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Abstract. Distributed systems are seeing wider use as software be-
comes more complex and cloud systems increase in popularity. Preform-
ing anomaly detection and other log analysis procedures on distributed
systems have not seen much research. To this end, we propose a simple
and generic method of clustering log statements from separate log files
to perform future log analysis. We identify variable components of log
statements and find matches of these variables between the sources. Af-
ter scoring the variables, we select the one with the highest score to be
the clustering basis. We performed a case study of our method on the
two open-source projects, to which we found success in the results of our
method and created an open-source project log-matcher.
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1 Introduction

A distributed system is a complex set of machines that exchanges information
and provides computational resources [14]. These systems got significant atten-
tion in recent years due to the increasing demand for conducting large com-
putations that a single machine cannot manage. The distributed nature of the
systems makes it particularly challenging to analyze them for anomalies, se-
curity intrusions, and attack patterns [14]. Traditionally, researchers proposed
methods for detecting these errors by analyzing a log file, which are messages
that the system outputs during its executions [9]. Nowadays, distributed systems
became heterogeneous, with each machine producing differently structured mes-
sages [14]. The heterogeneity makes analysis of multiple log files challenging as
there are no obvious elements that would connect events from machines across
the distributed system [16,26]. Analyzing and connecting events across the dis-
tributed system is critical for finding anomalies or intrusions [6]. We propose a
new generic method for finding common attributes in the log messages of any
distributed system.

Our method proposes a simple way to cluster log statements from separate
files with each other. Each log line contains static elements-which are the same
text in all log statements (ie. in ”time=1:34:00", time is the static element)-
and variable elements-which dynamically change throughout the log statements
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(ie. in ”orgID=148253052”, ”148253052” is the variable element). We begin
by extracting the variable elements from each line of the log files and organize
them by their regular expression (an example would be an element "IP Ad-
dress” with a regular expression of ”1(\d{1,3}\.){4}” and a variable element
of 7127.0.0.1.”7). We then cross-compare the variable elements between the
two log files, only considering those whose regular expressions are the same. We
record variable elements mapping to each static element across the files and find
a match between files - if two files share a common variable element mapping to
a static element. We then send the plain text static elements, and their match
counts to a scoring function based on their uniqueness, frequency, and common-
ality from our matches. We output two static elements with the highest score as
the variable component for which the two separate log files can be clustered.

We tested our proposed method on a case study using log files provided by
Red Hat from their two open-source projects called ccz-data-pipeline (pipeline)
[20] and ccz-data-aggregator (aggregator) [19]. With the highest score, we de-
tected static element clusterID and used the values to successfully cluster state-
ments across both systems. We manually validated our results with the quality
assurance team at Red Hat for its correctness.

This paper is organized as follows. Section 2 provides background and dis-
cusses related works. Section 3 describes our method. We share a case study in
Section 4 and conclude the paper in Section 5.

2 Background and Related Work

We aim to analyze and match logs originating from an overall distributed sys-
tem. Log are output messages generated by the system during a process to
describe actions, errors, warnings, and other events during execution. Each log
statement can hold information about the event such as an ID, timestamp, file
name, etc. [1]. Log statements can then be analyzed to find patterns of logs that
describe specific processes, and then those patterns can be used for anomaly
detection, performance testing, security issues, and more [9]. However, log state-
ments can originate from many different places within a distributed system (a
large-scale complex set of uncoupled and unrelated nodes that interact asyn-
chronously across the network [141]) is where multi-source log analysis becomes
important. With the complexity and scale of a distributed system, many differ-
ent log types are generated, such as system, event, security, and user logs. It can
be difficult to trace issues and analyze problems manually.

Our research’s motivation is the absence of a general method for multi-file
log matching in a distributed system, as stated by Landauer et al. in the survey
[9]. Log clustering has traditionally only been applied to the scope of a single
file, thus making our research novel and necessary [9]. Multi-file log analysis
is relatively new, few papers discuss it, and many of these papers focus solely
on multi-file log analysis algorithms to solve problems related to cybersecurity
[21]. However, logs can be utilized to solve issues outside of security like finding
resource bottlenecks [8], monitoring system performance [7,24], finding event
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sequences [5], diagnosing failures [3], and checking system upgrade results [3].
The growing number of distributed systems and log types over the past years
necessitates a log clustering algorithm that would work across multiple log files
for arbitrary log types [9].

Before any clustering can be done, the log statements must be converted
into a structured form and potentially compressed. Some of the most popular
approaches include log parsing [27], log compression [11], and natural language
processing [2]. One study covers 13 log parsing techniques applied to 16 different
data sources [27]. Since the data sources are quite large, a technique to compress
the logs into a form that is easier to work with is also necessary [11]. The log
parsing technique (Drain) chosen by this study uses heuristics to separate log
messages into groups by analyzing constant and variable tokens. This technique
is also applied to distributed systems, so the applicability of a heuristics approach
on a multi-source log file system is supported. On the other hand, a natural
language processing approach could be better suited to parse many types of
logs, but since this technique has not been applied to a distributed system, there
is no evidence that this would be more effective.

Log clustering survey [9] describes different methods of static and dynamic
clustering and the ways in which they are applied in cybersecurity. This survey
results give the best algorithms and techniques for outlier detection, anomaly
detection, and log parsing. Together with Landauer et al. article on dynamic log
file analysis [10], it shows how the combination of static and dynamic clustering
proves effective. However, both tend to be exclusively applicable to cybersecurity
and anomaly detection by analyzing outliers and sequences of logs. Our generic
approach for log clustering applies beyond cybersecurity; it can help to build
clusters between files, which is not a focus in either of these works.

Other log clustering approaches use signature extraction, statistics, and pat-
tern recognition to cluster and perform analysis on logs [16,1,4,25,12]. Some of
these methods generate templates for logs and use those templates to find log
statement patterns [1,25], while others group logs together with the same tem-
plate [16,1]. However, a better algorithm would take into account the variable
pieces of logs like any ID’s, event codes, and file names. An approach that takes
this into account finds the frequent log constants, maps those constants to a spe-
cific number, then generates structured sessions based on execution order [13].
This approach targets security with the clusters based on execution order, still
it provides a very useful method for grouping logs using a key value pairs.

Although the research on clustering log statements is extensive, few stud-
ies show interest in multi-source log clustering. The few studies on multi-source
logs or logs from distributed systems are most often used to solve problems with
anomaly detection, malicious requests, password guessing, brute-force cracking,
and attack patterns [22,21,6,15]. Since these studies’ focus is mainly cybersecu-
rity, the case-study log files primarily consist of security-formatted logs, rather
than a variety of log types.



4 J. Raffety et al.

3 Proposed Method

In order to achieve multi-source logs clustering, there must be some connecting
metric between groups of log statements from one file to the other. Finding
this connector is the most challenging part, as every set of log data differs from
on another in a variety of ways [27]. To begin, we need to find a variable (or a
combination of variables) that uniquely identifies a set of one or more statements
in a log file. It is possible that variables are not present across multiple files;
however, we permit occurrences of the same variable in the two distinct files.
Once this variable is identified, we can connect log statements from multiple
files, identify their order, and perform analysis.

Log Signatures Reg_ex I\I/I_ztcsh
Unstructured Signature and Variables Data Mappings Cross 9 Score Match
Logs Extraction Organization Comparing Function Candidates

Fig. 1. Overview of our proposed method.

To provide an example, an IP address of a customer will be unique from all
other customers, and if you find the same IP address in separate log files within
the same distributed environment, you can say with some certainty, there is
a correlation between these statements. Our goal then is to search for this IP
address in all the log statements across the log files and compare them to each
other until all matches are found. We then perform a statistical analysis to
determine which match is the best. We cannot simply use the time to cluster,
as being from different sources, we cannot know the discrepancies in time zones
and communication delays. Including time in our algorithm would also cause
unrelated events occurring synchronously would be clustered.

Firstly, we extract the log signature of the log messages to find the candidate
variable. Extracting the log signature involves finding the static elements of a
given log statement, which are the elements of log output that remain constant

every time the line of code that prints the log output is executed [9]. This per-
forms two things for us. First, it gives us a simple clustering of the log messages,
which is generally the primary usage of log signature extraction [16]. With that,

we have a template of the different messages found in a log file. The second thing
finding the log signature does for us is to give us all the variable elements of a log
statement. If we know what the static elements are, the reverse yields variable
elements [9]. With both the log template and variable components of each log
statement, we can proceed to the next step of the method.

DEBUG - kafka_publisher.py:82 - Message context: Orgld=12554024944080976194, ClusterName="c04f9a5b-180f-b3a8-b020-1fbb30006d0c", LastChecked="2020-06-04T710:51:00.2189998172"

Signature Extraction: DEBUG kafka_publisher.py82 Message context Orgld ClusterName LastChecked

}

Variables: 12554024944080976194 04{9a5b-180f-b3a8-b020-1fbb30006d0c 2020-06-04T10:51:00.218999817Z

Fig. 2. Example signature extraction process to extract log statement variables.

We do not wish to compare every variable in one file with every variable
of another, so we need to find some way to narrow down the possibilities. The
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straight forward approach is only to consider variables with the same length,
however, this has some issues. For example, an IP address can be represented
with different lengths, but should still be considered the same variable type. Our
proposed method of doing this is to consider the regular expression of the vari-
ables. A regular expression is a string used to describe a text pattern in another
string (ie. [a-z]+ describes "hello"), and would not describe "12345" [23].
These regular expressions need not be defined the same as traditional regular
expressions are, but capture enough information to distinguish variables from
each other. The generation of these regular expressions is beyond the paper’s
scope, so the length can be used as an alternative if needed. If two variables are
to have matches, they must have the same regular expression. With this being
the case, we do not have to check between variables that do not have the same
regular expression. The data structure we used is a nested map to store the
information for a single file’s variables. We mapped the log templates (the key
of which could simply be the static component of the message) to each of the
variables in that template, which are then mapped to each of the possible regular
expressions that that variable can take on. We then map the regular expressions
to the actual values found in the data, along with what line(s) the values were

found on.

Organization Cluster ID

8c-4c-4c-4c-12¢

f0605ec8-43a7-4e57-61e 717a4847-144b-2b36-d7 b58e27a0-7b43-13e4-fad
LZL50 8152230 s Zap R 1 20000282 2008 E 108 b-dea92dbagos3 60-10d5f564589f 0-4f867d2d3961

Fig. 3. Tree representation of our mapping structure.

With this, we can now begin matching. We wish to create matches between
variables that share the same regex. Since some variables may have more than
one regex, only one regex match is required to become a candidate match. When
we find two variables with the same regex, we create a match object, which also
stores some relevant information regarding the two variables. We compare every
instance of a variable to every value-instance of the other log file and create an
entry for each variable regardless if there was a match or not. For each value, we
store the total number of occurrences in each file. For example, if it was in each
file once, then we would store 2. We also store the number of matches. A match
is the number of occurrences of the value in one file multiplied by the number of
occurrences in the other. This is because we can not know what the true match
is without more information for each duplicate value in one file, so we record
all possibilities. A variable will likely appear in multiple different log templates
across a file, so there will likely be duplicate match groups as well. These can be
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avoided by either performing intra-file matches to identify repeating variables
or considering the variable’s key name, if available. Provided is an example in
pseudo-code describing the process of matching the log templates to each other.

I for each log template a and b in log files A and B:
2 if regex(a) == regex(b):
create match
1 for every value in a, b:
match.value_count += 1
6 if a == b:
7 match.match_count += 1

Listing 1.1. Primary matching code example

With all of the matches throughout the files found, we can narrow down
the candidate list. For each item in the match list, we can find the number of
unique values by counting the number of distinct values in the match list. The
number of unique matches can be calculated by counting the number of values
in the match list with a match count greater than zero. From there, we can find
the ratio of unique matches to total matches and unique values to total values.
Variable ratios help give us an indication of how well the match is. Those with a
low ratio have many repeated values and indicate no real correlation between two
log statements with the same variable value. Those with high ratios indicate that
they are more likely to be a strong indicator of a connection between statements.
We also compare the number of unique matches with the number of unique
values. Having a high ratio of unique to total matches is not enough if there
is only one match over a thousand values, so we ensure that there is not an
insignificant amount of matches. Along with this point, we also want to ensure
that there is not an insignificant number of values. A match with 10 total values
across tens of thousands of lines of logs does not cut it, so a ratio of total values
to total number of lines is taken. All these variable ratios are then weighted
to produce a score, and the variable match with the highest score is selected
as the primary candidate to cluster between files. Definition 1 defines the score
function in a more concise manner. The values of the weights depend on the
data set given, however, from various tests we conducted, we have found that
simply leaving the weights at 1.0 provided adequate results.

Definition 1 (Score function).
Score(A,G) = (W + (Aum/Atm)) + (Wo X (Auw/Aw)) + (wg X (Ap/G))

Where A is the match object, and each of it’s subvalues, Aym,Aim,Auww, and Ay, represent
the unique matches, total matches, unique values, and total values respectively. G is
the global value count. wm,w.,wy represent the weights for each of the ratios.

4 Case Study

We performed a blind case study on RedHat’s logs from their distributed produc-
tion system [17] [18]. The system is based on multiple heterogeneous machines
together with Kafka. We selected two machines for our analysis called ccz-data-
pipeline [20] and ccz-data-aggregator [19]. We include a figure of the whole data
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pipeline from which the files originate. The pipeline file contained 133,000 log
lines and was stored in plain text, and we identified 4 dynamic variables: Time,
ClusterID, Organization, and partition. The aggregator file contained 196,000
lines of logs, was stored in JSON format, and we identified 4 dynamic variables:
time, cluster_id organization, and partition. In the pipeline, file were logs of sent
messages through the Kafka cloud system. These messages would have two pri-
mary attributes, organization and cluster ID. Both organization and cluster ID
combined would contribute to a unique identifier for a given message, but both
on their own had the possibility to be repeated. The organization had numer-
ous repeating values, whereas cluster ID had very few repeating across different
organizations. The other file, aggregator, recorded log messages of the messages
being received. The attributes organization and cluster were also recorded here.
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We then created tests for small portions of each log file at each phase of
the method. After this, we performed a full test on entire log files with line
counts in the hundreds of thousands. Our tests’ results were that the match
between the cluster ID variables in aggregator and pipeline was the primary
cluster candidate. This is what the answer should have been, as cluster ID is the
most unique variable of each message.

Provided are the specific results of one of our tests. Cluster ID scored the
highest, greater than the next highest candidate, organization, by a factor of
105. Another variable we previously did not account for found via our algorithm
was partition. Partition was a 1-2 digit variable which appeared semi-frequently
throughout both files, but was only specific to the machine which created the
log file, and had no correlation between the two files. Since the variable was
only a few digits long and was repeated regularly over the course of hundreds of
thousands of lines, it received a very low score.
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Table 1 provides our results. The name of the match candidates is each
variable’s names from the pipeline and aggregator files, respectively. The score
represents how close to a perfect match the candidate is. As can be seen, the
cluster match performed with a very high score, while the others had very low
scores, indicating that the cluster match is the best for clustering.

Threats to Validity: We ex-

Match Candidate Score
pected the score for both clus- i
ter ID and organization to be Clu.ster.ID, cluste.r,ld. 0.108
as higher than the actual re- Organization, organization|9.834 x 10~°
ported value, but after exami- partition, partition  [1.131 x 10~

nation of the log files, it became
clear why. The aggregator file
would print multiple messages for each received message, with each including
the organization and cluster ID. This meant that the aggregator would print or-
ganization and pipeline at least 5 times for every message sent from the pipeline.
These repeated values skewed the ratios for unique values and matches. This ul-
timately posed no problem to our data set; however, another data set may be
afflicted with false-positives from such a situation. Our proposed method always
provides an output, so whether there is a real connection between two files can-
not be determined, only if there are any matches, which match appears to be
the most relevant. However, if the weighted score for the primary output is ex-
ceptionally low, then there’s a chance there is no true correlation. Of course, to
what extent the score must be to be considered exceptionally low depends on
the data set. While intended to work on generic data, some knowledge of the
data set would be useful to accurately understand the results.

Table 1. Case study match candidate scores

5 Conclusion

This paper proposed a unique method for multi-file log matching in a distributed
system. It provides researchers with a general method for further analysis in dis-
tributed systems using data mining techniques. This method enables to analyze
security leaks, patterns, and intrusions across the distributed system using a
centralized approach. We demonstrated the approach on a case study involving
two production systems and proved that our method produces correct results on
a generic system. Our long term goal is to provide methods for message tracing
and automated security checks in the distributed system.

Our test cases set the weights ratio to 1.0; however, this requires deeper
knowledge about the data set to set weights. Machine learning would be optimal
for training the weights prediction for a particular data set.

The method we propose attempts to cluster log statements together with a
single variable. In future work, we will cluster log statements based on multiple
variables. This would prove useful for data sets where events have more than a
single identifier. In our data set, each pair of organization and cluster ID were
unique, whereas when only considering the individual values, organization and
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cluster ID was not unique. Even after clustering based on cluster ID, there may
be a few incorrect cluster points. A combination of both organization and cluster
ID would be the most accurate. If cluster ID were not unique, the single variable
clustering algorithm would not be sufficient. Our approach could also cluster
more files, and performance needs to be assessed.
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