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ABSTRACT

It is important in software development to enforce proper restrictions on protected
services and resources. Typically software services can be accessed through REST API
endpoints where restrictions can be applied using the Role-Based Access Control
(RBAC) model. However, RBAC policies can be inconsistent across services, and they
require proper assessment. Currently, developers use penetration testing, which is a
costly and cumbersome process for a large number of APIs. In addition, modern
applications are split into individual microservices and lack a unified view in order
to carry out automated RBAC assessment. Often, the process of constructing a
centralized perspective of an application is done using Systematic Architecture
Reconstruction (SAR). This article presents a novel approach to automated SAR to
construct a centralized perspective for a microservice mesh based on their REST
communication pattern. We utilize the generated views from SAR to propose an
automated way to find RBAC inconsistencies.

Subjects Security and Privacy, Software Engineering
Keywords Microservices, REST, RBAC, Access control, Authorization, Security,
Static code analysis, Systematic architecture reconstruction

INTRODUCTION

With the software industry’s growth, the complexity of security administration is
becoming more and more challenging. As the current software development trend is
moving rapidly from monolithic to MicroService Architecture (MSA), we must address
communication patterns not only for the simple client to server scenarios but also for
service to service scenarios. Since the client-server communication pattern has existed
for many years, its security implications have already been well addressed. In contrast, not
much has been studied for service-to-service communication patterns.

Currently, the most popular way to establish communication between services is to use
Representational State Transfer (REST) (Vural, Koyuncu ¢ Guney, 2017; Salah et al.,
2016). Developing a secured REST-based infrastructure is relatively easy for a smaller
number of microservices. However, the security aspects gradually become more complex
as the number of microservices grows. Due to their high feature set and operational
complexity, modern microservice-based applications tend to have a large number of
individual microservices developed separately by separate teams. Enforcing a robust
security solution for such applications is tedious for developers and might lead to security
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disagreement among microservices. This is because individual developers only have

an idea of a subset of microservices they maintain but lack an understanding of the overall
picture. Even system architects may not understand the complete picture of the application
since many of those microservices may not be in the initial blueprint of the application
but rather were added later.

Thus, we need to establish an automatic way to generate the overall communication
pattern for the whole application before diving into the security aspects. This is done
through a process of Systematic Architecture Reconstruction (SAR) in which overall views
are constructed from existing application artifacts. SAR is divided into four phases:
extraction, construction, manipulation and analysis.

In this article, we first introduce a solution for automatic SAR of a microservice
application, which generates a view of the microservices’ REST communication pattern.
By automating the first three phases of SAR and utilizing the constructed views, we can
focus on the analysis phase and present an approach to enumerate possible security
loopholes in the application. More specifically, we focused on finding Role-Based
Access Control (RBAC) inconsistencies among microservices using static code analysis.
We present a case study on a single enterprise application called Teacher Management
System (TMS) consisting of four individual microservices. This application was developed
separately but re-purposed here as a testbed for performing static code analysis. Our work
focuses on intra-and inter-microservice inconsistencies highlighting all possible RBAC
issues.

An application’s core security requirement is to ensure that it can only be used by
legitimate users (Mohanty, Mohanty ¢ Balakrishnan, 2016). RBAC is one of the
popular methods of securing REST services where each user of the application is assigned
to a set of roles that grant access to different parts of the system. In microservice-based
applications, there can be two different abstractions to enforce RBAC rules. First,
centralized among all the microservices and, second, per microservice-based.

Thus, next in this article, we focus on the centralized approach. Finding inconsistencies
among RBAC rules in a large system is a cumbersome and difficult task due to different
levels of abstractions, poor coding practices, and coupling with third-party services.
According to a survey conducted in 2014 by the International Data Group (Mohanty,
Mohanty ¢ Balakrishnan, 2016), about 63% of applications have not been tested for
security vulnerabilities. This can be easily mitigated by enforcing standard security features
during the regular software development process (McGraw, 2004). Ignoring such security
vulnerabilities is expensive. Security breaches can cost companies billions and require
significant time and effort to resolve. For example, the 2014 eBay hack, which was
caused by improper access control restrictions, impacted over 145 million users (Swirnhoe,
2020). Being able to list possible security vulnerabilities automatically can significantly
reduce the likelihood of such incidents.

System administrators should wisely choose the approaches to test the security
vulnerability of the system. The most accurate outcome from such a test can be obtained
via rigorous penetration testing. However, such an approach needs the application to
be fully deployed, and running penetration tests against a production deployment could
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lead to disruption for end users. Also, it is difficult to emulate all possible scenarios for
penetration testing. In contrast, static code analysis can be a much easier alternative that
does not require an application to be deployed and hence is more cost-effective. Although
static code analysis is no panacea, when carefully implemented, it can detect many
vulnerabilities. It is for these reasons we use static code analysis for our automated SAR
process.

The article is organized as follows. Section two discusses the related work and state of
the art. “Proposed Method” describes our proposed method in detail, and section four
explores a case study. Finally, we conclude our article by summarizing our work outcomes,
describing our future goals, and listing the references. Throughout the article, the terms
“inconsistency”, “violation” and “issue” are used interchangeably to indicate a potential
flaw.

RELATED WORK

In this section, we present related work from the two different perspectives considered in
this article. First, we assess the limitations of RBAC analysis in the context of enterprise
systems. Next, we assess existing approaches for the SAR.

Role-based access control

In microservice-based applications, each microservice implements a subset of features.
End-users or other microservices can access these features through an application
programming interface (API). There are typically two main API development choices:
REST and Simple Object Access Protocol (SOAP) (Tihomirovs & Grabis, 2016).

While REST is an architecture for API development that works over standard HTTP
protocol, SOAP is just a protocol. For many years, SOAP was a standard approach for
web service interfaces. However, it has been dominated by REST in recent years. According
to Stormpath, over 70% of public APIs are designed using REST (Hunsaker, 2015).

The main advantage of REST compared to SOAP is its simplicity and ease of learning.
REST is lightweight and hence better suited for a wide range of devices, including mobile
devices (Wagh & Thool, 2012). Apart from that, REST uses JavaScript Object Notation
format which is faster to parse compare to Extensible Markup Language used in SOAP
(Tihomirovs & Grabis, 2016; Castillo et al., 2011).

Securing REST API endpoints is generally easy when existing HTTP security
approaches are leveraged instead of implementing a new security model (Sudhakar, 2011).
Securing REST endpoints involves both authentication and authorization (Brachmann,
Dittmann ¢ Schubert, 2012). Authentication is the process of verifying the credentials
associated with a particular request. Different enterprise applications use different
strategies to authenticate incoming requests, such as basic authentication, token-based
authentication, hash-based digest authentication, OAuth, etc. (Lee, Jo & Kim, 2015).

On the other hand, authorization involves verifying whether a request connection is
allowed to perform a particular action through a REST endpoint. Mandatory access
control, discretionary access control, attribute-based access control and RBAC are popular
approaches for enforcing authorization (Sandhu ¢ Samarati, 1994). In this article, instead
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of authentication breaches, we focus on exploring and detecting possible authorization
inconsistencies, specifically role-based authorization inconsistencies.

Role-Based Access Control has been widely adopted as an alternative to classical
discretionary and mandatory access controls because of its advancement in flexibility
and detail of control (Sandhu & Samarati, 1994; Sandhu et al., 1996). It regulates users’
access to information and system resources based on activities that users need to execute in
the system and requires the identification of roles in the system (Ahn ¢ Sandhu, 2000).
RBAC’s administrative capabilities have made it stand out from the alternative approaches
because system administrators can statically or dynamically regulate user’s access by
defining roles, role hierarchies, relationships, and constraints (Ferraiolo, Cugini ¢
Kuhn, 1995). For distributed systems, another advantage is that RBAC administrative
responsibilities can be divided into central and local protection domains (Ferraiolo,
Cugini ¢ Kuhn, 1995). In the case of microservice-based applications, these can be
translated into central policies for all associated microservices and per microservice-
based policies. Central RBAC policies can be enforced by delegating authentication and
authorization tasks to a separate identity management tool, such as Red Hat’s Keycloak
(Red Hat Inc, 2020a). On the other hand, individual microservices can carry out such
policies using security features of underlying frameworks, such as spring-security for
spring-based applications (Scarioni ¢ Nardone, 2019).

Due to the high impact of security-related issues, much research and development
have been done addressing role violations. Ciuciu, Tang ¢» Meersman (2012) described one
such strategy where appropriate security annotations are recommended for developers
based on the ontology extracted from the business information. However, since this
recommendation strategy works only based on business information irrespective of source
code, if the business information provided is flawed, then the recommendation will also be
faulty.

One similar study focused on finding security vulnerabilities of API implementations
among different libraries based on security-sensitive events (Srivastava et al., 2011).

It finds discrepancies among security policies associated with the same API using a flow
graph. The inherent drawback of this approach is that it requires multiple independent
implementations of the same API, and it can not find which ones of whose multiple
implementations are faulty. Another research study described a model-based approach
for testing access control rules based on consistency, completeness and redundancy

(Xu et al., 2012). It checks whether access control rules are consistent across the
methods, whether they are unnecessarily repeated, and whether they covered all subset
of permissions. However, the coverage of access control rules over a set of methods
does not necessarily relate to security issues. In Xu et al. (2012), the system under study
does not allow a user to rent a book on maintenance due to the incompleteness of
access control rules, which is more of a system flaw rather than a security issue. In contrast,
our proposed method finds whether a user can access a resource-restricted by one RBAC
rule through an alternative path that has less restriction.

The tool FixMeUp (Son, Mckinley ¢ Shmatikov, 2013) proposed an automated way
to fix access control issues in PHP applications using static code analysis. It automatically
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edits the source code to resolve access control issues. Although it seems compelling

to automate the task, it might lead to syntax errors and might result in unintended
consequences in case of false positives. On the other hand, our RBAC tool pinpoints the
location of possible inconsistencies in the source code without adversely affecting the
codebase since it does not modify the source code while performing analysis.

The most similar analysis to our proposed method has been described by Walker et al.
(2020). That tool performs static code analysis on enterprise JAVA applications to find
issues in RBAC rules defined using security annotations. The key difference is that it only
considers intra-microservice issues, while our method works for both intra- and inter-
microservice issues, taking into account all the microservices that constitute the
application.

Freudenthal et al. (2002) proposed a distributed RBAC (dRBAC) mechanism that
decentralizes the trust-management across multiple administrative domains. Due to its
distributive nature dRBAC is highly scalable for a large number of mutually anonymous
users. It features third-party delegation that enables one authorized entity to entrust
roles created by another entity. Besides, it controls the access levels for the same resource
by valued attributes. Also, dRBAC presents continuous monitoring by utilizing a pub-sub
model to ensure the validity of trust relationships for extended interactions. In this
article we do not assess such decentralized RBAC techniques, rather we assume that the
user authentication and role mapping are handled through a centralized service while
individual microservices are responsible for the imposition of those roles on API
endpoints.

Separation of Duties (SoD) has been widely studied in the context of RBAC. It ensures
data integrity and fraud prevention by distributing critical tasks among multiple users
(Basin, Burri & Karjoth, 2009). It enforces that no single user can execute all actions and
thus any kind of fraudulent activity will cause collision among at least two users (Habib
et al., 2014). In RBAC, SoD can either static or dynamic (Sandhu, 1990). In the static
separation of duties (SSD) constraints are enforced during the assignment of users to roles.
On the other hand, in dynamic separation of duties (DSD) constraints are activated on
the roles within a user session (Omicini, Ricci ¢» Viroli, 2005). In this article, we are not
considering the user assignments and user sessions. Instead, we performed static code
analysis that solely focused on a subset of SSD including statically defined roles and role
hierarchies.

Software architecture reconstruction

Although many studies address access control issues, most of them are focused on single
microservice or monolith applications. However, modern cloud-based applications are
commonly designed as a set of microservices for better flexibility and scalability

(Salah et al., 2016). The key challenge to perform a holistic analysis across multiple
microservices is the automated construction of the application’s centralized perspective.
SAR extracts a representation of software architecture from source code or documentation
through an iterative reverse engineering process (Bass, Clements ¢ Kazman, 2003).

Das et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.376 5/24


http://dx.doi.org/10.7717/peerj-cs.376
https://peerj.com/computer-science/

PeerJ Computer Science

It is historically defined with four phases: extraction, construction, manipulation and
analysis (Bass, Clements ¢» Kazman, 2003). In the extraction phase, all necessary
artifacts are collected. Each set of related artifacts is relevant to a view that represents
relations among certain elements of the software architecture (Bass, Clements ¢
Kazman, 2003). The construction phase creates canonical representations of the
views. Then the manipulation phase combines the views to create a more compact
representation to answer specific questions in the analysis phase. Lastly, the analysis
phase answers specific research questions from the reconstructed views. In this
article, the analysis phase addresses the detection of possible RBAC inconsistencies.
Also, to the best of our knowledge SAR has not been used to detect RBAC inconsistencies
in MSA.

One approach of SAR of microservice-based systems is described by Rademacher,
Sachweh & Ziindorf (2020). This method describes different modeling based on different
viewpoints (Rademacher et al., 2020) where domain modeling is based on bounded
context, services modeling is based on REST calls, and operation modeling is based on
deployment specifications, for example, Dockerfiles.

The Model-Driven Engineering (MDE) approach is commonly used in SAR. In MDE,
models are used as first-class entities to depict an efficient representation of the software
architecture (Cicchetti et al., 2013). Alshugayran, Ali & Evans (2018) described a
manual analysis through the MDE approach to reconstruct the architecture of
microservice-based open-source projects. They defined a metamodel which is then
mapped to the architecture using mapping rules. The metamodel and mapping rules are
initially created for one system and then refined and validated using seven additional
systems. However, the authors did not apply their reconstruction strategy to answer
specific questions.

Ibrahim, Bozhinoski ¢» Pretschner (2019) proposes an approach to derive MSA module
topology from container-based deployment configuration files, more specifically, from
Docker Compose files. In addition to topology, they extracted the attack graph, a
directed acyclic graph, to identify attack paths that lead to vulnerability exploitation.
Their implementation is based on a open-source vulnerability scanner for Docker
containers named Clair (Quay, 2020).

The MicroART tool described by Granchelli et al. (2017) extracts the deployment
architecture of a microservice-based system from the source code repository. It utilizes
a domain-specific language to represent key elements of the architecture by using the MDE
approach. It employs runtime log analysis to discover containers, network interfaces, and
service interactions. However, users need to provide a reference to the container engine
since MicroART does not automatically detect it from deployment configuration files.

Our proposed method reconstructs MSA architecture based on the REST
communication pattern, similar to the service modeling described by Rademacher,
Sachweh & Ziindorf (2020). However, unlike that system, which depends on a Service
Modeling Language (Rademacher et al., 2020), our reconstruction is solely based on static
code analysis and works independently.
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PROPOSED METHOD

Enterprise applications are typically organized into a three-layer structure: controller
layer, service layer, and repository layer. It is also common to organize microservices into
the presentation layer, business layer, persistence layer, and database layer (Richards,
2015). These two commonly used structures essentially indicate the same strategy.

The presentation layer maps to the controller layer, which defines API endpoints, and the
business layer maps to the service layer, which contains business logic. The persistence
layer maintains data access objects to interact with the database layer (Alur et al., 2003).
These two layers (persistence and database) are consolidated into the repository layer in
the three-layer architecture (Richards, 2015; Steinegger et al., 2017).

Microservices typically communicate over REST APIs (Salah et al., 2016). Each
microservice’s controller layer defines the REST endpoints that serve as request entry
points for that particular microservice. Requests are delegated from the controller layer to
the service layer. The service layer typically implements business logic. It processes the
request and generates an appropriate response. The service layer can also incorporate
with the persistence layer to store and retrieve data relevant to a specific request. However,
sometimes the service layer depends on other microservices to process the request.

In that case, it creates REST calls to other microservices and implements business logic
based on the response. This describes a typical REST communication scenario among
microservices. In particular, the service layer of one microservice makes REST calls to
other microservice’s controller layers to implement its business logic. Thus, the REST
endpoints of each microservice can be either accessed by end-users or other microservices.

Enterprise frameworks adopted annotation-based configuration to define REST
endpoints, for example, @RestController annotation in Spring-based JAVA
applications and @app.route annotation in Flask based Python applications (VMware
Inc, 20205 Pallets Projects, 2020). Since the REST endpoints are the entry points to the
microservice, securing them is the single most important task for the developers.

While there are several ways to enforce role-based authorization, the most widely
adopted method in enterprise applications is to define authorization realms through the
application server (Oberle et al., 2004) or through separate identity management tools
like Keycloak (Red Hat Inc, 2020b). A realm is a security policy domain defined in the
application server that contains a collection of users (Jendrock et al., 2014). These users
might be further organized into several groups (Jendrock et al., 2014). Centralized
authorization systems like Keycloak handles user authentication and role mapping.

But such systems do not verify whether developers properly enforced RBAC policies
during API implementation or not. For example, some API endpoints might have missing
RBAC roles. In that case, any authenticated user can access those endpoints. Similarly,
two API endpoints with different roles might eventually access the same entity which
might be unintentional and left unnoticed. These inconsistencies are not flagged by the
centralized authorization system and thus defining authorization policies are not
enough to secure the endpoints. Developers need to enforce those policies within the
application’s source code that runs in that application server. Designing proper

Das et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.376 7/24


http://dx.doi.org/10.7717/peerj-cs.376
https://peerj.com/computer-science/

PeerJ Computer Science

authorization policies are just one part of ensuring robust RBAC enforcement, we need
to consider coding problems that might lead to security loopholes. In this article,

we focused on detecting such coding problems through static code analysis. Also, it is
important to classify these problems to understand the severity and origin of them.
We have defined five types of possible inconsistencies or violations:

1. Missing role violations: this type of violation occurs when an API endpoint does not
have any roles associated with it. In this case, all authenticated users can access
the endpoint. Such violation typically happens when developers forget to enforce
authorization roles on an API endpoint. However, it could be false-positive, for example,
some API endpoint might be intentionally left open for all users.

2. Unknown access violations: if an API endpoint contains an authorization role that is not
present in the user-defined role hierarchy, then we define it as an unknown access
violation. Usually this type of violation results from typographical errors and in most
cases, such typos are left unnoticed since they do not cause any compilation errors. As a
result, legitimate users with proper access are denied from accessing the endpoint.

3. Entity access violations: if input and output that is, request and response types of
two API endpoints are similar but they have different authorization roles, then we
classify it as an entity access violation. This kind of violation indicates that the same
entity is being accessed by users with different access roles.

4. Conflicting hierarchy violations: this type of violation happens when an intermediate
method in the service layer or repository layer contains two different roles that are
ancestor of each other’s in the role hierarchy. This violation signifies that users with a
junior role are accessing some functionalities that might be intended for users with a
senior role (Walker et al., 2020).

5. Unrelated access violations: similar to conflicting hierarchy these violations focus on
intermediate methods instead of endpoint methods. When an intermediate method
contains two multiple roles that are located in different subtrees of the role hierarchy,
we classify it as an unrelated access violation. This type of violation indicates poorly
separated concerns while distributing access roles across different functionalities of the
application (Walker et al., 2020).

Like REST configurations, authorization policies are typically applied by annotating
methods or functions with appropriate security annotations. These annotations can differ
based on the framework used to develop the application; for example, JAX-RS security
annotations are used with JAVA EE based application (Oracle, 2020). A similar approach
to enforce RBAC using annotation can also be found in Python applications based on
the Flask framework (7hio, 2020). These security annotations define the level of
restrictions applied to the associated methods or functions. Table 1 highlights the most
commonly used security annotations in JAVA EE applications supported by JSR 250
(Mordani, 2016; Oracle, 2020).

For example, if we add a @rolesAllowed (ADMIN) annotation to a controller endpoint
method, only the users that have the “ADMIN” role (defined in the realms) can access the
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Table 1 JAVA EE security annotations.

Annotation Description

@permitAll All security roles are permitted
@denyAll No security roles are permitted
@rolesAllowed List of permitted security roles

endpoint. However, since the number of such endpoint methods can be significant and
can grow over each iteration of the development cycle, it is possible to introduce
inconsistencies among the allowed roles or even missing roles. Moreover, since these
inconsistencies and missing roles do not cause any compilation or run time error, it is
tempting for developers to overlook them, and that might result in potential security
loopholes.

Our proposed method analyzes a set of microservice artifacts that communicate
with each other through REST calls. It finds potential RBAC violations for the whole
microservice mesh by scrapping security metadata of individual microservices and by
combining them based on their REST communication flow. We divided the analyzer
into three modules: a discovery module, a flow-matcher module, and an analysis module.
The discovery module implements the extraction phase of SAR. It collects endpoint
specification and security metadata. Next, the flow-matcher module performs the
construction and manipulation phases of SAR by resolving the interaction among
microservices. Finally, the analysis module completes the analysis phase of SAR and
detects potential RBAC violations based on the other two modules’ output.

The discovery module performs static code analysis on individual microservice artifacts.
It detects the REST endpoints and security roles attached to those endpoints. Apart
from that, it also lists the REST calls to other microservices, which are typically
implemented in the service layer. The discovery module works for both source code
artifacts and bytecode artifacts (e.g., JAR file, Python bytecode) and thus provides
generalization for both interpreted languages (e.g., JAVA, Python) and compiled languages
(e.g., C++, Go). The source code version of the discovery module takes a microservice
artifact as input and parse class definitions while the bytecode version does the same using
bytecode analysis. As discussed above, both REST endpoints and security policies are
typically defined using the annotation-based configuration in enterprise applications.
The descriptions of these annotations are well structured and preserved in the source
code and in the bytecode. The discovery module scans each class to find REST annotations
and security annotations that define REST endpoints and security roles, respectively.
It aggregates class-level annotations with method-level annotations to derive the complete
definition of each REST endpoints. It collects the allowed roles, port, path, HTTP type,
type of request object, and type of response object for each endpoint. It takes account
of all standard HTTP types, with the most commonly used ones being GET, POST,
PUT and DELETE. The discovery module then further analyzes service layer classes to
detect REST calls to other microservices. For each REST call, it detects the URL, HTTP
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type, type of request object, and type of response object. It parses REST client definitions to
gather those attributes.

However, detecting the URL string involves further intensive analysis since the URL
string is usually constructed by performing consecutive append operations in different
parts of the source code. For this, our discovery module applies a backward recursive data
flow analysis from the point where the URL is used to the point where the URL was
initialized. In each intermediate step of the data flow where the URL was referenced, it
scans for any append operations and resolves them to restore the final URL. Parts of the
URL may also be constructed using values defined in the configuration files instead of
hardcoded strings within the source code. Our module also scans configuration files of the
project to resolve those values. Finally, the discovery module generates method-call graphs
for individual microservices. It takes each controller method as the root node and
populates child nodes by traversing subsequent method calls to the service layer and
repository layer methods. For each microservice, the discovery module organizes all the
scrapped information described above into a usable structure and passes them to the flow
matcher module and analysis module.

As discussed by Walker et al. (2020), RBAC security analysis for individual
microservices is insufficient. It fails to acknowledge violations when an end-user gains
access to a normally restricted resource by creating a proxy request through another
microservice mediating the resource access through service layer REST calls. To detect
such violations, we need to consider the whole MSA mesh instead of a single MSA, and
we need to resolve REST communications between them to construct a complete
centralized perspective. In our proposed model, the flow matcher module constructs the
centralized communication graph for the whole MSA mesh. It takes descriptions of
REST-endpoints and REST-calls for each microservice prepared by the discovery module.
It combines all the REST endpoints into a list and all the REST calls into another list.
Then it performs a brute force matching between those two lists to resolve all REST
communications among the microservices. This involves matching the URL (including
port and path), HTTP method, request type, and response type.

However, it is common for modern microservices to use service discovery and
service registry instead of a hardcoded IP address in the URL (Montesi ¢» Weber, 2016).
To resolve this, our flow matcher module matches both the IP address and service
name and checks if one of them matches. The service name is usually defined in each
microservices” configuration files and scrapped during the discovery phase. The flow
matcher module also generates a diagram of REST communication for the whole
microservice mesh for better visualization.

The analysis module takes descriptions of method-call graphs and allowed roles from
the discovery module and REST communication descriptions from the flow matcher
module. Additionally, it takes the role hierarchy tree from the user. Figure 1 shows a
user-defined role tree passed to the analysis module as input. Roles higher in the hierarchy
tree are senior to the roles below in the tree; senior roles should have all the access
rights junior roles have, plus additional rights the junior roles do not have. Roles in
separate paths of the hierarchy are not related to each other. The analysis module
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Role A

Y

Role B

Y

Role C

Role S

Role P » Role Q

Figure 1 A sample user-defined role hierarchy tree. Senior roles are higher in the tree; in this example,
Role S is the most senior role, Role A is senior to B, which is senior to C. Role P is senior to Q.
Full-size K&l DOT: 10.7717/peerj-cs.376/fig-1

combines method-call graphs of different microservices based on their REST
communication. Figure 2 depicts a typical scenario of how combined method-call graphs
are constructed. Each node of the combined graphs can be a controller node, service
node, or repository node. Typically, only the controller nodes contain RBAC information,
that is, a list of allowed roles; however, the service layer and repository layer nodes can
also have RBAC information. To find potential RBAC violations in those layers, the
analysis module loops through all the nodes and analyzes the roles associated with them.
The first three types of violations are only related to controller nodes. If any controller
node does not have any roles associated with it, we detect it as a missing role violation.
This is the most common type of violation that might occur since missing roles on
controller methods do not cause any compilation errors. If a node contains a role that is
not defined in the user-provided role hierarchy, we detect it as an unknown access
violation. This type of violations typically results from typographical errors. If request
types, response types, and HTTP types of two controller methods are equal, but they have
different RBAC roles, we detect it as an entity access violation. This violation implies
similar access to a particular entity with different roles.

The unrelated access and conflicting hierarchy violations occur when a node
contains multiple roles after performing the reduction and aggregation. In the reduction
phase, the analysis module goes through each node and keeps the lowest role defined in the
user-provided role hierarchy. The significance of this reduction is that it defines the
minimum role required to access a specific part of the application. After reduction, in
the aggregation phase, the analyzer traverses each graph and copies the allowed role from
the parent node to the child node. If a child node contains an RBAC role or a child node
has multiple parents with different roles, then it aggregates the roles for that particular
child node. Figure 3 shows how the analysis module labels each child node using the RBAC
roles of its parent nodes according to the role hierarchy shown in Fig. 1.

The conflicting hierarchy violation occurs when a node code contains two different
roles where one role is an ancestor of another role in the user-defined role hierarchy.
This violation indicates a place where a junior role potentially accesses an area reserved
for a more senior role. It is only a potential violation because it is ambiguous whether a
junior role is accessing an area reserved for a senior role or the senior role is accessing
something allowed for the junior role (Walker et al., 2020). The unrelated access violation
is the opposite of the conflicting role violation. It happens when a node contains two roles
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Figure 2 Construction of combined method-call graphs.
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! https://github.com/cloudhubs/tms2020.
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Figure 3 Reduction and aggregation of RBAC roles. Full-size 4] DOT: 10.7717/peerj-cs.376/fig-3

located in a different subtree of the user-defined role tree, that is, one role is not an ancestor
of another role. This violation indicates areas where unrelated roles are accessing the
same application area, which may indicate poorly separated concerns that could be
refactored (Walker et al., 2020). For example, considering the role hierarchy shown in
Fig. 1, if a node has roles {A, C} then it is detected as a conflicting hierarchy violation,
and if a node has roles {A, P} then it is marked as an unrelated access violation.

The categorization of violations defined in our proposed method is mostly similar to
the ones discussed by Walker et al. (2020). However, Walker et al. (2020) only considered
only a single microservice at a time, whereas we also analyze inconsistencies across
microservices.

Our system finds potential RBAC violations based on a user-defined role hierarchy
for the whole microservice mesh (a set of microservices). It warns the developer about
potential violations by providing a report of specific locations where the violations are
detected and the categories, as discussed above. While some of the detected violations may
be false-positive and intentional, our proposed method provides an overall idea of all
possible RBAC violations for a large and complex system. The categorization of the
violations helps the developer understand each violation’s severity, while the specific
locations of the violations help to find and fix them easily.

CASE STUDY

The TMS' is an enterprise application developed at Baylor University for Central Texas
Computational Thinking, Coding, and Tinkering to facilitate the Texas Educator
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Figure 4 Role hierarchy tree of the TMS application.  Full-size K&l DOI: 10.7717/peerj-cs.376/fig-4

Table 2 Annotations used in TMS project.

Annotation Target Description

@Controller 3 Class 3 Indicates controller, service, and repository layers
@Service

@Repository

@RestController  Class Sub type of @Controller to activate REST APIs
@RequestMapping  Class and Method  Defines HTTP types and paths for REST endpoints
@GetMapping 3 Method 3 Sub types of @RequestMapping for specific HTTP types
@PostMapping

@DeleteMapping

@RolesAllowed Method Lists a set of allowed roles

Certification training program. The whole TMS system consists of four individual
microservices: user management system (UMS), question management system (QMS),
exam management system (EMS) and configuration management system (CMS). All of
the microservices are developed using the Spring Boot framework (Walls, 2016) and
structured into the controller, service, and repository layers. The RBAC authorization is
enforced using annotations on each controller method for the individual microservices,
while the central authentication and authorization policies are defined using Keycloak
(Red Hat Inc, 2020a). Figure 4 shows the role hierarchy tree for the TMS application.
For our case study, we added mutants (Jia ¢» Harman, 2011) for each type of violations that
resulted in a total of seven RBAC violations. Our system successfully detected all those
violations and provided a report with specific locations of the violations. In this section,
we will discuss how our analysis process works in detail for the mutated application.

The TMS project utilizes an annotation-based configuration technique to define
application layers. REST API configurations and RBAC restrictions are also applied
through annotations, which are common practice for enterprise applications. Table 2
lists frequently used annotations throughout the TMS project.

For our purpose, we only looked for the @RestController annotation in the
discovery module. The HTTP and paths type were extracted from the parameters of
O@RequestMapping annotation or subtype annotations. Paths can be defined at both
class level or method level. We aggregated the class level paths with method-level paths
to get the final path for each endpoint. The endpoints’ request and response types are
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/tms/tms-qms/target/qms-0.0.1-SNAPSHOT jar

/tms/tms-cms/target/cms-0.0.1-SNAPSHOT jar

edu.baylor.ecs.cms.service.QmsService createConfiguration

edu.baylor.ecs.cms.service.QmsService.getConfigurati

edu.baylor.ecs.cms.service.QmsService.getCategoryInfoDtos

POST http://localhost:12345/configuration edu.baylor.ecs.qms.controller.ConfigurationController.createConfiguration
GET http://localhost: 12345/configuration edu.baylor.ecs.qms.controller.ConfigurationController.find AllConfigurations|
ions L
GET http://localhost: 12345/categoryinfo | edu.baylor.ecs.qms.controller.CategoryInfoController.find AllCategoryInfos

/tms/tms-ems/target/ems-0.1.0 jar

edu.baylor.ecs.cms.service. EmsService.getQuestionsForExam GET http://localhost: 10002/exam/{id}/questions
| edu.baylor.ecs.ems.controller ExamController.listAllQuestionsForExam
| edu.baylor.ecs.cms.service. EmsService.deleteINITExam DELETE http://localhost:10002/exam/{id} [
| edu.baylor.ecs.ems.controller ExamController.deleteINITExam

edu.baylor.ecs.cms.service. EmsService.createExam POST http://localhost:10002/exam |

edu.baylor.ecs.ems.controller ExamController.createExam

edu.baylor.ecs.cms.service. EmsService.getExams

GET http://localhost:10002/exam
| edu.baylor.ecs.ems.controller. ExamController.listAllExams |

GET http://localhost:10002/exam

| edu.baylor.ecs.cms.service. EmsService.getINITExams r

/tms/tms-ums/target/ums-1.0-SNAPSHOT jar

| edu.baylor.ecs.cms.service.UmsService.isEmail Valid

GET http://localhost:9004/userinfo/emaillnUse/{email }

edu.baylor.ecs.ums.controller.UserInfoController.isEmaillnUse |

| edu.baylor.ecs.cms.service.UmsService.getExamineeInfo

GET http://localhost:9004/userinfo/userByld/{id}

edu.baylor.ecs.ums.controller.UserInfoController.getUserByld |

| edu.baylor.ecs.cms.service.UmsService.getAllUsers | | edu.baylor.ecs.ums.controller.UserInfoController.getAllUsers |

| GET http://localhost:9004/userinfo/users |

Figure 5 Inter microservice REST communications in TMS. Full-size K] DO 10.7717/peerj-cs.376/fig-5

resolved by detecting parameters and return types of respective methods where the
endpoints are defined. Finally, the RBAC roles are listed by detecting the parameters of the
O@RolesAllowed annotation applied to each endpoint method.

The RestTemplate class is usually used for making REST calls in the Spring Boot
applications where the methods getForObject, postForObject, deleteForObject,
etc. are used for performing REST calls with specific HTTP type. Each of those
methods takes a URL parameter and a request object and returns a response object.

We scan classes annotated with @Service annotation and filter them if they contain
RestTemplate in their import statements to detect service layer REST calls. We then look
for the methods described above and detect request and response types by checking the
parameter type and return type. The URLs are detected by performing a backward data
flow analysis recursively, as described in the proposed method section. The method calls
graph is constructed by traversing each endpoint method to the service layer and
repository layer methods.

After the discovery module completes gathering metadata for each MSA, the flow
matcher module combines them, and the analysis module performs the final analysis.
The flow matcher module also generates a visual graph of the REST communications
among the microservices using Graphviz library (Ellson et al., 2002). Figure 5 shows the
generated graph for the TMS application.
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CMS UMS
ConfigurationController::getExaminee() UserlnfoController::getUserByld()
Roles: {user, admin} Roles: {admin, superAdmin}
Reduction & aggregation: {user} Reduction & aggregation: {user, admin}
v GET v
UmsService::getExamineelnfo() UserRepository::getByld()
Roles: {} Roles: {}
Reduction & aggregation: {user} Reduction & aggregation: {user, admin}

Figure 6 Conflicting hierarchy violation among CMS and UMS.
Full-size K&l DOT: 10.7717/peerj-cs.376/fig-6

CategoryController::createCategory() CategoryController::deleteCategory()
Roles: {user, admin, superAdmin} Roles: {admin, superAdmin}
Y ¢ Y
CategoryRepository::save() CategoryRepository::delete()
Roles: {user, admin} Roles: {admin}

Figure 7 Conflicting hierarchy violation within QMS. Full-size Kl DOTI: 10.7717/peerj-cs.376/fig-7

While matching the request and response types, we only considered the supertype of the
generic types. For example, List<AClass> and ArrayList<AClass> are considered
equal during matching.

Our analyzer reported two missing-role violations for the mutated applications by
specifying the fully qualified name (MSA name + package name + class name + method
name) of the endpoint methods that are defined without specifying any RBAC roles.

It detected two unknown-role violations along with their locations. These two violations
have resulted from data entry errors where “user” and “admin” roles are mistakenly typed
as “usre” and “admin” respectively, which are not present in the role hierarchy shown
in Fig. 4. Our analyzer flagged one entity access violation by pointing out a pair of fully
qualified method names. Methods getExams and getINITExams in CMS have the same
return type List<Exam> and the same HTTP type GET but they have different RBAC
roles: “user” and “moderator” respectively.

We found two conflicting hierarchy violations in the mutated TMS application. One of
them occurred in inter microservice communication, shown in Fig. o, where the CMS
module calls the UMS module to retrieve examinee info. The getExaminee endpoint
method in CMS can be accessed with a “user” role which calls the getUserById endpoint
method of EMS via service layer REST call. However, the getUserById method in EMS
has annotated with the “admin” role, which is a direct ancestor of the “user” role.

The second conflicting hierarchy violation, shown in Fig. 7, occurred entirely within
the QMS module where both createCategory and deleteCategory endpoint methods
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2 SAR from bytecode: https:/github.com/
cloudhubs/rad.

* SAR from source code: https://github.
com/cloudhubs/rad-source.

* RBAC analysis: https://github.com/
cloudhubs/rad-analysis.

> The benchmark is run on a Mac OS
computer with a 2.9 GHz 6-core Intel
Core i9 processor and 32 GB RAM.

Table 3 Runtime against TMS testbed.

Module Total Time breakdown

Name Runtime (s) MSA Time (s)

Discovery 1.04 CMS 0.43
EMS 0.18
QMS 0.31
UMS 0.12

Flow Matcher 0.13 -

Analysis 0.29 -

call the save method of CategoryRepository with conflicting roles. Finally, we detected
one unrelated access violation between CMS and EMS, where the method getQuestions
in CMS has transitive access to the method 1istAl1QuestionsForExam in EMS via
service layer REST call. They are annotated with “user” and “moderator” roles, respectively
defined in separate subtrees of the role hierarchy.

We tested both source code and bytecode version of our discovery module, which
utilizes the JavaParser library (Bruggen, 2020) to parse the source code and JavaAssist
library (JBoss, 2020) to perform bytecode analysis to extract class definitions. We published
our implementation as an open-source tool>”*. We ran it against the TMS project for
benchmarking our analyzer and separately measured the runtime for each discovery, flow
matcher, and analysis modules. For the discovery module, we break down our
measurements for each microservice (CMS, QMS, EMS and UMS) and count the number
of classes it scanned. Note that the discovery module performs a deep scanning for the
controller layer classes that are annotated with @RestController annotation and service
layer classes that have RestTemplate import to detect REST endpoints, security roles,
and REST calls. For other classes, it performs just a shallow scan to construct the method
call graphs.

Table 3 shows the total runtime’ for each module and the breakdown for the discovery
module for static bytecode analysis. We can immediately see that the discovery module
takes the most significant time since it performs scanning of all class files to extract
metadata. In contrast, the flow-matcher and the analysis module, operating on the
extracted metadata, take comparatively less time. For the discovery module, runtime
depends on the number of class files in each microservices. The runtime of the flow-
matcher module depends on the number of REST endpoints and the number of REST
calls, while the runtime of the analysis module depends on the number of inter-
microservice REST connections and the depth of the function call graph.

Our experiment exhibits a reasonable runtime to perform the static code analysis for
enterprise applications. In total, it took 1.43 seconds against the TMS application, which
consists of four microservices, a total of 102 classes, and 11 inter-microservice REST
connections. For enterprise applications with many microservices, it is possible to run the
discovery module in parallel for multiple microservices, which will significantly reduce the
runtime.
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RBACAssessment (pathToMicroservices, roleHierarchy) {
// extract metadata
for each path in pathToMicroservices ({
analyze project property files to get service-name,
port, hard-coded string values, etc.

extract class definition using static code analysis

// populate serverList and clientList
for each class {
for each method {
if the method annotated with REST annotations {
extract API endpoint definition metadata

add extracted metadata to serverList
follow each method call to create a method call graph
extract RBAC security roles associated with those methods

add the graph to methodCallGraph as a subgraph
}

if the method contains REST API calls ({
extract API call descriptions e.g. HTTP method, URL, etc.

add extracted metadata to clientList

}
}

// resolve inter-microservice REST connections
for each server in serverlList {
for each client in clientList {
if URL, port, HTTP method matches for server and client {
add (server, client) pair to restConnections

}
}
// update method call graph
for each connection in restConnections {
add an edge from client to server in methodCallGraph
}
// reduction
for each method in methodCallGraph {
keep only the lowest role in roleHierarchy and discard others
}
// aggregation
for each disjoint subgraph in methodCallGraph {
traverse all paths and merge the roles from parent to child
}
// find inconsistencies
for each method in methodCallGraph {
if the method has conflicting roles according to roleHierarchy {
report inconsistency

}

Figure 8 RBAC assessment pseudocode. Full-size K&] DOT: 10.7717/peerj-cs.376/fig-8
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To show the performance of our method on larger systems, the pseudocode for our
algorithm is given in Fig. 8. The amount of work necessary scales linearly with both
the number of methods in the system and with the product of the REST calls and
endpoints within the system, meaning our algorithm runs in O(M + E x C), where M is the
number of methods, E is the number of REST endpoints, and C is the number of REST
calls. Since the number of methods in a system is usually much larger than the number
of REST calls and endpoints, our algorithm will usually run in O(M). This is in line
with the results of our experiment; the discovery module, which searches every method for
the needed metadata, was responsible for the majority of the time taken.

THREATS TO VALIDITY

There are several threats to the validity of our work to address. Some of these arise from
our experiment and some from how generalizable our approach is.

Internal threats to validity

The primary threats to the validity of our experiment are the accuracy of the violations
detected and the accuracy of the performance measures. Since we introduced known
mutants for the errors, we know our tool accurately detected all of the issues. Performance-
wise, we showed that our tool performed well on a small-sized application, and that

the algorithm should scale up well with larger applications since the most expensive
portion of the analysis scales only linearly with the number of methods in the project.

External threats to validity

There are three external threats to our work’s validity, which may affect how generalizable
our results are. First, some of the detected inconsistencies might be false positives that is,
those might be intentionally left behind by the developers. Second, it depends on a
user-defined role hierarchy that is assumed to contain roles universal to the application.
This may not be true if users are defined in separate security realms; a role name in one
realm may not be equivalent to the same role name in a different realm, either in its
own access rights or in its relative position in the role hierarchy. In this case, a mapping
would have to be supplied, showing which, if any, roles should be equivalent across the
different realms. Another limitation is the use of security annotations. If security policies
are implemented differently than through annotations, are defined in a language or a
framework that does not support annotations, the current approach would not detect
the roles. However, if another method was used to extract allowed roles, they could be used
in the rest of the analysis process.

CONCLUSION

We introduced a novel solution to automatically detect authorization inconsistencies

in the RBAC implementation for enterprise applications using automated SAR.

Our solution categorizes the violations into five types: missing-role violation, unknown
access violation, entity access violation, unrelated access violation, and conflicting
hierarchy violation. Our analyzer scans a set of microservice artifacts and provides a report
listing all the possible violations by pinpointing their locations and types. While some of
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the detected violations may be false-positive, the violation type, along with a specific
location, helps the developer easily debug them, fix them, or discard them if they were
intentional. Although our analyzer was developed for a JAVA enterprise application,
our proposed approach is not restricted to any particular programming language or
framework. It can easily be implemented for other languages and frameworks since all
modern languages now have a well-structured abstraction for REST APIs and RBAC
policies.

One major shortcoming of our method is that it assumes the role hierarchy and
association of users with roles are defined centrally. However, individual microservices
can have separate role hierarchies or even different user-role associations. Similarly, the
trust management can be distributed across multiple domains like the dRBAC. In the
future, we will extend our system to address these issues to allow multiple role hierarchies
and multiple role mappings along with their decentralization. Besides, we like to
experiment on role assignment within a user session to identify possible inconsistencies
while enforcing DSD. Our long term goal is to perform such analysis within the cloud-
native environment commonly used in production deployments, for example, analyzing
Dockerfiles and Kubernetes artifacts.
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