Pyclone: A Python Code Clone Test Bank
Generator

Schaeffer Duncan', Andrew Walker!, Caleb DeHaan®, Stephanie Alvord!,
Tomas Cerny', and Pavel Tisnovsky?

! Baylor University, Waco TX 76701, USA
2 Red Hat, FBC II Purkyiiova 97b, 612 00 Brno, Czech Republic
tomas_cerny@baylor.edu

Abstract. Code clones are fragments of code that are duplicated in
the codebase of an application. They create problems with maintain-
ability, duplicate buggy code, and increase the size of the repository.
To combat these issues, there currently exists a multitude of programs
to detect duplicated code segments. However, there are not many vari-
eties of languages among the benchmarks for code clone detection tools.
Without covering enough languages for modern software development,
the development of code-clone detection tools remains stunted. This pa-
per describes a novel tool that will take a seed of Python source code
and generate Type 1, 2, and 3 code clones in Python. As one of the
most used and rapidly-growing languages in modern software develop-
ment, our testbed will provide the opportunity for Python code-clone
detection tools to be developed and tested.

Keywords: Code-Clone - Benchmark - Quality Assurance - Testbed

1 Introduction

In many programs and code, developers are constantly trying to reduce the num-
ber of errors, bugs, and other issues brought upon by poor coding design. One
such ingredient to bug-prone software is the inclusion of duplicated code seg-
ments or code clones. Code clones in programs introduce problems in the forms
of bugs, unnecessarily large repositories, and difficulty in software maintenance.
These can be introduced into the program through many avenues, including de-
velopers copying and pasting code, rather than putting in the effort to refactor
code. Because of the pervasive nature of code clones in a repository, care must
be taken when modifying a piece of code also to modify any clones. Without a
reasonable way to manage code clones, bugs can persist in the application and
require significantly more developer overhead to update the repository.

A handful of useful code clone detection tools currently exist to assist devel-
opers in locating code clones in their application. However, this field is stunted
by the lack of code-clone benchmark applications for the different popular indus-
try languages. Python has recently become one of the predominant languages
for applications in the industry. However, a recent mapping study on existing

2 S. Duncan et al.

code clone detection tools [14] found that Python tools ranked 9th in the number
of tools, with only 7 out of 67 tools able to detect Python, and no tools solely
dedicated to Python code clone detection.

Given a general lack of benchmark applications, it would be beneficial to
create a dynamic benchmark or test bank generator that can measure these tools’
effectiveness. In this paper, we present a Python-based code clone generator,
named Pyclone, that can produce a documented number of code clones to better
gauge when seeded with a directory of Python code files how effective code clone
detection tools are.

The rest of the paper is organized as follows. Section 2 presents background
on code-clones. Section 3 presents background on existing mutation frameworks
for code-clone detection tool evaluation. Section 3 presents our tool, Pyclone,
and our process for the generation of the test bank. Section 4 discusses threats
to validity. Finally, we conclude in Section 5.

2 Background

In this section, we will introduce the background to duplicated code within
projects. In general, code clones or duplicate code segments are seen as poor
coding practices. This is due to duplicate code being inefficient and because
they introduce a level of variability, which is a breeding ground for bugs and
unexpected errors. Code clones can introduce unpredictability when inconsistent
changes are made to code duplicates. In general, there are four different types
of code clones.

2.1 Basic Definitions

This subsection will define some general terms that will be used throughout the
rest of the paper. These terms will be adapted from previous works/studies on
code clones [2,8,9].

Code Fragment - A continuous segment of the source code, specified by (1, s,
e), including the source file [, the line the fragment starts on, s, and the line it
sends on, e.

Code Clone - Two code fragments that have similarities either in their syntax
and/or semantics.

2.2 Types of Clones

In addition to the existence of a generic ”code clones,” these clones are broken
into four sub-categories of clones. In this subsection, we will define the general
understandings of the four primary categories of code clones.

Type 1 code clones are said to be completely identical code fragments,
disregarding comments and whitespace.

Type 2 code clones are said to be code fragments that are identical ex-
cept they could have different variable and function names, along with different
variable types and literals.

Pyclone: A Python Code Clone Test Bank Generator 3

Type 3 code clones are said to be code fragments that are similar yet have
some modifications consisting of either added /removed statements, different vari-
able types/names, or differing function names.

Type 4 code clones are said to be code fragments that do not follow the
same syntactical structure yet implement the same functionality.

Generally, these clone types are grouped by Types 1-3, which differ based on
their text [7,1] and Type 4, which is different only semantically [5].

Original Code| Type 1 Type 2 Type 3 Type 4
int x = 5;
int y = 0;

int x = 5; int a = 5; double a = 5; |int a = (10/2);
int y = 0; int b = 0; double b = 0; |double b = 0;

/ /h?lozmnjﬂt) [hile(y<=x){|while(b<=a) {|while(b<=a){[while(b <= 5){
h e y+t; bt b+=10;) b+=10;
) ’ } } } }

Table 1. Comparing/Contrasting Different Types of Code Clones

3 Related Works

There has been a handful of studies conducted in the pursuit to evaluate the
validity of code clone detection tools independently. While developers of tools
typically fall back to BigCloneEval [12], several alternatives to methods of vali-
dating code clone detection tools have been proposed.

Roy and Cordy [7] proposed a unique approach to evaluating code clone
detection tools. They proposed a mutation and injection automatic framework
that would evaluate code clone detection tools based on code clones’ editing
theory. Their preliminary approach focuses on the idea of their framework being
injection-based, and their approach solely relies upon textual mutation of the
code. They go on to express the need for a benchmark that can be used by
developers and researchers to evaluate proposed code clone detection tools. In
this work, they relay the importance of verifying clones needs to be able to test
results yet require minimal effort thoroughly. This aspect of easily crafting a
test bank based on seed code would allow a developer more options in terms of
identifying more efficient ways to code.

Svajlenko and Roy [10] also had another study done on the evaluation of code
clone detection tools, this time with a focus on a clone detection tool evaluation
framework named BigCloneBench [11]. In this extension of their previous work,
they use BigCloneBench to validate their own mutation framework discussed
above. Their proposed tool validated the effectiveness of inject-based frameworks
for code-clone tool verification. Their injection framework solely aims to solve
the problem of Java code clone detection tools.

4 S. Duncan et al.

3.1 Need for Pyclone

Python has been steadily rising in popularity for over a decade now and has
become one of the preeminent programming languages, especially in industry.
One look at the Google search trends in Fig. 1 shows that Python is at its most
popular ever. The TIOBE Programming Community index [13] is a good indi-
cator of programming language popularity. The rating bases on the number of
skilled engineers world-wide, courses, and third-party vendors. For August 2020,
the top was C with 16.9%, Java with 14.4%, and Python with 9.6%. Analysis of
2020 Indeed.com job postings [4] show Python, followed by Java and JavaScript.
For Microservice Architecture related jobs that drive the cloud-computing field
[15], 48% of companies use Java, and 21% use Python. The top languages for
containers are JavaScript, Java, Python, and PHP [3].

For code clone detection, there have been various tools that have been cre-
ated to test the percentage of code clones within computer programs, and while
there exist a multitude of code clone detection tools for C++ and Java, compa-
rably, there are very few available for Python. A recent analysis of open-source
tools and benchmarks for code clone detection [14] made clear that there exists
a significant gap for the Python language. With there being no benchmark for
Python code-clone detection, it falls on these tools to test using another bench-
mark, in another language, and while these tools claim equal performance across
their supported languages, no method exists to verify their tools.

Note

Fig. 1. Google Search Trends for Python Over Time.

To improve the quality of such detection tools as it pertains to the Python
language, a standard set of code clones in a test bank needed to be created.
The creation of clearly defined code clones would then set a benchmark for the
quality of detection across the various tools.

4 Pyclone

In this section, we will detail the way Pyclone generates each type of code clone
based upon its representation to the system. Having been developed in Python
for testing Python code clone detection tools, Pyclone was written to create code
clones based on a seed of Python files passed to it. It works based on the idea
of mutation of Abstract Syntax Trees (AST) generated from the seed files.

Pyclone: A Python Code Clone Test Bank Generator 5

4.1 Abstract Syntax Trees

The first step in mutating new code-clones is to scan the seed files and construct
ASTs for all of the files. An AST is essentially a tree representation of abstract
code structure. Each node in an AST is a different statement or condition in the
code. If code is different between the two projects, then the ASTs between the
two projects will also differ in the same locations, and vice versa.

With these ASTSs, our tool can then modify these ASTs in order to change
the underlying source code once the tool converts the AST back into Python
code, giving us differing code samples.

The Python compiler uses ASTs to compile the Python code into bytecode.
However, in order for Pyclone to manipulate the ASTs, it was required to find a
more high-level representation of ASTs that can be manipulated within the tool
itself.

Pyclone, therefore, uses a Python package called astor3. Astor allows for
Pyclone to form ASTs based on valid Python files and modify them program-
matically. These ASTs are manipulated as any other tree-based object in Python
would be manipulated. Astor then handles the recreating code from the ASTs
once the mutation is complete.

A key understanding of ASTs, which is used in all three type generations, is
the idea of a ”copyable” node in the AST. When we construct an AST, we must
select a node that can constitute a fully complete and compilable code segment
when taken alone. When constructing the ASTs from the seed files, we begin by
utilizing the most common ” copyable node” for code-clones, which is the file-root
node. An AST containing an entire Python file is a fully-contained piece of code
for code-clone detection purposes. It’s worth noting that the code may not be
runnable if it references classes or methods from other files or libraries, but it is
fully compilable by Python.

The selection process is then further specified with a number of rules about
which sub-nodes can be selected. For example, while a pure-method (one not
existing as a class method) node is copyable without any additional steps, a
class-method node must be copied within a duplicate of the seed class, along
with any sub-methods that are called. Besides, the class must copy any necessary
class fields. An example of the bare minimum needed to clone a class-method is
seen in Fig. 2.

3 https://pypi.org/project/astor/

class P: class P:
def _init_(selfx): def _init_(selfxx):
self_x =x self_x =x
def get_x(self): def get_x(self):
return self._x return self._x
def set_x(self, x):
self._x =x

Fig. 2. Cloning a Class Method.

6 S. Duncan et al.

def compute_Ilcm(x, y):
ifx>y:

greater=x
else:

greater=y
while(True):
if(greater% x== 0) and (greater% y== 0)):
lcm = greater
break
greater+= 1

return lcm
num1 =54
num2 =24

print("The L.C.M. is", compute_lcm(num1, num2))

compute_Ilcm I

numl =54 |J| num2 =24 I]

Fig. 3. First Order Nodes of a Python Code Sample.

Further detailed nodes such as individual for, if or while blocks must be
examined carefully before being copied. For example, if a for block calls a method
within its body, then that method must either be copied along with the for block.

Last to be considered are individual statements. For our purposes, we only
look at statements which we call ”first-order” statements. These statements are
any that exist as a direct child of either a file-root node or a pure-method node.
An example of possible ”first-order” statements is shown in Fig. 3.

Once all nodes which are copyable are identified, the process of code-clone
creation can begin.

4.2 Generation of Type 1

Creating Type 1 clones is straightforward. The tool essentially selects a random
number of copyable nodes to construct new clones out of and directly dumps
them into a new file. Occasionally we would modify the AST before constructing
the new clone to add in comment nodes. Once the new files are created, we
retroactively modify their whitespace as well.

Pyclone creates a directory named ’typelclones’ and puts all of the Type 1
clones with identifier file names into this directory.

4.3 Generation of Type 2

Creating Type 2 code clones was a little different from Type 1 because Pyclone
has to modify the ASTs before constructing the new clone.

After selecting a new set of copyable nodes to construct the clones out of, we
then proceeded to modify them by symbol translation for Type 2 clones.

The process of symbol translation involves mapping function and variable
names in the existing code block. Whenever Pyclone would come across a value
representing a function name or variable name, it would be inserted into a map
that maps previous names to their newly generated name. When traversing fu-
ture nodes, if a name that had already been mapped is discovered, it is not
inserted as a new entry into the map.

Pyclone: A Python Code Clone Test Bank Generator 7

After the symbol mapping phase, we begin the symbol translation phase,
which involves traversing the entire tree of the node that is being copied and
searching for any names that are translated in the symbol table. If the name is
found, then it is mapped to its new name.

After the entire tree has been changed, the AST was then converted back
to code and returned in the form of a Python code file. Additionally, Type 2
clones’ generation can also include steps from the Type 1 protocol, which includes
adding comments or modifying whitespace.

Pyclone creates a directory named ’type2clones’ and puts all of the Type 2
clones with identifier file names into this directory.

4.4 Generation of Type 3

Creating Type 3 code clones was more similar to the generation of Type 2
clones than Type 1 clones. Like with clone types, the tool then traversed the
tree, however this time it was looking for nodes that represented boolean op-
erators, mathematical operations, or comparing operations, as modifications to
these types of nodes would generate code nearly similar to the original but with
different functionality.

A static list of replacement values was created for each operator type to
change these nodes, and then one was chosen at random to replace the original
value. Each AST could also have nodes removed. If a node is removed, any
children nodes are also removed (i.e., an entire for block can be removed). Lastly,
each AST is potentially merged with another to add lines to the code-clone.
When a new AST is added in, it will have different variable names than the
original AST. To mitigate this, we perform symbol realignment on the merged
in section. This process is similar to the symbol translation process in Type 2
clone generation. Each symbol in each of the ASTs is mapped from its name
to its data type. Then the AST to be merged in is traversed, and each variable
name is mapped to a name from the original AST that matches the data type. If
no suitable replacement is found, then that statement is removed, or a variable
declaration is appended to the top of the code block.

After going through the entire tree, and potentially applying Type 1-2 mu-
tations as well, the AST is then converted back to code and written to a new
Python file in a directory for Type 3 clones.

Pyclone creates a directory named ’type3clones’ and puts all of the Type 3
clones with identifier file names into this directory.

5 Threats to Validity

There are two main threats to the validity of Pyclone’s test bank. The first
is that due to the nature of injection-based frameworks, it’s possible that by
injecting new code lines or removing them, an accidental clone was created with
an unintended code segment. The second main threat to validity is that while
the code clones are compilable by Python, they may not be runnable, which is an
issue with code-clone detection tools that require a running program to detect
similarities [6].

8 S. Duncan et al.

The main threat to the validity of Pyclone is the development of the code
clones, and whether the clone detection tools will find them. Type 1 and Type
2 clones are fairly straightforward, as they are almost identical copies of the
original code with changed variable names at most. However, the detection of
Type 3 or Type 4 clone may depend on the tool’s implementation for finding
clones, as the given tool’s definition of Type 3 or Type 4 clone may not be the
same as the way our tool has created them, and so the clones may be misidentified
or not caught at all.

6 Conclusion

This paper presented an overview of the types of code clones and the reasons for
code-clone detection tools. We further explained that there exists a large gap in
the code-clone detection research field for the Python coding language, partially
due to the lack of a Python code-clone benchmark. We presented an injection-
based mutation framework for generating a Python code-clone benchmark from
an existing seed of Python files to mitigate this. This paper concludes one of the
first steps forward in creating viable means to check Python code clone detection
tools.

Acknowledgements

This material is based upon work supported by the National Science Foundation
under Grant No. 1854049 and a grant from Red Hat Research
https://research.redhat.com.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools (2Nd Edition). Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA (2006)

2. Bellon, S., Koschke, R., Antoniol, G., Krinke, J., Merlo, E.: Comparison and eval-
uation of clone detection tools. IEEE Transactions on Software Engineering 33(9),
577-591 (Sep 2007). https://doi.org/10.1109/TSE.2007.70725

3. Datadog: 8 Emerging trends in container orchestration (December 2012),
https://www.datadoghq.com/container-orchestration/

4. Dowling, L.. Top 7 programming languages of 2020 (2020),
https://www.codingdojo.com/blog/top-7-programming-languages-of-2020

5. Gabel, M., Jiang, L., Su, Z.: Scalable detection of semantic clones. In: 2008
ACM/IEEE 30th International Conference on Software Engineering. pp. 321-330
(May 2008). https://doi.org/10.1145/1368088.1368132

6. Hamerly, G., Perelman, E., Lau, J., Calder, B.: Simpoint 3.0: Faster and more
flexible program phase analysis. J. Instr. Level Parallelism 7 (2005)

7. Roy, C.K., Cordy, J.R.: A mutation/injection-based automatic framework for
evaluating code clone detection tools. In: 2009 International Conference on Soft-
ware Testing, Verification, and Validation Workshops. pp. 157-166 (April 2009).
https://doi.org/10.1109/ICSTW.2009.18

10.

11.

12.

13.

14.

15.

Pyclone: A Python Code Clone Test Bank Generator 9

Roy, C.K., Cordy, J.R.: A survey on software clone detection research. School of
Computing TR 2007-541, Queen’s University 115 (2007)

Sheneamer, A., Kalita, J.K.: A survey of software clone detection techniques. Inter-
national Journal of Computer Applications 137(10), 1-21 (March 2016), published
by Foundation of Computer Science (FCS), NY, USA

Svajlenko, J., Roy, C.K.: Evaluating modern clone detection tools. In: 2014 IEEE
International Conference on Software Maintenance and Evolution. pp. 321-330
(Sep 2014). https://doi.org/10.1109/ICSME.2014.54

Svajlenko, J., Roy, C.K.: Evaluating clone detection tools with bigclonebench.
In: 2015 IEEE International Conference on Software Maintenance and Evolution
(ICSME). pp. 131-140 (Sep 2015)

Svajlenko, J., Roy, C.K.: Bigcloneeval: A clone detection tool evaluation frame-
work with bigclonebench. In: 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME). pp. 596-600 (2016)

Tiobe Software B.V.: Tiobe index for august 2020 (2020),
https://www.tiobe.com/tiobe-index/

Walker, A., Cerny, T., Song, E.: Open-source tools and benchmarks for
code-clone detection: Past, present, and future trends. SIGAPP Appl. Com-
put. Rev. 19(4), 28-39 (Jan 2020). https://doi.org/10.1145/3381307.3381310,
https://doi.org/10.1145/3381307.3381310

Zavgorodnya, A., RubyGarage: Moving to microservices: Top 5 languages to choose
from (2019), https://rubygarage.org/blog/top-languages-for-microservices

