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Abstract. Microservice Architecture (MSA) is rapidly taking over mod-
ern software engineering and becoming the predominant architecture of
new cloud-based applications (apps). There are many advantages to using
MSA, but there are many downsides to using a more complex architec-
ture than a typical monolithic enterprise app. Beyond the normal bad
coding practices and code-smells of a typical app, MSA specific code-
smells are difficult to discover within a distributed app. There are many
static code analysis tools for monolithic apps, but no tool exists to offer
code-smell detection for MSA-based apps. This paper proposes a new
approach to detect code smells in distributed apps based on MSA. We
develop an open-source tool, MSANose, which can accurately detect up
to eleven different types of MSA specific code smells. We demonstrate
our tool through a case study on a benchmark MSA app and verify its
accuracy. Our results show that it is possible to detect code-smells within
MSA apps using bytecode and or source code analysis throughout the
development or before deployment to production.
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1 Introduction

Microservice Architecture (MSA) has become the preeminent architecture in
modern enterprise applications (apps) [16]. MSA brings many advantages, which
have led to its rise in popularity [4]. The distributed nature of an MSA-based
app allows for greater autonomy of developer units. While this provides greater
flexibility with respect to faster delivery, improved scalability, and benefits in
existing problem domains, it also presents the opportunity for code smells to be
more readily created within the app.

Code smells [9] are anomalies within codebases that do not necessarily im-
pact the performance or correct functionality of an app. They are patterns of
bad programming practice that can affect a wide range of areas in a program,
including reusability, testability, and maintainability. If code smells go unchecked
in an MSA-based app, the benefits of using a distributed development process
can be mitigated. It is, therefore, important that the code-smells in an app are
properly detected and managed [9].

MSA presents a unique situation when it comes to code-smells due to its
distributed nature. MSA-specific code smells often focus on inter-module issues
rather than an intra-module issue. Traditional code-smell detecting tools cannot
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detect code smells between discrete modules, so these issues go unchecked during
the development process. This paper shows that when we augment static code
analysis to recognize enterprise development constructs, we can effectively detect
code smells in MSA distributed apps. A case study demonstrates our approach
targeting 11 recently identified code smells for this architecture. Furthermore,
we share our open-source prototype code analyzer with the community that can
recognize Enterprise Java platform constructs and standards, along with the
MSA code smell detector recognizing the 11 code smells targeted in this paper.

The rest of the paper is as follows: Section 2 assesses related work. Section 3
introduces the MSA code smells. Section 4 describes the code analysis of enter-
prise systems. Section 5 introduces our solution for automatic MSA code smell
detection, and Section 6 shares a case study evaluation. We conclude in Section 7.

2 Related Work

Code smells can be defined as ”characteristics of the software that may indicate a
code or design problem that can make software hard to evolve and maintain” [8].
Code smells do not necessarily impact the performance or correct functionality;
they are patterns of bad programming practice that can affect a wide range of
areas in a program, including reusability, testability, and maintainability. They
can be seen as code structures that indicate a violation of fundamental design
principles and negatively impact design quality [21].

Gupta et al. [10] underlines the need to identify and control code smells
during the design and development stages to achieve higher code maintainability
and quality. If developers are not invested in fixing them, code smells do matter to
the overall maintainability of the software. If left unchecked, they can impact the
overall system architecture [11]. Code smells can be deceptive and hide the true
extent of their ’smelliness’ and even carry into further refactorings of the code
[6, 11]. Frequently code smells are also related to anti-patterns [18] in an app.

Code-smell correction is clearly a necessary process for developers [20], but
it is often pushed aside. It was found that the most prevalent factor towards
developers addressing code smells is the importance and relevance of the issue to
the task worked on. Peters et al. [17] found that while developers are oftentimes
aware of the code smells in their app, they do not care about actively fixing them.
Code smells are often fixed accidentally through unrelated code refactoring [9].

Tahir et al. [22] studied how developers discussed code smells in stack ex-
change sites and found out that these sites work as an informal crowd-based
code smell detector. Peers discuss the identification of smells and how to get rid
of them in a specific given context. Thus, the question is not only how to detect
them but also how to eliminate them in a given context. They found that the
most popular smells discussed between developers are also shown to be most
frequently covered by available code analysis tools. It is also noted that while
Java support is the broadest, other platforms, including C#, JavaScript, C++,
Python, Ruby, and PHP, are lacking in support. Concerns were also raised that
there is a missing classification for how harmful smells are on a given app.
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Some researchers would argue that developers do not have the time to fix
all smells. For instance, Gupta et al. [10] identified 18 common code smells and
identified the driving power of these code smells to improve the overall code
maintainability. The effect is that developers could refactor one of the smells
with higher driving power, rather than address all smells in an app, and still
significantly improve code maintainability.

An attempt at automatic code smell detection [25], defined an automated
code smell detection tool for Java. Since then, the field of code smell detection
has continued to grow. Code smell tools have been developed for high level design
[2], architectural smells [15], as well as for language-specific code smells [14],
measuring not just code smells but also the quality [10] of the app. The field of
automatic code smell detection continues to evolve with an ever-changing list of
code smells and languages to cover.

It is common to identify code smells in monolithic systems using code-
analysis. Anil et al. [13] recently analyzed 24 code smells detection tools (e.g,
SpotBugs, PMD, etc.). While the tools correctly mapped the code smells in an
app, they are limited to a single codebase, and so they become antiquated as
modern software development tends towards MSA.

While extensive research has been done to define and detect code smells in
a monolithic app, little has been done for distributed systems [3]. It would be
possible for a developer to run code smell detection on each individual module,
but this does not address any code smells specific to MSA.

In a distributed environment, in particular MSA, there have been multiple
code smells identified. In one study [23], these smells include improper module
interaction, modules with too many responsibilities, or a misunderstanding of
the MSA. Code smells can be specific to a certain app perspective, including the
communication perspective, or in the development and design process of the app.
These smells can be detected manually, which usually requires assessing the app
and a basic understanding of the system, but this demands considerable effort
from the developers. With code analysis instruments, smells can be discovered
almost instantly and automatically with no previous knowledge of the system
required. However, we are aware that no tool at present can detect the code
anomalies that can exist between discrete modules of an MSA app.

3 Microservice Code Smell Catalogue

In this paper, we reuse the definition of eleven MSA specific code smells from a
recent exploratory study by Taibi et al. [23], which used existing literature and
interviews with industry leaders to distill and rank these eleven code smells for
MSA. The code smells are briefly summarized as follows:
ESB Usage (EU) An Enterprise Service Bus (ESB) [4] is a way of message
passing between modules of a distributed app in which one module acts as a
service bus for all of the other modules to pass messages on. There are pros and
cons to this approach. However, it can become an issue of creating a single point
of failure and increasing coupling, so it should be avoided in MSA.
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Too Many Standards (TMS) Given the distributed nature of the MSA app,
multiple discrete teams of developers often work on a given module, separate
from the other teams. This can create a situation where multiple frameworks are
used when a standard should be established for consistency across the modules.
Wrong Cuts (WC) WC is when modules are split into their technical layers
(presentation, business, and data layers). MSA modules must be split by features,
and each fully contains their domain’s presentation, business, and data layers.
Not Having an API Gateway (NAG) The API gateway design pattern is
for managing the connections between MSA modules. In large, complex systems,
this should be used to reduce the potential issues of direct communication.
Hard-Coded Endpoints (HCE) Hardcoded IP addresses and ports to com-
municate between services. By hardcoding the endpoints, the app becomes more
brittle to change and reduces the app’s scalability.
API Versioning (AV) All Application Programming Interfaces (API) should
be versioned to keep track of changes properly.
Microservice Greedy (MG) This occurs when modules are created for ev-
ery new feature, and oftentimes, these new modules are too small and do not
serve many purposes. This increases complexity and the overhead of the system.
Smaller features should be wrapped into a larger MSA module, if possible.
Shared Persistency (SP) When two modules of the MSA app access the same
database. This breaks the definition of an MSA where each module should have
autonomy and control over its data and database.
Inappropriate Service Intimacy (ISI) One module requesting private data
from a separate module. This likewise breaks the MSA definition, where each
module should have control over its private data.
Shared Libraries (SL) If modules are coupled with a common library, that
library should be refactored into a separate module to reduce the app’s fragility
by migrating the shared functionality behind a common, unchanging interface.
This will make the app resistant ripples from changes within the library.
Cyclic Dependency (CD): Cyclic connection between calls to different mod-
ules. This can cause repetitive calls and also increase the complexity of under-
standing call traces for developers. This is a bad architectural practice for MSA.

To highlight the gap in MSA code smells, we assessed existing state-of-the-
art architecture-specific code smell detection tools, compiled in a previous study
[3], AI Reviewer, ARCADE, Arcan, Designite, Hotspot Detector, Massey Archi-
tecture Explorer, Sonargraph, STAN, and Structure 101 and verified that all are
capable of detecting CD and in the case of Arcan, also HCE and SP MSA code
smells. We chose these tools as they were compiled to study the existing state of
the art of architecture smell detection tools and were shown to meet a minimum
threshold of documentation and information about the tool.

4 Code Analysis in Enterprise Systems

The two static code analysis processes, source code analysis and bytecode anal-
ysis, ultimately create a representation of the app. This is done through several
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processes, including recognizing components, classes, methods, fields or anno-
tations, tokenization, and parsing, which produce graph representations of the
code. These include Abstract Syntax Trees (AST), Control-Flow Graphs (CFG),
or Program Dependency Graphs (PDG) [19].

Bytecode analysis uses the compiled code of an app. This is useful in un-
covering endpoints, components, authorization policy enforcements, classes, and
methods. It can also be used to augment or build CFG or AST. However, the
disadvantage is that not all languages have a bytecode.

We can also turn to source code analysis [5], which parses through the source
code of the app, without having to compile it into an immediate representation.
Many approaches exist to do this; however, most tools tokenize the code and
construct trees, including AST, CFG, or PDG.

However, limits exist with these representations in encapsulating the com-
plexity of enterprise systems. To mitigate the shortcomings of existing static code
analysis techniques on enterprise systems, we must augment existing techniques
with an understanding of enterprise standards [7]. A more realistic representa-
tion of the enterprise app can be constructed with aid from either source code or
bytecode analysis. This primarily includes a tree representation and the detec-
tion of the system’s endpoints, and the construction of a communication map.
These augmented representations and metadata have been successful in other
problem domains, including security, networking, and semantic clone detection.

5 Proposed Solution To Detect Code Smells

Our approach is integrable to the software development life-cycle. It uses static-
code analysis for fast and easily-integrated reports on the code-smells in an
system. To cover the wide variety of possible issues within an MSA app, as
well as the different concerns (app, business, and data) issues that the identi-
fied smells cover, we must statically analyze a couple of different areas of an
app. Our approach specifically involved the Java Enterprise Edition platform
because of its rich standards for enterprise development, which include Spring
Boot (https://spring.io/projects/spring-boot) and Java EE (https://
docs.oracle.com/javaee). However, alternative standard adoptions exist also
for other platforms. Extending for another language would be trivial since we
utilize an intermediate representation for analysis, as explained below.

The core of our solution is the creation of a centralized view of the app. To
begin with, we individually analyze each MSA module in the app. Once each
module is fully analyzed, it can be aggregated into a larger service mesh. Then
the full detection can be done on the aggregated mesh.

Our analysis process aims to generate a graph of interaction between the
different MSA modules. This involves exploring each module for a connection to
another module, usually through a REST API call. The inter-module communi-
cations are realized using a two-phase analysis: scanning and matching. In the
first phase, we scan each module to list all the REST endpoints and their spec-
ification metadata. This metadata contains the HTTP type, path, parameter,
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and return type of the REST endpoint. Additionally, the server IP addresses (or
their placeholders) are resolved by analyzing app configuration files that accom-
pany system modules. These IP addresses, together with the paths, define the
fully-qualified URLs for each REST endpoint. We further analyze each module
to enumerate all REST calls along with request URLs and similar metadata. We
list these REST endpoints and REST calls based solely on static code analysis,
where we leveraged the annotation-based REST API configuration commonly
used in enterprise frameworks. We match each endpoint with each REST call
across different MSA modules based on the URL and metadata in the second
phase. During matching, URLs are generalized to address different naming of
path variables across different MSA modules. Each resultant matching pair in-
dicates an inter-module REST communication.

Afterward, the underlying dependency management tool’s configuration file,
e.g., pom.xml file for maven, is analyzed for each of the different MSA modules.
This allows us to find the dependencies and libraries used by each of the apps.
Lastly, the app configuration, where developers define information such as the
port for the module, the databases it connects to, and other relevant environment
variables for the app, is analyzed. Once the processing of each module is done,
we begin the process of code-smell detection. In the following text, we provide
details relevant to each particular smell and its detection.

ESB Usage is detected by tallying up all of the incoming and outgoing connec-
tions within each module. We see an ESB as a module with a high, almost outlier,
number of connections, and a relatively equal number of incoming and outgoing
connections. Additionally, an ESB should connect to nearly all the modules.

Too Many Standards is tricky to detect since it is entirely subjective on how
many standards are ”too many.” Additionally, there are very good reasons devel-
opers would choose different standards for different system modules, including
speed, available features, and security. We tally the standards used for each of
the layers of the app (presentation, business, and data). The user can configure
how many standards are too many for each of the respective sections.

Wrong Cuts depends on the business logic and, therefore, nearly impossible to
automatically detect without extrapolating a deep understanding of the business
domain. However, we would expect to see an unbalanced distribution of artifacts
within the MSA modules along with the different layers of the app (presentation,
business, and data). To detect an unbalance presentation MSA module, we look
for an abnormally high number of front-end artifacts (such as HTML/XML
documents for JSP). For the potentially WC business MSA modules, we look
for an unbalanced number of service objects, and lastly, for WC data modules,
we look for an unbalanced number of entity objects. To find unbalanced MSA
modules, we look for outliers in the number of the specified artifacts within
each module and report the possibility of MSA module WC. We defined an

2 ∗

√∑n
i=0(xi − X̄)2

n− 1
(1)

outlier count of greater than two times the stan-
dard deviation away from the average count of the
artifacts in each module, which is seen in Eq. 1.
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Not Having an API Gateway is determined from code analysis alone, espe-
cially as cloud apps increasingly rely on routing frameworks such as AWS API
Gateway (https://aws.amazon.com/api-gateway/). This uses an online con-
figuration console and is not discoverable from code analysis, to handle routing
API calls. In a study by Taibi [23], it was found that developers could adequately
manage up to 50 distinct modules without needing to rely on an API gateway.
For this reason, if the scanned app has more than 50 distinct modules, we include
a warning message in the report to use an API gateway. This is not classified as
an error, but rather a suggestion for best practice.

Shared Persistency is detected by parsing the app’s configuration files and
finding the persistence settings location for each of the submodules. For example,
in a Spring Boot apps, the YAML file is parsed for the datasource URL. Then the
persistence of each module is compared to the others to find shared datasources.

Inappropriate Service Intimacy can appear in a couple of different ways.
First, we detect this as a variant of the shared persistency problem. Instead
of sharing a datasource between two or more modules, a module is directly
accessing another’s datasource in addition to its own; however, once a duplicate
datasource is found, if the module also has its own private datasource, then it
is an instance of inappropriate service intimacy. Next, we look for two modules
with the same entities. If one of those modules is only modifying/requesting the
other’s data, we defined it as inappropriate service intimacy.

Shared Libraries is found by scanning the dependency management files for
each app module to locate all shared libraries. Clearly, some shared outside
libraries will be shared among the MSA modules; however, the focus should be
on any in-house libraries. Developers can then decide to extract into a separate
module if necessary to bolster the app against the libraries’ changes.

Cyclic Dependency is found using a modified depth-first search [24].

Hard-Coded Endpoints is found during the bytecode analysis phase of the
app. Using the bytecode instructions, we can peek at the variable stack and
see what parameters are passed into the function calls used to connect to other
MSA modules. E.g., in Spring Boot, we took calls from RestTemplate. We link
the passed address back to any parameters passed to the function or any class
fields to find the path parameters used. We test for hardcoded port numbers and
IP addresses as both should be avoided.

API Versioning is found in the app by first finding all the fully qualified
paths for the app. To locate the unversioned paths, each API path is matched
against a regular expression pattern .*/v[0-9]+(.?[0-9]*).*, matching the
app convention. All unversioned APIs are reported back to the user.

Microservice Greedy is found by calculating a couple of different metrics
for each module. This includes the counts of front-end files, service and entity
objects. Then we find outliers, if any exist, as potential MG. We define outliers
similarly as when finding MSA module WC using the Eq. 1. However, we focus
only on those that are outliers due to being undersized, as opposed to too large.
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6 Case Study

Smell Manual MSANose

EU No No
TMS No No
WC 0 2
NAG No No
HCE 28 28
AV 76 76
MG 0 0
SP 0 0
ISI 1 1
SL 4 4
CD No No

Table 1. Code Smells in the
TrainTicket benchmark [26]

We developed a prototype open-source MSANose
tool (https://github.com/cloudhubs/msa-nose)
using our approach. It accepts Java-based MSA
apps and performs static analysis of MSA modules.
From the individual modules, it extracts the inter-
action patterns, combines the partial results and
derives a holistic view on the distributed system.
Next, it performs the smell detection and reports
a list of MSA code smells with references to the
offending modules and code.

Recent efforts [12] to catalog MSA testbed apps
have found a lack of apps that adhere to the guide-
lines for testbeds outlined by Aderaldo et al. [1]. To
test our app, we chose to run it on an existing MSA
benchmark, the Train Ticket Benchmark [26], it is
a reasonable size for an MSA app and provides a
good test of all of the conditions in our app. Furthermore, it was designed as a
real-world interaction model between MSA modules in an industrial environment
and is one of the largest MSA benchmarks available. This benchmark consists of
41 modules and contains over 60,000 lines of code. It uses Docker or Kubernetes
for deployment and relies on NGINX or Ingress for routing.

We manually analyzed the testbed for each of the eleven MSA code smells,
by manual tracing of REST calls, the cataloging of entities, and endpoints within
the app. We show the results of our manual assessment in column two of Table
1. Next, we ran our app on the testbed system. The app took just ten seconds
to run on a system with an Intel i7-4770k and 8 Gb of RAM. This includes the
average time (taken over ten runs) it took to analyze the source code fully and
compiled the bytecode of the testbed app. In the third column of Table 1 is a
quick overview of the results from running our app on the testbed. Our tool
correctly analyzed the testbed and successfully identified the MSA code smells.

Code smells do not always break the system, but they are indicators of poor
programming practice. As the testbed app has done over the past couple of
years, these smells can easily work their way into the system as a system grows
organically. Our tool can help developers locate code smells in enterprise MSA
apps and provide a catalog of the smells and their common fix solutions.

7 Conclusions

In this paper, we have discussed the nature of code smells in software apps. Code
smells, which may not break the app in the immediate time-frame, can cause
long-lasting problems for maintainability and efficiency later on. Many tools have
been developed which automatically detect code smells in apps, including ones
designed for architecture and overall design of a system. However, none of these
tools adequately address a distributed app’s needs, specifically an MSA-based
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app. To address these issues, we draw upon previous research into defining MSA
specific code smells to build an app capable of detecting eleven unique MSA-
based code smells. We then run our app on an established MSA benchmark
app and compare our results to manually gathered ones. We show that it is
possible, through static code analysis, to analyze an MSA-based app and derive
MSA-specific code smells accurately.

For future work, we plan to assess more app testbeds. Moreover, we plan
to continue our work on integrating the python platform to our approach since
there are no platform-specific details, and most of the enterprise standards apply
to across platforms.
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