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Abstract. The adoption of Microservice Architecture (MSA) is rapidly
becoming standard for modern software development. However, the added
benefits of using a distributed architecture, including reliability and scal-
ability, come with a cost in increasing the system’s complexity. One way
developers attempt to mitigate the effects of an overly complicated sys-
tem is through Systematic Architecture Reconstruction (SAR), which
creates a high-level overview of the system concerns. This is typically
done manually, which takes a great amount of effort from the develop-
ers. This paper proposes a method for automatically completing SAR of
an MSA application through code analysis and demonstrating it on a
case study on an existing microservice benchmark application.
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1 Introduction

Microservice Architecture (MSA) offers many benefits for modern software de-
velopment. Primarily these include benefits in scalability and reliability. With a
distributed development model, different developers’ teams can work separately
on different modules of the application. While this offers rapid development
benefits, it also allows errors to slip into the application through discrepancies
between modules. Another side effect of this distributed development is an in-
crease in the complexity of the application.

One way to mitigate these unintended errors is through Software Architec-
ture Reconstruction (SAR). The construction of a simplified overview of the
application can help developers understand the application’s full scope, even be-
yond their modules. One study [18] underlines that SAR is key to architecture
verification, conformance checking, and trade-off analysis.

Many methods have been proposed for SAR, even for distributed systems, but
none can fully automate the domain, technology, service, and operation views.
In this paper, we propose a novel automation method applied to an existing
distributed system SAR methodology. We then verify our automation against
an existing microservice benchmark system.

The paper is organized as follows. The SAR and static-code analysis back-
ground is given in Section 2 and SAR state of the art in Section 3. Our automatic
SAR method for microservice apps is described in Section 4. Section 5 tests our
method against an existing testbed application. Section 6 concludes the paper.
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2 Background

This section presents background on the SAR process as a whole, the method-
ology that serves as the source of our automation goals, and lastly, static-code
analysis, which is the method we use to automate the SAR process.

2.1 Systematic Architecture Reconstruction

SAR has historically been defined with four distinct phases. These are as follows:

1. Eaxtraction: This phase collects all of the artifacts needed during the next
three phases of SAR. The artifacts collected are relevant to the ”views” that
are being constructed. A "view” is defined as a set of related artifacts that
cover a concern of the architecture of the system.

2. Construction: This phase creates a canonical representation of the views and
usually stores them in some form, like a database.

3. Manipulation: This phase combines the views to allow for the answering of
more complicated questions in the next phase. How the views are combined
is relevant to the specific application being reconstructed.

4. Analysis: This phase answers questions about a system given the overall
views of the architecture constructed in the previous phases. There are al-
most infinite questions that can be asked, covering multitudes of domains,
including networking, security, and code quality.

For this paper’s purposes, we aim to demonstrate a framework for SAR analysis,
so we do not focus on a specific question and thus exclude phase 4.

2.2 Views

The core of successful SAR is the construction of effective views of the archi-
tecture of a system. Care must be taken to choose views that are relevant to
the questions being asked about a system. Since we are focusing on creating a
general framework for SAR, instead of asking a particular question, we chose a
set of views that provide good coverage of the system’s concerns. We took our
set of views from a previous study on SAR methodology [18]. We will briefly
outline the four of them below.

— Domain View: This view covers the domain concerns of an MSA applica-
tion. It describes the entity objects of the system as well as the datasource
connections of those objects.

— Technology View: This view focuses on the technology aspect of an applica-
tion. It describes the technologies used for microservice implementation and
operation.

— Service View: The view focuses on service operators. It describes the service
models that specify microservices, interfaces, and endpoints.

— Operation View: This view focuses on the ops concern of a system. It de-
scribes service deployment and infrastructure, such as containerization, ser-
vice discovery, and monitoring.
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Each of these views can be understood as distinct concerns within the system
but also as related to the others. For example, the domain view intersects with
the service view since the service view can be thought of as the intersections of
data between microservices and the technology view since the technology view
describes how data is stored in the application.

Another key point about the construction of these views is that ultimately
each view is an aggregation of a smaller view encompassing a disparate microser-
vice. Each microservice has a bounded-context of its concerns, but these can be
aggregated into a fully centralized perspective of the system’s architecture.

2.3 Static-Code Analysis

Static-code analysis is what makes an internal inspection of an application pos-
sible. It’s used throughout software development but is primarily used to detect
bugs in a piece of software. There are two main processes for static code analysis -
source code analysis and bytecode analysis. These are used for several processes,
including recognizing components, classes, methods, fields or annotations, tok-
enization, and parsing, which produce graph representations of the code. These
include Abstract Syntax Trees (AST), Control-Flow Graphs (CFG) [12,20, 25],
or Program Dependency Graphs (PDG) [21, 22].

Bytecode analysis [1] uses the compiled code of an application. This is useful
in uncovering endpoints, components, authorization policy enforcements, classes,
and methods. It can also be used to augment or build CFG, or AST [11, 10, 13].
However, the disadvantage is that not all languages have a bytecode.

To fill this gap, we can also turn to source code analysis [3]. It parses through
the source code of the application, without having to compile it into an imme-
diate representation. Many approaches exist to do this, however, most tools toke-
nize the code and construct trees, i.e., AST [21, 22], CFG [12, 20, 25], or PDG [6, 24].

Static-code analysis can also be extended beyond just the source-code and
compiled artifacts to include other application artifacts. Static analysis gives the
ability to access Docker images [16,23] through the Kubernetes! platform. Since
Kubernetes is typically the enterprise standard for service-meshes, it provides
thorough coverage of the operation view for many enterprise applications.

Despite all of the usefulness of static-code analysis, limits exist with these
representations in encapsulating enterprise systems’ complexity. To mitigate the
shortcomings of existing static code analysis techniques on enterprise systems,
we must augment existing techniques with an understanding of enterprise stan-
dards [4,14]. A more realistic representation of the enterprise application can
be constructed with aid from either source code analysis or bytecode analysis.
This primarily includes a tree representation and the detection of the system’s
endpoints, and the construction of a communication map. These augmented
representations and metadata have been successful in other problem domains,
including security, networking, and semantic clone detection.

! https://kubernetes.io/
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3 Related Work

Most of the work done in SAR on microservices has focused on the methodol-
ogy instead of the automation of the methodology. However, some works have
partially automated a full SAR representation of a microservice-based system.

Ratemacher et al. [18], defined a methodology for the construction of all
four of our targeted views. Their process involved the construction of a canon-
ical representation of the data model. From there, they employed methods to
fuse module views. Finally, it performed architecture analysis to answer ques-
tions about architecture implementations from the reconstructed architecture
information. Unfortunately, they only provided a manual assessment of their
benchmark application and included no attempt at automation. However, they
highlighted the need for furthering the work in SAR to automate the process.

Alshuqgayran et al. [2] conducted a manual reconstruction process that in-
cluded modeling the application to derive the overall architecture while utilizing
multiple module merge strategies such as data model integration and meta-model
mapping rules. They do not, however, apply their strategies towards extraction
or merging of domain concepts.

Ibrahim et al. [9] considered container-based deployment configuration files
to derive MSA module topology. In particular, they used Docker Compose to
extract the topology of the module orchestration. In addition to topology, they
generated "attack graphs”, that depict actions which attackers may use to reach
their malicious goal. Attack graphs help developers identify attack paths that
comprise exploitable vulnerabilities in deployed services. They underlined that
testers commonly construct such graphs manually, but container configuration
files provide a well-structured input for automation. Their open-source tool is
based on Clair [19], a vulnerability scanner for Docker containers and images. It
generates image vulnerabilities linked to CVE [17] as well as connections to an
attack vector for each vulnerability. An attack vector describes the conditions
and effects that are connected to vulnerability.

Mayer et al. [15] propose an automatic method for extracting the domain,
service, and operation information of an application. It utilizes a combination of
static analysis and runtime analysis to construct a language-agnostic representa-
tion of each service and its interaction with other services. The downside to this
approach is that to fully construct the representations, and not just a domain
model, the application needs to be deployed. The proposed upside to this is that
we no longer need a litany of parsers for the different language implementations
of a heterogeneous MSA application; however since it still relies on parsing for
the domain view, the parsers are needed regardless, and the dynamic approach
provides extra overhead. It also creates the possibility of an incomplete view
since communication paths that are not traversed during the extraction phase
are absent from the final view.

MicroART [7] tool automates SAR. It extracts information about the service
concern of a module (service names, ports, etc.) from source code repositories.
It also performs log analysis during runtime to discover containers, network
interfaces, and service interaction. The user must provide the running container’s
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location since MicroART does not extract that information automatically. It then
uses that information to generate views for the service and operations concerns.
It does not consider the domain or technology views.

Zdun et al. [26] propose a methodology for the service view; however, it ap-
proaches the problem differently from the previously mentioned tools. It proposes
a method for measuring MSA conformance. Because of this approach, it uses a
formal model when conducting SAR. Conformance is then assessed via met-
rics and constraints defined by the relationships between these types. Though it
considers the service view of an application, domain, technology, and operation
views are not considered for its conformance measure.

We are aware of no tool at present that is capable of fully automating all four
of our chosen architecture views on a microservice-based system. A breakdown
of the capabilities of the tools mentioned previously is available in Tab.1.

Table 1. Comparison of Modern SAR Tools

Domain|Technology |Service|Operation| Automated
Alshuqayran et al X X X No
Ibrahim et al X Yes
Mayer et al X X X Yes
MicroART X X Yes
Rademacher et al X X X X No
Zdun et al X No
Our approach X X X X Yes

4 Proposed Method

In this section, we introduce our proposed method for automatically conducting
SAR. In particular, we use static-code analysis, both source-code and bytecode,
as well as other dependency and application analysis to construct bounded-
contexts of the different views for each microservice. Then we aggregate them
into a full-scope centralized perspective for each view, which consists of all the
microservices aggregated into a mesh.

We start with the extraction phase of SAR. In particular, we extract Control-
Flow Graphs (CFG) and Program Dependency Graphs (PDG). This allows us
to construct a representation of the method calls and internal flow of data in a
microservice. We also detect endpoints and their metadata, including security
constraints and policies along with parameters and internal method branches,
conditions, and loops. Lastly, we detect all entities within a specific module. All
of this metadata is important to be able to construct a full centralized perspective
of a view and offer a complete SAR overview.

The next phase in the SAR process is the construction phase. Once we ex-
tract the module-specific information, we represent it in a graph format. We
further link the additional extracted metadata to its corresponding module. By
aggregating all of the individual metadata artifacts in a cohesive and consistent
way, we can easily move into the next phase.
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To begin the manipulation phase, we use existing strategies of module fusion.
Based on DDD [18], each module considers a bounded context [5], which includes
a limited perspective of the data model, and often partially overlaps through
certain data entities with other modules. This overlap is a key strategy in this
phase of SAR. We begin with entity matching by looking for entities from distinct
modules with a subset match of properties, data types, and possibly names. For
this matching, we also considered natural language processing strategies (Wu-
Palmer algorithm [8]). We derive the canonical data model and, through the
matched entities, promote data and control dependencies.

The second perspective of static analysis we considered to merge modules is
interaction. We identify all endpoints, parameter types, and metadata, and then
the remote procedure calls within the methods. Next, we aim to match them
and generate a complete service view of the entire application. This allows us to
augment the result involving the canonical model.

We do not aggregate the technology view as each microservice is distinct in
its choice of implementation; this is a hallmark of the microservice architecture.

The output of our application is a set of module metadata and the con-
nections between them. Each individual microservice contains its bounded con-
text domain model, while the centralized perspective contains the fused domain
model. Similarly, each microservice contains its own service registry informa-
tion, and the centralized perspective contains a graph that shows the connection
edges between the disparate services. Each microservice contains its technology
information, and an aggregate list of the technologies, broken up by layer, is in
the centralized perspective. Lastly, each microservice owns its own deployment
and operation information, and the centralized perspective contains a graph of
connected deployments.

5 Case Study: Train Ticket

To demonstrate our framework’s effectiveness, we tested it on an existing mi-
croservice benchmark, TrainTicket?. We chose this benchmark since it was specif-
ically designed to emulate a real-world microservice application, consisting of 41
microservices and over 60,000 lines of code. It is written in Spring Boot and uses
MongoDB for the datasource. It uses either Docker® or Kubernetes for deploy-
ment and either NGINX* or Ingress® for routing.

5.1 Domain View
The domain view is constructed through the analysis of the entities within each

microservice. Our testbed broke from the convention with entity objects. Typi-
cally, entities can be discovered through the use of Enterprise standard annota-
tion such as @Document for MongoDB objects or @Entity for MySQL objects.

2 https://github.com/FudanSELab/train-ticket

3 https://www.docker.com/

* https://www.nginx.com/

® https://kubernetes.io/docs/concepts/services-networking/ingress/
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Domain View

Fig. 1. Merged Domain View from TrainTicket

However, not all entities were annotated within the application. Because of this,
we extended our definition of a system entity to include an annotated object, any
object that is a field to such an object, or a POJO that matches a known entity
in the system. Based on this, we could determine that object was an entity in its
microservice, even if it was explicitly marked. An example merging is in Fig. 1.

5.2 Technology View

The technology view was broken into three sections, each representing one ap-
plication layer (presentation, business, and data). For each layer, the system’s
underlying technologies were found by analyzing the source code files and the de-
pendency management files (e.g., pom.xml for Maven), and system configuration
files. We verified our findings against the existing TrainTicket documentation.

5.3 Service View

The service view is constructed using the generated internal communication
diagram and the metadata of each module. In Fig. 2, we show a small selection
of the canonical model for the service view of TrainTicket. Even a small selection

ts-cancel-service ]
I I l

| ts-inside-payment-service g
T

l ] I

‘ ts-order-service g | ts-other-order-service g

|ts—user—service ﬁ |ts~notification—service \j

A
ts-auth-service ’
YA
ts-verification-service ’

‘ ts-payment-service g

A
ts-station-service ’

Fig. 2. Service View from TrainTicket
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ts-auth-service
A

N
ts-order-service

Fig. 3. Operation View from TrainTicket

from the overall service view can show some relevant observations. For example,
from the documentation® of the TrainTicket system, it appears that the cancel
service only has a dependency on the order service however through the lens of
the service view, we can see that the cancel service is far more coupled to the
other service. It relies on four other services, in addition to the order service.

5.4 Operation View

The operation view of the SAR process defines a topology of the containeriza-
tion of the application. Fig. 3 shows a small section of the TrainTicket topology.
The TrainTicket containerization defines a singular network to connect each of
the containers, which creates a graph where each node is connected to every
other. This example shows our method benefit for full automation of the four ap-
plication views. If only the operation view was available, it would create an incor-
rect /incomplete view of the application. By combining the operation view with
the service view, the edges can be mapped to create the topology shown in Fig. 2.

5.5 Threats to Validity

Internal Validity: To verify our approach, we utilized the methodology we
automated to extract the SAR views manually for our benchmark system. We
had multiple people extract the information and construct their views.
External Validity: The effectiveness of SAR, regardless of if manual or auto-
mated, comes down to the availability of artifacts to analyze. For our application,
we lack the ability to analyze artifacts such as images, diagrams, or textual de-
scriptions of an application. We do not believe this impacts our application’s
overall effectiveness; however, since the concerns we automated, domain model-
ing, services, and containerization can be extracted through enterprise standards
that do not vary from application to application. This means that our framework
is capable of analyzing any application which uses the enterprise standards.

5 https://github.com/FudanSELab/train-ticket /blob/master /image/2.png
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6 Conclusion

MSA is the mainstream direction for modern software development, and while
extensive work has been done to define SAR methodologies on distributed sys-
tems, there is a lack of work on automation. Without automation, developers rely
on expending a large amount of effort to generate the SAR artifacts manually.
This paper demonstrated a framework for automatic SAR across four important
views of the application, domain, technology, service, and operations. With our
framework, developers can focus on answering questions about their application,
phase 4 of SAR, instead of focusing all their time in phases 1-3.
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