
Automated Error Log Resolution: A Case Study
Mark Fuller

Baylor University
Waco, Texas, USA

Mark_Fuller1@baylor.edu

Elizabeth Brighton
Baylor University
Waco, Texas, USA

Elizabeth_Brighton@Baylor.edu

Micah Schiewe
Baylor University
Waco, Texas, USA

Micah_Schiewe1@baylor.edu

Dipta Das
Baylor University
Waco, Texas, USA

dipta_das1@baylor.edu

Tomas Cerny
Baylor University
Waco, Texas, USA

Tomas_Cerny@baylor.edu

Pavel Tisnovsky
Red Hat

Brno, Czechia
ptisnovs@redhat.com

ABSTRACT
Debugging and error resolution has become increasingly time-
consuming and difficult for all domains of software development.
Error logs have become very important when it comes to debug-
ging and error resolution. To remedy the problems presented in
the logs, typically, a search on online forums would shed light on
the solution. We present a novel approach to utilizing these logs in
conjunction with external Question and Answer forums to compute
and expedite resolution by suggesting a solution to runtime errors.
Since log format is non-standard and use cases can vary widely,
our architecture allows for extreme customization for the intended
ecosystem as well as a great degree of fine-tuning. We evaluated our
solution in a case study and made our implementation open-source
for the community.

CCS CONCEPTS
• Software and its engineering → Data flow architectures;
• Computer systems organization → Reliability; Availability;
Maintainability and maintenance.
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1 INTRODUCTION
While much research has been done on the topic of predicting
errors from log files [7], monitoring errors of distributed services
[23], and presenting Question and Answer (Q+A) websites in the
assistance of developers [13, 14]. Very little has been done to design
and implement a system to suggest solutions from Q+A forums to
both compile-time and runtime errors based on error logs [15].
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In this study, we suggest a new architecture for connecting these
two domains of research. Based on our research, only one other
study has suggested architecture for connecting these two domains
before parsing the errors for information and using that data to
suggest solutions to developers and software management teams
[15]. However, this paper had some shortcomings, mainly the sys-
tem’s time to suggest fixes for errors. One of our architecture’s
main improvements is its use of a dynamic corpus, stored in a data-
base, which minimizes queries to external sites and speeds up the
matching process. Our implementation also improves on its scope;
our method can be run on any log files, while the previous research
is dependent on a specific IDE console. Our implementation also
allows for more flexibility in the matching of error logs to Q+A
sites.

In our design of such a system, we suggest three components:
first, a log parser that converts some system’s output into a struc-
tured format. This part of the implementation depends greatly on
the use case and therefore is a non-essential detail in the implemen-
tation, however still an important component of the architecture.
Second, a scraper that compiles a database of possible errors that
could occur depending on the use case. Third and finally, a matcher
which associates those structured logs with entries in the database.
The use of a database is the main improvement in the work of Rah-
man et al. [15]. Pre-computing and storing information is a common
software development solution, mainly used when speed is an im-
portant analytic. This design is easily extensible and customizable,
depending on the use case.

This paper is organized as follows. Section 2 discusses related
work. We describe our approach in Section 3 and implementation
in Section 4. A case study is reported in Section 5. The last section
concludes the paper with current limitations and future plans.

2 RELATED WORKS
Parsing Logs. Computer systems can fail for many different rea-
sons, bugs, invalid input, administrator errors, etc. The parsing of
these logs has thus become a hot topic for research. Since log format
and content are highly subject to the system and are non-standard,
log parsers must also be highly custom. SherLog, a system that uses
error logs to diagnose runtime errors, is one such parser [24]. This
software is capable of deriving much information from the logs
with a few benefits such as 1. not having to re-run the application
for more context information. 2. No assumptions on log semantics,
meaning that it can work on any log format. 3. The ability to infer
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control and data information. 4. Easily salable, they tested their
system on a system with over one million code lines. 5. Most impor-
tantly, it can "automatically generate log parsers," meaning that the
tool’s user can easily customize the application to work for their
systems log file syntax [24].

Since there is no universally decided format for logs, parsing
and structuring error logs are essential to their use in automated
systems [11]. Depending on the logs’ format, though, this can be
an arduous task. Research into this topic has been done, and many
libraries have been developed for such a task [8, 25]. Zhu et al.
implemented a series of pre-developed tools that help analysts
parse and format a wide array of logs types. Of the data sets tested,
their series was able to accomplish greater than 90% accuracy on
each set [25].

Large distributed systems are becoming commonplace. Thus,
parsing the logs from these systems is an equally important, how-
ever largely difficult task. He et al. completed a comprehensive
study on a large set of publicly available log parsers and found
that these parsers could not handle large-scale logs from these sys-
tems. They, therefore, designed POP, a large-scale architecture for
distributed log parsing.

Scraping Forums. Debugging a piece of software is an arduous
task. The use of forums has been widely known to help alleviate
this shortcoming of programming for some time. Q+A sites are
an excellent source of solutions to problems frequently addressed.
Extracting data from websites is a domain full of solutions to every
problem. Libraries like BeautifulSoup and lxml have been around
for some time for the only purpose of extracting data from websites.
[18, 19].

Extracting data from websites for use in error log resolution has
also been attempted on many occasions. Blueprint, a web search
interface, was created as a plugin to the Adobe Flex Builder environ-
ment to allow for direct searching of Adobe help forums from the
IDE [2]. More recently, Ponzanelli et al. developed the Eclipse plug-
ins Seahawk and Prompter to achieve this same end. Seahawk inte-
grates a mock StackOverflow and search-engine within the IDE for
fast access to reduce context switching between the IDE and search
engine [1, 13, 22]. Prompter is an IDE plugin that auto-completes
API and library documentation based on Stack Overflow [14]. Both
of these tools are incredibly useful to developers in streamlining
the development of complex libraries or APIs.

Searching. Search engines are used to return a set of values
from a database of values given a seed value to search for. The most
successful search engine Google’s Search Engine is used to search
the world wide web for matching sites based on some token [3].
However, search engines are used in other fields. For example, Lin
et al. has developed pLink2, a successor to pLink1, which evaluates
proteome-scale identification of cross-linked peptides [5].

Formal and complex search engines are not the only way to
look for similar information in a database. Simple pattern matching
also can suffice in small enough scenarios[10]. Fuzzy matching is
a trendy way of quickly matching shorts strings together, and has
seen use mining for data in web logs [9]. Regular expression has
been used in this field to search for data within logs [6], and Lev-
enshtein Distance has been used to analyze related search queries
in logs [21]. Finally, recent studies have explored utilizing graph

patterns for approximate string matching [4]; these graph solutions
are generally limited by string size [20].

3 APPROACH AND UNIQUENESS
In this paper, we suggest an improvement in the architecture of
the previously mentioned software Seahawk [13]. Seahawk’s im-
plementation for a solution to this problem can be optimized; every
attempt made in an to solve a given error is made independently.
We suggest that the pre-computing and caching of these attempts
be made to speed up the suggestion process. By storing all sugges-
tions in a database and not re-scraping and searching with each
new error, the system will have to parse less HTML and make fewer
network calls.

When an error needs to be resolved, a request is made to find
that error in the database. Because of the system’s architecture,
how the error is searched for is highly customizable based on the
language or scale of the implemented system. If the error has not
been searched for before, then an actual network request is made,
and data from Q+A sites are ranked, scraped, and stored in the
database. This data is then returned to the user as suggestions for
solutions to their error. By caching the data scraped from Q+A sites,
the second network request is only made if the error is new to the
system. Otherwise, the possible solutions are already stored in the
database.

Apart from architectural improvement, we have also included
several matching algorithms. Each of these algorithms has different
levels of flexibility in terms of searching from the cache/database.

3.1 Parsing Logs
Before the error logs can be matched to the external solutions,
the error logs must be put in a generic format that includes all
the information that could be relevant in a matching algorithm.
However, the main roadblock to a generic format is that program
logs do not have a consistent format in all programming languages
or projects. Therefore, the regex must be specially tailored to a
specific log format in order to create the needed error log objects.
Our parser is able to parse through a log file and find all error
log entries, then analyze each log entry and store the following
information:

Error Message. The most relevant piece of information from an
error log is the error log’s message. This generally indicates what
the program was doing at the time of the error. We used the error
message as our basis for matching with external sources.

Traceback And Nested Errors. The traceback and nested er-
rors are useful for pinpointing the location of the error in the project
code. We were able to find the relevant source code line if the error
originated from the project’s code.

External Error. We created the external error boolean to deter-
mine if the error came from our project or from an external service.
This tells us if the error found is project-specific, which may be
harder to match with external solutions.

Project File Structure. Using the project being analyzed as
input, we created a basic file structure object, which included the
variables and imports used in each file.

Source Code Line and File. Using the traceback, it is possible
to find the file and specific source code line that the error occurred
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StackOverflow

Scraper MongoDB Matcher

Figure 1: Scraping Architecture of Implementation

on. With this information, we can compare external solutions to
the code that caused the error. We made use of the source code in
our final algorithm through the error message weight system.

Error Message CharacterWeight Algorithm. In an error log
message, it is important to identify the essential tokens. For example,
matching ’the’ to your error message from an external solution is
much less important than matching ’language.’ In order to give each
word a proper level of importance, we created an algorithm that
adds weight for each character in the error log message. The weight
range is from zero to one, where zero means that the character is
not important at all (for example, space), and one means that the
character is very important. The first thing we decided to look at is
variable names and values. Using the file structure object, we were
able to determine if the variables in the source code line where
the errors occurred were project-specific variables or imported
variables. We were then able to assign different weights to those
variables. The imported variables received a higher weight than
the project-specific variables because project-specific variables are
less likely to be found in external solutions data.

3.2 Web Scraping
Figure 1 gives us the architecture of implementation for scraping
data from a website that can be matched with the error log being
analyzed. In an ideal setting, all of the relevant external solutions
would have already been added to the database. A database is used
because it is much faster than runtime searches and bypasses web-
sites access limits. However, in reality, new errors will occur that
will have no relevant matches in a database, and more data must be
scraped from the external Q+A website. To account for the constant
possibility of new errors, we scrape data in two different ways.
First, we scraped common error data into our database to create an
initial data set for matching. It was followed by creating a system
to automatically scrape data relevant to a log error if the log error
did not match with any external solution already in the database.
These two methods are described in detail below.

Initial Data Web Scraper. We created an initial web scraper
that inputs external solution data into our database based on the
programming language specified, it currently supports Python, C#,
and Java. Once the scraper is started, it creates two threads that
work together to produce data until the scraper is stopped. The first
thread complies with a list of solution URLs for the programming
language selected and places them inside a queue. As the first thread
places each URL in the queue, the second thread dispatches a thread
for each URL to begin the page scraping process. The data scraped
is then put in the database.

Specific Data Web Scraper.While testing our matching algo-
rithms, we discovered that one of the main reasons they failed
is that we did not have an external solution in our database rele-
vant to the error log being analyzed. Because of this, we created a

Figure 2: Flow of process on supplementation of database

scraping method that allowed us to scrape data that was actually
relevant to the error log after the matching algorithm was run with
no success. The matching algorithm would then be re-run with the
newly scraped data to confirm our algorithm’s ability to match the
newly scraped data with the error log. The implementation of this
scraper follows our initial data web scraper. Figure 2 outlines the
flow of the process of the supplementation of data. We first query
the external website is used for the ten most relevant solutions. We
use the specific error log message as the search query topic to find
the most relevant solutions. We then take the top ten solutions’
URLs and scrape the data from those solutions directly into our
database. Once all the data has been scraped, we re-run the match-
ing algorithm to ensure our algorithm works correctly with the
relevant data scraped and to find a relevant solution.

3.3 Matching Logs to Scraped Content
In order to tailor the matching algorithms outlined in the back-
ground section to match log file errors, we iteratively developed
approximate string matching algorithms that could match error
logs to external solutions scraped data. We created five algorithms,
each building on the previous algorithm.

Fuzzy Title Matching Algorithm. In this approach, we used
Fuzzy [12] string matching, which is an approximate string match-
ing algorithm that uses the Levenshtein distance algorithm to de-
termine how similar words or phrases are. Using the Fuzzy string
matching, we were able to compare the message from the error
log to the external solution’s title. If the error log message and
the external solution title were an 85% match, we considered the



SAC’21, March 22-26, 2021, Gwangju, Korea M. Fuller et al.

external data to be applicable to the error log and returned that
data to the user. This algorithm is effective when the title and error
log message are almost exact but cannot find the external solutions
that apply to the error log but have an unrelated title.

Basic Text Matching Algorithm. To solve the problem of off-
topic titles, we implemented the second algorithm. This algorithm
compares the external solution’s title to the error log message as
before; however, it goes a step forward and analyzes the text and
code found in the external solutions answer. Because Fuzzy sub-
string matching is only applicable for smaller strings, this matching
algorithm was designed to go through the text and code using exact
string matching. While exact string matching can be useful in many
cases, it is not practical in log analysis because of the multitude of
programming variable names, variable values, and method names
specific to the program that are often included in the log messages.
Our next algorithm improves upon the issue of specific variable
values.

Advanced Text Matching Algorithm. This algorithm builds
on the previous algorithms outlined while adding a specific feature
based on the structure of the logs we analyzed. To get the most
applicable solutions for our error log, we kept the exact matching
as the preferred matching method. However, if no matches were
found using the Basic Text Matching, we changed every value
found in both the error log message and the external solution data
to a generic value. We then compared the data again, using that
generic value to find different results only by variable values. This
allowed us to find the more generic solutions to the error logs
received. However, if any exact matches were present, only the
exact matches were returned, and not any of the generic solutions
found. We were able to remedy this using a score-based matching
system.

Score Text Matching Algorithm. In this algorithm, the sys-
tem for matching remained the same. However, the value of each
match was changed. Instead of just returning every potential match,
we created a system that keeps track of how similar each external
solution was to the error log. This was done by assigning differ-
ent scores to different matches made. For example, if the error log
message exactly matched the external solution title, that external
solution would receive a higher score than if the error log message
was a fuzzy match to the external solution title or if it was found
in the external solution’s text. A scale system was created for each
of the matching methods outlined above, and the highest scored
external solution was returned as the most relevant solution, fol-
lowed by the next nine applicable solutions. With this, we were able
to incorporate the Basic and Advanced Text Matching Algorithms
together.

Weight Text Matching Algorithm. To improve our matching
even more, we went back to the issue of variable names and values.
We solved varying variable values in the Advanced Text Matching
Algorithm; however, program-specific variable names could still
impede our matching. To solve this issue, we came up with the
Weight Text Matching Algorithm. This algorithm requires some
preprocessing to identify all of the program-specific variable names.
Once the variable names were found, we identified the variable
names used in the source code line where the error occurred to
assign less value to those words inside the error log message. Once
each word in the error log message had a specific value assigned

to it, we used the Levenshtein distance algorithm to determine the
similarity of the more important words to the external solution’s
title, text, and code. This algorithm includes the most important
data into the matching process, because of this, it had the highest
correct matching rate in our testing.

4 IMPLEMENTATION
Parser. In our implementation, we created a generic interface for
the parser. This interface can be extended for parsing specific log
format. The parser tokenizes the log messages, including tracebacks,
nested errors, and source code locations. Regardless of the raw log
format, the parser produces a generic structure for error logs. This
log structure is then able to be used as input into the matcher.

Scraper. Utilizing the Stack Overflow API along with a Python
Flask framework, we developed an interface between Stack Over-
flow and a MongoDB database. The public Stack Overflow API
allowed for an efficient and rather fast implementation. The scraper
can run both in daemon mode or standalone mode. It keeps running
in daemon mode and continues to scrape contents from StackOver-
flow for a given programming language. Using multiple threads,
we are able to scrape many hundreds of forum posts per minute.
These forum posts were then tokenized and stored into a MongoDB
instance. In standalone mode, it takes a StackOverflow URL as an
input and scrapes data for that specific URL.

Matcher After parsing the error logs, scraping the data from
Stack Overflow, and placing that data into our MongoDB, we then
implemented our matching algorithms using the Java Spring frame-
work. All algorithms were able to match the error log messages
with the Stack Overflow titles. The Basic, Advanced, and Score
Text Matching Algorithms were able to identify applicable Stack
Overflow solutions through the use of the Stack Overflow scraped
text and code sections as well. These three algorithms all use the
JavaWuzzy Fuzzy string matching algorithm based on the Fuzzy-
Wuzzy python algorithm as their basis for string matching [12].
In the Weight Text Matching algorithm, we used the Levenshtein
distance formula to implement our own version of the JavaWuzzy
algorithm. Our Weight Text Matching Algorithm correctly pulled
all internal and external variable information from the programs
given and assign relevant weights to each word in the error log
message, making the overall matching much more accurate. Every
successive algorithm correctly resolved the issues from the previous
algorithm that it was created to solve.

Our implementation is open-sourced and available as a reference
for future improvements 1.

5 CASE STUDY
In our case study, we used logs from the Red Hat Insights Results
Aggregator project. This particular project gives insight on Open-
Shift Container Platform (OCP) data within an OpenShift Cluster
Manager [17]. These data contain information about clusters status,
especially health, security, and performance [17]. The architecture
of the project is shown in Fig. 3.

We collected row logs in static files from the cxx-data-pipeline
and the aggregator. These raw log files are then inputted into our
system. The parser processes the log files and filters the error logs
1github.com/cloudhubs/log-errors
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Figure 3: Architecture of the RedHat Insights Results Aggregator [16]

into a structured form for further analysis. Listing 1 shows a sample
block of the log file. We implemented the parser interface for this
specific log format. The Listing 2 shows the parsed error produced
by the parser. The parsed errors are then fed into the matcher.
The matcher first tries to utilize the cache for each error, which is
a MongoDB collection of StackOverflow contents. If no relevant
results are found in the cache, it performs a generic web search to
find a list of StackOverflow URLs and scrapes the content from the
URLs. The scraper stores each scraped page into the cache. Once
the scraper finishes scraping contents and storing them into the
cache, the matcher performs the matching again from the cache.

We ran two separate benchmark tests - the first one examines
the overall system’s performance and the second one examines
the performance of individual matching algorithms. For the first
benchmark test, we cleared the cache beforehand to make sure the
scraper was invoked. We ran the experiment five times for five
different similar-sized log files with a fixed matching algorithm.
Table 1 shows the average execution times of each module over five
trials. The parser module took three seconds on average while the
scraper and matcher module took 87 and 12 seconds respectively.
The runtime of the matcher module involves both performing web
search and execution of the matching algorithm. The scraper mod-
ule consumed the highest execution time since it involves API calls
and intensive HTML parsing. Also, it took a slightly different exe-
cution time in each trial. This could be associated with the network
latency of the StackOverflow API calls.

Table 1: Average execution times of different modules

Module Time (seconds)
Parser 3
Scraper 87
Matcher 12
Total 102

In the second benchmark test, we passed ten preformatted errors
directly to the matcher instead of going through the parser and
scraper since the goal was to evaluate matching algorithms. For
each of those errors, we manually searched StackOverflow and
prepared a list of themost relevant solutions. Also, we populated the
cache beforehand with those most relevant pages along with some
moderately relevant and completely irrelevant pages. Then we ran
the matcher with different matching algorithms and counted how
many of the returned results matched our most relevant solutions,
howmany are moderately relevant, and how they may be irrelevant.
Table 2 shows the counts along with the execution times of each
matching algorithm. Note that the results represent an average
outcome for a single error event over ten trials.

From Table 2, we can see that Fuzzy Title Matching and Basic
Text Matching did not return any irrelevant results; these two
algorithms involve the most strict matching. Fuzzy Title Matching
returned fewer results compared to others since it only considered
the title while matching. In total, Fuzzy Title Matching returned
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Listing 1: Sample block of raw log file
1 ...

2 2020 -06 -03 12:42:52 ,653 WARNING - dr.py:974 - Traceback (most recent call last):

3 F i l e "/opt/app -root/lib/python3 .6/site -packages/insights/core/dr.py",

4 l ine 962, in run result = DELEGATES[component ]. process(broker)

5 F i l e "/opt/app -root/lib/python3 .6/site -packages/insights/core/dr.py",

6 l ine 681, in process return self.invoke(broker)

7 F i l e "/opt/app -root/lib/python3 .6/site -packages/insights/core/plugins.py",

8 l ine 64, in invoke return super(PluginType , self).invoke(broker)

9 F i l e "/opt/app -root/lib/python3 .6/site -packages/insights/core/dr.py",

10 l ine 661, in invoke return self.component (*args)

11 F i l e "/opt/app -root/lib/python3 .6/site -packages/ccx_ocp_core/models/nodes.py",

12 l ine 108, in Nodes int(node.q.status.capacity.memory.value.split ("Ki")[0])

13 Attr ibuteError : 'NoneType ' object has no attribute 'split '

14 ...

Listing 2: Parsed error log
1 {

2 " source ": "/logs/ccx_data_pipeline_1_anonymized.log",

3 " lineNumber": 2666,

4 "sourceCodeLine": "result = DELEGATES[component ]. process(broker)",

5 " sourceCodeFile ": "dr.py",

6 " i sExternal ": false ,

7 "errorMessage ": "Attr ibuteError : 'NoneType ' object has no attribute 'split '",

8 " traceBacks ": [

9 " F i l e '/opt/app -root/lib/python3 .6/site -packages/insights/core/dr.py',

10 l ine 962, in run result = DELEGATES[component ]. process(broker)",

11 " F i l e '/opt/app -root/lib/python3 .6/site -packages/insights/core/dr.py',

12 l ine 681, in process return self.invoke(broker)",

13 " F i l e '/opt/app -root/lib/python3 .6/site -packages/insights/core/plugins.py',

14 l ine 64, in invoke return super(PluginType , self).invoke(broker)",

15 " F i l e '/opt/app -root/lib/python3 .6/site -packages/insights/core/dr.py',

16 l ine 661, in invoke return self.component (*args)",

17 " F i l e '/opt/app -root/lib/python3 .6/site -packages/ccx_ocp_core/models/nodes.py',

18 l ine 108, in Nodes int(node.q.status.capacity.memory.value.split('Ki ')[0])",

19 "Attr ibuteError : 'NoneType ' object has no attribute 'split ' "

20 ],

21 "nestedError ": null

22 }

Table 2: Comparison of different matching algorithms

Algorithm Total Most
Relevant

Moderately
Relevant Irrelevant Time

(seconds)
Fuzzy Title Matching 3 2 1 0 1
Basic Text Matching 5 4 1 0 2
Advanced Text Matching 8 4 3 1 3
Score Text Matching 8 4 3 1 3.5
Weight Text Matching 9 5 3 1 4

three results (two most relevant and one moderately relevant) while
Basic Text Matching returned five results (four most relevant and
one moderately relevant). Advanced Text Matching is more flexible
compared to the basic one; however, it returned one irrelevant result
along with the four most relevant and three moderately relevant
results. Score Text Matching is similar to Advanced Text Matching
with the additional benefit of sorted results based on scores. Weight
Text Matching is the most flexible one while matching the code
lines since it uses program-specific weights on variable names.
In general, it performed better than the previous two in finding
the most relevant solutions. It returned five most relevant and
three moderately relevant results. However, due to flexibility it also
returned one irrelevant result.

All of these matching algorithms operated on the same sized
cache for a fair comparison. On average, Fuzzy Title Matching
took one second and Basic Text Matching took seconds to execute.
Advanced Text Matching and Score Text Matching took 3 and 3.5
seconds respectively. Score Text Matching involves additional sort-
ing compared to Advanced Text Matching. Weight Text Matching
took the highest execution time among all, consuming four seconds
on average. Overall, the execution time of the algorithms increased
gradually with the matching flexibility.

From the case study, we can see that automation can be applied
in resolving error logs and the flexibility of the solutions can be
adjusted with the choice of matching algorithms.
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5.1 Threats to Validity
The runtime of the parser relies on the log format. Complex log
format will take more time to parse. The runtime of the matcher
depends on the amount of scraped data. It will grow linearly as the
size of the cache increases.

In the second benchmark test, we manually identified the most
relevant and moderately relevant solutions. It could be prone to
human errors. Also, we assumed the cache already contains those
solutions. In practice, this will require a large size of scraped con-
tent.

Since the matching algorithms were compared against the se-
lections of humans, bias must be considered as a downfall of this
technique. Depending on the selections of the baseline result set,
the success of each of the demonstrated algorithms could change.

6 CONCLUSION
Error resolution is paramount to the development and maintenance
of software. There has been little research done to combine the log
analysis fields suggesting Q+A sites solutions. Our paper contribu-
tions are summarized as follows: (1) we proposed an architecture for
the automatic analysis of runtime and compile-time error logs (2)
we introduced several matching algorithms with different levels of
flexibility (3) we performed a case study to show that the proposed
architecture can automatically suggest solutions with little to no
human interaction in the process. (4) We described a benchmark
test in the case study to compare the matching algorithms.

We demonstrated on our prototype implementation that it is pos-
sible to automate error log resolution, and thus improve the quality
assurance process, reduce the burden and turnaround related to
bug resolution.

6.1 Shortcomings and Further Work
This architecture is heavily dependant on a central repository of pre-
existing Q+A forum data. Therefore for new or uncommon errors,
a reasonable recommended solution is unlikely. This can be im-
proved by increasing the number of Q+A forums that contribute to
the central repository. The individual improvement of the modular
algorithms that are used in the architecture, such as the matching
algorithm or the parser, will always need to be refined further. We
will integrate our system into the software development lifecycle
and package as an IDE plugin to enhance productivity.
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