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Abstract—We consider real-time timely tracking of infection
status (e.g., covid-19) of individuals in a population. In this work,
a health care provider wants to detect infected people as well as
people who recovered from the disease as quickly as possible.
In order to measure the timeliness of the tracking process, we
use the long-term average difference between the actual infection
status of the people and their real-time estimate by the health
care provider based on the most recent test results. We first
find an analytical expression for this average difference for given
test rates, and given infection and recovery rates of people.
Next, we propose an alternating minimization based algorithm to
minimize this average difference. We observe that if the total test
rate is limited, instead of testing all members of the population
equally, only a portion of the population is tested based on their
infection and recovery rates. We also observe that increasing the
total test rate helps track the infection status better. In addition,
an increased population size increases diversity of people with
different infection and recovery rates, which may be exploited
to spend testing capacity more efficiently, thereby improving
the system performance. Finally, depending on the health care
provider’s preferences, test rate allocation can be altered to detect
either the infected people or the recovered people more quickly.

I. INTRODUCTION

We consider the problem of timely tracking of an infectious
disease, e.g., covid-19, in a population of n people. In this
problem, a health care provider wants to detect infected people
as quickly as possible in order to take precautions such as
isolating them from the rest of the population. The health care
provider also wants to detect people who recovered from the
disease as soon as possible since these people need to return
to work which is especially critical in sectors such as health
care, food retail, and public transportation. Ideally, the health
care provider should test all people all the time. However, as
the total test rate is limited, the question is how frequently
the health care provider should apply tests on these people
when their infection and recovery rates are known. In a broader
sense, this problem is related to timely tracking of multiple
processes in a resource-constrained setting where each process
takes binary values of 0 and 1 with different change rates.

Recent studies have shown that people who recovered from
infectious diseases such as covid-19 can be reinfected. Further-
more, the recovery times of individuals from the disease may
vary significantly. For these reasons, in this problem, the ith
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Fig. 1. System model. There are n people whose infection status are given
by xi(t). The health care provider applies tests on these people. Based on the
test results, estimations for the infection status x̂i(t) are generated. Infected
people are shown in red color and healthy people are shown in green color.

person gets infected with rate λi which is independent of the
others. Similarly, the ith person recovers from the disease with
rate µi.1 We denote the infection status of the ith person as
xi(t) (shown with the black curves on the left in Fig. 1) which
takes the value 1 when the person is infected and the value 0
when the person is healthy. The health care provider applies
tests to people marked as healthy with rate si and to people
marked as infected with rate ci. Based on the test results, the
health care provider forms an estimate for the infection status
of the ith person denoted by x̂i(t) (shown with the blue curves
on the right in Fig. 1) which takes the value 1 when the most
recent test result is positive and the value 0, otherwise.

We measure the timeliness of the tracking process by the
difference between the actual infection status of people and the
real-time estimate of the health care provider which is based
on the most recent test results. We note that the difference
can occur in two different cases: i) when the person is sick
(xi(t) = 1) and the health care provider maps this person
as healthy (x̂i(t) = 0), and ii) when the person recovers
from the disease (xi(t) = 0) but the health care provider still
considers this person as infected (x̂i(t) = 1). The former case
represents the error due to late detection of infected people,
while the latter case represents the error due to late detection
of healed people. Depending on the health care provider’s

1We note that the index i may represent a specific individual or a group of
individuals that have common features such as age, gender, profession. For
example, i = 1 may denote men between ages 70-75 who live in nursing
homes, and i = 2 may denote women between ages of 20-25 who work
in the medical field, and so on. Therefore, depending on the demographics,
coefficients λi and µi may be statistically known by the health care provider.



preferences, detecting infected people may be more important
than detecting recovered people, or vice versa.

Age of information has been proposed to measure timeliness
of information in communication systems, and studied in the
context of queueing networks, caching systems, energy har-
vesting systems, scheduling in networks, multi-hop multicast
networks, remote estimation, lossless and lossy source coding,
computation-intensive systems, vehicular, IoT, UAV systems,
and so on [1]–[36]. Most relevant to our work, the real-time
timely estimation of a single and multiple counting processes
[22], [23], a Wiener process [24], a random walk process [25],
a binary Markov source [26] have been studied. The work
that is closest to our work is reference [26] where the remote
estimation of a symmetric binary Markov source is studied in
a time-slotted system by finding the optimal sampling policies
via formulating a Markov Decision Process (MDP) for real-
time error, AoI and AoII metrics. Different from [26], in our
work, we consider real-time timely estimation of multiple non-
symmetric binary sources for a continuous time system. We
note that in our work, the sampler (the health care provider)
does not know the states of the sources (infection status of
people), and thus takes the samples (applies medical tests)
randomly with fixed rates. Thus, in our work, we optimize the
test rates of people to minimize the real-time estimation error.

In this paper, we consider the real-time timely tracking
of infection status of n people. We first find an analytical
expression for the long-term average difference between the
actual infection status of people and the estimate of the health
care provider based on test results. Then, we propose an
alternating minimization based algorithm to find the test rates
si and ci for all people. We observe that if the total test
rate is limited, we may not apply tests on all people equally.
Increasing the total test rate helps track the infection status
of people better, and increasing the size of the population
increases diversity which may be exploited to improve the
performance. Finally, depending on the health care provider’s
priorities, we can allocate more tests to people marked as
healthy to detect the infections more quickly or to people
marked as infected to detect the recoveries more quickly.

II. SYSTEM MODEL

We consider a population of n people. We denote the
infection status of the ith person at time t as xi(t) (black curve
in Fig. 2(a)) which takes binary values 0 or 1 as follows,

xi(t) =

{
1, if the ith person is infected at time t,
0, otherwise.

(1)

In this paper, we consider a model where each person can
be infected multiple times after recovering from the disease.
We denote the time interval that the ith person stays healthy
for the jth time as Wi(j) which is exponentially distributed
with rate λi. We denote the recovery time for the ith person
after infected with the virus for the jth time as Ri(j) which
is exponentially distributed with rate µi.

A health care provider wants to track the infection status of
each person. Based on the test results at times ti,`, the health
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Fig. 2. (a) A sample evolution of xi(t) and x̂i(t), and (b) the corresponding
∆i(t) in (5). Green areas correspond to the error caused by ∆i1(t) in (3).
Orange areas correspond to the error caused by ∆i2(t) in (4).

care provider generates an estimate for the status of the ith
person denoted as x̂i(t) (blue curve in Fig. 2(a)) by

x̂i(t) = xi(ti,`), ti,` ≤ t < ti,`+1. (2)

When x̂i(t) is 1, the health care provider applies the next test
to the ith person after an exponentially distributed time with
rate ci. When x̂i(t) is 0, the next test is applied to the ith
person after an exponentially distributed time with rate si.

An estimation error happens when the actual infection status
of the ith person, xi(t), is different than the estimate of the
health care provider, x̂i(t), at time t. This could happen in
two ways: when xi(t) = 1 and x̂i(t) = 0, i.e., when the ith
person is sick, but it has not been detected by the health care
provider, and when xi(t) = 0 and x̂i(t) = 1, i.e., when the
ith person has recovered, but the health care provider does not
know that the ith person has recovered.

We denote the error caused by the former case, i.e., when
xi(t) = 1 and x̂i(t) = 0, by ∆i1(t) (green areas in Fig. 2(b)),

∆i1(t) = max{xi(t)− x̂i(t), 0}, (3)

and we denote the error caused by the latter case, i.e., when
xi(t) = 0 and x̂i(t) = 1, by ∆i2(t) (orange areas in Fig. 2(b)),

∆i2(t) = max{x̂i(t)− xi(t), 0}. (4)

Then, the total estimation error for the ith person ∆i(t) is

∆i(t) = θ∆i1(t) + (1− θ)∆i2(t), (5)

where θ is the importance factor in [0, 1]. A large θ gives more
importance to the detection of infected people, and a small θ
gives more importance to the detection of recovered people.

We define the long-term weighted average difference be-
tween xi(t) and x̂i(t) as

∆i = lim
T→∞

1

T

∫ T

0

∆i(t)dt. (6)
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Fig. 3. A sample evolution of (a) ∆i1(t), and (b) ∆i2(t) in a typical cycle.

Then, the overall average difference of all people ∆ is

∆ =
1

n

n∑
i=1

∆i. (7)

Our aim is to track the infection status of all people. Due to
limited resources, there is a total test rate constraint

∑n
i=1 si+∑n

i=1 ci ≤ C. Thus, our aim is to find the optimal test rates
si and ci to minimize ∆ in (7) while satisfying this total test
rate constraint. We formulate the following problem,

min
{si,ci}

∆

s.t.
n∑
i=1

si +

n∑
i=1

ci ≤ C

si ≥ 0, ci ≥ 0, i = 1, . . . , n. (8)

In the next section, we find the total average difference ∆.

III. AVERAGE DIFFERENCE ANALYSIS

We first find analytical expressions for ∆i1(t) in (3) and
∆i2(t) in (4). We note that ∆i1(t) can be equal to 1 when
x̂i(t) = 0 and is always equal to 0 when x̂i(t) = 1. Assume
that at time 0, both xi(0) and x̂i(0) are 0. After an exponen-
tially distributed time with rate λi, which is denoted by Wi,
the ith person is infected, and thus xi(t) becomes 1. At that
time, since x̂i(t) = 0, ∆i1(t) becomes 1. ∆i1(t) will be equal
to 0 again either when the ith person recovers from the disease
which happens after Ri which is exponentially distributed with
rate µi or when the health care provider performs a test on the
ith person after Di which is exponentially distributed with rate
si. We define Tm(i) as the earliest time at which one of these
two cases happens, i.e., Tm(i) = min{Ri, Di}. We note that
Tm(i) is also exponentially distributed with rate µi+si, and we

have P(Tm(i) = Ri) = µi

µi+si
and P(Tm(i) = Di) = si

µi+si
.

If the ith person recovers from the disease before testing, we
return to the initial case where both xi(t) and x̂i(t) are equal
to 0 again. In this case, this cycle repeats itself, i.e., the ith
person becomes sick again after Wi and ∆i1(t) remains as
1 until either the person recovers or the health care provider
performs a test which takes another Tm(i) duration. If the
health care provider performs a test before the person recovers,
then x̂i(t) becomes 1. We denote the time interval for which
x̂i(t) stays at 0 as Ii1 which is given by

Ii1 =

K1∑
`=1

Tm(i, `) +Wi(`), (9)

where K1 is geometric with rate P(Tm(i) = Di) = si
µi+si

.
Due to [37, Prob. 9.4.1],

∑K1

`=1 Tm(i, `) and
∑K1

`=1Wi(`) are
exponentially distributed with rates si and λisi

µi+si
, respectively.

As E[Ii1] = E[
∑K1

`=1 Tm(i, `)] + E[
∑K1

`=1Wi(`)], we have

E[Ii1] =
1

si
+
si + µi
siλi

. (10)

When x̂i(t) = 1, the health care provider marks the ith
person as infected. The ith person recovers from the virus
after Ri. After the ith person recovers, either the health
care provider performs a test after Zi which is exponen-
tially distributed with rate ci or the ith person is reinfected
with the virus which takes Wi time. We define Tu(i) as
the earliest time at which one of these two cases happens,
i.e., Tu(i) = min{Wi, Zi}. Similarly, we note that Tu(i)
is exponentially distributed with rate λi + ci, and we have
P(Tu(i) = Wi) = λi

λi+ci
and P(Tu(i) = Zi) = ci

λi+ci
. If the

person is reinfected with the virus before a test is applied, this
cycle repeats itself, i.e., the ith person recovers after another
Ri, and then either a test is applied to the ith person, or
the person is infected again which takes another Tu(i). If the
health care provider performs a test to the ith person before
the person is reinfected, the health care provider marks the ith
person as healthy again, i.e., x̂i(t) becomes 0. We denote the
time interval that x̂i(t) is equal to 1 as Ii2 which is given by

Ii2 =

K2∑
`=1

Tu(i, `) +Ri(`), (11)

where K2 is geometric with rate P(Tu(i) = Zi) = ci
λi+ci

.
Similarly,

∑K2

`=1 Tu(i, `) and
∑K2

`=1Ri(`) are exponentially
distributed with rates ci and ciµi

λi+ci
, respectively. As E[Ii2] =

E[
∑K2

`=1 Tu(i, `)] + E[
∑K2

`=1Ri(`)], we have

E[Ii2] =
1

ci
+
ci + λi
ciµi

. (12)

We denote the time interval between the jth and (j + 1)th
times that x̂i(t) changes from 1 to 0 as the jth cycle Ii(j)
where Ii(j) = Ii1(j) + Ii2(j). We note that ∆i1(t) is always
equal to 0 during Ii2(j), i.e., x̂i(t) = 1, and ∆i1(t) is equal to
1 when xi(t) = 1 in Ii1(j). We denote the total time duration
when ∆i1(t) is equal to 1 as Te,1(i, j) during the jth cycle



where Te,1(i, j) =
∑K1

`=1 Tm(i, `). Thus, we have E[Te,1(i)] =
1
si

. Then, using ergodicity, similar to [4], ∆i1 is equal to

∆i1 =
E[Te,1(i)]

E[Ii]
=

E[Te,1(i)]

E[Ii1] + E[Ii2]
. (13)

Thus, we have

∆i1 =
µiλi
µi + λi

ci
µici + λisi + cisi

. (14)

Next, we find ∆i2. We note that ∆i2(t) is equal to 1 when
xi(t) = 0 in Ii2(j) and is always equal to 0 during Ii1(j).
Similarly, we denote the total time duration where ∆i2(t) is
equal to 1 in the jth cycle Ii(j) as Te,2(i, j) which is equal
to Te,2(i, j) =

∑K2

`=1 Tu(i, `). Thus, we have E[Te,2(i)] = 1
ci

.
Then, similar to ∆i1 in (13), ∆i2 is equal to

∆i2 =
µiλi
µi + λi

si
µici + λisi + cisi

. (15)

By using (5), (14), and (15), we obtain ∆i as

∆i =
µiλi
µi + λi

θci + (1− θ)si
µici + λisi + cisi

. (16)

Then, by inserting (16) in (7), we obtain ∆. In the next section,
we solve the optimization problem in (8).

IV. OPTIMIZATION OF AVERAGE DIFFERENCE

In this section, we solve the optimization problem in (8).
Using ∆i in (16) in (7), we rewrite (8) as

min
{si,ci}

n∑
i=1

µiλi
µi + λi

θci + (1− θ)si
µici + λisi + cisi

s.t.
n∑
i=1

si +

n∑
i=1

ci ≤ C

si ≥ 0, ci ≥ 0, i = 1, . . . , n, (17)

We define the Lagrangian function [38] for (17) as

L =

n∑
i=1

µiλi
µi + λi

θci + (1− θ)si
µici + λisi + cisi

+ β

(
n∑
i=1

si + ci − C

)

−
n∑
i=1

νisi −
n∑
i=1

ηici, (18)

where β ≥ 0, νi ≥ 0, and ηi ≥ 0. The KKT conditions are

∂L
∂si

=
µiλici
µi + λi

(1− θ)µi − θ(ci + λi)

(µici + λisi + sici)2
+ β − νi = 0, (19)

∂L
∂ci

=
µiλisi
µi + λi

θλi − (1− θ)(µi + si)

(µici + λisi + sici)2
+ β − ηi = 0, (20)

for all i. The complementary slackness conditions are

β

(
n∑
i=1

si + ci − C

)
= 0, νisi = 0, ηici = 0. (21)

First, we find si. From (19), we have

(µici + λisi + sici)
2 =

µiλici
µi + λi

θ(ci + λi)− (1− θ)µi
β − νi

.

(22)

When θ(ci + λi) ≥ (1− θ)µi, we solve (22) for si as

si =
µici
λi + ci

(√
1

µici

λi
µi + λi

θ(ci + λi)− (1− θ)µi
β

− 1

)+

,

(23)

where we used the fact that we either have si > 0 and νi = 0,
or si = 0 and νi ≥ 0, due to (21). Here, (·)+ = max(·, 0).

Finally, when θ(ci+λi) < (1−θ)µi, we have ∂∆i

∂si
> 0, and

thus it is optimal to choose si = 0 as our aim is to minimize ∆
in (7). In this case, when si = 0, we have ∆i = θλi

µi+λi
which

is independent of the value of ci. As we obtain the same ∆i

for all values of ci, and the total update rate is limited, i.e.,∑n
i=1 si + ci ≤ C, in this case, it is optimal to choose ci = 0

as well (i.e., when si = 0).
Next, we find ci. From (20), we have

(µici + λisi + sici)
2 =

µiλisi
µi + λi

(1− θ)(µi + si)− θλi
β − ηi

.

(24)

When (1− θ)(µi + si) ≥ θλi, we solve (24) for ci as

ci =
λisi
µi + si

(√
1

λisi

µi
µi + λi

(1− θ)(si + µi)− θλi
β

− 1

)+

,

(25)

where we used the fact that we either have ci > 0 and ηi = 0,
or ci = 0 and ηi ≥ 0, due to (21).

Similarly, when (1− θ)(si + µi) < θλi, we have ∂∆i

∂ci
> 0.

Thus, in this case, it is optimal to choose ci = 0. When ci = 0,
we have ∆i = (1−θ)µi

µi+λi
which is independent of the value of

si. Thus, it is optimal to choose si = 0 when ci = 0.
From (23), if 1

µici
λi

µi+λi
(θ(ci + λi) − (1 − θ)µi) ≤ β, we

must have si = 0. Thus, for a given ci, the optimal test rate
allocation policy for si is a threshold policy where si’s with
small 1

µici
λi

µi+λi
(θ(ci + λi) − (1 − θ)µi) are equal to zero.

Similarly, from (25), if 1
λisi

µi

µi+λi
((1− θ)(si + µi)− θλi) ≤

β, we must have ci = 0. Thus, for a given si, the optimal
policy to determine ci is a threshold policy where ci’s with
small 1

λisi

µi

µi+λi
((1− θ)(si + µi)− θλi) are equal to zero.

Next, we show that in the optimal policy, if si > 0 and
ci > 0 for some i, then the total test rate constraint must be
satisfied with equality, i.e.,

∑n
i=1 si + ci = C.

Lemma 1 In the optimal policy, if si > 0 and ci > 0 for
some i, then we have

∑n
i=1 si + ci = C.

Proof: The derivatives of ∆i with respect to si and ci are

∂∆i

∂si
=

µiλici
µi + λi

(1− θ)µi − θ(ci + λi)

(ciµi + sici + λisi)
2 , (26)

∂∆i

∂ci
=

µiλisi
µi + λi

θλi − (1− θ)(si + µi)

(ciµi + sici + λisi)
2 . (27)

We note that si > 0 in (23) implies that θ(ci+λi) > (1−θ)µi.
In this case, we have ∂∆i

∂si
< 0. Similarly, ci > 0 in (25)

implies that (1− θ)(si + µi) > θλi. Thus, we have ∂∆i

∂ci
< 0.



Therefore, in the optimal policy, if we have si > 0 and ci > 0
for some i, then we must have

∑n
i=1 si + ci = C. Otherwise,

we can further decrease ∆ in (7) by increasing ci or si. �
Next, we propose an alternating minimization based algo-

rithm for finding si and ci. For this purpose, for given initial
(si, ci) pairs, we define φi as

φi=

{
1

µici
λi

µi+λi
(θ(ci + λi)− (1− θ)µi), i=1, . . . , n,

1
λisi

µi

µi+λi
((1− θ)(si + µi)− θλi), i=n+ 1, . . . , 2n.

(28)

Then, we define ui as

ui =


µici
λi+ci

(√
φi

β − 1
)+

, i = 1, . . . , n,

λisi
µi+si

(√
φi

β − 1
)+

, i = n+ 1, . . . , 2n.
(29)

From (23) and (25), si = ui and ci = un+i, for i = 1, . . . , n.
Next, we find si and ci by determining β in (29). First,

assume that, in the optimal policy, there is an i such that si > 0
and ci > 0. Thus, by Lemma 1, we must have

∑n
i=1 si+ci =

C. We initially take random (si, ci) pairs such that
∑n
i=1 si+

ci = C. Then, given the initial (si, ci) pairs, we immediately
choose ui = 0 for φi < 0. For the remaining ui with φi ≥ 0,
we apply a solution method similar to that in [4]. By assuming
φi ≥ β, i.e., by disregarding (·)+ in (29), we solve

∑2n
i=1 ui =

C for β. Then, we compare the smallest φi which is larger
than zero in (28) with β. If we have φi ≥ β, then it implies
that ui ≥ 0 for all remaining i. Thus, we have obtained ui
values for given initial (si, ci) pairs. If the smallest φi which
is larger than zero is smaller than β, then the corresponding ui
is negative and we should choose ui = 0 for the smallest non-
negative φi. Then, we repeat this procedure until the smallest
non-negative φi is larger than β. After determining all ui, we
obtain si = ui and ci = un+i for i = 1, . . . , n. Then, with the
updated values of (si, ci) pairs, we keep finding ui’s until the
KKT conditions in (19) and (20) are satisfied.

We note that for indices (persons) i for which (si, ci) are
zero, the health care provider does not perform any tests, and
maps these people as either always infected, i.e., x̂i(t) = 1 for
all t, or always healthy, i.e., x̂i(t) = 0. If x̂i(t) = 0 for all t,
∆i = θλi

µi+λi
, and if x̂i(t) = 1 for all t, ∆i = (1−θ)µi

µi+λi
. Thus,

for such i, the health care provider should choose x̂i(t) = 0

for all t, if θλi

µi+λi
< (1−θ)µi

µi+λi
, and should choose x̂i(t) = 1 for

all t, otherwise, without performing any tests.
Finally, we note that the problem in (17) is not a convex

optimization problem as the objective function is not jointly
convex in si and ci. Therefore, the solutions obtained via
the proposed method may not be globally optimal. For that
reason, we choose different initial starting points and apply the
proposed alternating minimization based algorithm and choose
the solution that achieves the smallest ∆ in (7).

V. NUMERICAL RESULTS

In this section, we provide four numerical results. For these
examples, we take λi as

λi = ari, i = 1, . . . , n, (30)
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Fig. 4. (a) Test rates si and ci, (b) corresponding average difference ∆i.

where r = 0.9 and a is such that
∑n
i=1 λi = 6. Also, we take

µi as

µi = bqi, i = 1, . . . , n, (31)

where q = 1.1 and b is such that
∑n
i=1 µi = 4. Since λi in

(30) decreases with i, people with lower indices get infected
more quickly compared to people with higher indices. Since
µi in (31) increases with i, people with higher indices recover
more quickly compared to people with lower indices. Thus,
low index people get infected quickly and get well slowly.

In the first example, we take the total number of people as
n = 10, the total test rate as C = 16, and θ = 0.5. We start
with randomly chosen si and ci such that

∑n
i=1 si + ci = 16,

and apply the alternating minimization based method proposed
in Section IV. We repeat this process for 30 different initial
(si, ci) pairs and choose the solution that gives the smallest
∆. In Fig. 4(a), we observe that the first three people are never
tested by the health care provider. We note that si, which is
the test rate when x̂i(t) = 0, initially increases with i but then
decreases with i. This means that people who get infected
rarely are tested less frequently when they are marked as
healthy. Similarly, we observe in Fig. 4(a) that ci, which is
the test rate when x̂i(t) = 1, monotonically increases with i.
In other words, people who recover from the virus quickly are
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Fig. 5. The average difference ∆ with respect to total test rate C.
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Fig. 6. The average difference ∆ with respect to number of people n. We
use uniform infection and healing rates, i.e., λi = 6

n
and µi = 4

n
for all i,

and also λi in (30) and µi in (31) with
∑n

i=1 λi = 6 and
∑n

i=1 µi = 4.

tested more frequently when they are marked infected.
In Fig. 4(b), we plot ∆i resulting from the solution found

from the proposed algorithm, ∆i when the health care provider
applies tests to everyone in the population uniformly, i.e.,
si = ci = C

2n for all i, and ∆i when the health care provider
applies no tests, i.e., si = ci = 0 for all i. In the case of
no tests, we have ∆i = min{ θλi

µi+λi
, (1−θ)µi

µi+λi
}. We observe in

Fig. 4(b) that the health care provider applies tests on people
whose ∆i can be reduced the most as opposed to uniform
testing where everyone is tested equally. Thus, the first three
people who have the smallest ∆i are not tested by the health
care provider. With the proposed solution, by not testing the
first three people, ∆i are further reduced for the remaining
people compared to uniform testing. For the people who are
not tested, the health care provider chooses x̂i(t) = 1 all the
time, i.e., marks these people always sick as θλi

µi+λi
> (1−θ)µi

µi+λi
.

This is expected as these people have high λi and low µi, i.e.,
they are infected easily and they stay sick for a long time.

In the second example, we use the same set of variables
except for the total test rate C. We vary the total test rate C
in between 5 and 20. We plot ∆ with respect to C in Fig. 5.
We observe that ∆ decreases with C. Thus, with higher total
test rates, the health care provider can tract the infection status
of the population better as expected.

In the third example, we use the same set of variables except
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Fig. 7. (a) ∆ in (7), ∆̄1 which is 1
n

∑n
i=1 ∆i1, and ∆̄2 which is

1
n

∑n
i=1 ∆i2, (b) corresponding total test rates

∑n
i=1 si and

∑n
i=1 ci.

for the total number of people n. In addition, we also use
uniform infection and healing rates, i.e., λi = 6

n and µi = 4
n

for all i, for comparison with λi in (30) and µi in (31), while
keeping the total infection and healing rates the same, i.e.,∑n
i=1 λi = 6 and

∑n
i=1 µi = 4, for both cases. We vary

the number of people n from 2 to 30. We observe in Fig. 6
that when the infection and healing rates are uniform in the
population, the health care provider can track the infection
status with the same efficiency, even though the population
size increases (while keeping the total infection and healing
rates fixed). For the case of λi in (30) and µi in (31), when
we increase the population size, we increase the number of
people who rarely get sick, i.e., people with high i indices,
and also people who rarely heal from the disease, i.e., people
with small i indices. Thus, it gets easier for the health care
provider to track the infection status of the people. That is why
when we use λi in (30) and µi in (31), we observe in Fig. 6
that the health care provider can track the infection status of
the people better, even though the population size increases.

In the fourth example, we use the same set of variables as
the first example except for the importance factor θ. Here, we
vary θ in between 0.2 to 0.7. We plot ∆ in (7), ∆̄1 which is
∆̄1 = 1

n

∑n
i=1 ∆i1, and ∆̄2 which is ∆̄2 = 1

n

∑n
i=1 ∆i2 in



Fig. 7(a). Note that ∆̄1 represents the average difference when
people are infected, but they have not been detected by the
health care provider, and ∆̄2 represents the average difference
when people have recovered, but the health care provider still
marks them as infected. Note that when θ is high, we give
importance to minimization of ∆̄1, i.e., the early detection of
people with infection, and when θ is low, we give importance
to minimization of ∆̄2, i.e., the early detection of people who
recovered from the disease. That is why we observe in Fig. 7(a)
that ∆̄1 decreases with θ while ∆̄2 increases with θ.

We plot the total test rates
∑n
i=1 si and

∑n
i=1 ci in Fig. 7(b).

We observe in Fig. 7(b) that if it is more important to detect the
infected people, i.e., if θ is high, then the health care provider
should apply higher test rates to people who are marked as
healthy. In other words,

∑n
i=1 si increases with θ. Similarly,

if it is more important to detect people who recovered from the
disease, then the health care provider should apply high test
rates to people who are marked as infected. That is,

∑n
i=1 ci

is high when θ is low. Therefore, depending on the priorities
of the health care provider, a suitable θ needs to be chosen.

VI. CONCLUSION

We considered timely tracking of infection status of indi-
viduals in a population. For exponential infection and healing
processes with given rates, we determined the rates of ex-
ponential testing processes. We observed in numerical results
that the test rates depend on individuals’ infection and healing
rates, the individuals’ last known state of healthy or infected,
as well as the health care provider’s priorities of detecting
infected people or recovered people more quickly.
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