
Peak Power Reduction for HVAC Operations in
Multi-unit Commercial Buildings

Syed Ahsan Raza Naqvi∗, Koushik Kar∗, Saptarshi Bhattacharya† and Vikas Chandan†
∗Rensselaer Polytechnic Institute, Troy, NY, USA, † Pacific Northwest National Laboratory, Richland, WA, USA.

Email: naqvis2@rpi.edu, koushik@ecse.rpi.edu, saptarshi.bhattacharya@pnnl.gov, vikas.chandan@pnnl.gov

Abstract—The load profiles of most commercial consumers are
characterized by brief periods of very high power consumption
followed by intervals of relatively lower demand. In order to
flatten commercial load profiles, several power utilities in addition
to billing energy consumption, levy a demand charge (DC) on the
monthly peak demand. In this work, we consider the problem
of joint optimization of energy costs (EC) and DC incurred by
a multi-unit building which follows a demand response (DR)
program. Despite the non-linear structure of the problem, we
show how the optimal solutions can be obtained efficiently
using linear programming. We evaluate the performance of the
proposed power control scheme for various climate zones in the
US. We show that depending on the ambient conditions and the
prescribed tariff structure, our strategy can result in savings of
up to nearly 19% compared to the baseline.

I. INTRODUCTION
Power grids experience increased loads during summers as

the demand for space cooling increases. In order to finance
the maintenance of the infrastructure essential for delivering
such high power, power utilities often levy a DC tariff on
commercial consumers based on their monthly peak power
demand [1]. Reports suggest that about 10–20% of the peak
load in commercial buildings can be temporarily managed or
curtailed to provide grid services [2]. Furthermore, effective
building heating, ventilation and cooling (HVAC) controls can
reduce power consumption by over 20% [3]. Hydronic (using
water to provide heating/cooling) HVAC systems have become
increasingly popular with commercial building operators due
to their energy efficiency and potential for off-peak storage [4].
Through this paper, we aim to develop a rapidly deployable
power control strategy for a grid-interactive efficient build-
ing (GEB) [5] that uses a hydronic HVAC system and is
DR-amenable. We define DR-amenability as the practice of
permitting indoor temperatures to vary within a temperature
deadband. We aim to develop a power control strategy for
commercial cooling that minimizes both the DC and the EC.

Peak load minimization in HVAC systems has received
significant attention in the research community of late. For
instance, in [6] the authors developed a grey-box model for
characterizing a test-bed’s thermal model. This model was
used to determine the optimal pre-cooling required to achieve
a desired temperature, while limiting the instantaneous power
consumed to restrict the DC. In [7], the authors considered the
problem of co-scheduling data-center and HVAC loads, while
minimizing building EC and the DC. However, these papers
do not consider the effects of heat transfer between adjacent
zones in their system models. In contrast, our work tackles

a more realistic scenario by taking into account this thermal
coupling between spaces. This detailed heat transfer model can
ensure that the simulated results of our control strategy are
replicated with greater fidelity at the time of deployment. The
authors in [8] formulated a bi-layer optimization framework
for a variable air volume HVAC system to simultaneously
minimize the thermal discomfort, EC and the DC. The work
used a linear, discrete model to characterize the temperature in
the building. However, using time-sampled temperature values
can introduce significant errors in computations. In order to
address this issue, we develop a hybrid approach for estimating
the temperature evolution in a building, that is neither purely
discrete nor purely continuous.

In this work, we consider a hydronic HVAC system that
serves a commercial, multi-unit GEB to meet its space cooling
requirements. We develop an optimal control strategy that
minimizes the EC and the DC incurred by this building. We
consider both the heat transfer between a unit and the outside
environment, as well as that between adjacent units. The DR
program is assumed to allow the indoor temperatures to vary
within a prescribed deadband, as agreed upon by the building
operator and the power utility. Finally, we simulate our model
to determine the optimal power required to achieve the desired
cooling. Our contributions towards peak power reduction for
thermostatically controlled loads (TCLs) are:
• We develop an optimization framework that jointly min-

imizes the EC and the DC incurred by a commercial
GEB. The achievable peak power reduction indicates
that a large-scale deployment of our control policy can
potentially reduce the maintenance and operational costs
of the power delivery infrastructure, which may otherwise
be adversely affected by large intermittent loads.

• Despite the apparent non-convex structure of the problem,
we show how this framework can be expressed as a
single vector of unknowns and subsequently solved using
linear programming. This reduced dimensionality makes
the approach scalable for large-scale deployment as GEBs
have limited on-site computational resources. This, in
turn, ensures operational convenience for the practitioner.

• We validate the performance of our framework for differ-
ent climate zones as well as for various tariff structures.

II. PROBLEM FORMULATION
In this work we consider a set of units J located in

a commercial building. Each unit j has a pre-determined
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Fig. 1: Schematic of the hydronic HVAC system.
temperature set-point, ∆j . Furthermore, ρ represents the max-
imum permitted temperature swing about ∆j . This ‘deadband’
represents the flexibility in the HVAC load that is needed
for implementing a DR program. The building is taken to
be equipped with valves that can control the mass flow rate
of the water depending on the cooling requirements of each
individual unit. We assume that the temperature of each unit
is spatially uniform, and use a typical R-C model to represent
the thermal properties of the indoor units. The walls between
adjacent rooms are taken to be thin and modeled as a single
resistive element. It is further assumed that the these thermal
parameters are known to (or well-estimated by) the utility. The
HVAC system is assumed to operate at 100% efficiency, i.e.,
the electrical power used to cool the water gets fully utilized
into thermal energy required to cool the units. The power
consumed to cool unit j at time t is given by Pj(t). The
temperature of each unit is denoted by Tj(t). Lastly, P total(t)
is the total power required to cool all the units at time t.

We consider a hydronic HVAC system in which cooled
water is distributed from a central source to spaces within
a building. We take the central source to be a chiller powered
by electricity. The temperature of the water leaving the chiller
is denoted by TS and is assumed to be a constant. The HVAC
system is equipped with valves to control the mass flow rate
of water at time t to the fan coil unit in space j, ṁj(t). The
temperature of the water returning to the chiller from unit j
at time t is denoted by TR,j(t). Fig. 1 shows a simplified
schematic of the HVAC system being studied here.

We pose our objective as an optimization problem that aims
to minimize the weighted sum of (i) EC and (ii) the DC,
over a pre-determined time horizon. We aim to use an MPC-
based approach to determine the optimal power to achieve this
objective. Mathematically, the objective is to minimize,

α

∫ τ

0

π(t)P total(t)dt+ (1− α)$[ max
0≤t≤τ

|P total(t)|], (1)

subject to,

(C′1) Ṫj(t) =
1

Cj

{ 1

Roj
[T∞(t)− Tj(t)] + Pj(t)

+
∑
i∈Bj

1

Rwi,j

(
Ti(t)− Tj(t)

)}
, ∀j ∈ J ,

(C′2) Pj(t) = ṁj(t)Sp(TS − TR,j(t)), ∀j ∈ J ,

(C′3) Pj(t) = hR

(TS + TR,j(t)

2
− Tj(t)

)
, ∀j ∈ J ,

(C′4) 0 ≤ ṁj(t) ≤
1

φj
, ∀j ∈ J ,

(C′5) − ρ ≤ Tj(t)−∆j ≤ ρ, ∀j ∈ J ,

where α is the weighting parameter, φj is a constant and τ is
the length of the prediction window. The initial temperature
of unit j is Tj(0) = T 0

j . Additionally, π(t) denotes the energy
price at time t, while $ is the DC tariff. Let Cj represent
the thermal capacitance of unit j. Roj and Rwi,j are the thermal
resistances of the walls connecting unit j with the outside
environment and with unit i, respectively. Let Bj denote the
set of units that share a wall with unit j. Moreover, T∞(t)
is the ambient temperature at time t and is assumed to be
known a priori. Let Sp be the specific heat capacity of water.
Furthermore, TS is the constant temperature of the water at
the energy source, whereas TR,j(t) is the temperature of the
water returning from the building at time t. Finally, hR is the
heat exchange coefficient between water and air.

For the objective function in (1), (C′1) models the temporal
evolution of unit j’s temperature. Constraint (C′2) links the
power consumed with the mass flow rate and the change
in temperature of the water. Constraint (C′3) expresses the
power consumed in terms of the heat exchange coefficient
and the temperature difference between the cooling water and
the surrounding air in the unit. The temperature of the water
is approximated to be the average of the temperature of the
supplied and returning water. Constraint (C′4) enforces upper
and lower bounds on ṁj(t). Finally, constraint (C′5) limits the
temperature swing about the set-point to be at most ρ◦ C.

The temperature of the water returning from the units to
the chiller at time t is given by TR(t). This quantity can be
obtained by the following equation [15]:

TR(t) =

∑
j∈J ṁj(t)TR,j(t)∑

j∈J ṁj(t)
. (2)

III. ANALYSIS

Inspecting the constraints for the objective in (1), we notice
that (C′2) makes the problem non-convex. Additionally, the
problem contains several variables (like ṁj(t), Pj(t), Tj(t)
and TR,j(t)) that must be determined optimally. Since we wish
to study the efficacy of using commercial TCLs for DR, we
attempt here to reformulate our problem and express it in terms
of a single control knob, Pj(t). We also express Tj(t) in terms
of known constants and Pj(t). In the process, we express our
problem as a convex problem with linear constraints. We first
manipulate the constraint (C′2) to give,

Pj(t)

ṁj(t)Sp
= TS − TR,j(t). (3)

Also, constraint (C′3) can be manipulated to give,

2
(Pj(t)
hR

+ Tj(t)
)

= TS + TR,j(t). (4)

Using (C′4) and setting Xj(t) = 1
ṁj(t)

, we get φj ≤
Xj(t) < ∞. Adding (3) and (4) and using the lower bound
of Xj(t), we get,

Pj(t) ≤ G[TS − Tj(t)], (5)



where G =
2Sp

φj+
2Sp
hR

is a constant.

Following the manipulations above, our problem is simpli-
fied to minimizing (1) subject to constraints (C′1), (C′5) and
(5). This results in two continuous variables, Tj(t) (the state
variable) and Pj(t) (the control variable). However, in practice
ṁj(t), and hence Pj(t), typically change only at discrete time
intervals. Therefore, we can discretize the time scale for the
valve operation into time instances. Each time instance is
denoted by k and its duration is given by µ. We consider a
total of K time instances where K = τ

µ . Thus, we express our
control variable at time instance k as Pj(k). Since T∞ evolves
slowly, the variation during a time instance is expected to be
small. Hence, we represent it as a discrete variable T∞(k).

The indoor temperature evolution is modeled as,

Ṫ(t) = AT(t) + H(t), (6)

where T(t) ∈ R|J |×1 column vector of temperatures of the
unit at time t, H(t) ∈ R|J |×1 is a column vector given by
{ 1
Cj

(T∞(t)
Ro

j
+ Pj(t))} and A ∈ R|J |×|J | has elements Ai,j

defined as, − 1
Cj

(
1
Ro

j
+
∑
i∈Bj

1
Rw

i,j

)
if i = j, and 1i∈Bj

1
Cj
Rwi,j

otherwise. Here 1i∈Bj
is 1 if i ∈ Bj and is 0 otherwise.

Using time-sampled versions of Tj(t) can introduce sig-
nificant errors in our computations. Hence, we now express
the continuous-time state variable in terms of Pj(k). Taking
k = b tµc and using [9], the building temperature at time t is,

T(t) = M(t − kµ)M−1(0)

k−1∏
n=1

(
M(µ)M−1(0)

)
T0+ (7)

k−2∑
k′=0

( k−k′−1∏
n=1

M(µ)M−1(0)
)
I

∫ µ

0
M(µ)M−1(s)H(k ′)ds+∫ t−kµ

0
M(t − kµ)M−1(s)H(k − 1)ds, t ∈ [kµ, (k + 1)µ],

where I ∈ R|J |×|J | is the identity matrix, T0 ∈ R|J |×1,
with element T 0

j , denotes the temperature in all units at the
beginning of the prediction horizon and M(t) ∈ R|J |×|J | is
the fundamental matrix for the system, Ṫ(t) =AT(t). The
matrix M is defined as:

M =
[
λ1v1 . . . λ|J |v|J |

]
, (8)

where λe and ve are the eth eigenvalue and eigenvector of
matrix A, respectively. Further details on the derivation of (7)
are given in the detailed technical report for this work [16].

The optimization problem can now be expressed as,

α

K∑
k=1

{µπ(k)P total(k)}+ (1− α)$[ max
0≤k≤K

|P total(k)|], (9)

subject to,
(C1) − ρ ≤ Tj(kµ)−∆j ≤ ρ, ∀j ∈ J , k ∈ [0,K],

(C2) Pj(k) ≤ G[TS − Tj(kµ)], ∀j ∈ J , k ∈ [0,K],

(C3) (7), k ∈ [0,K].
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Fig. 2: (2a): Total power consumed for α=0, α=0.6 and α=1; (2b): Hourly
energy pricing signal.

Henceforth, we will refer to (9) as the energy costs plus
peak demand charge minimization (ECPDCM) problem. The
formulation above has been expressed in terms of only Pj(k).
Furthermore, the cost function for the ECPDCM problem as
well as the constraints are linear in Pj(k).

IV. NUMERICAL STUDY

In this section, we simulate our model to determine the
power required to maintain unit temperatures within permitted
bounds. Each unit is constrained to use a maximum power of
3 kW at any given time. The building follows a DR program
whereby ρ = 2◦C from 0000 hrs to 0759 hrs. As commercial
buildings are usually occupied between 0800 hrs and 1800
hrs, we use ρ = 1◦C for this interval. The baseline case for
our simulations is when ρ = 0◦C, i.e., when the building
is not DR-amenable. The values of the remaining simulation
parameters are recorded in [16].
A. Description of the Test-bed

We evaluate the performance of our power control strategy
using a six-unit indoor space model, which represents a typical
office-space, based on our testing facility located in Watervliet,
NY. Refer to [10] for further details about the facility.
B. Performance Evaluation for Varying System Parameters

In this subsection, we use the hourly ambient temperatures
observed in Albany, NY, on July 20th, 2019 [11]. We consider
hourly energy prices as promulgated by NYISO for this day
[12]. Here, $ is $9.3/kW, which is the mean of the DC tariffs
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Fig. 3: Temperature deviation for α=0, α=0.6 and α=1, averaged for all six
units in the test-bed.
charged by all utilities in NY [13]. We assume that the tariffs
are known (or are well-estimated) in advance.

Fig. 2a shows how the total power consumed by the
hydronic HVAC system operating under the ECPDCM strategy
varies during the day, given the hourly pricing signals (Fig.
2b). The total power consumed by the building is sampled
at 1-minute intervals. We use α=0 to represent the scenario
where only the DC is minimized. When α=1, only the ECs are
minimized. Finally, α=0.6 represents a compromise between
EC and DC savings. It is noteworthy that between 0000 and
0500 hrs both the energy prices and the ambient temperatures
progressively decrease. Hence, the power consumed exhibits
a decreasing trend for all values of α under consideration.
Later, an increase in hourly energy prices is preceded by
instances of high power consumption of approximately 18 kW
for α = 1. These spikes in power consumption are followed
by instances with zero power consumption. The units are pre-
cooled prior to an increase in energy prices, thereby reducing
power consumption during the intervals with higher energy
prices, while also elevating the DC. The pre-cooling is less
pronounced for α=0.6. Finally, no pre-cooling takes place for
α=0 as this strategy is agnostic to changes in energy prices.
The curve for α=0 shows a sharp increase just before 0800
hrs, signifying that the space is occupied and ρ is now 1◦C.

Fig. 3 shows the temperature deviation from ∆j (averaged
over all units) when α=0, α=0.6 and α=1. It may be observed
that for all three values of α, the temperature deviation remains
close to ρ=1◦C during periods of occupancy. This value is
closer to ρ=2◦C when the building is unoccupied. Thus,
DR-amenability allows our control strategies to save energy
without significantly compromising on the occupants’ comfort.
Furthermore, the approaches using α=0.6 and α=1 employ a
pre-cooling mechanism to reduce power consumption during
intervals with higher energy prices. This causes a reduction in
the deviation from the set-point for the two control strategies
prior to increases in energy prices. As previously explained,
no pre-cooling occurs when α=0. Hence, this approach does
not cause any notably sharp changes in temperature deviation.

Table I records how the system is affected by changing α for
given π(·) and $. Since the power meter records an average
power flow for each 15-minute interval, the DC is based on the

largest average 15-minute power flow during the billing period
[14]. The product of this average power flow and $ gives the
DC. We assume that the particular day being considered here
sees the largest monthly load. The daily energy consumption is
taken to be identical throughout the month. The monthly EC is
the payable amount for the monthly energy consumption based
on the per-unit energy prices. Lastly, the average temperature
deviation represents the deviation of the mean temperature of
all six units from ∆j averaged over the entire 24-hour period.

Table I shows that increasing α decreases ECs, while also
causing the pre-cooling to be more drastic. Therefore, the
largest average 15-minute power flow, Λ, and hence the DC,
increases in magnitude with increase in α. For the given
tariff structure, the decrease in EC for increasing α does not
compensate for the increase in DC. Since the DC dominates
the total utility bill in this case, a general increase in the
consumer’s bill may be observed for increasing α. The absence
of pre-cooling for the baseline causes (i) the DC to be
significantly lower than those for α>0, and (ii) ECs to be
the greatest as the temperature remains close to the set-point.
We define % financial savings as the ratio of the difference
between the total utility bills for the baseline and the ECPDCM
strategy for a particular value of α, to the baseline utility bill.
The results show that the % financial savings progressively
decreases for α>0.2 due to a concomitant increase in the DC.
Beyond α=0.6, ECPDCM does not result in any savings.
C. Performance Evaluation for Various Climate Zones

In this subsection, we determine the performance of the
ECPDCM strategy for different climate zones and tariff struc-
tures. Here, we consider the hottest days of 2019 for three
climate zones – ‘Hot-Dry’, ‘Marine’ and ‘Very Cold’. For
details on the representative tariff structures and ambient
conditions for each zone, see [16]. While both Hot-Dry and
Marine zones have on- and off-peak hours, the energy prices
in the Very Cold zone are flat. We test our control strategy
for α=0, α=0.2 and α=1 using representative values for π(·)
and $. We include the performance of α=0.2 as it resulted
in the lowest utility bill in Table I. We wish to determine the
effect of changing α on the energy consumption, peak demand
and the utility bill for the three climate zones being studied
here. These climate zones represent high (Hot-Dry), medium
(Marine) and low (Very Cold) power demand for cooling.

Table II records the performance of our power control
strategy for α=0, α=0.2 and α=1 for the three climate zones.
The DC, the total utility bill and the % financial savings
compared to the baseline have been determined in the same
manner as in Section IV-B. As expected, the energy consumed
for thermal regulation increases with increase in the average
ambient temperature. It is noteworthy that although the energy
consumption for α=0.2 in the Hot-Dry climate zone is higher
than that for α=0, the former results in a lower monthly EC
than the latter. This trend may be attributed to the pre-cooling
action seen for α>0. It may also be seen that the ambient
temperature and the tariff structure affect the peak power
consumption for all three values of α. For instance, the values
of Λ recorded for the Very Cold climate are the lowest among



TABLE I: Performance evaluation of the ECPDCM strategy for varying values of α.

Baseline α = 0 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1
I - Monthly energy consumed (kWh) 2318 1964 1964 1963 1962 1950 1894

II - Monthly energy cost ($) 94.2 81.0 81.0 80.7 80.2 79.4 76.9
III - Peak 15-min. power flow (kW) 5.36 5.02 5.02 5.87 6.17 8.36 9.78
IV - Demand charge ($) [III×$] 49.9 46.7 46.7 54.6 57.4 77.8 90.9
V - Total utility bill [II + IV] ($) 144.1 127.7 127.6 135.5 137.6 157.2 167.8

VI - % financial savings - 11.38 11.45 5.97 4.51 -9.09 -16.45
VII - Avg. temperature deviation (◦C) 0 1.55 1.53 1.50 1.45 1.44 1.47

TABLE II: Performance evaluation of the ECPDCM strategy for α=0, α=0.2 and α=1 for various climate zones and tariff structures.

Hot-Dry Marine Very Cold
α=0 α=0.2 α=1 α=0 α=0.2 α=1 α=0 α=0.2 α=1

Monthly energy consumed (kWh) 2391 2397 2375 1668 1670 1669 621 618 616
Monthly energy cost ($) 470.80 468.90 465.30 86.48 85.74 85.74 36.77 36.57 36.44

Peak 15-min. power flow (kW) 6.75 10.06 11.42 5.73 9.82 11.44 3.02 3.02 3.05
Demand charge ($) 77.29 115.19 130.76 14.97 25.64 29.87 41.89 41.89 42.20
Total utility bill ($) 548.09 584.09 596.06 101.45 111.38 115.61 78.66 78.46 78.64
% financial savings 9.40 3.45 1.47 12.10 3.50 -0.16 18.59 18.80 18.61

Avg. temperature deviation (◦C) 1.47 1.45 1.47 1.11 0.96 0.99 0.80 0.82 0.82
the three climate zones being studied. Furthermore, since this
climate zone uses a flat pricing scheme, the power control
scheme with α = 1 does not pre-cool the units. Hence, there is
no appreciable difference in Λ for the three values of α for this
climate zone. In fact, it can be inferred that the DC incurred
for the three values of α is not drastically different from
that incurred for the baseline. Hence, unlike the other climate
zones, the disparity in the monthly utility bills between the
baseline and the system using ECPDCM in the Very Cold zone
can be attributed to the difference between the ECs in the two
cases. Therefore, the DR-amenability of our system results in
significant savings in the Very Cold climate zone as compared
to the other two zones. Moreover, % financial savings with
respect to the baseline case for for Hot-Dry and Marine climate
zone tends to decrease with increasing value of α. Finally,
the average temperature deviation is observed to be lower
for cooler climates. This is because the temperature gradient
between the ambient and the units is less steep for climate
zones with lower average ambient temperatures. Therefore,
less heat is transferred from the surroundings to the units,
thereby lowering the power demand for space cooling.

V. CONCLUSION
In this work, we aimed to determine the optimal power

consumption of a commercial, multi-unit GEB that minimizes
the weighted sum of EC and DC. We showed how this problem
can be transformed into a convex optimization problem with
linear constraints. We also tested our control strategy under
high, medium and low cooling demand scenarios for various
tariff structures. Our initial results showed that the proposed
approach can potentially result in significant financial savings
for DR-amenable commercial consumers. Our control policy
can also be used in conjunction with various grid services, e.g.
frequency regulation, at different temporal granularities. This
has been left as future work.
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