively
high velocity (i.e., no traffic congestion). Thus, it is usually
a good indicator on how well a charging facility can serve
EVs. Therefore, in addition to vehicle visit frequency, we also
measured the average vehicle flow rate of all the landmarks.
We consider the landmarks in the red square in Figure 2 as
potential candidate landmarks (i.e., landmarks with vehicle
visit frequency higher than 10%veh/day and vehicle passing
velocity lower than 60km/h). We also measured the average
vehicle flow rate of the candidate landmarks. The CDF of
the measurement results are illustrated in Figure 5. The black
curve is the measurement results of all the landmarks. The
red dashed curve is the measurement results of candidate
landmarks suitable for deploying in-motion wireless chargers.
We can see that the black curve is about to reach 1 at a vehicle
flow rate of 1000/h (i.e. almost all landmarks have a vehicle
flow rate that is less than 1000/h). About 80% of all the
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landmarks have a vehicle flow rate less than 125/h. About
60% have a vehicle flow rate less than 62/h. The trend of the
result is similar to that in Figure 1.

From the measurement results of candidate landmarks (i.e.,
red dashed curve in Figure 5), we can see that its general
trend is similar to that of the black curve but shifts to the
right significantly. This means that the potential candidate
landmarks typically have much higher average vehicle flow
rate than other landmarks. Specifically, the CDF is about to
reach 1 at a vehicle flow rate of 2500/h. About 80% of all
candidate landmarks have a vehicle flow rate less than 750/h.
About 60% of all candidate landmarks have a vehicle flow rate
less than 625/h. We can see that although all the candidate
landmarks have a much higher vehicle flow rate than other
landmarks, their vehicle flow rates still vary a lot. We must
consider deploying in-motion wireless chargers to the positions
with the highest vehicle flow rate to ensure the total charging
capability of the deployed chargers. In Section IV-D3, we will
explicitly explain how we consider the average vehicle flow
rates of candidate landmarks in determining the locations to
deploy wireless charging lanes.

To illustrate that it is necessary to consider multiple sources
of public service vehicle traffic characteristics in determining
charging lane deployment, we further analyze the mobility
characteristics of each single vehicle source to reflect the pos-
sible bias against the actual total public service vehicle traffic.
As long as a vehicle changes its position in its trajectory, we
define the change of position as an activity. We count the
number of activities of each source of vehicles during each
hour throughout a day for one month, and calculate the daily
average number of activities during each hour over all the
days. Then, we use the Pearson correlation coefficient [40]
to measure the correlation between each source of vehicles
and the total traffic activity of public service vehicles (i.e.,
combined traffic of bus, taxi and Dada bus). Figure 6 shows
the result. We can see that during the hours before dawn (i.e.,
00:00~06:00), the correlation between the activity of taxis and
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speed of landmarks.

the public service vehicle activities is higher than those of bus
and Dada bus. This means that during these hours, the taxis
are the primary public service vehicles driving on the road.
This is because that most of the other public service vehicles
are out of service during the time period. Starting from 07:00,
the activity of buses is more correlated with the public service
vehicle traffic than the others. This is because that the buses
are back to service starting from this time. Since Dada buses
are driven by pre-determined pick-up requests which are not
as regular as other public service vehicles. Therefore, the
correlation between Dada buses and the public service vehicle
traffic is relatively lower during all hours. The exceptions are
at around 12:00, 13:00 and 18:00, where the activities of Dada
buses are similarly correlated with the public service vehicle
traffic compared with the others. It means that during these
hours, Data buses serve as a supplement to the scheduled
public service demands like buses. Therefore, it is necessary
to consider multiple sources of public service vehicle traffic
characteristics in determining charging lane deployment.

[JOriginal
—KDE fitting
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Considering  that  the
length of a vehicle trajectory
determines the vehicle’s
energy consumption [33],
we measured the lengths
of all the trajectories, of
which distribution is shown
in Figure 7. We can see that % 2 4 I
most of the trajectories are Length of trajectory (x10"m)
shorter than 10,000 meters,
and the distribution of the
trajectory lengths does not follow a parametric distribution.
To describe this distribution and use it for the inference of
the vehicles’ probability of reaching each landmark in the
road network, we use the KDE model to fit the Probability
Density Function (PDF) of the non-parametric distribution.
Figure 7 shows the fitting result generated by the KDE model,
which is a function of the trajectory length. Given the length
of a trajectory, we first estimate an EV’s residual energy
upon the completion of the trajectory. Then, we use the
obtained PDF of the trajectories to infer the expected residual
energy of EVs at each landmark on the road network given
a certain charging lane deployment. Finally, by formulating
and solving an optimization problem that aims to minimize
the charging lane deployment cost while maintaining the
continuous driving of EVs, we can determine the final
charging lane deployment plan. In Section IV-D1 and IV-D3,
we will elaborate the details.

o
o S
= 3]
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g

Fig. 7: Distribution of trajectory
lengths & estimation of KDE.
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IV. SYSTEM DESIGN OF CATCHARGER
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A. Framework of CatCharger

CatCharger consists of the following three stages as shown
in the three dashed boxes in Figure 8:
1. Vehicle mobility normalization (Section IV-B). First, we
apply Data Cleaning to filter out erroneous records with
duplicated GPS positions and timestamps, and positions out of
the bounding box, etc. Then, we use OpenStreetMap to extract
the intersections and generate the Roadmap with Intersections.
Finally, we normalize the positions to their respective nearest
landmarks (in Euclidean distance) as in previous methods [39]
to obtain the Trajectory in Intersections.
2. Charging lane location candidate extraction (Sec-
tion IV-C). Based on the data output from the first stage,
we apply Vehicle Visit Frequency Quantization and Vehicle
Passing Speed Quantization to obtain the traffic attribute
values of each intersection. Then, we apply Clustering &
Sorting of the Intersections’ Attribute Values to extract the
intersections with both high vehicle visit frequency and short
required charging lane length.
3. Charging lane location determination (Section IV-D). We
first feed the lengths of the trajectories to the Kernel Density
Estimator (KDE) to infer the vehicles’ probability of reaching
each landmark in the road network. Then we formulate and
solve an optimization problem to determine the charging lane
positions and lane lengths for the Optimal Deployment of
Charging Lanes.

B. Vehicle Mobility Normalization

Original vehicle movement data contain erroneous records
with duplicated GPS positions and timestamps, and positions
out of the bounding box, etc., a data cleaning step is necessary.
Specifically, considering that vehicles can only change move-
ment direction at intersections, we normalize each position
record to its nearest landmarks in Euclidean distance, as in
previous methods [39].

C. Charging Lane Location Candidate Extraction

According to previous studies [41], [42] and our data analy-
sis results, vehicle visit frequency of the landmarks varies a lot
in different regions. For example, compared to the landmarks
distributed in industrial areas, the vehicle visit frequency of
the landmarks distributed in downtown areas is much higher.
When deploying the charging lanes, in addition to covering the
landmarks frequently visited by vehicles, we must also make
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sure that the EVs driving in all the areas can obtain sufficient
charging opportunities and maintain their continuous operabil-
ity. To this end, we propose to extract landmarks with the most
outstanding traffic attribute values from each area as candidate
landmarks for deploying charging lanes. Specifically, we first
cluster the landmarks with similar attribute values (i.e., average
vehicle passing speed, daily vehicle visit frequency) to the
same group. This is because that the landmarks that have
similar traffic attribute values generally have similar suitability
in offering charging opportunities for EVs (i.e., charging lane
deployment), and are located in diverse areas. Then, we rank
the groups by their attribute values and choose the groups with
the most outstanding attribute values for deploying charging
lanes. Finally, to ensure that there are candidate landmarks in
each area, from each group, we further select landmarks with
the most outstanding attribute values from each area. Thus,
the selected landmarks are the candidate landmarks, which
are relatively more suitable for deploying charging lanes and
located in diverse areas.

1) Categorization of Original Mobility Data: As ex-
plained in Section III-C, vehicle passing speed and vehi-
cle visit frequency are two important traffic attribute val-
ues that determine the suitability of landmarks in deploy-
ing charging lanes. However, it is non-trivial to deter-
mine the similarity between the traffic attribute values of
different landmarks. For example, given three landmarks:
A(50km/h,10000veh/day), B(50km/h,9000veh/day) and
C(100km/h,10000veh/day). If we simply use a distance
metric to measure their similarity (e.g., Euclidean distance),
compared with B, C' is more similar to A because the distance
between A and C is 50, while the distance between A and
B is 1000. However, A is far different with C regarding
the suitability of placing the charging lanes because the low
average passing speed of A can save much more charging lane
length than that of C, while A is more similar to B because
they require the same charging lane length and both have high
vehicle visit frequency.

To solve this problem, we use different categorization inter-
vals to represent the original attribute values of speed (v) and
visit frequency (f) into their respective attribute ranges, which
are marked with attribute IDs. Specifically, we use 5km/h as
the speed categorization interval based on previous deployment
setting of charging lane length interval [7], and use 1,000
as the visit frequency categorization interval considering the
total number of vehicles (>50,000 vehicles). Thus, the original
attribute values are represented with attribute IDs as follows:

v :{0,0 ~ 5km/h},{1,5 ~ 10km/h},...,

2
f:{0,0 ~ 1000veh/day}, {1,1000 ~ 2000veh/day}, . ... @

where each attribute range is represented as <attribute ID,
description>. For example, suppose that the average vehicle
passing speed and the daily average vehicle visit frequency
of a landmark are 3km/h and 1500veh/day, respectively, the
attribute IDs of the landmark will be represented as {0,1}.

2) Clustering of Landmarks: Based on the categorized at-
tribute IDs, we propose to cluster the landmarks into different
groups by the similarity of their attribute IDs. We use entropy,
which measures categorical disorder (i.e., dissimilarity of
attribute IDs within a group) [32] for clustering. Let’s take
the attribute of vehicle passing speed as an example. Suppose
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a group has two landmarks with attribute IDs {0} and {1},
respectively. F' is a discrete random variable representing an
attribute (e.g., average vehicle passing speed), A(F) is the set
of the attribute IDs of F' in a group (e.g., 0, 1), and p(f) is
the probability function of F', namely the ratio of the attribute
ID in the group (e.g., 0.5). The entropy of the attribute H (F')
within the group is defined as:
HF)=- Y

feA(F)
where — log, (p(f)) measures the dissimilarity of the attribute
in the group. The entropy of the two landmarks in the example
is 5 log2 2+ 3 log2 2 = 1. Higher dissimilarity between two
landmarks attrlbute IDs leads to a larger entropy. Since each
landmark has two attributes, the entropy of a cluster C; can
be calculated as the sum of the entropies of the two attributes:

H(C;) = H;(Fy) + Hi(Fy). 4)

p(f)log, (p(f)), 3)

Suppose all candidate landmarks LM are clustered into k
clusters C = {Cy,...,Cx_1}. To measure the quality of the
clustering, we use the weighted sum of the entropies of all
clusters as the expected entropy resulted from the clustering.
The weight for each cluster is calculated as |‘LCJQ‘ , where | - |
means the number of landmarks in the set. Thus, the expected
entropy is calculated by:

C):ki1 Sarer ®)
— |LM| a

Given a set of landmarks for clustering, we first find all

possible clustering arrangements, and then choose the one with
the minimum expected entropy. As a result, the optimal clus-
tering strategy renders clusters whose member landmarks have
the least dissimilar attribute IDs between each other. Unfortu-
nately, such a clustering strategy is difficult to execute because
it is NP-complete [43]. Then, CatCharger instead follows a
heuristic method introduced in [32] to approximate the best
solution. The steps of the landmark clustering are as follows:
(1) Initialization: To cluster landmarks into & groups, we must
start with £ most dissimilar landmarks. But directly extracting
such k landmarks from the entire set of landmarks is non-
trivial. To handle this problem, we take a sample S from the
set of landmarks LM (|S] < |LM|). In S, we enumeratively
calculate the entropy generated by each pair of landmarks, and
place the two landmarks that generate the maximum entropy
in two clusters (Cp,Cy) as the two starting clusters. Then,
the remaining k — 2 starting landmarks will be incrementally
found as the ones that are most dissimilar with the already
determined ones.
(i1) Incremental clustering: After the initialization, the remain-
ing |[LM| — k landmarks will be clustered to the respective
starting landmark that renders the minimum total expected
entropy (Equation (5)) one by one.

The major problems with such heuristic clustering include:
i) how to select the sample .5, ii) how to determine the number
of clusters k, and iii) incrementally clustering the landmarks
may deteriorate the clustering quality. For i), we randomly
select Y% (e.g., 10%) of the landmarks from every functional
region of Shenzhen, and combine them as the sample because
each region needs several charging positions to support the
EV traffic. For ii), within the sample, we follow the algorithm
developed in [44] to find the most suitable %k that results in
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the maximum difference in entropy changing rate, of which
complexity is O(|S|?). As for iii), we repeat the clustering
steps (in which landmarks are randomly picked) for several
times and choose the result with the minimum entropy.

3) Extracting Top Ranked Landmarks from Clusters: Note
the required length of charging lane ¢ (L;) can be calculated
by Equation (1) based on the average passing speed of a
landmark. Since the shorter charging lane a landmark requires,
and the higher vehicle visit frequency the landmark has, the
more suitable it is for placing a charging lane. In Section III-C,
we also verified that the variance (standard deviation) of the
vehicle visit frequency and the variance (standard deviation)
of the vehicle passing speed of the landmark are two important
factors that will influence how stable the landmark can provide
charging service to EVs once it is equipped with a wireless
charging lane. Generally, the less variance of vehicle visit
frequency and the less variance of vehicle passing speed a
landmark has, the more stable a wireless charging lane can
serve many EVs and fully charge the EVs at this landmark.
Therefore, we need to extract landmarks that have short
charging lane length, high vehicle visit frequency, and small
variance of vehicle visit frequency and vehicle passing speed.
Then, we define the rank of a landmark Im; € C; as:

log( %)

R(lm;) = Lo (6)
where f; is the average vehicle visit frequency at I1m;, alf is its
standard deviation, and o} is the standard deviation of vehicle
passing speed at Im;. Thus the larger f; and the smaller
L; that Im; has, and meanwhile the smaller o} and a the
landmark has, the higher rank it will have. We use loganthmlc
value of f; because f; is generally much larger than L;. To
ensure the suitability of selected landmarks, we need to remove
landmarks with low ranks. For this purpose, we calculate the
average rank of each group, and then remove groups with
ranks lower than a threshold. Next, we order the landmarks
in each group in decreasing order of the rank. In one group,
if there are several landmarks in one region, we remove the
low-rank landmarks. Finally, we select the top ranked % (e.g.,
10%) of the landmarks from each group, and use them as the
candidates for Charging lane deployment, which are denoted
as LM = {lmg,lm4,...,Ilm

Pkt

D. Charging Lane Location Determination

To determine the deployment plan on the selected candidate
locations, we first use the KDE, which is fed with vehicle
mobility, to infer the EVs’ expected residual energy at each
landmark given that certain landmarks are installed with charg-
ing lanes. Then, we formulate an optimization problem that
aims to minimize the total cost of deployment while ensuring
that the EVs can have a certain level of expected residual
energy when they arrive at each landmark. This residual energy
level enables an EV to move to its nearest charging lane.

1) Inferring Expected Residual Energy: KDE can be used
to describe the vehicles’ probability of reaching a landmark on
the road network given a source landmark. Also, the residual
energy of a vehicle is a function of the distance from the
vehicle’s source landmark to the destination landmark. Then,
the expected residual energy of a vehicle at a landmark in the
road network can be calculated. We present the details below.
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Since vehicles’ mobility patterns imply their traffic at certain
locations [33], we feed the vehicles’ trajectories into a KDE
model to infer the PDF of the distribution of the trajectory
lengths as in Equation (7), namely the trip lengths that need
to be supported.

1 &~ d—d
fon 1 —dr,
fh(d)—mhk;bf( ) o <d<oo, (D)
where m is the number of sample trajectories, dy is the
length of the k" trajectory, and h is the smoothing parameter
influencing the estimation accuracy of the KDE and is deter-
mined according to the MISE criterion [45]. K (-) is the kernel
function whose value decays with the increasing of d. It is set
to the Gaussian function as in Equation (8) based on [46], [47].

d—dy, 1 T (d—dx)?

According to the state-of-the-art EV energy consumption
model [48], the energy consumption of a taxicab (E.) is
primarily determined by air drag (E,;,-) and rolling resistance
(Ero11)- Therefore, the consumption rate is:

K(

AEC = AEair + AE‘roll

9
= a2 Al + cergAl ©)

where ¢, is the air drag coefficient determined by vehicle front
surface area; v is the driving speed; Al is the distance that the
taxicab has moved; c. is the rolling resistance coefficient; s
is the taxicab’s mass; and g is the gravity acceleration.
According to Equation (1), any EV can be at least charged to
the expected charge amount threshold E,,,;,, if it drives through
a charging lane with a speed slower than the landmark’s
average vehicle passing speed. Given an EV starting from a
charger, based on Equation (9), its residual energy (i.e., SoC) at
a location, which is d distance away from the charger through

the shortest route, can be estimated as [48]:
NE_1

Z (cavi + cekg)ln,
n=0

where N7 is the number of road segments of the shortest
route, and v,, and [,, are the speed limit and length of the nth
road segment, respectively. Then, the EVs’” SoC at the location
can be represented as:

Eg = Enin — (10)

E!/Eo, ifE!>0

SoC(d) = {0, otherwise. (I

Thus, given a binary integer x; to denote whether a candi-
date landmark Im; € LM is installed with a charging lane or
not, the expected SoC of EVs at a landmark Im; € LM in
the road network is:

|LM|-1
50C; = ) f(di;)SOC(dis)ws,
=0
where d; ; is the shortest route distance from Im; to Ilm;.

2) Describing Drivers’ Routing Choice Behavior: It has
been confirmed that EV drivers are more likely to choose
routes with charging facilities to mitigate range anxiety [49].
Therefore, there exists a mutual interaction between the loca-
tion of charging facilities and the resultant network traffic flow.
It is necessary to consider EV drivers’ routing choice behavior
in determining the charger deployment. According to previous
studies on EV drivers’ routing choice behavior [20], [22], [27],

(12)
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the travel time cost of the route to the drivers’ destination and
the benefit brought by charging facilities are two main factors
that affect their decision of choosing whether to charge on
the way or drive directly to the destination. Specifically, an
EV driver’s probability of choosing a candidate route can be
described with a multinomial logit model [20], [22], [27]:

exp(azy + Byy)
Yrevw exp(azs + ByyY)

where P’ is the probability of choosing the route v among all
the candidate routes between the origin-destination (O-D) pair
w; 1,7 is the travel time cost of the route u between the O-D
pair w; y,; is the binary variable indicating the availability of
charging lanes on the route u, y; = 1 if there is at least one
charging lane in u (i.e., Zlmi&u x; = 1), y& = 0 otherwise;
U" is the set of all feasible routes of the O-D pair w reflected
in all the historical trajectory data; W is the set of all possible
O-D pairs on the road network; o« and 3 are the scaling
parameters which describe the routing decision sensitivity in
terms of travel time cost and the availability of charging lanes,
respectively. In practice, « and g should be calibrated by using
survey data. In this study, we follow the settings of these
parameters as recommended in [20]: « = 0.1 and 8 = 0.8.
According to Equation (13), the longer travel time cost a route
has, the lower probability an EV driver will choose the route,
and vice versa. This is consistent with driver’s expectation of
minimizing the travel time cost.

Next, we elaborate the calculation of the travel time cost of
a candidate route, 7.". According to [24], T,’ consists of the
driving time of normal road segments (%), the driving time of
charging lanes (¢;,) and the waiting time at the charging lanes
(t,)) if there are charging lanes on the route:

Py

u

NueU% weW, (13)

Ty =ty +ya (£ + 6)- (14)
The driving time of normal road segments included in the
route u can be calculated as:

NE_1 I
th= Y (15)
n=0 n

where Nf is the number of road segments of the route u, v,
and 1,, are the speed limit and length of the n*" road segment,
respectively.

The driving time of charging lanes consists of the EVs’
waiting time before charging and charging time. Let \; denote
the arrival rate of EVs at the charging lane located at landmark
Ilm; (i.e., the number of EVs arriving at lm; for charging per
unit time), which is actually the vehicle flow rate of Im;.
Let u; denote the service rate of the charging lane located at
landmark Im; (i.e., the number of EVs that the charging lane
can charge per unit time), which is calculated as p; = v;/L;
[71, [23], where v; is the average vehicle passing speed at
lm; and L; is the planned charging lane length determined
by Equation (1). Thus, an EV’s charging time at the charging
lane is:

£ =1/ (16)

The utilization ratio of the charging lane is p; = \;/pu;.
According to the M/M/1 queuing theory [50], the EVs’ waiting
time at the charging lane is:
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3) Formulating Optimization Problem: Our objective is to
minimize the total deployment cost through properly selecting
landmarks from LM to install charging lanes while ensuring
that at each landmark, the expected residual energy of an
EV is higher than a threshold 7 (e.g., 20%). Note that the
threshold is determined to ensure that the EVs have sufficient
SoC to drive from charging lane to charging lane, which
can be adjusted based on the specific charging coverage
requirements of the city. Meanwhile, we must ensure that
the total charging capacity of the deployed chargers is able
to support the maximum power consumption rate of all the
EVs. According to Equation (9), we can derive the battery
consumption rate for each EV as ¢ = AAE; = c,v3 + cergu.
Hence, the battery consumption rate depends on the speed
limit of every road segment. That is, as the speed limit v
increases, the battery consumption rate increases. To derive
the maximum battery consumption rate ¢,q., we use the
maximum speed limit v,,,,, of the entire road map. In Section
III-C, we have identified that vehicle traffic flow rate varies
a lot at different landmarks. Therefore, in addition to the
above objective of minimizing the charger deployment cost,
we also aim to maximize the average vehicle traffic flow rate
covered by the deployed wireless charging lanes. Recall that
the deployed charging facility may affect the distribution of
EV traffic [20], [22], [27], [49], we propose to consider the EV
drivers’ routing choice behavior in the calculation of vehicle
traffic flow covered by the charger deployment. Finally, the
optimization problem can be formulated as below:

if p; <1

17
otherwise. {17

minimize Z wox; Li, (18)
lm;eLM

maximize Z Z; Z Z fL P, (19)
lmiem weW uwelU},

subject to SOC; = n,Vlmj € LM, (20)
z;L; < L% N lm; € LM, 1)
C Y. %> bmarN, (22)

Im;eLM

z; € {0,1},VIm; € LM (23)

where wy is a constant representing the cost of deploying a unit
length of charging lane, C is the charging rate of one charger,
fi is the average vehicle flow rate (i.e., average vehicle visit
frequency) at lm;, which is caused by the vehicles that drive
through route w, recall that va is the set of historical routes
between O-D pair w that pass through landmark lm;, W is
the set of all possible O-D pairs on the road network, and
N, is the total number of EVs driving on the road network.
This problem tries to minimize the total deployment cost of
the in-motion wireless chargers (Equation (18)), and maximize
the average vehicle traffic flow rate covered by the deployed
in-motion wireless chargers considering the routing choice
behavior of drivers (Equation (19)) with three constraints:
i) the expected residual energy of an EV is no less than a
threshold n (Equation (20)), ii) each individual charging lane
cannot exceed the maximum road segment length (denoted by

Authorized Iicensedpuse limited to: ROWAN UNIVERSITY.

9

Li***), which is consistent with the reality (Equation (21))
[23], [24] and iii) the total charging capacity of the deployed
chargers is able to support the maximum battery consumption
rate of all the EVs (Equation (22)).

Note the reason we filter candidate landmarks by their
attribute values of vehicles’ passing speed and visit frequency
is that CatrCharger does not consider the landmarks that
require a too long charging lane to fully charge an EV or have
low vehicle visit frequency. Therefore, the binary integers for
the non-candidate landmarks are 0, namely z; = 0,V Ilm; €
LM\ LM. Given source landmark Im; and destination land-
mark Im;, the coefficient f(d; ;)SoC(d; ;) in Equation (12) is
determined. Therefore, we can use a constant Oij to represent
f(d;;)SoC(d; ;). As a result, the final multi-objective opti-
mization problem is actually a classic Multi-objective Integer
Programming (MIP) problem. Multi-Objective Evolutionary
Algorithm based on Decomposition (MOEA/D) is effective for
solving MIP problem with a lower computational complexity
than traditional multi-objective genetic local search algorithm
[51]. Therefore, we employ MOEA/D to solve our formu-
lated optimization problem. Generally, MOEA/D first uses
the Tchebycheff approach [51] to decompose the MIP prob-
lem into several optimization sub-problems. Then, MOEA/D
solves the sub-problems simultaneously and maintains the
population of the best solutions to each sub-problem during the
evolution of solutions until the stop criteria has been reached.

4) Objective Transformation and Normalization: The first
objective of the proposed model is to minimize the overall
deployment cost of the chargers, while the second objective
is to maximize the average vehicle traffic flow captured by
the deployed chargers. Therefore, it is necessary to make the
following transformation:

F(z) = [min f; (x), max fo(x)]”

— minlfy(@),  fa(@)]" .

where ¢ = {z|lm; ¢ LM } is the vector of
binary decision variables of all the candidate land-
marks. fi(x) = Zlmiefﬂ wox;L; and fo(x) =

Y tmaciii Ti 2owew 2ucvi ol are the two objective
functions: Equation (18) and Equation (19), respectively. To
make f1 and fo comparable within the same scale, we normal-

7)02{,’;25 e Vi = 1,2 where f{*® and frin
are the maximum and minimum values of f;, respectively.
These values are obtained by solving the optimization problem

with each single objective function as the optimization goal.

ize them as f; =

V. PERFORMANCE EVALUATION
A. Experiment Settings

The experiments are driven by the datasets introduced in
Section III-A. Based on the datasets, we used Apache Spark
1.5.2 [37] to develop a trace-driven simulator and simulate the
movement and energy consumption of the EVs. We compared
the performance of CarCharger with two representative meth-
ods: random placement (denoted by Random) as the baseline,
and a traditional charging station deployment method that aims
to maximally cover traffic flows (denoted by MaxFlow) [15].
In addition, we also evaluate the performance of a variance of
CatCharger (denoted by CatCharger+), which considers the
variances of vehicle visit frequency and vehicle passing speed
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TABLE I: Table of experiment parameters.

Parameters Setting Source

Charging rate C 150 kW Chen et al. [24], [52]
Charger unit price wo $500/m Chen et al. [24]

Air drag coefficient ¢, 0.3 Kurczveil et al. [48]
Rolling resistance coefficient c, 0.01 Kurczveil et al. [48]
Mass of a taxicab 2,020 kg Tian et al. [53]
Gravity acceleration g 9.8 m/s’ Tian ef al. [53]
Battery capacity of an EV Fj SkWh — 10kWh Tian et al. [54]
Ratio for selecting landmarks from regions y 10% Author’s assumption
Ratio for selecting top ranked landmarks & 10% Author’s assumption
Residual energy (SoC) threshold n 20% Author’s assumption
Expected minimum charge amount threshold E,, i, 80% Author’s assumption
Scaling parameters of drivers’ choice behavior o and 3 a=0.1and 8 =0.8 Riemann et al. [20]

in extracting the candidate landmarks, and the maximization
of vehicle traffic flows in determining the landmarks for
deploying in-motion wireless chargers.

In simulation, the battery capacities of the EVs follow a
uniform distribution ranging from SkWh to 10kWh [24]. We
suppose every vehicle starts driving with full energy in battery
at the beginning of a day. The energy supply rate of a charging
lane is 150kW [7], [24], [52]. The unit price of a charging
lane is $500/m [7], [24]. In CatCharger, the length of a
charging lane is calculated by Equation (1). According to
[23], [24], the length of a charging lane cannot exceed the
maximum road segment length at its scheduled deployment
landmark, which ranges from 100.4m to 926.7m based on the
map information extracted from OpenStreetMap [34]. Since
Random and MaxFlow do not have methods to determine the
charging lane length, we suppose they deploy a maximally
500m-long charging lane (maximum length in CatCharger)
at each charging landmark, which can charge 50% SoC for
the EVs with a battery capacity smaller than 10kWh and a
passing speed slower than 15km/h. For fair comparison, the
deployment cost in Random and MaxFlow is the same as
CatCharger. In Random, the locations for placing charging
lanes are chosen randomly from the collection of landmarks.
MaxFlow is for charging station deployment and we use it
for charging lane deployment. We choose the landmark that
covers the most traffic sequentially until the deployment cost is
reached. MaxFlow is a traffic flow based method. Since traffic
flow based methods can more accurately estimate the charging
demands than the charging demand based methods [12], we do
not include a charging demand based method for comparison.
In landmark categorization (Section IV-C1), the speed interval
and the frequency interval are 5km/h and 1,000, respectively.
In clustering initialization (Section IV-C2), the ratio for select-
ing landmarks from every administrative region of Shenzhen,
v, is 10%. In candidate position extraction (Section IV-C3), the
ratio of the top ranked landmarks, €, is 10%. The threshold
of expected residual energy, n, is set to 20%. The expected
minimum charge amount threshold FE,,;, is set to 80% of the
EVs’ maximum battery capacity. As for the scaling parameters
of drivers’ choice behavior (i.e., o and (), we follow the
settings as recommended in [20]: &« = 0.1 and 8 = 0.8. The
parameters are listed in Table 1.

We use the movement records mentioned in Section III-A
for performance evaluation. Below, Figure 9 to Figure 12
demonstrate the metrics of the vehicles under different hours
on July 15, 2015. Figure 13 to Figure 15 demonstrate the
metrics of vehicles in multiple days: January 12 (Monday),
March 10 (Tuesday), May 13 (Wednesday), July 16 (Thurs-
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day), September 18 (Friday), November 21 (Saturday) and
December 13 (Sunday) in 2015. These days are representative
because they are unrelated to each other, belong to 4 different
seasons, and cover weekdays and weekends [39]. Specifically,
we measured the following metrics:

e Average ratio of operable vehicles. The average ratio of
vehicles that have SoC above 0%. We measure this ratio under
different deployment costs to compare the ability of supporting
EVs’ operability and cost efficiency of different methods.

e Average residual energy of vehicles. The vehicles’ average
amount of energy (in percentage) left in the EVs’ batteries.
We measure it to compare the level of energy that different
methods can maintain.

e Average number of charges of vehicles. The average number
of charges that the EVs receive per hour. We measure it to
compare the methods’ ability in offering charging opportuni-
ties to EVs.

e Performance in distributing energy supply overhead. The
average amount of energy (in logarithmic scale) transferred per
charging lane per hour. We measure it to compare the charging
overhead generated by different methods. Meanwhile, we also
measure the average number of charges (in logarithmic scale)
occurred per charging lane per hour. We measure it to compare
the energy supply opportunity generated by different methods.
In addition, we also measure the CDF of the energy supply
overhead over all charging lanes. We measure it to compare
the balance of energy supply overhead of different methods.
e Quality of solution. The distance between the found solution
and the optimal solution. Suppose P’ is a set of points
uniformly distributed along the optimal solution (i.e., Pareto
Front), and A is the found solution, the average distance from
P’ to A, called the D-metric [51], is defined as

ZUEP’ d(’U, A)
|P’|
where d(v, A) is the minimum Euclidean distance between v

and the points in A. We measure D(A, P’) to illustrate the
quality of the solution to the proposed optimization problem.

D(A, P') = (25)

B. Experimental Results

Based on the traffic data extracted from the 1-year long
dataset mentioned in Section III-A, from total 26,036 land-
marks, CatCharger+ chose 930 landmarks to deploy charging
lanes, CarCharger chose 922, while Random and MaxFlow
chose 228. Since CatCharger and CatCharger+ place most of
the charging lanes at positions with short required lane lengths,
while Random and MaxFlow use the same deployment cost
and set the length of each charging lane to the longest length
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Fig. 9: Performance in supporting EV charging demands.

in CatCharger and CatCharger+, so they result in much fewer
charging lanes.

1) Average Ratio of Operable Vehicles: Figure 9(a) shows
the average ratios of operable vehicles (SoC>0%) in each
hour in a day during the month. Figure 9(b) shows the
ratios of operable vehicles resulted from different resid-
ual energy thresholds. In both figures, the ratios follow:
CatCharger+>CatCharger>MaxFlow>Random.

From Figure 9(a), we can see that at the beginning of a
day (00:00~06:00), the ratio of operable vehicles remains
high and drops slowly. This is because that most vehicles
are not driving during this time period. In Random, starting
from 06:00, the ratio drops significantly faster than that before
06:00 and drops almost linearly with time. This means that
many vehicles deplete energy almost linearly with time and
are not charged at all. After 15:00, the ratio of operable
vehicles drops much slower and remains at around 30%. This
is primarily because that only taxicabs are serving after this
time and get random charges, while most of the buses and
Dada buses become out of service and do not consume energy
any more. In comparison, the ratio of operable vehicles in
MaxFlow is more stable and only reduces by around 15%
between 06:00 and 14:00, This is because that MaxFlow aims
to maximize the traffic flow covered by the charging lanes, so
some vehicles sharing the same routes can remain operable
during this period of time. But the operability of EVs cannot
be guaranteed because MaxFlow does not aim to maintain
the SoC of EVs. After 15:00, the ratio of operable vehicles
also drops much slower and remains at around 30% as in
Random due to the same reason. More than 90% of the EVs
in CatCharger remain operable at the end of the day. This is
because that in CatCharger, the landmarks selected to deploy
charging lanes can be frequently visited by EVs and recharge
the passing EVs with relatively shorter charging lane length.
Meanwhile, the optimization problem in CatCharger ensures
that the EVs can maintain their SoC at any landmarks in the
road network. Therefore, CarCharger can support the highest
ratio of operable EVs compared with the other methods.

Figure 9(b) shows that the ratio of operable vehicles
of CatCharger increases linearly with the increase of the
threshold of expected residual energy, since a higher residual
energy guarantee increases the probability that an EV can
be continuously operable. A higher expected residual energy
threshold results in a higher deployment cost. As a result, as
the allowed deployment cost increases, the ratio of operable
vehicles in Random and MaxFlow increases. The increase rate
of CatCharger is higher than Random and MaxFlow, which
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means that CarCharger can more effectively plan the positions
and lengths to maintain the highest ratio of operable vehicles
given a deployment budget.

Since CatCharger+ further considers the variances of vehi-
cle visit frequency and vehicle passing speed, and the maxi-
mization of vehicle traffic flow at the chargers, the deployed
chargers can fully recharge most EVs with their lane length
since the EVs’ passing speed at the charger landmarks does
not vary a lot, and are free from vehicle traffic congestion.
Therefore, CatCharger+ can maintain the highest ratio of
vehicles operable by the end of a day (Figure 9(a)) and under
different residual energy thresholds (Figure 9(b)).

2) Average Residual Energy of Vehicles: Figure 9(c) shows
the average residual energy of vehicles under different hours
in a day. The results follow CatCharger+>CatCharger>Max
Flow>Random. The relationship between the methods and the
changing of this metric are similar to those in Figure 9(a) due
to the same reasons.

3) Average Number of Charges of Vehicles: Figure 9(d)
shows the average number of charges of all vehicles un-
der different hours throughout a day. The results follow
CatCharger+>CatCharger>MaxFlow>Random. We can see
that CatCharger+ and CatCharger offer the most and second
most charging opportunities to vehicles due to the same
reasons as in Section V-B1. Note that the vehicles in Random
almost receive no charging opportunities the whole day.

4) Performance in Distributing Energy Supply Overhead:
Figure 10(a) shows the average energy supply overhead (i.e.,
amount of transferred energy) per landmark (in logarithmic
scale) under different hours in a day. Figure 10(b) shows the
average number of charges per landmark (in logarithmic scale)
under different hours in a day. In both figures, the results
follow MaxFlow>>>CatCharger+>CatCharger>Random. We
can see that the supply overhead in Random is the lowest. This
is because that most EVs receive no charge from the charging
lanes. In comparison, the supply overhead in MaxFlow is
much higher. This means that MaxFlow is more effective
in capturing the landmarks that EVs most frequently visit.
However, since MaxFlow do not aim to maintain the SoC
of EVs at any landmark in the road network, the charging
lanes generally concentrate on popular areas. Moreover, since
MaxFlow does not consider the passing speed, the cost of a
single charging lane in MaxFlow is higher, which results in
fewer charging positions. In contrast, CatCharger is able to
deploy more shorter charging lanes with the same cost since
it considers vehicle passing speed. In addition, CatCharger
considers vehicle visit frequency, so the EVs in CatCharger
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receive more charges at more landmarks, which results in
its lower average energy supply overhead over all the land-
marks. CatCharger+ further avoids deploying chargers at the
landmarks with variant vehicle passing speed an vehicle visit
frequency, and enables more EVs to receive recharge than
CatCharger. Therefore, it achieves the highest results in both
Figure 10(a) and Figure 10(b).

Figure 10(c) shows the CDF of the energy supply overhead
of all the charging lanes. Figure 10(d) shows the CDF of
the charging lane lengths in CatCharger and CatCharger+,
and Random and MaxFlow are not included since they have
the same charging lane length. From Figure 10(c), we can
see that the energy supply overhead of the charging lanes
in CatCharger is more evenly distributed than the others.
In Figure 10(d), we see that most of the charging lanes in
CatCharger and CatCharger+ have lengths shorter than 0.1km
due to the constraint 21. This result is consistent with the
results in [7], [23], [24]. According to Figure 10(c), more than
80% of the charging lanes suffer from energy supply overhead
less than 5,000kWh in CatCharger. Most of the charging lanes
have no energy supply overhead in Random. In comparison,
the supply overhead of more than 75% of the charging stations
in MaxFlow is higher than 200,000kWh, which is due to the
same reasons as explained for Figure 10(a) and Figure 10(b).
These results verify the superior performance of CatCharger
and CatCharger+ in evenly distributing the energy supply
overhead of the charging lanes.

5) Impact of Variance of Vehicle Passing Speed and Visit
Frequency: As discussed in Section IV-C3, the addltlonal
consideration of the variance of vehicle visit frequency (0 )
and the variance of vehicle passing speed (o) in Equation
(6) can help extract the candidate landmarks for charging
lane deployment with more stable vehicle visit frequency and
vehicle passing speed, and then better guide the deployment
of in-motion wireless chargers. To demonstrate the impact
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of these two components, we recalculated the score of each
landmark without considering the variance of vehicle visit
frequency (denoted as NoFreqVar), and without considering
the variance of vehicle passing speed (denoted as NoSpdVar).
Based on the new landmark scores, we redetermined the
deployment of chargers, and measured the average ratio of
operable vehicles. The measurement results are illustrated in
Figure 11. In addition, we also measured the average energy
supply overhead per landmark under different hours in a day.
The measurement results are illustrated in Figure 12.

From Figure 11, we can see that CatCharger+ increases the
final ratio of operable vehicles by the end of the day by 11.8%
when compared to NoFreqVar and 8.6% when compared to
NoSpdVar, respectively. This is because that NoSpdVar selects
some landmarks with high variance of vehicle passing speed to
deploy chargers. At the landmarks where the vehicle passing
speed is very high during some time, the deployed chargers can
not fully charge the EVs after they pass by, which made only
around 87.5% of the vehicles remaining operable by the end
of the day. Similarly, NoFreqVar selects some landmarks with
high variance of vehicle visit frequency to deploy chargers. At
the landmarks where the vehicle visit frequency is very low
during some time, the deployed chargers can not serve the
charging demand of many EVs, which resulted in that there
are only around 85% of the vehicles remaining operable by
the end of the day. Since the lack of considering vehicle visit
frequency causes more EVs to fail to charge than the lack
of considering vehicle passing speed, the ratio of operable
vehicles in NoSpdVar is a bit higher than that in NoFregVar.

From Figure 12, we can see that CatCharger+ increases
the average energy supply overhead of all the chargers by
10% when compared to NoFreqVar and 7% when compared
to NoSpdVar, respectively. This is due to the same reasons
as explained in Figure 11. The consideration of the variances
of vehicle passing speed and vehicle visit frequency enables
the deployed chargers to serve more EVs. Therefore, the
charging energy supply overhead per charger is increased
in CatCharger+. These measurement results verify that the
consideration of the variances of vehicle passing speed and
vehicle visit frequency is effective in selecting landmarks that
are more suitable for deploying the chargers.

6) Performance Evaluation in Multiple Days: To validate
the effectiveness of our charger deployment method under
different scenarios, we measured the ratio of operable vehicles
and residual energy of the vehicles by the end of different days.
Figure 13 shows the ratios of operable vehicles by the end
of different days. Figure 14 shows the median, 5! and 95'"
percentiles of the residual energy (i.e., SoC) of all the vehicles
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TABLE II: Table of D-metrics and computation time.
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Fig. 13: Ratio of operable vehicles by Fig. 14: Residual energy of vehicles
the end of different days. by the end of different days.

by the end of different days. In these experiments, we assume
that all the vehicles are fully charged at the beginning of a day.
This assumption is reasonable because many previous studies
have confirmed that most EVs are fully charged overnight at
their home or dispatch center [55], [56].

From Figure 13, we can see that the ratios of opera-
ble vehicles generally follow: CatCharger+>CatCharger>
MaxFlow>Random in different days. From Figure 14, we can
see that the median residual energy of the vehicles follow:
CatCharger+>CatCharger>MaxFlow>Random in different
days. These results confirm that the charger deployment de-
termined by our method can better support the continuous
operability of EVs under various scenarios. We can also ob-
serve that the ratio of operable vehicles and the vehicles’ SoC
significantly drop on weekends, especially for CatCharger+
and CatCharger. This is because that the traffic pattern on
weekends is quite different from that on normal weekdays.
One possible reason to the significant change of traffic pattern
is that during weekends, the appearance pattern of passengers
significantly changes. Some EV drivers (e.g., electric taxicab
drivers) need to change their regular route to cover the changed
passenger appearance pattern. If the charger deployment plan
fully considers the drivers’ routing behavior and place more
charging lanes on the routes which the drivers are willing to
drive through during both weekdays and weekends, the deter-
mined charger deployment plan may provide more charging
opportunities to the EVs.

7) Impact of considering
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towards the availability of RO & RSN
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chargers. Specifically, since
the parameter 5 in Equation
(13) describes how sensitive
EV drivers are to driving a route equipped with charging
facilities while making routing choices [20], we vary the value
of 3 between 0.0 and 1.0 and measured the ratios of operable
vehicles in different days. From Figure 15, we can see that
increasing the value of [ generally increases the ratio of
operable vehicles in all days. This is because that according to
Equation (13), a larger value of 3 will cause the route that has
a shorter travel time cost to have higher weight of deploying
chargers. We can also notice that increasing the value of 3

Fig. 15: Impact of considering drivers’
routing choice behavior.
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Generation D-metric Computation time (second)
100 0.575 197.766
200 0.440 818.938
300 0.437 1294.016
400 0.101 2029.203
500 0.179 2535.172
600 0.099 3423.562
700 0.097 4088.281
800 0.084 4478.438
900 0.077 5357.328
1000 0.088 6099.609

brings only about 12.5% improvement on the ratio of operable
vehicles during weekdays (i.e., Jan 12, Mar 10, May 13, Jul
16 and Sep 18), but brings about 75% improvement on the
ratio of operable vehicles during weekends (i.e., Nov 21 and
Dec 13). This means that despite the significant change of
traffic pattern on weekends, the drivers still prefer to drive
the routes with a relatively lower travel time cost. Increasing
the value of [ enables the routes that are not frequently
driven during weekdays to be covered with charging lanes,
thereby significantly increases the charging opportunities of
EVs during weekends.

8) Quality of solution to the optimization problem: To
illustrate the quality and efficiency of obtaining the deploy-
ment decisions, we measured the D-metric between the found
solution and the optimal solution to the optimization problem
and the computation time. The computer we used for solving
the problems has a 2.50GHz Intel Core I5-7300HQ CPU and
32GB RAM. Since we do not know the actual Pareto Front
of the optimization problem, we use an upper approximation
of the Pareto Front for comparison. Specifically, we allow
the decision variables x; to take continuous values in [O,
1], which leads to a relaxed form of the problem. Then, we
follow [51] to obtain the solutions to the relaxed problem
(i.e., upper approximation). Finally, we measured the D-metric
between the obtained Pareto Front under each generation and
the upper approximation. Table II illustrates the D-metrics
and computation time under different generations. We can see
that along with the increase of the generations, the D-metric
quickly converges to around 0.88, while the computation
time almost increases linearly. Combining with the above
experiment results, we conclude that the proposed method can
generate near-optimal plans for deploying in-motion wireless
chargers with feasible computation time.

VI. CONCLUSION

Previous plug-in station deployment methods are not ap-
plicable for the deployment of wireless charging lanes in
metropolitan road networks due to different charging char-
acteristics. Previous methods for deploying wireless charging
lanes cannot handle the challenge in metropolitan scale. We
propose CatCharger to tackle this problem. We analyzed a
metropolitan-scale mobility dataset collected in Shenzhen, and
the observations support the design of CatCharger. Using
an entropy minimization based method, we conduct catego-
rization and clustering on the intersections (landmarks), and
extract the candidate positions for placing charging lanes that
have low vehicle passing speed (hence short charging lanes)
and high vehicle visit frequency (hence high covered traffic),
and low variances of these two metrics. Then by using KDE
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to model vehicle mobility and estimate the residual energy of
EVs at a landmark, and considering EV drivers’ routing choice
behavior, we formulate a multi-objective optimization problem
to minimize the total deployment cost, maximize the vehicle
traffic flow at the landmarks with chargers, and meanwhile
ensuring the continuous operability of the vehicles on roads.
We conducted trace-driven experiments to verify the superior
performance CatCharger over other methods. In the future,
we plan to consider more human activities that affect the
movement of public transit vehicles (e.g., pickup requests).
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