Procedure-driven Deployment Support for the
Microservice Era

Amit Sheoran
asheoran@alumni.purdue.edu

Puneet Sharma
Hewlett Packard Labs
puneet.sharma@hpe.com

ABSTRACT

In this work, we examine the challenges that service providers
encounter in managing complex service function graphs,
while controlling service delivery latency. Based on the
lessons we learn, we outline the design of a new system,
Invenio, that empowers providers to effectively place mi-
croservices without prior knowledge of service functionality.
Invenio correlates user actions with the messages they trig-
ger seen in network traces, and computes procedural affinity
for communication among microservices for each user ac-
tion. The procedural affinity values can then be used to
make placement decisions to meet latency constraints of
individual user actions. Preliminary experiments with the
Clearwater IP Multimedia Subsystem demonstrate that even
a single high-latency link can result in significant perfor-
mance degradation, and placement with Invenio can increase
user quality of experience.

CCS CONCEPTS

«Networks — Network management; Data center net-
works; Mobile networks;

KEYWORDS

Cloud-native architectures; Microservices; Cellular Networks

ACM Reference format:

Amit Sheoran, Sonia Fahmy, Puneet Sharma, and Navin Modi. 2021.
Procedure-driven Deployment Support for the Microservice Era. In
Proceedings of 22nd International Middleware Conference Industrial

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Middleware °21 Industrial Track, Virtual Event, Canada

© 2021 ACM. 978-1-4503-9152-8/21/12...$15.00

DOI: 10.1145/3491084.3491429

Sonia Fahmy
Purdue University
fahmy@purdue.edu

Navin Modi

modin@alumni.purdue.edu

Track, Virtual Event, Canada, December 6—10, 2021 (Middleware '21
Industrial Track), 7 pages.
DOI: 10.1145/3491084.3491429

1 INTRODUCTION

The recent trends of increasing virtualization and cloudifi-
cation have reduced the capital and operational costs for
service providers. Network Functions Virtualization (NFV)
enables the deployment of virtualized instances of Network
Functions (NFs) on demand [14]. New service offerings can
be created by adding one or more NFs to a function graph,
also known as Service Function Chain (SFC), i.e., a graph of
NFs. Software architectures have evolved to support the pace
of service deployment, and disaggregated fine-grained mi-
croservice designs are replacing monolithic designs [11, 32].

Complexity introduced by composition and cloud-
ification. Rapidly adding and deleting new services in-
curs a cost. Function graphs are becoming more complex,
and the effort associated with service deployment is grow-
ing [15, 30, 37, 38]. To reduce costs, service providers are
increasingly using private or public clouds to deploy services
that had traditionally been confined to a single data center
and had used carefully-designed proprietary hardware. This
cloudification trend poses unique challenges to orchestration
frameworks, particularly in instantiating and placing Virtu-
alized Network Functions (VNFs) in a function graph with
strict Service Level Agreements (SLAs) [38].

Network functions in systems such as the cellular Evolved
Packet Core (EPC) and IP Multimedia Subsystems (IMS) re-
act poorly to unpredictable latency variation [26, 28, 29, 34].
Fortunately, service providers can use their domain knowl-
edge of NF functionality, and meticulously define function
graphs [1, 2] to bound the latency. Virtualization platforms
such as Openstack [23], Kubernetes [18], and Docker [10]
allow administrators to configure “affinity policies” in place-
ment. The affinity policies specify which NFs should be co-
located to meet SLA requirements. However, the increasing
use of non-standard interfaces and the ongoing integration
of 5G core (5GC) [3] into existing 4G network deployments

is necessitating extensive manual re-analysis of communi-
cation patterns. The diversity of NFs in modern networks
and the new 5GC interfaces make determining the function
graphs involved in service delivery (and the communication
affinities between their constituent NFs) a time-consuming
and error-prone task.

Complexity introduced by microservices. Microser-
vices are fine-grained, independent components that can be
deployed as autonomous entities communicating via REST-
based proprietary interfaces [7, 24]. This results in disaggre-
gation and decomposition of a VNF into multiple smaller VNF
Components (VNFCs), and more complex function graphs [11,
38]. The lack of standardization in microservice architectures
yields VNFCs that play roles that do not accurately map to
an NF defined by standards. This ambiguity in the role of
VNFCs/microservices implies that placement using domain
knowledge is insufficient, and we need automated tools to
infer communication patterns between components to aid
service providers.

Our approach. We use information exposed by NFs or mi-
croservices to optimize placement and meet SLAs [15, 30, 37].
However, merely co-locating NFs based on the number of
messages they exchange [30] can yield unexpected results
due to the diversity of workloads. Instead, we propose group-
ing messages triggered by a user action into procedures, and
computing procedural affinity between NFs. A provider can
then make placement decisions based on procedural affinity
values, together with procedure type distribution and poli-
cies. For example, a VNFC used during voice calls, but not for
SMS (text-msg), in a cellular network can be placed based on
the currently dominant workload type and its requirements.

Contributions. This paper describes the Invenio system
for supporting NF deployment. Invenio maps user activity
at the network edge to traffic in the network core, com-
putes procedural affinity, and aids in making placement de-
cisions. Invenio includes two subsystems that are executed
after upgrades or policy and service changes: one in which
a snapshot of traffic is analyzed to compute affinity values,
and another in which an orchestrator uses computed proce-
dural affinity values, in conjunction with current procedure
type distribution and policy rules, to make placement deci-
sions. This paper primarily focuses on first subsystem, i.e.,
automatically computing procedural affinity values. Invenio
empowers providers to optimize placement to meet SLA ob-
jectives, even with upgrades in services and microservices
and changing user demands. In summary,

(1) We identify the challenges for a service provider to
meet SLAs (§3).

(2) We describe Invenio, a system for service providers
to automatically compute procedural affinity (§4).

(3) We demonstrate the benefits of placement based on
affinity by studying the performance of voice-call
and text-msg workloads (§5).

We believe that the principles underlying Invenio are appli-
cable to the service-based architecture of the 5GC and other
microservice-based deployments.

2 DEPLOYING MICROSERVICES

A network function can be instantiated on bare metal (as a
Physical Network Function (PNF)) or on virtualized hardware
(as a VNF). A VNF can be deployed as a collection of VNFCs
or microservices. In the rest of this paper, we use the term NF
to refer to all three types of instantiations (PNF/VNF/VNEFC).
The increasing use of private or public clouds to reduce
operational costs has yielded scenarios where NFs in a func-
tion graph are deployed across multiple physical machines
in one or more data centers. Consider Fig. 1 which shows an
example microservice-based cellular network for Voice over
LTE (VoLTE) that includes wireless access, session manage-
ment, voice-call signaling, policy control (QoS), and billing.
Latency-sensitive NFs (such as signaling and policy) may be
connected by high and unpredictable latency links.

2.1 Impact of Service Type

An orchestrator that cannot instantiate the entire function
graph in Fig. 1 on a single machine or rack can identify the
NFs exchanging a large number of messages and place them
in close proximity. Modern networks offer many services,
however, and NFs exchange different types and numbers of
messages to support each service.

e2e Latency

Figure 1: Latencies in a cellular network

Not all services have equal impact on user-perceived la-
tency and quality of experience (QoE). For example, interac-
tive services such as voice calls impact user QoE more than
non-interactive services such as text-msg or presence ser-
vices [33]. Orchestrators must reduce the end-to-end latency
of interactive services by minimizing the inter-NF latency
for NFs handling these services. Simple techniques such as
counting total messages exchanged between NFs [30] are
not always effective in making placement decisions as they
do not explicitly consider the impact of inter-NF latency on
user QoE.

Table 1 shows the percentage of traffic exchanged by NF
pairs for two different procedure type distributions of voice-
call (V), text-msg (T), and presence (P) services in a VoLTE

Table 1: Messages exchanged between NF pairs in a
microservice-based VOLTE implementation

% of Traffic
NF with Service Type Distribution
Pair V(5%),T(5%),P(90%) | V(48%),1(52%)
AF, SUB 27.4% 0%
SUB, memcached 27.4% 0%
GX-App, memcached 9% 20%
AF, PCRF-Base 9% 20%
PCEF, PCRF-Base 9% 20%
PCRF-Base, GX-App 9% 20%
PCRF-Base, RX-App 6% 13.5%
RX-App, SDP 3% 6.4%

system we implemented. The left column uses proportions
from typical busy-hour IMS traffic [4] in which presence
is triggered ~9x more frequently than voice. Clearly, ex-
changed messages depend on the incoming procedure type
distribution and therefore merely using the number of mes-
sages for placement [30] may optimize non-interactive ser-
vices such as presence and degrade user QoE.

To meet SLAs for latency-sensitive services, service providers

may (a) create dedicated NFs to optimize specific functional-
ity [28], or (b) decompose existing monolithic applications
into lightweight microservice components, that are then ag-
gregated by functionality to create NF bundles, and placed
together with a higher probability [34]. Manually identify-
ing and configuring bundles can be difficult and error-prone,
however.

2.2 Key Insight

Our goal is to empower service providers to easily and auto-
matically react to upgrades and changing user QoE demands.
From prior research [26, 28, 29, 34], we observe that: (a) NFs
typically exchange several messages to complete a seem-
ingly simple user action such as turning on User Equipment
(UE) or making a voice call, and (b) Network endpoints only
perceive latency in the actions they trigger (i.e., end-to-end
latency in Fig. 1), and are oblivious to message exchanges and
inter-NF latency within a function graph. User QoE there-
fore only depends on user action/network response pairs,
such as initiating a voice call (action) and hearing a dial tone
(network response), or turning on an Internet connection
(action) and being connected to a packet access network such
as LTE (network response). Based on this insight, we aim to
leverage readily available knowledge of endpoint actions to
improve NF placement.

3 GROUPING PROCEDURE MESSAGES

We need to group events or messages triggered due to a
single user action into procedures. We then use this procedure

information to compute procedural affinity between NFs for
each procedure type. The procedural affinity information is
then used for NF placement.

Since NFs in modern networks exchange numerous mes-
sages, manually determining control messages that are trig-
gered due to a specific endpoint (or associated user or sub-
scriber) action can be tedious and error-prone. We propose
to (a) automatically isolate control messages related to a user,
and (b) map each message to an action invoked by that user.
We describe the challenges in accomplishing these tasks in
the remainder of this section.

3.1 Scale and Complexity

It is necessary to understand the protocols and message for-
mats exchanged by each NF. For example, consider a cellular
network EPC (including NFs to inter-work with previous
generation networks (2G, 3G) and WiFi). Such an EPC de-
ployment can involve 60+ NFs communicating via 15+ pro-
tocols over 150+ interfaces using 500+ message types [2, 9].
While many of these NFs are logical, the sheer number of
NFs, supported protocols, and message types makes isolating
and understanding control-plane traffic a difficult task.

3.2 User and Session Identification

Networks such as cellular networks check user (subscriber)
identifiers located in control messages to determine the user
associated with a device or a network endpoint, and NFs
use these identifiers to enforce policies and bill users. A
user is identified by: (a) Subscriber-ID: the key used by the
network to authenticate a device, identify packets associ-
ated with it, and bill the user, and (b) Session-ID: the key
allocated by an NF to group together messages triggered by
a device. Unlike the subscriber-ID, the value of session-ID
is not pre-allocated, i.e., NFs allocate a value at run-time.
Different protocols and interfaces use different terms to refer
to the subscriber-ID and session-ID carrying headers.

Since the session-ID is dynamically allocated, the relation
between session-ID and subscriber-ID may vary based on
the NFs involved in message processing. When a single
device creates multiple connections at the same time (such
as in EPC), multiple session-IDs may be allocated to the
same subscriber-ID. Additionally, an EPC/IMS may create a
mapping between the session-ID and the subscriber-ID, and
then use the two values interchangeably.

As in the 4G core, 5GC NFs [3] use headers such as Sub-
scription Permanent Identifier (SUPI) and Subscription Con-
cealed Identifier (SUCI) to identify, authorize, and bill traffic.
A user can create multiple sessions with 5GC data networks
and therefore the 5GC NFs use session headers such as the
pudSessionld in conjunction with the user ID to uniquely
identify user sessions. When 4G EPC and the 5GC coexist,
the complexity of manual NF placement further increases.

3.3 Proprietary Microservices

Microservice architectures use fine-grained autonomous com-
ponents, fragmenting traditional control-plane NFs into mul-
tiple VNFCs [15, 37, 38]. The VNFCs are independently in-
stantiated, and communicate using proprietary message for-
mats. This lack of standardization implies that the roles
and functionalities of VNFCs are not well-understood and
can change with new versions, altering their affinity. Conse-
quently, service providers must (re)analyze affinity whenever
NFs are upgraded or a service is added/removed. Microser-
vices also result in more complex function graphs, reducing
the latency allowed for each VNFC [11, 38].

While the lack of standardization can complicate map-
ping a given message to a user action, microservices often
reuse the subscriber-ID/session-ID in traditional signaling
protocols [20, 25] to facilitate logging and reduce perfor-
mance overhead. For example, the timer service (Chronos)
in Clearwater [25], a popular microservice-based IMS imple-
mentation, uses the “Call-ID” header in Session Initiation
Protocol (SIP) messages to manage timers. This behavior
can be exploited to trace VNFC-generated messages to user
actions.

3.4 Lessons Learned

The above discussion highlights three consequences for In-
venio. First, Invenio should automate message and event
processing, which should be transformed into a protocol-
agnostic format before further processing. Second, Invenio
should understand the relation between different identifiers
used by NFs to correlate messages related to the same user.
This involves understanding the user-identifying headers
used by standard protocols, and correlation of identifiers in
proprietary message payloads. Third, Invenio should under-
stand user actions and their corresponding responses, and
map each message to a specific user action. Since internal
implementations of microservice-based systems change fre-
quently, Invenio should only use endpoint messages which
follow well-known protocols (such as messages (1) and (2)
in Fig. 1) to map messages to user actions.

4 SYSTEM PROTOTYPE

Fig. 2 shows the architecture of our prototype. Invenio con-
sists of two components: an affinity engine, executed after
upgrades, and a placement engine, executed when a new
NF is to be instantiated or after major changes in policies or
procedure type distribution.

Invenio uses messages exchanged between NFs in a func-
tion graph to identify procedures and their associated mes-
sages. Invenio utilizes output generated by open-source
packet analyzer software such as Wireshark [36] to decode

Affinity Engine

Protocol
Network tcpdum rotoco
Parameters

v L

Protocol Analyzer

Placement Engine
Procedure type
distribution an

Procedure Slicing

Software
L) Affinity
Session Slicing Placement
1;
Header Noise
Inference Filtering i
g Atmbl‘_'te Placement of NFs
L » Extraction

Figure 2: Invenio architecture

raw messages. We use Wireshark to export Packet Descrip-
tion Markup Language (PDML) and Portal Structure Markup
Language (PSML) files, and use these files as inputs. In-
venio also uses domain knowledge of the service provider,
specified in a configuration file containing the following in-
formation in xml format: (a) Procedure start/end messages,
and (b) Subscriber-ID and session-ID header names. Finally,
Invenio uses procedure type distribution and provider policy
information to decide NF placement.

The first step in computing affinity is to find user-identifying
headers. A header inference module analyzes messages in
the trace stream to identify possible headers that carry the
subscriber/session-ID values. Then, the noise filtering mod-
ule eliminates messages not generated due to user actions.
Since protocols and interfaces use different encoding for-
mats (binary or text) to exchange information, we convert
the input message stream to a protocol-agnostic interme-
diate format that we refer to as event objects. The session
slicing module operates on the event objects generated by
the attribute extraction module to identify all messages as-
sociated with a single user. The procedure slicing module
determines the NF set and message set associated with each
procedure type. Finally, the placement engine uses affinity
information generated by the affinity engine, together with
input procedure type distribution and provider policies, to
make the final NF placement decisions.

Our Invenio prototype includes ~2600 lines of Python code.

5 PRELIMINARY RESULTS

In this section, we seek to answer two questions:

(1) How effective is Invenio in computing affinity with
multiple protocols?

(2) What is the impact of inter-NF latency on perfor-
mance under different workloads?

Table 2: Testbed configuration

Server [CPU [Cores [RAM [NFs Deployed
R430 2x Intel 16 64 GB Clearwater
Xeon E5-2620 v4
DL120 1x Intel 4 8 GB | Swarm Workers,
Xeon X3430 Load-Generator

5.1 Clearwater Architecture

We use Clearwater [25], an open-source platform for a con-
tainerized, microservice-based, implementation of an IMS.
Clearwater uses REST-based communication to retrieve au-
thentication vectors, manage timers and handle state syn-
chronization, which makes it ideal for a case study. The
architecture is illustrated in Fig. 3 (adapted from [25]). Only
the components used in our experiments are depicted. We
use Clearwater version 1.0 (clearwater-docker release-120).
Bono an edge proxy that implements the P-CSCF (Proxy Call
Session Control Function (CSCF)) in the 3GPP IMS architec-
ture [1]. SIP clients communicate with Bono over UDP/TCP
connections. Sprout implements the Registrar, I/S-CSCF
(Interrogating/Serving CSCF) and Application Server compo-
nents. Homestead provides a REST interface to Sprout for
retrieving authentication vectors and user profiles. Chronos
is a distributed, redundant, reliable timer service. Bono and
Sprout report chargeable events to the Charging Trigger
Function Ralf.

Ralf Chronos
(Rf CTF) (Timer Service)
HTTPl HTTP J HTTP
Bono Sprout Homestead
SIP sip p HTTP >
=" (P-CSCF, (1/5-CSCF, (HSS Mirror)
WebRTC) BGCF, TAS)

Figure 3: Clearwater architecture

5.2 Experimental Testbed

Our testbed includes one Dell PowerEdge R430 and 5 HP Pro-
Liant DL120 G6 (Table 2) connected by a Gigabit Dell N2024
Switch. We use Docker [10] version 17.03.0-ce and Docker-
compose (v1.11.2) to deploy NFs for Clearwater (Fig. 3). Each
NF runs within a container and all containers are deployed
on the same physical host.

5.3 Experimental Methodology

We use two primary network services: (a) Voice-call: This
service involves two procedure types (INVITE and BYE). (b)
Short Message Service (text-msg): This service utilizes a
single procedure of type MESSAGE. We also use SUBSCRIBE
(which supports the Presence service) to illustrate the impact

Table 3: NF affinity for Clearwater

Procedure Type [NF Pair [Affinity
NFs: Bono, Sprout, Ralf

Bono, Sprout 10
Bono, Ralf
Sprout, Ralf

Bono, Sprout
Bono, Ralf
Sprout, Ralf

Voice-call

Text-msg

O DN x| x| 0

of message-count based placement on system performance.
However, SUBSCRIBE messages are not generated during
performance evaluation and system performance is only
evaluated for interactive workloads (voice-call and text-msg).

SIPp [35] is used to generate four types of messages: REG-
ISTER, INVITE, BYE and MESSAGE. Each SIPp instance runs
on a dedicated physical machine and saturates available sys-
tem resources. We measure failures by the observing the
result code in the SIP response messages. We record the total
number of successful calls or messages for each workload
type. For the voice-call workload, where multiple procedure
types are required to complete a call, we only count the num-
ber of calls that were successfully completed; i.e., partially
completed calls are ignored. Each experiment runs for 30
seconds. Each experiment is repeated at least 5 times and
results are shown with 95% confidence intervals.

5.4 Affinity Analysis

We use Invenio to compute affinity between NFs in Clearwa-
ter for both voice-call and text-msg workloads. The results
are presented in Table 3. We observe that the affinity be-
tween Clearwater NFs is different for voice-call and text-msg
traffic. For instance, for voice-call traffic, there is high affin-
ity between Bono, Sprout and Ralf, whereas for text-msg
traffic, Bono and Ralf only exchange two messages, and no
messages are exchanged between Sprout and Ralf. Ralf there-
fore has a higher affinity with Bono and Sprout for voice-call
workload compared to text-msg workload. The placement
of Ralf w.r.t. to Bono and Sprout thus has a higher impact
on the performance of voice calls compared to the text-msg
workload.

5.5 Preliminary Performance Results

We first benchmark the performance of the voice-call and
text-msg workloads with negligible delay. These results serve
as baselines, and are labeled “ideal” in our plots. We then
use tc to introduce latency on links connecting two NF pairs
(a) Ralf to Sprout and (b) Ralf to Bono, to validate the im-
pact of placement of Ralf on performance. We experiment
with delays of 5 ms, 10 ms, 15 ms, and 20 ms and compare
to the “ideal” case. Fig. 4a and 4b present the results of

D100%] ip—
©
o
3
A
Y 50%
§ ’ Delay
2 —— Oms
\oo 5ms —4=- 20ms
° 0% T T T T T T T T
200 300 400 500 600 700 800 900
Calls/second
(a) Voice-call performance
©100%1 i
w
€
E >
A
[
g S0% Delay #10ms
E —o— O0ms —#= 15ms
° 5ms ——- 20ms
X 0% T T T T T T T T
1800 1900 2000 2100 2200 2300 2400 2500
Messages/second

(b) Text-msg performance

Figure 4: Impact of latency and affinity on Clearwater

voice-call and text-msg workloads, respectively. We make
the following observations from the figures: (a) Even a sin-
gle high-latency link can result in significant performance
degradation for both voice-call and text-msg workloads, and
(b) Performance degradation for the voice-call workload (in
which Ralf has higher affinity) is more than for the text-msg
workload (in which Ralf has lower affinity). These obser-
vations underscore the need for careful VNFC placement.
While manual analysis shows that Sprout and Bono (which
collectively implement the functionality of the CSCF) must
always be co-located, analysis of IMS standards does not suf-
fice for proprietary IMS implementations such as Clearwater
in which internal implementation determines the affinity
values between VNFCs (Bono/Sprout and Ralf).

6 RELATED WORK

We discuss work related to service placement and monitoring,
then work that reverse-engineers or infers protocol behavior.
Service placement and monitoring. Functionality-based
decomposition has been proposed to reduce latency and in-
crease throughput for cellular network control planes [16,
26, 28, 34]. That body of work uses manual analysis of net-
work architecture and traffic to find the functional elements
that can be aggregated. Stratos [12] avoids traversing over-
subscribed inter-rack links during function placement, and
Selimi et al. [31] explore placement to maximize bandwidth
utilization. None of these studies consider workload types
and procedures. Other work [15, 30, 37] formulates the place-
ment problem as a graph partitioning problem or an opti-
mization problem. This is orthogonal to our work, as our

notion of procedural affinity is a new factor to consider as
an input to the placement problem.

Recent studies [7, 21, 22, 24, 38] have highlighted chal-
lenges in integrating, deploying, and managing microservice-
based applications. For instance, ucheck [24] uses runtime
verification and enforcement of invariants to ease manag-
ing microservice-based applications. Probius [22] locates
performance bottlenecks by correlating VNF, hypervisor,
and system metrics. NFVPerf [21] uses network traces col-
lected from NFs to compute per-hop message processing
latency and infer performance bottlenecks. Our work pro-
poses procedure-driven microservice deployment, and is
thus complementary to this line of work.

Protocol inference. Extracting protocol state informa-
tion from network traces, or reverse engineering a protocol,
has been widely studied in the literature. Prior work extracts
specifications of unknown protocols [5, 6, 8, 17], and uses
inferred message formats to detect malware signatures [19].
Invenio also exploits protocol header information, but utilizes
protocol analyzer tools to extract user-identifying headers.

Other categories of work in this area use xml or json for-
mats exported by tools such as wireshark to derive protocol
state machines [13, 27]. While Invenio shares finite-state ma-
chine extraction techniques with these papers, it differs in
one important aspect: we use the extracted state information
to compute affinity between NFs for an entire function graph.
In contrast, prior work extracts the state machine for a single
NF and does not merge state machines from multiple NFs to
derive procedure information for a function graph.

7 CONCLUSIONS

This paper gives a brief overview of a system that enables ser-
vice providers to better manage the ever-growing complexity
of microservice-based network functions. We showed that
we can automatically compute communication affinity val-
ues for each user-triggered procedure. Our work empowers
service providers to make and update placement decisions
without the time-consuming and error-prone manual anal-
ysis currently used. Our preliminary experiments with the
Clearwater IP Multimedia Subsystem are promising. We ex-
pect the importance of this work to grow as more complex
disaggregated services are deployed.

ACKNOWLEDGMENTS

This work was performed while Amit Sheoran and Navin
Modi were with Purdue University, and sponsored in part
by NSF grant CNS-1717493. The work was started at and
initially supported by HPE. The authors would like to thank
Vinay Saxena and Lianjie Cao (HPE) for their valuable input.

REFERENCES

(1]
(2]

[10

[t

(11]

(12]

[13

=

(14]

[15]

(16

—

[17

—

3GPP. TS 23.228, IP Multimedia Subsystem (IMS). http://www.3gpp.
org/DynaReport/23228 htm.

3GPP. TS 23.401, GPRS Enhancements for Evolved Universal Terrestrial
Radio Access Network (E-UTRAN) Access. http://www.3gpp.org/ftp/
Specs/html-info/23401.htm.

3GPP. TS 23.501, System Architecture for the 5G System. http://www.
3gpp.org/ftp/Specs/html-info/23501.htm.

ABHAYAWARDHANA, V. S., AND BABBAGE, R. A traffic model for the IP
multimedia subsystem (IMS). In 2007 IEEE 65th Vehicular Technology
Conference - VIC2007-Spring (2007), pp. 783-787.

ANTUNES, J., NEVES, N., AND VERISSIMO, P. Reverse engineering of
protocols from network traces. In 2011 18th Working Conference on
Reverse Engineering (Oct 2011), pp. 169-178.

BosseRrT, G., GUIHERY, F., AND HIET, G. Towards automated protocol
reverse engineering using semantic information. In Proceedings of the
9th ACM Symposium on Information, Computer and Communications
Security (New York, NY, USA, 2014), ASIA CCS ’14, ACM, pp. 51-62.
CEeRrNY, T., DoNAHOO, M. J., AND TRNKA, M. Contextual understanding
of microservice architecture: Current and future directions. SIGAPP
Appl. Comput. Rev. 17, 4 (Jan. 2018), 29-45.

Cul, W,, KANNAN, J., AND WANG, H.]J. Discoverer: Automatic proto-
col reverse engineering from network traces. In Proceedings of 16th
USENIX Security Symposium on USENIX Security Symposium (Berkeley,
CA, USA, 2007), SS’07, USENIX Association, pp. 14:1-14:14.
Diavrogic. IMS and VoLTE 3GPP Interfaces. https://edit.dialogic.com/
edu/interfaces.

DOCKER. Build, Ship, and Run Any App, Anywhere. https://www.docker.
com.

GAN, Y., ZHANG, Y., CHENG, D., SHETTY, A., RaTHI, P., KATARKI, N.,
Bruno, A, Hu, J., RiTcHKEN, B., JacksoN, B., Hu, K., PANcHOLL, M.,
CLANCY, B., CoLEN, C., WEN, F., LEUNG, C., WANG, S., ZARUVINSKY, L.,
EspiNosa, M., HE, Y., AND DELIMITROU, C. An Open-Source Bench-
mark Suite for Microservices and Their Hardware-Software Implica-
tions for Cloud and Edge Systems. In Proc. of ASPLOS (April 2019).
GEMBER, A., GRANDL, R., ANAND, A., BENSON, T., AND AKELLA, A.
Stratos: Virtual middleboxes as first-class entities. Tech. rep., Univer-
sity of Wisconsin-Madison, 2012. Technical report TR1771.
GRIFFETH, N., CANTOR, Y., AND Djouvas, C. Testing a network by
inferring representative state machines from network traces. In Soft-
ware Engineering Advances, International Conference on (Oct 2006),
pp. 31-31.

HaN, B., GOPALAKRISHNAN, V., J1, L., AND LEE, S. Network function
virtualization: Challenges and opportunities for innovations. IEEE
Communications Magazine 53, 2 (2015), 90-97.

Hu, Y., DE LAAT, C., AND ZHAO, Z. Optimizing service placement for
microservice architecture in clouds. Applied Sciences 9, 21 (2019).
KartsaLis, K., NIKAEIN, N., SCHILLER, E., FAVRAUD, R., AND BrAUN, T. L.
5G architectural design patterns. In 2016 IEEE International Conference
on Communications Workshops (ICC) (May 2016), pp. 32-37.
KRUEGER, T., KRAMER, N., AND RiEck, K. ASAP: Automatic semantics-
aware analysis of network payloads. In Proceedings of the International
ECML/PKDD Conference on Privacy and Security Issues in Data Mining
and Machine Learning (Berlin, Heidelberg, 2011), PSDML’10, Springer-
Verlag, pp. 50-63.

KUBERNETES. Kubernetes. https://kubernetes.io/.

LErta, C., MERMOUD, K., AND DACIER, M. Scriptgen: an automated
script generation tool for honeyd. In 21st Annual Computer Security
Applications Conference (ACSAC’05) (Dec 2005), pp. 12 pp.—214.
MICROSOFT. Designing microservices: Logging and monitor-
ing, 2018. https://docs.microsoft.com/en-us/azure/architecture/
microservices/logging-monitoring.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]
[37]

[38]

NaIxk, P., Suaw, D. K., AND VUTUKURU, M. NFVPerf: Online perfor-
mance monitoring and bottleneck detection for NFV. In 2016 IEEE
Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN) (Nov 2016), pp. 154-160.

Naw, J., SEO, J., AND SHIN, S. Probius: Automated approach for VNF
and service chain analysis in software-defined NFV. In Proceedings
of the Symposium on SDN Research (New York, NY, USA, 2018), SOSR
’18, ACM, pp. 14:1-14:13.

OPENSTACK. Open source software for creating private and public clouds.
https://www.openstack.org/.

PANDA, A., SAGIV, M., AND SHENKER, S. Verification in the age of
microservices. In Proceedings of the 16th Workshop on Hot Topics
in Operating Systems (New York, NY, USA, 2017), HotOS ’17, ACM,
pp. 30-36.

PROJECT CLEARWATER. IMS in cloud. http://www.projectclearwater.
org/.

Qazi, Z. A., WALLS, M., PANDA, A., SEKAR, V., RATNASAMY, S., AND
SHENKER, S. A high performance packet core for next generation
cellular networks. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (New York, NY, USA, 2017),
SIGCOMM 17, ACM, pp. 348-361.

RAFIQUE, M. Z., CABALLERO, J., HUYGENS, C., AND JOOSEN, W. Network
dialog minimization and network dialog diffing: Two novel primitives
for network security applications. In Proceedings of the 30th Annual
Computer Security Applications Conference (New York, NY, USA, 2014),
ACSAC ’14, ACM, pp. 166-175.

Raza, M. T, Kim, D, Kim, K. H,, Lu, S., AND GERLA, M. Rethinking
LTE network functions virtualization. In 2017 IEEE 25th International
Conference on Network Protocols (ICNP) (Oct 2017), pp. 1-10.

Raza, M. T., anD Lu, S. Enabling low latency and high reliability for
IMS-NFV. In 2017 13th International Conference on Network and Service
Management (CNSM) (Nov 2017), pp. 1-9.

SampPaIO, A.R., RUBIN, J., BESCHASTNIKH, I., AND Rosa, N. S. Improving
microservice-based applications with runtime placement adaptation.
Journal of Internet Services and Applications 10 (2019).

SELIMI, M., CERDA-ALABERN, L., SANCHEZ-ARTIGAS, M., FREITAG, F.,
AND VEIGA, L. Practical service placement approach for microservices
architecture. In 2017 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID) (2017), pp. 401-410.
SHARMA, S., MILLER, R., AND FRANCINI, A. A cloud-native approach
to 5G network slicing. [EEE Communications Magazine 55, 8 (2017),
120-127.

SHEORAN, A., FAumy, S., Osinski, M., PENG, C., RIBEIRO, B., AND
WANG, J. Experience: Towards automated customer issue resolution
in cellular networks. In Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking (2020), MobiCom
’20.

SHEORAN, A., SHARMA, P., FAHMY, S., AND SAXENA, V. Contain-ed: An
NFV micro-service system for containing e2e latency. In Proceedings
of the Workshop on Hot Topics in Container Networking and Networked
Systems (2017), HotConNet °17, pp. 12-17.

SIPp. Welcome to SIPp. http://sipp.sourceforge.net/.

WIRESHARK. Wireshark Go Deep. https://www.wireshark.org.

Yu, Y., Yang, J., Guo, C., ZHENG, H., AND HE, J. Joint optimization of
service request routing and instance placement in the microservice
system. Journal of Network and Computer Applications 147 (2019),
102441.

ZHANG, Y., Hua, W,, ZHou, Z., SuH, G. E., AND DELIMITROU, C. Sinan:
ML-based and QoS-aware resource management for cloud microser-
vices. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (2021), ASPLOS 2021, p. 167-181.

http://www.3gpp.org/DynaReport/23228.htm
http://www.3gpp.org/DynaReport/23228.htm
http://www.3gpp.org/ftp/Specs/html-info/23401.htm
http://www.3gpp.org/ftp/Specs/html-info/23401.htm
http://www.3gpp.org/ftp/Specs/html-info/23501.htm
http://www.3gpp.org/ftp/Specs/html-info/23501.htm
https://edit.dialogic.com/edu/interfaces
https://edit.dialogic.com/edu/interfaces
https://www.docker.com
https://www.docker.com
https://kubernetes.io/
https://docs.microsoft.com/en-us/azure/architecture/microservices/logging-monitoring
https://docs.microsoft.com/en-us/azure/architecture/microservices/logging-monitoring
https://www.openstack.org/
http://www.projectclearwater.org/
http://www.projectclearwater.org/
http://sipp.sourceforge.net/
https://www.wireshark.org

	Abstract
	1 Introduction
	2 Deploying Microservices
	2.1 Impact of Service Type
	2.2 Key Insight

	3 Grouping Procedure Messages
	3.1 Scale and Complexity
	3.2 User and Session Identification
	3.3 Proprietary Microservices
	3.4 Lessons Learned

	4 System Prototype
	5 Preliminary Results
	5.1 Clearwater Architecture
	5.2 Experimental Testbed
	5.3 Experimental Methodology
	5.4 Affinity Analysis
	5.5 Preliminary Performance Results

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

