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Abstract—We consider two closely related problems: anomaly
detection in sensor networks and testing for infections in human
populations. In both problems, we have n nodes (sensors, hu-
mans), and each node exhibits an event of interest (anomaly,
infection) with probability p. We want to keep track of the
anomaly/infection status of all nodes at a central location. We
develop a group updating scheme, akin to group testing, which
updates a central location about the status of each member of
the population by appropriately grouping their individual status.
Unlike group testing, which uses the expected number of tests
as a metric, in group updating, we use the expected age of
information at the central location as a metric. We determine
the optimal group size to minimize the age of information. We
show that, when p is small, the proposed group updating policy
yields smaller age compared to a sequential updating policy.

I. INTRODUCTION

We consider two different problems with similar system
models: anomaly detection in sensor networks and testing for
infections in human populations. In the anomaly detection
problem, n sensor nodes monitor a region and make mea-
surements for an anomaly (e.g., fire, chemical spills, etc.) and
report their measurements to a central location; see Fig. 1(a).
Each sensor node detects an anomaly with probability p
independent of others. In the infection testing problem, there
are n individuals each of whom is infected with probability p
independent of others, and their infection status needs to be
tallied at a central location; see Fig. 1(b). In both problems,
we want to identify the anomaly/infection status of each node
as timely as possible in order to take necessary actions as
quickly as possible, e.g., control the fire or isolate/treat the
infected persons. For a measure of timeliness, we use age of
information, which keeps track of the time elapsed since the
last time the status of a node is updated.

Inspired by the group testing approach introduced in [1], we
develop a group updating approach to maintain timely status
updates at the central location. To that end, we divide n nodes
into groups of k nodes each. In the case of anomaly detection,
a local transmitter collects anomaly status of all nodes within
the group. If there is no anomaly detected within the group,
the local transmitter sends a single O to the central location.
The central location, then, knows the status of all nodes within
the group. On the other hand, if there is at least one anomaly
detected within the group, the local transmitter sends a 1 to
the central location. The central location, then, knows that
there is at least one anomalous reading within the group. The
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(a) An anomaly detection system with multiple sensor nodes. Sensors in
red indicate an anomaly and sensors in green indicate no anomaly.
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(b) An infection detection system in a human population. Persons in red
are infected and persons in green are not infected.
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Fig. 1. System models considered in this paper.

local transmitter then sends the individual measurements of
the sensors (0Os and 1s) to the central location one-by-one.
Similarly, in the case of testing humans for infection, we divide
n individuals into groups of k each. Within each group, we
mix the test samples of the individuals and perform a single
test. If the test result is a 0, we know that no one within the
group is infected. If the test result is a 1, then, we know that at
least one person within the group is infected. In the latter case,
we test each person within the group individually one-by-one.

In the proposed group updating method, the group size k
plays an important role in the performance of the system, i.e.,
in the resulting age. If & is too large, then the first update will
likely result in a 1, and we will need to proceed to update the
status of each node within the group one-by-one. This will
increase the update duration, and hence, the age. On the other
hand, if £ is too small, then this will result in too many groups,
and therefore, too many updates within an update cycle. This
will increase the age as well. Thus, there is an optimum group
size k, which is not too small, not too large. In this paper, we
determine that optimum size for given n and p.

Age of information has been used as a measure of timeliness
in many communication and networking scenarios, such as, in
web crawling, social networks, queueing networks, caching
systems, energy harvesting systems, scheduling in networks,



multi-hop multicast networks, lossless and lossy source cod-
ing, computation-intensive systems, vehicular, IoT, UAV sys-
tems, and so on [2]-[35]. With this paper, we are bringing
age of information as a measure of timeliness to anomaly
detection and testing for infections. Specifically relevant to our
case is the setting of multi-source systems, where maximum
age first (MAF) [22], maximum age difference (MAD) [23],
Whittle index [24]-[26], slotted ALOHA with threshold [27],
hierarchical cooperation [28] have been used to achieve good
age performance. Different from most of these works, where
only one source can be updated at a time, with the proposed
group updating approach, we allow all sources in a group to
be updated simultaneously with a single status update.

In this paper, we introduce a group updating approach where
if all updates from the sources in the same group are 0, then
the transmitter sends only a single status update representing
the entire group, otherwise, the transmitter sends an update
indicating that there is at least one 1 in the group, and
proceeds to send all individual updates within the group one-
by-one. For this updating method, for arbitrary n and p, we
first find an analytical expression for the average age, which
depends on the group size k. For given n and p, we find the
optimal group size k that minimizes the age. Next, we compare
the performance of the proposed group updating policy with
the performances of the traditional scheduling methods, and
observe that the proposed group updating policy achieves a
lower age than the existing schemes when p is small. In
addition, we compare the optimal group size k in the group
updating problem here and in the group testing problem in [1]
and observe that they are different in general indicating the
difference of the metrics used.

II. SYSTEM MODEL

We consider a system with n sources/nodes. We divide the
n

n sources into groups of size k, where m = 7 is the number
of groups. Without loss of generality, we assume that k divides
n, and thus, m is an integer. We denote the status of the jth
source in the ith group in the (th update cycle by X;;(¢),
where ¢ = 1,...,m, j = 1,...,k, and £ > 1. X;;(¢) is an
independent and identically distributed (i.i.d.) binary random
variable for all ¢, j and ¢, with distribution,

Xy ="
Y710, with probability 1 — p,

with probability p, (1

where a status 1 indicates an anomaly/infection, and a status
0 indicates no anomaly/infection.

Let S;;(£) denote the service time for the status update of
the jth source in the ith group in the ¢th update cycle. This
is the time it takes for the status of the node to go through
the system and be tallied at the central location. Note that if
the status of all nodes in the ith group is O, then the service
time for all nodes in this group is equal to 1, as in this case,
for the anomaly detection problem, the local transmitter needs
to send a single O to convey the status of all nodes, and in
the infection testing problem, a single test will determine the
infection status of all nodes in the group. On the other hand, if

any one of the sources in the ¢th group generates 1 as a status
update, the service time for the jth source in the ith group
will be equal to 7 + 1, as in this case, an initial status update
is sent representing the entire group, 7 — 1 status updates are
sent for the sources before source 7, and a final update is sent
for source j itself. Thus, the service time for the jth node in
group ¢ is a random variable with distribution,

with probability (1 — p)*,

1
Sij(6) =1 ?
(0 {j +1, with probability 1 — (1 — p)*. @

The service time of the entire ith group in the fth update
cycle, denoted by W;(¢), is equal to the service time of the
last source in the ith group,

W;(6) = S (0), i=1,...,m. (3)

As the central location wants to get timely updates from all
sources, we track the age of each source at the central location
separately. We denote the instantaneous age of source j in
group ¢ at time t by a;;(t), with a;;(0) = 0. Age of each
source at the central location increases linearly in time and
drops to the age of the most recently received update once an
update is received. The long term average age of node j in
group 1 is given by,
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The overall average age of all sources A is equal to,
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Our aim is to find the optimal group size k* that minimizes
the average age of all sources A, i.e.,

k™ = argmin A. (6)
{k}
In Section III, we first find the average age, A, in (5).

III. AVERAGE AGE ANALYSIS

With the group updating policy, the transmitter starts with
sending updates from the sources in the first group. If all the
updates from the first group are 0 (as shown with green balls
in the first £ lines in Fig. 2), then the transmitter sends a single
0 to update all the sources in the first group (that is why the
delivery times of updates for all sources in the first group
marked with arrows in Fig. 2 are equal to 1). After sending
updates from the first group, the transmitter proceeds to send
updates from the second group. If any one of the updates from
the second group is equal to 1 (denoted by a red ball in the
lines between lines £+ 1 and 2k in Fig. 2), then the transmitter
first sends a 1 as a status update representing the entire group,
and then sends individual updates from each source one-by-
one. As shown in Fig. 2, the receiver gets the first update
from the second group after 2 units of time. After sending
updates from the second group, the transmitter proceeds to
send updates from the third group, and so on, up until the
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Fig. 2. A sample update generation and update delivery timeline. Lines 1
through n denote the nodes. Lines 1 through & denote the nodes in group 1.
Green and red balls represent the anomaly/no anomaly status of each node.
In update cycle 1, the yellow strip shows the time where the status of all
nodes in group 1 is updated, the blue strip shows the time where the status
of all nodes in group 2 is updated, and the pink strip shows the time where
the status of all nodes in group m is updated. The process repeats itself in
update cycle 2. Delivery times are marked by the downward arrows.

mth (last) group. We call this entire time in which the status
of all n sources are updated as update cycle 1 in Fig. 2. Once
update cycle 1 ends, update cycle 2 starts all over again with
all sources taking a new i.i.d. realization. In Fig. 2, in update
cycle 1, the yellow vertical strip shows the time in which the
status of all nodes in group 1 is updated, the blue strip shows
the time in which the status of all nodes in group 2 is updated,
so on so forth, and finally, the pink strip shows the time in
which the status of all nodes in group m is updated.

Fig. 3 shows a sample age evolution curve for the jth source
in the ith group at the central location, i.e., a;;(t). Here, S;; ()
defined in (2) denotes the service time of the jth source in the
ith group in the ¢th update cycle. In addition, W;;(¢) denotes
the total waiting time until the ¢th update is generated after
the service completion of the (¢ — 1)th update for the same
source. Thus, W;;(¢) is given by,

Z W, (0 —1) +ZW o), @
r=1+1
where W,.(¢) is given in (3), and W;;(¢ — 1) denotes the
remaining service time of the ith group in the (¢ — 1)th update
cycle which is given by W;; (¢ —1) = W;(£ —1) — S;;(£—1).
We denote the length of the /th update cycle for the jth
source in the ith group as Y;;(¢) = S;;(¢ — 1) + W;;(¢) with
S;3(0) = 0 for convention. One can show that the long term
average age A;; given in (4) as in [5] is,

¥ (3 w<>+zglw<><@)
& Xl Yis(0)

Wi (€) = Wi;(£ — 1)

N+1
(=1

A;; = lim

3
N—oc0

®)

where N denotes the number of update cycles. We note that
(8) can be written equivalently as,
2
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Fig. 3. A sample age evolution a;;(t) at the central location.

We note that the length of an update cycle Y;; is equal to
the service completion time of all the groups, i.e.,

S
r=1

Therefore, the variable Y;; does not depend on ¢ or j. We thus
denote Y;; with a single random variable Y, i.e., Y = Y;;. On
the other hand, from (2), S;; depends on j, and we denote it

Yij = Sij + Wi (10)

by S;. Then, the overall average age A in (5) is equal to,
E[Yz]
where E[S] = %Zzﬂil Zj:l E[Si;] =+ Z?:l E[S;].

Now, using (2)-(3), we have E[W,] =1+ k& (1 — (1 —p)*)
for all . Thus, from (10),

E[Y] :% +n(1—(1-p)h). (12)
In addition,
2 2
EY?] =nn — k)(1 - p)* + O
—n <2n (1 + i) - k:) 1-pk. 13
Further, from (2), we have,
E[Si;] = E[S;] =1+5(1 - (1 -p)"), (14)
and thus, we have,
k
E[S] —1+%(1—(1—p)k). (15)
Hence, the overall average age A in (11) is
A kK (n—k)1—p)* +n(k+1)2
2k +2k2(1—(1—p)F)
(2n (k+1) —k?) (1 —p)k
24 2k(1-(1-p)F)
+1+k%(1—(1—p)k). (16)

The overall average age in (16) depends on n, p and k. We
find the optimal k that minimizes A numerically in Section V.



IV. GROUP UPDATING VERSUS GROUP TESTING

While the group testing and group updating policies are
operationally similar, parameter selection, mainly selection of
the group size in both problems, is different. In particular, in
group testing, group size k is chosen to minimize the expected
number of tests. In our terminology, expected number of tests
corresponds to the expected length of an update cycle, i.e.,
E[Y], as the transmitter sends one status update at a time.
Thus, group testing chooses the group size ky; by solving,

ky, = arg min E[Y], (17

{keZ+}
where E[Y] is given in (12). In order for group testing to
be more efficient than sequential updating of sources one-by-
one, which uses n tests in an update cycle, we need E[Y] < n,
which implies p < py;, where

1\ *
w1 (5)

We note that py; attains its maximum value 0.3066 when k =
3. Thus, when p > 0.3066, group testing becomes inefficient
compared to sequential updating of sources one-by-one.

Next, we find k;t in (17) analytically. For that, we first relax
the integer constraint on k. Then, by equating the derivative
of E[Y] in (12) with respect to k to zero, we obtain,

(18)

OE[Y n
% =~ —n(l=p) log(1=p) =0, (19)
which gives,
k 5 log(1-p) 1
5 log(1 — p)e> =3 —log(1 —p). (20)

Note that (20) is in the form of xe” = y, whose solutions for x
are z1 = Wy(y) and z2 = W_1(y) when —2 <y < 0. Here,
Wo(-) and W_;(-) denote the principle and —1st branches
of the Lambert KV function, respectively [36]. Thus, when
0<p<1-—e < =0.418, we have two solutions for (20)
which are given by,

2 1
=—— Wy | —=+/—1log(l — , 21
R P 0( 5V og( p)) ey

2
=— W_ 1| —=+v/—1og(1l — . 22
W logT-p) 1( el )) =
IE[Y]

When p > 0.418, one can show that e < 0, and thus,

the optimal %k is equal to n. However, as the group testing
method becomes inefficient when p > 0.3066, we only need
to consider the case when 0 < p < 0.418, and thus, a7 in
(21) and a9 in (22) always exist.

Thus, in order to find the optimal k, we need to check
k = o where a¥ = min{klk > a.,kn} for r = 1,2;
k = af where of = max{k|k < a,,kln} forr =1,2; k = 1;
and k£ = n. In other words, the optimal % is given by,

ky, = arg min E[Y],

23
{keK} 23)

where K = {1,a4, a5, ¥, a¥,n}.

We perform a similar analysis for the group updating prob-
lem. Group updating chooses the group size kg, by solving,

k,, =arg min A, (24)

{keZt}
where A is given in (16). In order for group updating to be
more efficient than sequential updating, A in (16) needs to
be smaller than Aoyndrobin- For the round-robin (sequential)
scheduling method, E[Y] = n, E[Y?] = n?, E[S] = 1, and
the overall average age from (11) is,

n
Around-robin = 5 + 1.

The condition A < Ajqundrobin giVes an upper bound for the
probability p, which we denote by pg,,. In other words, when
D > Pgu. group updating becomes inefficient compared to
sequential updating. Further, by relaxing the integer constraint
on k and equating the derivative of A in (16) with respect to k
to 0, we can find the critical points where the age is minimized,
and find kj, analytically. Since A in (16) is an involved
function of k, in this work, we do not pursue analytical results
on pg, and k;u. Instead, we find k;u for given of p and n,
and examine pgy,, numerically, in the next section.

(25)

V. NUMERICAL RESULTS

In this section, we provide four numerical results to illustrate
the performance of the proposed group updating method, and
also to show its difference from the group testing method. In
all the numerical results, we only consider k values that divide
n. For example, if n = 6, we consider k = 1,2, 3,6.

In the first numerical example, we compare the performance
of the proposed group updating method with the performances
of the existing updating policies of MAF and MAD. Since
after receiving each update, the age at the receiver goes down
to 1, MAF and MAD scheduling policies become identical. In
addition, as the ages of all sources start from zero, MAF and
MAD policies become the same as the round-robin scheduling
method. The average age for the round-robin scheme is given
in (25). We note that A oundrobin increases linearly with n and
does not depend on the probability p.

In the first numerical example, we take n = 120 and plot
in Fig. 4 the average age A in (16) with respect to k& when
p = 0.01,0.1,0.2,0.4, together with A gundrobin in (25). We
observe in Fig. 4 that, for all values of p, the average age
first decreases with k and then increases with k, as initially,
increasing k decreases the number of groups, making group
updating more efficient, but after a while, further increasing k
decreases the likelihood of having all zero updates in a group,
requiring many follow-up individual updates. Thus, there is a
trade-off between these two opposing factors, and there is an
optimum group size to minimize the average age. As marked
with a cross in Fig. 4, when p = 0.01 the optimal group size
is ky, = 8 when p = 0.1 it is kj,, = 4; when p = 0.2
it is kg, = 3; and when p = 0.4 it is kj, = 3. We also
observe that the group updating method becomes inefficient
with increased p as it becomes more likely for the transmitter
to send individual updates. When p is large enough, e.g., when
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Fig. 4. Average age versus group size with the proposed group updating
method and the round robin method when p = 0.01,0.1,0.2,0.4.
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Fig. 5. Average age versus population size with the proposed group updating
method and the round robin method when p = 0.01,0.1,0.2,0.4.

p = 0.4, we observe in Fig. 4 that group updating becomes
inefficient and does not improve the average age compared to
the round-robin scheduling method.

In the second numerical example, we again take p =
0.01,0.1,0.2,0.4, and plot in Fig. 5 the average age with
respect to n, the population size, for n from 60 to 1200.
For each value of p and n, we first find the optimal k;u
that achieves the minimum age, then plot that minimum age
with respect to n. We observe in Fig. 5 that the average age
increases linearly with the proposed group updating method as
with the round-robin scheduling method. Similar to the first
numerical example, the average age increases with p as group
updating becomes less efficient with larger p.

In the third numerical example, we examine the differences
between the group updating problem and the group testing
problem. For this numerical example, we take n = 48, p =
0.05,0.15, and determine the optimal k values that minimize
the average age and also the average number of updates. When
pis small, e.g., when p = 0.05, we observe in Fig. 6(a) that the
optimal group size that minimizes the average age is kj,, = 4,
whereas the optimal group size that minimizes the average
number of updates is kj, = 6. This verifies that the group
updating problem is different than the group testing problem.
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Fig. 6. Average age for the group updating method and average number of
updates for the group testing method with respect to k for n = 48 when (a)
p = 0.05 and (b) p = 0.15.

However, when p is relatively large, e.g., when p = 0.15,
we observe in Fig. 6(b) that the optimal group sizes in both
problems are equal ky, = k7, = 3. In other words, when p
gets larger, the optimal k& values for the group updating and
group testing problems get closer to each other.

In the fourth numerical example, we examine kj,, and kj,
as a function of p. We take n = 120 and vary p between 0.01
and 0.25. We observe in Fig. 7 that both kg, and kj, decrease
with probability p. With higher p, the sources in a group begin
to generate more 1s as status updates, which results in sending
more individual updates from the sources. Thus, decreasing the
group size k* in both of the problems helps counter the effects
of increased p. Similar to the previous example, we observe
in Fig. 7 that k,, and kj, are different when p is small, and
become the same when p > 0.13 for this choice of n.

VI. CONCLUSION

We considered the problem of timely group updating, where
similar to group testing, the sources are divided into groups;
if all updates within a group are negative, a single group
update suffices; if at least one update is positive, this triggers
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Fig. 7. Optimum group sizes k},, in the group updating problem and k;t in
the group testing problem for n = 120, for p from 0.01 to 0.25.

a sequence of individual updates. For this updating scheme,
we derived an analytical expression for the average age as a
function of the group size k, the number of sources n, and
the probability p. For given n and p, we found the optimal
group size k that minimizes the age. We showed that when
p is small, group updating performs better than sequential
updating. We also showed that the optimal group sizes for
group updating and group testing are different. This is because,
while group testing aims to minimize the first moment of the
length of an update cycle, group updating aims to minimize the
age which depends on both the first and second moments of
the length of an update cycle. An analogous observation was
made in timely source coding versus traditional source coding,
where the former depends on the first and second moments of
the codeword length, while the latter depends only the first
moment [30], [31].
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