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ABSTRACT
In this work, we examine the challenges that service providers

encounter in managing complex service function graphs,

while controlling service delivery latency. Based on the

lessons we learn, we outline the design of a new system,

Invenio, that empowers providers to e�ectively place mi-

croservices without prior knowledge of service functionality.

Invenio correlates user actions with the messages they trig-

ger seen in network traces, and computes procedural a�nity
for communication among microservices for each user ac-

tion. �e procedural a�nity values can then be used to

make placement decisions to meet latency constraints of

individual user actions. Preliminary experiments with the

Clearwater IP Multimedia Subsystem demonstrate that even

a single high-latency link can result in signi�cant perfor-

mance degradation, and placement with Invenio can increase

user quality of experience.
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1 INTRODUCTION
�e recent trends of increasing virtualization and cloudi�-
cation have reduced the capital and operational costs for

service providers. Network Functions Virtualization (NFV)

enables the deployment of virtualized instances of Network

Functions (NFs) on demand [14]. New service o�erings can

be created by adding one or more NFs to a function graph,

also known as Service Function Chain (SFC), i.e., a graph of

NFs. So�ware architectures have evolved to support the pace

of service deployment, and disaggregated �ne-grained mi-

croservice designs are replacing monolithic designs [11, 32].

Complexity introduced by composition and cloud-
i�cation. Rapidly adding and deleting new services in-

curs a cost. Function graphs are becoming more complex,

and the e�ort associated with service deployment is grow-

ing [15, 30, 37, 38]. To reduce costs, service providers are

increasingly using private or public clouds to deploy services

that had traditionally been con�ned to a single data center

and had used carefully-designed proprietary hardware. �is

cloudi�cation trend poses unique challenges to orchestration

frameworks, particularly in instantiating and placing Virtu-

alized Network Functions (VNFs) in a function graph with

strict Service Level Agreements (SLAs) [38].

Network functions in systems such as the cellular Evolved

Packet Core (EPC) and IP Multimedia Subsystems (IMS) re-

act poorly to unpredictable latency variation [26, 28, 29, 34].

Fortunately, service providers can use their domain knowl-

edge of NF functionality, and meticulously de�ne function

graphs [1, 2] to bound the latency. Virtualization platforms

such as Openstack [23], Kubernetes [18], and Docker [10]

allow administrators to con�gure “a�nity policies” in place-

ment. �e a�nity policies specify which NFs should be co-

located to meet SLA requirements. However, the increasing

use of non-standard interfaces and the ongoing integration

of 5G core (5GC) [3] into existing 4G network deployments



is necessitating extensive manual re-analysis of communi-

cation pa�erns. �e diversity of NFs in modern networks

and the new 5GC interfaces make determining the function

graphs involved in service delivery (and the communication

a�nities between their constituent NFs) a time-consuming

and error-prone task.

Complexity introduced by microservices. Microser-

vices are �ne-grained, independent components that can be

deployed as autonomous entities communicating via REST-

based proprietary interfaces [7, 24]. �is results in disaggre-

gation and decomposition of a VNF intomultiple smaller VNF

Components (VNFCs), andmore complex function graphs [11,

38]. �e lack of standardization in microservice architectures

yields VNFCs that play roles that do not accurately map to

an NF de�ned by standards. �is ambiguity in the role of

VNFCs/microservices implies that placement using domain

knowledge is insu�cient, and we need automated tools to

infer communication pa�erns between components to aid

service providers.

Our approach. Weuse information exposed byNFs ormi-

croservices to optimize placement and meet SLAs [15, 30, 37].

However, merely co-locating NFs based on the number of

messages they exchange [30] can yield unexpected results

due to the diversity of workloads. Instead, we propose group-

ing messages triggered by a user action into procedures, and
computing procedural a�nity between NFs. A provider can

then make placement decisions based on procedural a�nity

values, together with procedure type distribution and poli-

cies. For example, a VNFC used during voice calls, but not for

SMS (text-msg), in a cellular network can be placed based on

the currently dominant workload type and its requirements.

Contributions. �is paper describes the Invenio system
for supporting NF deployment. Invenio maps user activity

at the network edge to tra�c in the network core, com-

putes procedural a�nity, and aids in making placement de-

cisions. Invenio includes two subsystems that are executed

a�er upgrades or policy and service changes: one in which

a snapshot of tra�c is analyzed to compute a�nity values,

and another in which an orchestrator uses computed proce-

dural a�nity values, in conjunction with current procedure

type distribution and policy rules, to make placement deci-

sions. �is paper primarily focuses on �rst subsystem, i.e.,
automatically computing procedural a�nity values. Invenio
empowers providers to optimize placement to meet SLA ob-

jectives, even with upgrades in services and microservices

and changing user demands. In summary,

(1) We identify the challenges for a service provider to

meet SLAs (§3).

(2) We describe Invenio, a system for service providers

to automatically compute procedural a�nity (§4).

(3) We demonstrate the bene�ts of placement based on

a�nity by studying the performance of voice-call

and text-msg workloads (§5).

We believe that the principles underlying Invenio are appli-
cable to the service-based architecture of the 5GC and other

microservice-based deployments.

2 DEPLOYING MICROSERVICES
A network function can be instantiated on bare metal (as a

Physical Network Function (PNF)) or on virtualized hardware

(as a VNF). A VNF can be deployed as a collection of VNFCs

or microservices. In the rest of this paper, we use the term NF

to refer to all three types of instantiations (PNF/VNF/VNFC).

�e increasing use of private or public clouds to reduce

operational costs has yielded scenarios where NFs in a func-

tion graph are deployed across multiple physical machines

in one or more data centers. Consider Fig. 1 which shows an

example microservice-based cellular network for Voice over

LTE (VoLTE) that includes wireless access, session manage-

ment, voice-call signaling, policy control (QoS), and billing.

Latency-sensitive NFs (such as signaling and policy) may be

connected by high and unpredictable latency links.

2.1 Impact of Service Type
An orchestrator that cannot instantiate the entire function

graph in Fig. 1 on a single machine or rack can identify the

NFs exchanging a large number of messages and place them

in close proximity. Modern networks o�er many services,

however, and NFs exchange di�erent types and numbers of

messages to support each service.
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Figure 1: Latencies in a cellular network

Not all services have equal impact on user-perceived la-

tency and quality of experience (QoE). For example, interac-

tive services such as voice calls impact user QoE more than

non-interactive services such as text-msg or presence ser-

vices [33]. Orchestrators must reduce the end-to-end latency

of interactive services by minimizing the inter-NF latency

for NFs handling these services. Simple techniques such as

counting total messages exchanged between NFs [30] are

not always e�ective in making placement decisions as they

do not explicitly consider the impact of inter-NF latency on

user QoE.

Table 1 shows the percentage of tra�c exchanged by NF

pairs for two di�erent procedure type distributions of voice-

call (V), text-msg (T), and presence (P) services in a VoLTE



Table 1: Messages exchanged between NF pairs in a
microservice-based VoLTE implementation

% of Tra�c
NF with Service Type Distribution
Pair V(5%),T(5%),P(90%) V(48%),T(52%)

AF, SUB 27.4% 0%

SUB, memcached 27.4% 0%

GX-App, memcached 9% 20%

AF, PCRF-Base 9% 20%

PCEF, PCRF-Base 9% 20%

PCRF-Base, GX-App 9% 20%

PCRF-Base, RX-App 6% 13.5%

RX-App, SDP 3% 6.4%

system we implemented. �e le� column uses proportions

from typical busy-hour IMS tra�c [4] in which presence

is triggered ∼9x more frequently than voice. Clearly, ex-

changed messages depend on the incoming procedure type

distribution and therefore merely using the number of mes-

sages for placement [30] may optimize non-interactive ser-

vices such as presence and degrade user QoE.

Tomeet SLAs for latency-sensitive services, service providers

may (a) create dedicated NFs to optimize speci�c functional-

ity [28], or (b) decompose existing monolithic applications

into lightweight microservice components, that are then ag-

gregated by functionality to create NF bundles, and placed

together with a higher probability [34]. Manually identify-

ing and con�guring bundles can be di�cult and error-prone,

however.

2.2 Key Insight
Our goal is to empower service providers to easily and auto-

matically react to upgrades and changing user QoE demands.

From prior research [26, 28, 29, 34], we observe that: (a) NFs

typically exchange several messages to complete a seem-

ingly simple user action such as turning on User Equipment

(UE) or making a voice call, and (b) Network endpoints only

perceive latency in the actions they trigger (i.e., end-to-end
latency in Fig. 1), and are oblivious to message exchanges and

inter-NF latency within a function graph. User QoE there-

fore only depends on user action/network response pairs,

such as initiating a voice call (action) and hearing a dial tone

(network response), or turning on an Internet connection

(action) and being connected to a packet access network such

as LTE (network response). Based on this insight, we aim to

leverage readily available knowledge of endpoint actions to
improve NF placement.

3 GROUPING PROCEDURE MESSAGES
We need to group events or messages triggered due to a

single user action into procedures. We then use this procedure

information to compute procedural a�nity between NFs for

each procedure type. �e procedural a�nity information is

then used for NF placement.

Since NFs in modern networks exchange numerous mes-

sages, manually determining control messages that are trig-

gered due to a speci�c endpoint (or associated user or sub-

scriber) action can be tedious and error-prone. We propose

to (a) automatically isolate control messages related to a user,

and (b) map each message to an action invoked by that user.

We describe the challenges in accomplishing these tasks in

the remainder of this section.

3.1 Scale and Complexity
It is necessary to understand the protocols and message for-

mats exchanged by each NF. For example, consider a cellular

network EPC (including NFs to inter-work with previous

generation networks (2G, 3G) and WiFi). Such an EPC de-

ployment can involve 60+ NFs communicating via 15+ pro-

tocols over 150+ interfaces using 500+ message types [2, 9].

While many of these NFs are logical, the sheer number of

NFs, supported protocols, and message types makes isolating

and understanding control-plane tra�c a di�cult task.

3.2 User and Session Identi�cation
Networks such as cellular networks check user (subscriber)

identi�ers located in control messages to determine the user

associated with a device or a network endpoint, and NFs

use these identi�ers to enforce policies and bill users. A

user is identi�ed by: (a) Subscriber-ID: the key used by the

network to authenticate a device, identify packets associ-

ated with it, and bill the user, and (b) Session-ID: the key
allocated by an NF to group together messages triggered by

a device. Unlike the subscriber-ID, the value of session-ID

is not pre-allocated, i.e., NFs allocate a value at run-time.

Di�erent protocols and interfaces use di�erent terms to refer

to the subscriber-ID and session-ID carrying headers.

Since the session-ID is dynamically allocated, the relation

between session-ID and subscriber-ID may vary based on

the NFs involved in message processing. When a single

device creates multiple connections at the same time (such

as in EPC), multiple session-IDs may be allocated to the

same subscriber-ID. Additionally, an EPC/IMS may create a

mapping between the session-ID and the subscriber-ID, and

then use the two values interchangeably.

As in the 4G core, 5GC NFs [3] use headers such as Sub-

scription Permanent Identi�er (SUPI) and Subscription Con-

cealed Identi�er (SUCI) to identify, authorize, and bill tra�c.

A user can create multiple sessions with 5GC data networks

and therefore the 5GC NFs use session headers such as the

pudSessionId in conjunction with the user ID to uniquely

identify user sessions. When 4G EPC and the 5GC coexist,

the complexity of manual NF placement further increases.



3.3 Proprietary Microservices
Microservice architectures use �ne-grained autonomous com-

ponents, fragmenting traditional control-plane NFs into mul-

tiple VNFCs [15, 37, 38]. �e VNFCs are independently in-

stantiated, and communicate using proprietary message for-

mats. �is lack of standardization implies that the roles

and functionalities of VNFCs are not well-understood and

can change with new versions, altering their a�nity. Conse-

quently, service providers must (re)analyze a�nity whenever

NFs are upgraded or a service is added/removed. Microser-

vices also result in more complex function graphs, reducing

the latency allowed for each VNFC [11, 38].

While the lack of standardization can complicate map-

ping a given message to a user action, microservices o�en

reuse the subscriber-ID/session-ID in traditional signaling

protocols [20, 25] to facilitate logging and reduce perfor-

mance overhead. For example, the timer service (Chronos)

in Clearwater [25], a popular microservice-based IMS imple-

mentation, uses the “Call-ID” header in Session Initiation

Protocol (SIP) messages to manage timers. �is behavior

can be exploited to trace VNFC-generated messages to user

actions.

3.4 Lessons Learned
�e above discussion highlights three consequences for In-
venio. First, Invenio should automate message and event

processing, which should be transformed into a protocol-

agnostic format before further processing. Second, Invenio
should understand the relation between di�erent identi�ers

used by NFs to correlate messages related to the same user.

�is involves understanding the user-identifying headers

used by standard protocols, and correlation of identi�ers in

proprietary message payloads. �ird, Invenio should under-

stand user actions and their corresponding responses, and

map each message to a speci�c user action. Since internal

implementations of microservice-based systems change fre-

quently, Invenio should only use endpoint messages which

follow well-known protocols (such as messages (1) and (2)

in Fig. 1) to map messages to user actions.

4 SYSTEM PROTOTYPE
Fig. 2 shows the architecture of our prototype. Invenio con-
sists of two components: an a�nity engine, executed a�er

upgrades, and a placement engine, executed when a new

NF is to be instantiated or a�er major changes in policies or

procedure type distribution.

Invenio uses messages exchanged between NFs in a func-

tion graph to identify procedures and their associated mes-

sages. Invenio utilizes output generated by open-source

packet analyzer so�ware such as Wireshark [36] to decode
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Figure 2: Invenio architecture

raw messages. We use Wireshark to export Packet Descrip-

tion Markup Language (PDML) and Portal Structure Markup

Language (PSML) �les, and use these �les as inputs. In-
venio also uses domain knowledge of the service provider,

speci�ed in a con�guration �le containing the following in-

formation in xml format: (a) Procedure start/end messages,

and (b) Subscriber-ID and session-ID header names. Finally,

Invenio uses procedure type distribution and provider policy

information to decide NF placement.

�e �rst step in computing a�nity is to �nd user-identifying

headers. A header inference module analyzes messages in

the trace stream to identify possible headers that carry the

subscriber/session-ID values. �en, the noise �ltering mod-

ule eliminates messages not generated due to user actions.

Since protocols and interfaces use di�erent encoding for-

mats (binary or text) to exchange information, we convert

the input message stream to a protocol-agnostic interme-

diate format that we refer to as event objects. �e session

slicing module operates on the event objects generated by

the a�ribute extraction module to identify all messages as-

sociated with a single user. �e procedure slicing module

determines the NF set and message set associated with each

procedure type. Finally, the placement engine uses a�nity

information generated by the a�nity engine, together with

input procedure type distribution and provider policies, to

make the �nal NF placement decisions.

Our Invenio prototype includes∼2600 lines of Python code.

5 PRELIMINARY RESULTS
In this section, we seek to answer two questions:

(1) How e�ective is Invenio in computing a�nity with

multiple protocols?

(2) What is the impact of inter-NF latency on perfor-

mance under di�erent workloads?



Table 2: Testbed con�guration

Server CPU Cores RAM NFs Deployed
R430 2x Intel 16 64 GB Clearwater

Xeon E5-2620 v4

DL120 1x Intel 4 8 GB Swarm Workers,

Xeon X3430 Load-Generator

5.1 Clearwater Architecture
We use Clearwater [25], an open-source platform for a con-

tainerized, microservice-based, implementation of an IMS.

Clearwater uses REST-based communication to retrieve au-

thentication vectors, manage timers and handle state syn-

chronization, which makes it ideal for a case study. �e

architecture is illustrated in Fig. 3 (adapted from [25]). Only

the components used in our experiments are depicted. We

use Clearwater version 1.0 (clearwater-docker release-120).

Bono an edge proxy that implements the P-CSCF (Proxy Call

Session Control Function (CSCF)) in the 3GPP IMS architec-

ture [1]. SIP clients communicate with Bono over UDP/TCP

connections. Sprout implements the Registrar, I/S-CSCF

(Interrogating/Serving CSCF) and Application Server compo-

nents. Homestead provides a REST interface to Sprout for

retrieving authentication vectors and user pro�les. Chronos
is a distributed, redundant, reliable timer service. Bono and

Sprout report chargeable events to the Charging Trigger

Function Ralf.

Sprout
(I/S-CSCF, 

BGCF, TAS)

Homestead
(HSS Mirror)

Homestead
(HSS Mirror)

SIP HTTP

HTTP HTTP

Bono
(P-CSCF, 
WebRTC)

Bono
(P-CSCF, 
WebRTC)

Chronos
(Timer Service)

Chronos
(Timer Service)

Ralf
(Rf CTF)

HTTP

SIP

Figure 3: Clearwater architecture

5.2 Experimental Testbed
Our testbed includes one Dell PowerEdge R430 and 5 HP Pro-

Liant DL120 G6 (Table 2) connected by a Gigabit Dell N2024

Switch. We use Docker [10] version 17.03.0-ce and Docker-

compose (v1.11.2) to deploy NFs for Clearwater (Fig. 3). Each

NF runs within a container and all containers are deployed

on the same physical host.

5.3 Experimental Methodology
We use two primary network services: (a) Voice-call: �is

service involves two procedure types (INVITE and BYE). (b)

Short Message Service (text-msg): �is service utilizes a

single procedure of type MESSAGE. We also use SUBSCRIBE

(which supports the Presence service) to illustrate the impact

Table 3: NF a�nity for Clearwater

Procedure Type NF Pair A�nity

NFs: Bono, Sprout, Ralf

Voice-call

Bono, Sprout 10

Bono, Ralf 8

Sprout, Ralf 4

Text-msg

Bono, Sprout 4

Bono, Ralf 2

Sprout, Ralf 0

of message-count based placement on system performance.

However, SUBSCRIBE messages are not generated during

performance evaluation and system performance is only

evaluated for interactive workloads (voice-call and text-msg).

SIPp [35] is used to generate four types of messages: REG-

ISTER, INVITE, BYE and MESSAGE. Each SIPp instance runs

on a dedicated physical machine and saturates available sys-

tem resources. We measure failures by the observing the

result code in the SIP response messages. We record the total

number of successful calls or messages for each workload

type. For the voice-call workload, where multiple procedure

types are required to complete a call, we only count the num-

ber of calls that were successfully completed; i.e., partially
completed calls are ignored. Each experiment runs for 30

seconds. Each experiment is repeated at least 5 times and

results are shown with 95% con�dence intervals.

5.4 A�nity Analysis
We use Invenio to compute a�nity between NFs in Clearwa-

ter for both voice-call and text-msg workloads. �e results

are presented in Table 3. We observe that the a�nity be-

tween Clearwater NFs is di�erent for voice-call and text-msg

tra�c. For instance, for voice-call tra�c, there is high a�n-

ity between Bono, Sprout and Ralf, whereas for text-msg

tra�c, Bono and Ralf only exchange two messages, and no

messages are exchanged between Sprout and Ralf. Ralf there-

fore has a higher a�nity with Bono and Sprout for voice-call

workload compared to text-msg workload. �e placement

of Ralf w.r.t. to Bono and Sprout thus has a higher impact

on the performance of voice calls compared to the text-msg

workload.

5.5 Preliminary Performance Results
We �rst benchmark the performance of the voice-call and

text-msgworkloads with negligible delay. �ese results serve

as baselines, and are labeled “ideal” in our plots. We then

use tc to introduce latency on links connecting two NF pairs

(a) Ralf to Sprout and (b) Ralf to Bono, to validate the im-

pact of placement of Ralf on performance. We experiment

with delays of 5 ms, 10 ms, 15 ms, and 20 ms and compare

to the “ideal” case. Fig. 4a and 4b present the results of
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Figure 4: Impact of latency and a�nity on Clearwater

voice-call and text-msg workloads, respectively. We make

the following observations from the �gures: (a) Even a sin-

gle high-latency link can result in signi�cant performance

degradation for both voice-call and text-msg workloads, and

(b) Performance degradation for the voice-call workload (in

which Ralf has higher a�nity) is more than for the text-msg

workload (in which Ralf has lower a�nity). �ese obser-

vations underscore the need for careful VNFC placement.

While manual analysis shows that Sprout and Bono (which

collectively implement the functionality of the CSCF) must

always be co-located, analysis of IMS standards does not suf-

�ce for proprietary IMS implementations such as Clearwater

in which internal implementation determines the a�nity

values between VNFCs (Bono/Sprout and Ralf).

6 RELATEDWORK
Wediscusswork related to service placement andmonitoring,

then work that reverse-engineers or infers protocol behavior.

Service placement andmonitoring. Functionality-based
decomposition has been proposed to reduce latency and in-

crease throughput for cellular network control planes [16,

26, 28, 34]. �at body of work uses manual analysis of net-

work architecture and tra�c to �nd the functional elements

that can be aggregated. Stratos [12] avoids traversing over-

subscribed inter-rack links during function placement, and

Selimi et al. [31] explore placement to maximize bandwidth

utilization. None of these studies consider workload types

and procedures. Other work [15, 30, 37] formulates the place-

ment problem as a graph partitioning problem or an opti-

mization problem. �is is orthogonal to our work, as our

notion of procedural a�nity is a new factor to consider as

an input to the placement problem.

Recent studies [7, 21, 22, 24, 38] have highlighted chal-

lenges in integrating, deploying, and managing microservice-

based applications. For instance, ucheck [24] uses runtime

veri�cation and enforcement of invariants to ease manag-

ing microservice-based applications. Probius [22] locates

performance bo�lenecks by correlating VNF, hypervisor,

and system metrics. NFVPerf [21] uses network traces col-

lected from NFs to compute per-hop message processing

latency and infer performance bo�lenecks. Our work pro-

poses procedure-driven microservice deployment, and is

thus complementary to this line of work.

Protocol inference. Extracting protocol state informa-

tion from network traces, or reverse engineering a protocol,

has been widely studied in the literature. Prior work extracts

speci�cations of unknown protocols [5, 6, 8, 17], and uses

inferred message formats to detect malware signatures [19].

Invenio also exploits protocol header information, but utilizes

protocol analyzer tools to extract user-identifying headers.

Other categories of work in this area use xml or json for-

mats exported by tools such as wireshark to derive protocol

state machines [13, 27]. While Invenio shares �nite-state ma-

chine extraction techniques with these papers, it di�ers in

one important aspect: we use the extracted state information

to compute a�nity between NFs for an entire function graph.

In contrast, prior work extracts the state machine for a single

NF and does not merge state machines from multiple NFs to

derive procedure information for a function graph.

7 CONCLUSIONS
�is paper gives a brief overview of a system that enables ser-

vice providers to be�er manage the ever-growing complexity

of microservice-based network functions. We showed that

we can automatically compute communication a�nity val-

ues for each user-triggered procedure. Our work empowers

service providers to make and update placement decisions

without the time-consuming and error-prone manual anal-

ysis currently used. Our preliminary experiments with the

Clearwater IP Multimedia Subsystem are promising. We ex-

pect the importance of this work to grow as more complex

disaggregated services are deployed.
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