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Abstract—We investigate the problem of multi-party private set
intersection (MP-PSI). In MP-PSI, there are M parties, each stor-
ing a data set P; over N; replicated and non-colluding databases,
and we want to calculate the intersection of the data sets N1 P;
without leaking any information beyond the set intersection to
any of the parties. We consider a specific communication pro-
tocol where one of the parties, called the leader party, initiates
the MP-PSI protocol by sending queries to the remaining parties
which are called client parties. The client parties are not allowed
to communicate with each other. We propose an information-
theoretic scheme that privately calculates the intersection ﬂj.‘i 1Pi

with a download cost of D = minye(q,... a) Zie[l M\t rlzv-tim{i.'-
yeens yeens -

Similar to the 2-party PSI problem, our scheme builds on the
connection between the PSI problem and the multi-message sym-
metric private information retrieval (MM-SPIR) problem. Our
scheme is a non-trivial generalization of the 2-party PSI scheme
as it needs an intricate design of the shared common randomness.
Interestingly, in terms of the download cost, our scheme does not
incur any penalty due to the more stringent privacy constraints
in the MP-PSI problem compared to the 2-party PSI problem.

Index Terms—Secure multi-party computation, private set
intersection, symmetric private information retrieval.

I. INTRODUCTION

HE TWO-PARTY private set intersection (PSI) problem
T refers to a classical privacy problem, which is introduced
in [1]. In its classical setting, two parties, each possessing
a data set, need to calculate common elements that lie in
both data sets. This calculation is performed in such a way
that neither party reveals anything to the counterparty except
for the elements in the intersection. Ubiquitous schemes have
been investigated to tackle the PSI problem using crypto-
graphic techniques; see for example [2]-[4]. Many practical
applications are tied to PSI. To see this, consider the fol-
lowing scenario: suppose that the national security agency
(NSA) and the customs and border protection (CBP) need
to check whether a specific group of suspected criminals
has entered the country. The NSA has a list of suspected
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criminals, while the CBP has a complete list of individu-
als who entered the country. Both agencies want to find the
intersection between these lists. However, the NSA does not
want to share its complete list of suspects, and the CBP can-
not reveal the entire catalog of records either. This is a natural
application for the 2-party PSI problem. Reference [5] formu-
lates the 2-party PSI problem from an information-theoretic
perspective. Interestingly, [S] explores an intriguing connec-
tion between the PSI problem and the private information
retrieval (PIR) problem [6]. Specifically, [5] investigates the
PSI determination using the multi-message symmetric PIR
(MM-SPIR) procedure. Surprisingly, under some technical
conditions, MM-SPIR proves to be the most-efficient 2-party
PSI protocol under absolute privacy guarantees. The efficiency
is measured by the total download cost, which is the num-
ber of bits needed to be downloaded to calculate the set
intersection at one of the parties. The optimality proof builds
on the rich literature of characterizing the fundamental limits
of PIR and related problems, starting with the seminal work
of Sun and Jafar [7]. Further fundamental limits of many vari-
ations of the PIR problem have been investigated; see [8]—[62]
for example.

The MM-SPIR framework to solve the PSI problem in [5],
however, works only for 2-party PSI. This is because the
original PIR problem (and the SPIR problem) involves two
parties, the user and the server(s). Unlike PIR, the PSI problem
may involve more than two parties. Returning to the example
involving the NSA and CBP above, suppose now that the NSA
needs to narrow down the search to check whether the sus-
pects have entered the country via a specific airline. The airline
company has a list of all passengers that took its flights all
over the world. The company needs to protect the privacy of
its passengers as well. The problem of finding the set of sus-
pects who entered the country via this specific airline becomes
a 3-party PSI. Unfortunately, the NSA cannot just apply a
2-party PSI scheme with the airline company and the CBP,
as the NSA will learn extra information than the intersection
of the three lists, for example, the NSA will learn about
some of its suspects who boarded a flight with this airline
company but never landed in this country. Another example
of 3-party PSI is related to ad clicks. Consider a company
which sells a certain product (e.g., shoes), a company which
makes ads and posts them at various Web-hosts, and another
company which is a Web-host that hosts ads. All of these
parties have their individual lists of clicks that they wish to
keep private, but may want to compute the intersection, i.e.,
actual customers who bought the product from the company
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Fig. 1. Multi-party private set intersection (MP-PSI) system model.

after seeing an ad produced by the ad company hosted at
the particular Web-host company, to determine the effective-
ness of the ad company and the Web-host company. Note
again that pairwise intersections leak additional information
beyond the three-way intersection. These examples motivate
the multi-party PSI (MP-PSI) problem. They also illustrate
that the MP-PSI is a non-trivial extension of the 2-party PSI
as it cannot be implemented via multiple 2-party PSI. To
make this point even stronger, consider three parties with sets
P =1{1,2,3}, P, = {1,2} and Pz = {I1, 3}. The intersection
of these three sets is P = Py NP, NP3 = {1}. When any
one these parties is chosen as the leader party and applies a
3-party PSI protocol, the leader party should learn only this
three-way intersection. However, if the leader party applies a
2-party PSI with the two client parties, it will learn information
more than the three-way intersection. For instance, if the leader
party is the first party, and if it applies a 2-party PSI with the
second and third parties, it will learn P; NP, = {1,2} and
P1 NP3 = {1, 3}. Even though the leader party can obtain the
three-way intersection by taking the intersection of these two
two-way intersections, i.e., {1, 2}N{1, 3} = {1}, this sequential
use of 2-party PSI for the 3-party PSI problem leaks further
information to the leader party. For instance, the leader party
learns that the second party has {2} and the third party has
{3} further than the overall intersection {1}. Thus, 3-party PSI
cannot be implemented by two 2-party PSI. In the computa-
tional privacy literature, the first MP-PSI achievable scheme
was proposed by Freedman et al. [1]. Though considerable
progress has been made in the construction of various 2-party
PSI schemes, only few works exist for MP-PSI schemes [63].!

TAn anonymous reviewer brought to our attention the works of [64]
and [65] during the review process. The work of [64] is a classical computation
paper which is concerned about presenting a minimal, yet powerful, model for
secure computation of a function. In [64, Appendix B], the authors present an
interesting ‘AND’ function protocol as an extension for their original 2-input
formulation. Their scheme shares some resemblance to our proposed scheme
as both use additive and multiplicative common randomness. This idea is gen-
eralized in [65]. Nevertheless, our work is significantly different in terms of
the problem formulation as we use multiple servers per party in our problem
in contrast to an external helper in [64]. Our work is significantly different
also in terms of the privacy constraints (i.e., symmetric “user” and “database”
privacy constraints we have here as in SPIR) and how our scheme satisfies
these constraints.

In this article, we investigate the MP-PSI problem from
an information-theoretic perspective. In MP-PSI, there are
M independent parties. The ith party is denoted by P;, for
i = 1,...,M. Each party possesses a data set P;, where
ief{l,...,M}. The elements of all data sets are picked from
a finite set S with cardinality |Sx| = K for sufficiently large
K 2 The data set P; is stored in N; replicated and non-colluding
databases. We aim at privately determining the intersection of
all the M data sets, i.e., we aim at calculating P = ﬂ?i 17’,‘
in such a way that no party can learn any information beyond
the intersection P. Inspired by the classical achievable scheme
in [1], [66], we focus on a specific communication strategy
between the parties in this work; see Fig. 1. In particular, we
assume that the parties agree on choosing one of them as a
leader party, while the remaining parties act as client parties.
Without loss of generality, we pick Py as a leader party, and
then the remaining parties Pq, ..., Py—1 are all client par-
ties. The leader party Py, initiates the MP-PSI determination
protocol by generating and submitting queries to the client
parties. At the clients’ side and before MP-PSI, the clients
are allowed to generate and share common randomness (com-
mon randomness residing in the jth database of party P; is
shown by R;; in Fig. 1). This is motivated by the results
of [5], [12], [67], which assert that using common randomness
is strictly necessary to enable symmetrically private commu-
nication. Furthermore, we assume that the leader party Py
can communicate with each client party in only one round,
and communication between any two client parties is not
allowed during the protocol. The client parties respond truth-
fully to the leader’s queries without leaking information about
the elements outside P with the aid of the assigned common
randomness.

In this article, we first formulate the MP-PSI problem from
an information-theoretic perspective. We show that MP-PSI
can also be recast as a MM-SPIR problem, which extends
the formulation of the 2-party PSI problem [5]. This can be
done by mapping the data sets at each party into an incidence

2Without loss of generality, one can assume that Sg = {1, ..., K}.
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vector to facilitate the MM-SPIR of the elements that belong
to Py (the leader’s data set). Next, we propose a novel achiev-
able scheme for MP-PSI determination. The structure of the
queries that the leader party submits in our scheme is the
same as the SPIR queries in [12] (which can be traced back
to the original work of Chor et al. in [6]). Despite the sim-
ilarity of the queries, the answering strings in MP-PSI are
fundamentally different. This is due to the fact that the leader
party cannot perform M — 1 pair-wise PSI operation to calcu-
late P = ﬂ — 1 P: without leaking extra information about the
individual 1ntersect10ns PunP,i=1,...,M — 1, as dis-
cussed above Note that, in general the joint intersection set
P # UI_1 YPy NP)). To alleviate this problem, we design
an intricate protocol of generating and sharing the common
randomness among the databases of the parties. By properly
incorporating the common randomness to the answer strings,
we prevent the 1eader party from learning about the elements
that lie in U (PM N P;) but not in ﬂ 1 Pi. This constraint
is referred to as the clients’ privacy constralnt. By correlating
some of the components of the common randomness in a spe-
cific way, we show that the leader party can reliably identify
the elements in P, but nothing beyond it. The download cost
of our scheme is minse(1,...my D e, M}\t(‘P’lN’T Note that
the optimal download cost with one- round communication is
D* = min{[ 1@’_%11 tP 2N11} in the 2-party PSI problem [5].
This means that although in MP-PSI, the clients’ privacy con-
straint is more stringent than that in the PSI problem, we incur
no penalty for it. In addition, our achievable download cost
scales linearly with the cardinality of the leader set, which out-
performs the best-known MP-PSI scheme, which scales with
the sum of the cardinalities of the data sets [63]. Furthermore,
our scheme has an advantage of simpler implementation in
addition to providing absolute (information-theoretic) privacy
guarantees compared to the computationally private techniques
in the literature.

II. PROBLEM FORMULATION

Consider a setting where there are M independent parties,*
denoted by P;, i = 1,2, ..., M. The ith party possesses a data
set P; for i € [1 : M]. The data set P; is stored within N;
replicated and non-colluding databases.’ Given that K is large

3As investigated in [5], in MM-SPIR problem, a user needs to retrieve
P messages from N replicated servers containing K messages. The 2-party
PSI problem can be recast as MM-SPIR by considering that the messages
correspond to incidences of elements in its data set with respect to the finite
set of all elements. Specifically, [5] transforms each data set into a library of
K binary messages of one-bit length. Finally, in [5], party P (or Py) performs
MM-SPIR of the messages corresponding to its data set PP (or P,) within
the databases of the other entity.

“In this work, we only consider semi-honest (honest but curious) parties
in the sense that parties exactly follow the prescribed scheme but curious to
learn more about the others. MP-PSI under malicious/adversarial attacks and
in the presence of dishonest parties is an interesting future direction that is
outside the scope of this work.

SWe note that the multi-server assumption exists in almost all information-
theoretic PIR literature. In practice, the data content may be distributed to the
databases by a central content generator who does not communicate directly
with other parties, i.e., does not have access to the exchanged queries. The
databases do not have any direct communication links among each other and
they update their content by downloading the data from the content generator.
Hence, in this setting, the databases are replicated but not colluding.

enough, the elements in each data set P; are picked indepen-
dently from a finite set Sk of cardinality K with an arbitrary
statistical distribution.® More specifically, before the data sets
generation, the data sets P;,i € [1 : M] are all random vari-
ables and they are mutually independent. We assume that the
cardinality of data set |P;| is public knowledge.

Motivated by the relation between 2-party PSI and MM-
SPIR in [5], the ith party maps its data set P; into a searchable
list to facilitate PIR. To that end, the party P; constructs
an incidence vector X;, which is a binary vector of size K
associated with the data set P; for all i € [1 : M], such that

o 1, jeP;
Xl’/_{(), Jj¢Pi

where X; ; is the jth element of X; for all j € Sk. Note that X;
is a sufficient statistic for P; for a given K. Hence, the MP-PSI
determination is performed over X; instead of P;.

We consider a specific communication protocol in this work.
The parties agree on a leader party, which sends queries to
the remaining parties and eventually calculates the desired
intersection ﬂﬂi ~ 1 Pi. The remaining parties are called client
parties. Wlthout loss of generality, assume that the leader party
is Pys. The leader party Py sends the query Q[ ] to the jth
database in the client party P; for all i € [1 : M — 1] and
j € [1 : N;]. Since Pj; has no information about data set P;
before the communication, the generated queries QPM I are
independent from P;. Hence,

1<Q[PM] P,) -

The jth database associated with the client party P; responds
truthfully with an answer AE?M U for all i e [1:M—1], and
jel: N ;]. The answer is a deterministic function of the
query Q Pul , the data set ;, and some common randomness’
Ri,j that i 1s avallable to the jth database of P;. Thus,

a(alol, P
Vjell:N]

)

Vie[l:M—-1LVYjell:N] (2)

,)zo,we[l M — 1],
3)

Let us denote all the queries generated by the leader party

Py as Q M LN and all the answers collected by Py as

[Pum]
Al 1.1, 1€

O, =[P e m—njen:nl @
Al = (A e - jen vl o)

6The presented achievability scheme works for any data set generation
model and even for distribution-free data sets. The specific data set generation
model in the 2-party PSI problem in [5] was introduced only for settling the
converse.

TWe note that the common randomness (key) exchange is an interesting
stand-alone problem that is outside the scope of this article. One practical
solution to this problem in our setting is to have an external helper, who gen-
erates and shares the common randomness prior to the MP-PSI determination
process. The external helper is not involved in the MP-PSI process itself, i.e.,
it does not observe the queries or the answers. In this case, the client parties
do not need to communicate with each other to exchange the common ran-
domness and there is no leakage from their queries/answers to the external
helper. We note that the SPIR problem [12] (and by extension our scheme)
is infeasible if no common randomness exists.
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Three formal requirements are needed to be satisfied for the
MP-PSI problem.

First, the leader party Py should be able to reliably deter-
mine the intersection P = NY,P; based on Q[lﬁ’,‘ﬁl’lz Ni>
A[lﬁ’,lwll’lz »; and the knowledge of Py without knowing |P] in
advance. This is captured by the following MP-PSI reliability
constraint,

[MP-PSI reliability|

P P,
H(P|QE:/\9[47]1,1:N,-’AE:}\fl/C]I,]:N,-’PM) =0 (6)
Second, the queries sent by Py should not leak any
information about Pjs except the cardinality of Py to any
individual database. Thus, Pjs should be independent of all
the information available in the jth database of P; for all
ie[l:M—1]andj € [1 : N;]. This is described by the

following leader’s privacy constraint,

[Leader’s privacy] Vie [l : M —1],Vje[l:N]

1(Pu 0l A7 P i) = 0 ™
Note that the communication between any two client parties
is not allowed in our protocol. This implies that the party P;
is not able to get any information about the remaining M — 2
client parties. Thus, the mutual independence required by the
problem formulation is thereby satisfied from the perspective
of the party P;.

Third, client’s privacy requires that the leader party does not
learn any information other than the intersection P from the
collected answer strings. Let X; 55 be the set of elements in X;
that do not belong to P, i.e., Xi’75 ={Xix:ke 75}. Hence, the
set {X1,75’ . ’XM—1,75} =Xk .-, Xu—-1k k € 75} should
be independent of all the information available in Pj. Note
that if an element in Py, is not in the intersection P, the leader
party is supposed to conclude that not all the client parties
contain this element simultaneously. On the basis of this fact,
we define a new set X75 = {{{(1175, o ,XM_1’75} Xkt
Xy—1.x < M—1,Vk € PyyN'P}, we have the following client’s
privacy constraint,

[Client’s privacy|

P P
I(X75; Qg:/\y—]l,lzN,-’AE:;—]l,lzN,»PM) =0 3)

For a given field size K and individual parties with associ-
ated databases, an MP-PSI achievability scheme is a scheme
that satisfies the MP-PSI reliability constraint (6), the leader’s
privacy constraint (7) and the client’s privacy constraint (8).
The efficiency of an achievable MP-PSI scheme is measured
by its download cost® which is the number of downloaded bits

8We note that although a more natural performance metric is to consider
the combined upload and download cost, we argue that the upload cost may
not scale with the number of MP-PSI determination rounds if the MP-PSI
is regularly repeated [5, Footnote 8]. Since the core of [5] (and the current
paper also) relies on SPIR, we give a detailed discussion of how to reduce the
upload cost of the SPIR scheme without sacrificing the download cost in [5,
Sec. 7.2]. The optimal download cost of the SPIR problem is characterized
in [12] with keeping the upload cost unconstrained. In addition, the optimal
upload cost of the SPIR problem is characterized in [68] with keeping the
download cost unconstrained. The optimal combined download and upload
cost for the canonical SPIR problem is still an open problem.

(denoted by D) by one of the parties in order to compute the
intersection P. The optimal download cost is D* = inf D over
all MP-PSI achievability schemes.

III. MAIN RESULT

In this section, we state our main result concerning the
performance of our MP-PSI scheme in terms of the down-
load cost. This is summarized in the following theorem, whose
proof is given in Section V.

Theorem 1: In the MP-PSI problem with M independent
parties with data sets P;, assuming that the parties follow
a leader-to-clients communication policy, if the data sets are
stored within N; replicated and non-colluding databases for

i =1,..., M, then the optimal download cost, D*, is upper
bounded by
P:|N;
D* < i Z & ) )
te{l,...,M} N;—1
ie{l,...M}\s

Remark 1: In the special case of having an arbitrary party
P; where |P;| = K, we discard this party P; before we perform
the MP-PSI determination process, and thereby, the M-party
MP-PSI problem reduces to an M — 1-party MP-PSI problem.
In the extreme case, where all parties have |P;| = |Sk| =
K, the download cost becomes zero, i.e., no party needs to
exchange any information with any other, as the intersection
is immediate.

Remark 2: The minimization problem in (9) in Theorem 1
corresponds to the fact that the parties can agree on the party
with the minimum ) ;. M}\t[ﬁ"_[\]]" 1 to be the leader party.
We note that the leader party may not be the party with the
least |P;|, as the download cost also depends on the number
of the databases at all parties.

Remark 3: The download cost of our achievability scheme
is equal to the sum of the download costs of M — 1 pair-wise
PSI schemes. This implies that there is no penalty incurred
due to adopting a stringent clients’ privacy constraint over the
E, privacy constraint. Note that the E, privacy constraint is a
relaxed version of client’s privacy (8) when M = 2 [5]. More
specifically, the E; privacy constraint asserts that the leakage
from elements outside the set P; in the answers returned by
E, is zero, i.e., 1(751; A?;}z]) =0.

Remark 4: Our achievability scheme is private in the
information-theoretic (absolute) sense and is fairly simple to
implement. A drawback of our approach is that it needs
multiple replicated non-colluding databases as in the 2-party
PSI problem in [5]; otherwise, our scheme is infeasible if
N; =1 for all i.

Remark 5: Comparing our result with the most closely
related information-theoretic MP-PSI schemes [69], we argue
that our scheme outperforms theirs in terms of the communica-
tion cost as our download cost is linear in both the number of
parties M and the size of the sets p, assuming that |P;| = p for
alli=1,..., M in contrast of 0(M4p2) in [69]. We note, how-
ever, that the work [69] allows for potential distrust between
the parties in the sense that an active adversary may corrupt
up to M/3 parties. The issue of parties’ misbehavior is an
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interesting future direction for our work, which is outside the
scope of this article.

IV. MOTIVATING EXAMPLE: 3 PARTIES WITH 3
DATABASES EACH (M = 3 WITH
N1 =N, =N3 =3)

In this section, we motivate our scheme by presenting the
following example. In this example, we have M = 3 par-
ties, each possessing N; = 3 replicated and non-colluding
databases. Assume that each party stores an independently
generated set P; C Sk, where Sy = {1, 2, 3, 4}. Specifically,
we assume that Py = {1,2}, P, = (1,3}, and P; =
{1,4}. We aim at reliably calculating the intersection P; N
P> NP3 = {1} without leaking any further information to
any of the parties according to the defined communication
policy. Without loss of generality, we pick P3 to be the
leader party. The remaining parties Py, P, are referred to as
clients.

We map the sets into the corresponding incidence vectors
as in [5], i.e., we construct a vector X;, such that X;; = 1 if
k € P;, hence,

Party P1: P =1{1,2}

= Xi=[Xi1 Xi2 X3 Xi4] =11 100/ (10)
Party Po: P> = {1, 3}

= X =[X21 X202 X233 X2,4]T =[1010" (11
Party P3: P3; ={1,4}

T
= X3=[X31 X32 X33 X34] =[1001]" (12)

To carry out the MP-PSI calculations, the parties agree on
a finite field Fy, where L is a prime number such that L > M.
Therefore, we pick L = 3 in our case, i.e., all summations are
performed as modulo-3 arithmetic.

The leader party P3 initiates the MP-PSI determination pro-
tocol by sending queries Ql[fﬂ forie{l,2} andj € {1, 2, 3}.
The queries aim at privately retrieving the messages Xj 1,
X1,4 and X5 1, X2 4 using the SPIR retrieval scheme in [12]
(the same query structure was introduced in the original work
of [6]). Note that in this example we have N; = |P3|+ 1, thus,
the leader party sends exactly 1 query to each client database.
More specifically, let A, where k = 1,...,4, be a random
variable picked uniformly and independently from F3, then,
for client party Pj, the queries sent from the leader party P;3
are generated as follows,

O = thy by by ha)” (13)
O = thy + 1 by iy ) (14)
OV = thy hy by hy 107 (15)

i.e., the leader party sends a random vector h = [h1 hy h3 ha] €
IF‘;1 to the first database as a query. The queries for the remain-
ing databases add a 1 to the positions corresponding to Ps.
For client party P, the leader party submits the same set of
queries,

[P5]

0y, =1Ih hy h3 hal” (16)

[P5]

Q55 =T[hi+1 hy hy hal” (17)
O\ = (hy by by by + 107 (18)

Originally in 2-party PSI, the client databases obtain the
inner product of X; and Ql[?-)ﬂ and add a common random-
ness. In MP-PSI, however, we note that applying the answering
strategy of [5], [12] compromises the clients’ privacy con-
straint (8). This is due to the fact that the leader, in this
case, can decode that X;4 = 0 and X4 = 0 and not
only the intersection N;=123 P;. Consequently, the clients’
databases need to share intricate common randomness prior
to the retrieval phase to prevent that. To that end, the client
parties generate and/or share the following randomness (see
Fig. 2).

1) Local randomness: This is denoted by the random vari-
able s;, for i = 1, 2. The random variable s; is picked
uniformly from F3 independent of all data sets and other
randomness sources. The local randomness s; is shared
among all the databases belonging to the ith client party
and not shared with other parties. This local randomness
acts as the common randomness needed for SPIR [12],
and is added to the inner product of the incidence vector
and the query.

2) Individual correlated randomness: This is possessed by
each client’s database, and is denoted by the random
variables f; j for i = 1,2, and j = 1, 2, 3. This is needed
to prevent the leader party from decoding X 4, and
X 4. However, since we also need the leader party to
decode the intersection, the random variables f; ; need
to be correlated such that their effect can be removed if
X; j belongs to the intersection. To that end, we choose
t1,1 = t2,1 = 0. Database 2 of the party P; generates
uniformly and independently # > from F3 and sends it
to database 2 of party P;. Database 2 of the party P; cal-
culates #, » = 1 —#1 2. Similarly, database 3 of the party
Py generates 1 3 uniformly and independently from I3
and shares it with database 3 of P,. Hence,

19)
(20)

t1,; ~ uniform{0, 1,2}, j=2,3
hj+th;= 1, j=2,3

This randomness is added to each response as well. Note
that client parties do not know each other’s data sets
while generating/sharing this randomness.

3) Global randomness: This is denoted by the random vari-
able c. The random variable ¢ is generated randomly
and independently of all data sets and other randomness
variables. The global randomness c is picked uniformly
from F3 \ {0} = {1, 2}. The global randomness is shared
among all databases of all client parties Py and P,.
The global randomness is used as a multiplier to the
responses.

After sharing the common randomness needed to construct

the answer strings as shown above, the jth database of the ith
client party responds to the query Q,[.?] as follows,

1

Al =c(XTQl.[f3]+s,-+ti,,-), i=1,2,j=123 @l
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| DB1 X, | DB1 X, !
i 1 : 1|
| .. [Ps] ' !
: ! 1 Finite Set 421 // | ! 0
Pl i 0 21 31| 4 i 1 | P2
2 |3 |
| 0 | 0 |!
i ¢, 81, b1 i C, So,ta 1 i
' DB2 X, P3 ______ DB2 X, !
i 1 DB 1 X3 1 i
1 1 i
| 1 1 0|
P1 | 1 0 : PQ
| 0 I
i 0 4 ! 0
: 1 |
LGS, t1o C,89,ta0 !
' DB3 X, DB3 X !
i 1 1 i
T P 1 |
| 1 0!
P1 | ' P2
i 0 0|
i ¢, 81,613 c, 52,123 i

Fig. 2. MP-PSI for the motivating example.

Hence, noting that #; | = 0, the answer strings from P; can
be explicitly written as,

4
P
APl = C(thxl,k +51> 22)
k=1
1 _ (s
A1,23 = C(thxl,k+xl,1 + 51 +t1,2> (23)
k=1
1 _ (s
APl = C<Z X1 g+ X144 51+ t1,3> (24)
k=1
Similarly, the answer strings from P, are,
> 4
R c(Z o+ s2> (25)
k=1
1 _ (s
Az,z3 - C<Z hiXok+ X201+ 52+ tz,z) (26)
k=1
71 _ (s
A2,33 = C(Z hXok+Xoa+ 52+ t2,3> 27
k=1

Note that, by this construction, the local randomness s; is
used to protect the random sum 22=1 hiX; i as in SPIR, and
the individual randomness ¢;; is needed to prevent the leader
party from directly decoding X; ;1. Note that s; and s, need
to be independent to avoid the information leakage about the
relationship between Zi:l hiX; x and Zi:l X k-

a) Reliability: To calculate N;—; 23 P; based on the answer
strings the leader party has received, the leader party subtracts
AE’Pf] nd A[ff] from the remaining answer strings. Denote the
result of subtraction related to the jth element in Sk at P; by
Z; j. This leads to,

= c(Xi1 +n.2) = Al _4l7 (28)
Zig4= C(X1,4 + 1 3) [P3] —AE?] (29)
Zoi = c(Xo1 +122) = A[W alPl (30)
Zoa = c(Xou+123) = Agﬁﬂ — Al 31)

Now, let E; be an indicator of having the jth element in Sg
in the intersection N;=1,2,3 P;, such that E; = 0 if and only if
J € Ni=12,3 P;. To that end, define E; as the modulo-L sum
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of Z; j along all clients, i.e.,

M—1
Ej=)> % (32)
i=1
Looking deeper at Ej, we note that,
E\=Z11+ 2 (33)
=c(X1.1+ X201 + 112+ 122) (34)
=c(X1,1 +X21 +1) (35)

where 12 + o = 1 by the construction of the individ-
ual correlated randomness. Therefore, E; = 0 if and only if
X1,1 = 1 and X5 1 = 1 simultaneously. In this case, E; = 0
irrespective of the value of ¢ and the leader party verifies that
{1} € Ni=1,2,3 Pi.

On the other hand, when Pj3 calculates Ejy,

Es=Zia+Zoa=c(Xi1+X214+1)#0 (36)

Consequently, the leader party confirms that Nj=123 P; =
{1} and does not include 4.

b) Leader’s Privacy: The leader’s privacy constraint fol-
lows from the user’s privacy constraint of the inherent SPIR
scheme [12]. The queries of the leader to any party have the
same structure as the queries of the user in the SPIR problem.
More specifically, the privacy of leader party is preserved as
each element in the queries is uniformly distributed over the
finite field 3. Hence, no information about P3 is leaked from
the queries.

c) Client’s Privacy: To see the client’s privacy, we note that
no information is leaked about P; NP3 or P, NP3 due to
s1 and s, respectively. Nevertheless, in MP-PSI, we need to
verify that the leader does not know which of the two parties
possesses the element {4}, i.e., knowing the fact that E4 # 0,
we need to show that P(X14 4+ X204 =0) =P(X14+ X204 =
1) = 1. Specifically, if E4 is 1, P(X1 4+X2.4 = 0) = P(X; 4+
Xo4=1)= 1 because ¢ is uniformly distributed over 1 and 2
and the sum #; 3 +t3 = 1 by construction. The conclusion is
exactly the same when E4 equals 2. Thus, the only information
that P3 can obtain for the element 4 is that client parties P
and P, do not contain it at the same time (this is no further
leak, as if they did contain it at the same time, it would have
been in the intersection). Hence, c is used such that the leader
party P3 does not know whether the sum Xj 44X> 4 is 0 or 1.

d) Download Cost: In our example, the leader party P;3
downloads N; = [Py| + 1 symbols from each client party.
Hence, the total download costis D = (M —1)(|Py|+1) = 6.

V. ACHIEVABILITY PROOF

In this section, we describe our general achievable scheme
for MP-PSI for arbitrary number of parties M, arbitrary set
sizes |P;|, and arbitrary number of databases per party N,
for i € {1,...,M}. The leader’s querying policy is based
on the SPIR scheme presented in [12] (originally introduced
in [6]). Our novel ideas in this scheme are concerned with
the construction of the answering strings. More specifically,
the scheme hinges on the intricate design of generating and
sharing common randomness among the clients’ databases in
such a way that the leader party cannot learn anything but the
intersection ﬂ?i 1 Pi.

A. General Achievability Scheme

In the following, assume that P; C Sk, where |Sg| = K.

1y

2)

Initialization: The parties agree on a retrieval finite field
F; to carry out the calculations needed for MP-PSI
determination protocol. L is chosen such that,

L=min{L > M : Lis a prime} 37
The parties agree on a leader P such that:
: |P|Ni
= —_— 38
e, _in,, S 40 68
i#t
Without loss of generality, we assume that * = M

in the sequel. Furthermore, assume that Py = Py =
{Y1, Y2, ..., Yg} with cardinality |Py| = R.

Query generation: The leader party Py indepen-
dently and uniformly generates x random vectors
{hy, hy, ..., h,}, where « is given by,

|Pum|
K = max
ie{l,...M—1}| N; — 1

The vector hy, for £ = 1,2, ...,k is picked uniformly
from FX such that,

(39)

hy = [he(1)  he(2) he(K)] (40)

Denote n; = {1‘%1, and ’Pf,} = {Yfi, Yfi,..., Yf,"i_l},
fori =1, ..., M—1. The leader party Pj; submits 7; ran-
dom vectors from {hy, hy, ..., h,} to the first database
of the ith client party as queries. Each submitted random
vector can be reused in the remaining N; — 1 databases
to retrieve N; — 1 symbols. This can be done by adding
1 to the positions corresponding to the desired symbols.
More specifically, take ¢; to be a running index, i.e.,
¢; = 1,2,...,n; and assume that Py = UZlepzf/;’
where Pf,} C Py are disjoint partitions of Py, such that
|Pf,}'| = N; — 1 (except potentially for the last subset
/PIZI[)’ then for i = 1,2,...,M — 1, the query structure
is given by:

M

Qg}=MM)M®

hi(K)} (41)
0
Q@J=VM) m(rit=1) m(r)+1
(v + 1) I (K)] 42)
g
Q§J=@M)-~h(m4—o (v, ) +1
m(vi, +1) K] (43)
(7]
Oy " = [y (1) hy( hy, (K) } (44)
QBH=Mﬂ> hy (YY" = 1) By, (Y]") +1
hy (Y] + 1) hy, (K)] (45)
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Qz[j\)/?] = [hm(l) hy; (Yﬁ/ﬁ._l - 1) hm(Y;\?/i_l) +1
(V1) )] (46)

i.e., Py simply partitions the set Py into subsets of size
N; — 1. For each set, Py; uses different hy. Py, submits
hy into the first database. For the remaining databases, it
adds 1 for the positions that corresponds to the partition.

3) Common randomness generation: In order to respond to
the leader party, the clients need to generate and share
common randomness. Specifically, there are three types
of randomness.

e Local randomness: This is denoted by s; =
[si(1) s;(2) si(n;)]. Each element of s; is generated
independently and uniformly from Fy. The local
randomness s; is shared between the databases asso-
ciated with P;. The local randomness is added to the
responses as in SPIR [12]. Note that each database
uses a different element from s; for each submitted
query.

o Individual correlated randomness: The jth database
associated with the ith client possesses an individ-
ual randomness t;; = [#;;(1) #;(2) t;;(n)] for
i=1,....M—1,and j =1, ..., N;. The elements
ti1p =0foralli. Fori=1,...,M — 2, the vector
t;j is independently and uniformly picked from in.
All these random vectors are sent to the party Pys_1.
The client Py;—1 generates its individual randomness
tyr—1,j according to the received individual random-
ness from the remaining parties. For simplicity, let
us (re)denote the individual randomness components
by 7, where i is the index of the client party and
k=1,2,...,R is just a monotonically increasing
index of the randomness component used within the
databases 2 to N; of the ith client. Thus,

G =tio(1), T =1t22),....5r = tin;(10i)
47)

With this re-definition, the client Py;_; calculates
its individual randomness as,
M-2
maj=L—M-1)—=> Fjj=12....R
i=1
(48)
This ensures that the individual randomness are cor-
related such that Z?iflfi’j =L—(M—1). The
individual randomness is added to the responses.

o Global randomness: This is denoted by c. c is
picked uniformly and independently from Fy \ {0}.
c is shared among all the databases at all clients. ¢
is used as a multiplier for the answering string.

4) Response generation: The clients respond to the submit-
ted queries by using the queries as a combining vector
to their contents, i.e., each database calculates the inner
product of the query and its contents. Next, it adds the
local and individual randomness. Finally, it multiplies
the result by the global randomness. More specifically,

the answer string of the jth database, which is associated
with the ith client to retrieve one of the elements of the

1

.. 4 APyl . .
partition P, Al-’j , 1s given by,

M

L L
plicl c<Xf o7y e + z,-,j@i)) #9)

From the collected answers the leader party can determine the
intersection ﬂf-‘i | Pi reliably and privately.

B. Download Cost, Reliability, Leader’s Privacy, Clients’
Privacy

a) Download cost: By observing the queries associated with
the MP-PSI scheme in the previous section, one can note that
the desired symbols are divided into n; = (}%] subsets.
Each subset consists of N; — 1 desired symbols. The leader
needs to download 1 bit from all N; databases to query the
entire subset, as the leader downloads useless random linear
combination of the contents from the first database. Hence,

the download cost is given by,

M—1
D = Z Nin; (50)
i=1
M—1
_ Z’V|PM|N1—‘ (51)
o Ni—

b) Reliability: To verify reliability, we follow the leader’s
processing of the responses. First, we note that the answer
string that is returned from database 1 is a random linear com-
bination of the contents of the database besides the common
randomness, and is given by,

M

¢ K

A[‘[’1 } = c( he, (k)X k —i—si(ﬂi)), i=1,...,M—1(52)
k=1

Note that ;1 = 0 by construction. The leader subtracts this

response from each response that belongs to the same partition.

Denote the subtraction result at the ith client that contains the

element X; x by Z; x, hence,

Li
Zix = c(Xik + k) = A —AifM], ke Pf; (53)
L [Pyl .

for some unique j* that A; ' l1s a response of the query that
adds 1 to the kth position of the query vector. In particular, for
the special case of N; = |P;|+ 1 foralli=1,..., M —1, we
have j* = k+ 1 and Pf,; = Py (one partition). Note that we
used the alternative notation 7; 4 as it is counted in sequence.
Next, the leader constructs the intersection indicator variable

Ey, where Ej is given by,

M—-1
Ex= ) Z (54)
i=1
M—1 M—-1
= c(Z Xik+ ) ?f,k) (55)
i=1 i=1
M—1
= C(Z Xik+L— (M- 1)) (56)
i=1
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where (56) follows from the construction of the individ-
ual randomness. Now, the element E; = 0 if and only if
M Xy = M — 1, which implies that X;; = 1 for all
i=1,2,...,M—1. Consequently, ¥} € 0?1177,- if and only if
Ej = 0. This proves the reliability of the scheme.

c) Leader’s privacy: The leader’s privacy follows from the
fact that the random vectors {(hy, ..., h,} are uniformly gen-
erated over FX. Adding 1 to these vectors does not change the
statistical distribution of the vector. Since the leader submits
independent vectors each time it queries a database, all queries
are equally likely and the leader’s privacy is preserved.

d) Clients’ privacy: Without loss of generality, we derive
the proof of the client’s privacy for the homogeneous number
of databases, i.e., N; = R+ 1,Vi € [1 : M — 1]. The general
proof in the heterogeneous case follows the same steps and
after removing the response of the first databases, we will
be left with Z; ; that has the same structure of homogeneous
case. Consequently, we present the homogeneous case here
for convenience only. In the following proof, we adopt the
notation that for a random variable ¢; ; indexed by two indices
(i, ))s

Civivig = {Gij 2 i € i1, - imbs J € 4its ..o jrY} (5T)

For the proof, we need the following lemmas. Lemma 1
shows that the effect of the local randomness is to make the
response of the first database at all parties independent of Xj5.

Lemma 1: For the presented achievable scheme, we have,

P, P,
I<X75;Agiﬁf;—]l,llzliM_l,Yl:YR’ QE:Aﬁ[W—]l,lzN,-’PM) =0. (58)

Proof: Intuitively, the proof follows from the fact that
Al[.?f’" ],i € [1 : M — 1] is a random variable uniformly dis-
tributed over [0 : L — 1] because of the local randomness
si, and thus, is independent of the data sets, queries and the
subtraction results. More specifically,

[Pu] [Pu]
(XP’AIM 11|Zl:M—1,Y1:YR’Q1:M—1,1:N,»7DM)

P P
= H(AE:AﬁIw—]l,1|ZI:M—LY1:YRv Qg:[tfl/l—]l,l:Ni’ PM)
P P
- H(Agmj[w,]l’ﬂxﬁ,Zl:M—l,leYRa QEZJ,]M:N, PM) (59)

[Pm] [Pum] .
= H(Ale—1,1> - H(Ale_l,l IX1:m-1, ¢, X5,

P,

Z1:M—1,Y,:Yg» QE;,J/,]M;N,., PM) (60)
<M-=1)—H(s1,...,S5u-1) (61)
=M-1)—-M-1)=0 (62)

This concludes the proof, since,
P, P
I<X75? AE:Aj‘I/[—]l,”Zl:M*l»YﬁYR’ ngﬁfl/[—]l,lzN,-’ PM) =0
| |
Lemma 2 asserts that for i € [1 : M — 2], j € [1 : R] the

effect of individual randomness #; ;1 is to force the random
variables Z;, y; tO be independent of Xp. Note that we do not
claim anythmg about Zy/—1 y; as the individual randomness are
correlated at party M — 1.

Lemma 2: For the presented scheme, we have,

P
I(X75;Zl:M—2,Y1:YR|EY1:YR, Qg;,‘y_]L]:Ni,PM) =0. (63)

Proof: Intuitively, similar to the proof of Lemma 1, the proof
follows from the fact that Z;y,,i € [1 : M —2],j € [1 : R]
is a random variable unlformly distributed over [0 : L — 1]
because of the individual randomness ¢; j11, and thus, is inde-
pendent of the data sets, queries, and the data sets in the client
parties Eyj,

P
1(X75; Zi:M-2,v,:Yg | Evy:vg Q[l:A[ﬁm;N,-v PM)
= H(ZI:M—Z,YI:YR |Ey,:Yg QE?%thNi’ PM)
- H(ZI:M—Z,YI:YR|X73» Ey, vz Q[fﬁll,m, PM)
< H(Zim-2v,:vz)
- H(ZI:M—Z,Y]:YR|X1:M71 s ¢ X,y By, v, Q[IZA/I/Ill,l:N;’ PM)

(64)

(65)
< ((M —2)R) — H(t1:m-2,v,:vz) (66)
=((M-2)R)—((M—-2)R)=0 67)

This concludes the proof as the reverse implication is true by
the non-negativity of mutual information. |
The following lemma asserts that indicator functions Ey, for
all j do not leak any information about Xg.
Lemma 3: For the presented scheme, we have,
1<X75§ Ey,.vg, Qg?;y—]l,l:zv,-’ PM) =
Proof: Note that if Y; € Py is in the intersection, Eyj =0
has nothing to do with X5 since X is defined on the elements
not in the intersection. However, if ¥} is not in the intersection,
Ej—C(X])yj —I—XM,])yj +L—-M-1)),Y; E’PMﬂ’P
received by the leader party would be a realization within
the range of Fy \ {0} because of the global randomness c.
However, the leader party only knows that the global ran-
domness c is uniformly distributed over [ \ {0} and has no
information about the specific value of ¢ in the client par-
ties. As a result, from the perspective of the leader part Py,
Xy +- -+ Xm-1y,+L— (M —1) is uniformly distributed over
[1 : L—1] according to the information contained in Eyj. This
comes from the fact that the set Fy \ {0} of all L — 1 non-zero
elements must form a finite cyclic group under multiplica-
tion given a finite field ;. That means that, in the additive
table under multiplication operation, each element in Fy \ {0}
appears precisely once in each row and column of the table.
The probability P(Xl Y; + o Xy, Y +L-—-M—-1)=1)
would always be L 7 for any [ € [1 : L — 1]. Then, Xy, +
-+ Xy LY is unlformly dlstrlbuted over [M — L : M — 2]
(i e, [0: M—-2]U [M : L — 1]) and we can further con-
clude that X, v, £+ Xp—1, Y; is uniformly distributed over
[0: M-2] because its largest p0551ble value is M — 2 if ¥} is
not in the intersection. Thus, the only information we can learn
from Ey,, ..., Ey, and the accompanying queries about X5 is
X1+ —|—XM lk<M-—1, Vk € Py NP without knowing
the specific value of Xj x + - - - 4+ Xp—1 k, which already exists
in the definition of X75. Thus, we obtain,

(68)

P
I(X75; Ey,:vg, QE:Aj‘I/[—]l,I:N,-’ PM)

P
:I<X75§EY11YR|QE:1¢IW—]1,1:N1"PM) (©9)
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Pu
H<X75|QE;M—]1,1:N," PM)
— H<X75|EY1:YR’ QE?]D&/I—]I,IZNV PM) (70)
=H(Xp) — H(Xp) o
=0 7

where (69) follows from the fact that queries and Py are
independent of the data sets in the client parties Ey, in (2). W

Now, we are ready to show that our achievability satisfies
the client’s privacy constraint,

I<X75; QHZ/IIVL]I,I:N’AE%/]]] lN’PM)
_I(XP, Eﬁy_]l,l,zl:M—l,Yl:YRaQgﬁflll—]l,l:Ni’PM> (73)
= 1(X75; Zy:M=1,Y):Yg> Qm}w—]mw,» PM)
+ I(X75;AE?;}I/I_]LHZI:M—I,Y]:YP QE@—]LI:M’ PM) 74)
= I(X75; Zy:M-1,Y,:Ygs QE?}T%—]I,I:M’ PM) (75)
= I(X 53 Z1:M=2,Y,:Yg> EYy:vgs Q%C]l,l:ivw PM) (76)
:I(X ; Ey,. YR’QP[?; 1, 1N’PM>
+ 1(X75; Zi:m-2,v,: g |EYy vk QERIW—]LPN:" PM) 77)
= I(Xva; Eyi:ve: QEZ/;J—]LI:N," PM) o
=0 )

where (73) follows from the fact that there is a bijec-
tive transformation between A M] RNy and (A[pM L1
Z1:M—1,v,:vg)> (75) follows from Lemma 1, (76) follows from
the fact that there is a bijective transformation between
Zim—1,v;:vg and (Zim-2,v,:vg» Evyove), (78) follows from
Lemma 2, and (79) follows from Lemma 3.

VI. FURTHER EXAMPLES

In this section, we present two examples of our achievable
scheme. Unlike the motivating example in Section IV, in these
examples, the number of databases per party does not need to
be N; = |Py| + 1 or even be homogeneous in general.’

A. An Example for N; < |Py| + 1

In this example, we use the same setting of Section IV
with Py = {1,2}, P, = {1,3}, and Pz = {l1,4} with P;3
being the leader party and the retrieval field being F3. The
incidence vectors X;, for i = 1, 2 remain the same. However,
to illustrate that our scheme works for N; < |Py| + 1, we
assume that Ny = N» = 2. As we will show next, when
Ni < |Pyl + 1, we need to send k = n; = (}%] =2
queries to the first database of the ith party (in contrast to
1 query only when N; > |Py| + 1). Moreover, the common
randomness components s;, and t; ; need to be vectors of size
{M] = 2. Note that, in this case, the leader’s set is divided

Ni—1
into 2 subsets Py} = {1} and Py} = {4} as |Ppi| = Ni—1 = 1.

9For N; > |Py|+1, we just use any arbitrary |Pys|+1 databases to execute
the MP-PSI determination protocol.

For the queries, since both client parties have the same num-
ber of databases, the leader P3 submits the same query vectors
to the databases of both clients. The first databases of each
chent receives 2 unlformly generated vectors h, he IF4, where

= [h ha h3 ha]T and h = [k ha b3 ha]¥. P53 submits the same
two vectors to the second databases of P; and P, with adding
1 to the desired positions. More specifically, let Ql[’];-] be the
query to the jth database of P; to retrieve the element k, then
P3 submits the following queries:

Q[ll]l = Q[21]1 =[h1 hy h3 ha]" (80)
O =0 =1h+1 iy by hal” (81)
o = ol = [ 7 Iy ] (82)
o) = 0y = [ b s s +1]" (83)

At the clients’ side, the clients share a global randomness
¢ ~ uniform{1, 2} among all the databases of both clients. For
i = 1,2, the ith client generates and shares a local random-
ness s; = [si(1) s5;(2)]7, such that s;(¢) ~ uniform{0, 1,2}
among the databases that belong to the ith client. Finally, for
i =1, 2, the second database of the ith client has an individ-
ual correlated randomness t;» = [#;2(1) t,‘,z(Z)]T, such that
t12(1) ~ t1,2(2) ~ uniform{0, 1, 2}, #12(1) +122(1) =1, and
1122)+12(2) = 1. Assume that #11 = #2,1 = 0. All random-
ness components are independently generated of each other
and of the data sets.

The answer string Al[f}],
given by,

fori=1,2,j=1,2, k= 1,4, is

AW = c(xf O 4 si(e(h) + t,-,,-(e(k))) (84)
where £(1) =1 and £(4) = 2.
Thus, the leader party receives the following answer strings

from P,

A1 1= C(Z X1k +S1(1)) (85)
k=1

Al = C(Z WXy g+ X1+ s1(D) + 1 2(1)> (86)
k=1

AY = C<Z hX k + s1(2)) (87)

k=1

A[l ) = C(Z X1+ X1,4+512) +11 2(2)> (83)

k=1
and the following answer strings from P,

Ah = c(thXZk +S2(1)) (89)

k=1
[ _

Ays = C(Z hiXo ) + X1,1 + 52(1) + 12, 2(1)> (90)

k=1
4 -

A = c( hXo i + 52(2)) O1)

k=1
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4
A = c(Z FuXo + X1.4+ 52(2) + t2,2<2)> (92)
k=1

The leader party constructs the subtractions Z; ; as follows,

Ziy = c(X1.1 +12(D) = A — A} (93)
Zig = c(X14+122) =AY, — AlY] (94)
Z1 = c(X1,1 +102(D) = A[21]2 _A[zl,]1 95)
Zrs=c(X14+10202) = A[f]z - A[f]l (96)

These are exactly the statistics in (28)—(31). Hence, the relia-

bility and privacy constraints follow exactly as in Section IV.

The total download cost in this case is D = 444 = 8, which is

consistent with the download cost for the general case in (9),
[‘2*2] + [‘2*2'| — 8

B. An Example for Heterogeneous Number of Databases

In this example, we consider a general case, where there
are no constraints on the number of databases associated with
each party or on the cardinality of the sets. In this example, we
have M = 4 parties with Ny =2, N, =3, N3 =5, and Ny =4
associated databases. The four parties have the following data
sets and the corresponding incidence vectors,

Party P1: Py = {1,2,3, 4]
T
= Xi=[Xi1 Xi2 X3 X4 Xi5] =[11110]"
o7
Party Po: P> ={1,2,4}
T
= Xo=[X21 X202 X23 Xo4 X25]" =[1101 01"
98)
Party P3: P3 ={1,3,4}
= X3=[X31 X32 Xa3 X34 X35] =[1 0110/
99)
Party Py: Py ={1,4,5}
T
= Xa=[Xa1 Xa2 Xa3 Xa4 Xa5] =[10011]"
(100)

First, we choose party P4 for the role of the leader party, as
it results in the minimum download cost D; = Zi#[ﬁ’y\{’l
Since M = 4, we choose a retrieval field F;, such that L = 5,
as L is the smallest prlme number that satisfies L > M.

Now, ¥k = max; ( N 11 = 3. Hence, for the queries, the
leader P4 generates k = 3 random vectors. From which, it
submits 7; = [y—=7 1Pyl 71 to the first database associated with the
ith party, i = 1 2 3 Each random vector can be reused for
retrieving N; — 1 elements from the remaining databases by
adding 1 to the query vector in the positions of the desired
symbols.

Specifically, party P has only two databases and Py is sup-
posed to submits 1] = {23711 = 3 random vectors to database
1, denoted by hy = [he(1) he(2) - - - he(5)]%, where £ = 1,2, 3.
The leader’s set is divided as P}l = {1}, P> = {4}, and
PP = {5} with |73f,1‘| = N; — 1 = 1. These random vectors
are generated uniformly from IFg Thus, the queries sent from

P4 to Py are generated as follows,

oMl =) m@ mE Mm@ uS’ (101)
O =M +1 Mm@ mG m@ nE 102
oM =) m@) hG) h@ o)l (103)
O =) h@) hG) h@+1 BE) (104
OVl =hs(1) h3(2) h3(3) hs4) h3(5)I” (105)
OP) =ha(l) h3(2) h3(3) hs@) h3(5)+ 117 (106)

Party P, has three databases and P4 only needs to send
nm = (34711 = 2 random vectors to database 1 of client P;.
Each random vector can be reused at databases 2, 3 to retrieve
2 desired symbols. The leader’s set is divided as 77‘%1 ={1,4},
and sz = {5}. Without loss of generality, P4 uses h; to
obtain the information of X3 1, X> 4 and h; is used to obtain
the information of X> 5. Note that, in this case no query is
needed to be sent to the third database to retrieve X3 5. Thus,
the queries sent from P4 to P, are generated as follows,

MM =) Mm@ Mm@ m@ mE) (107)
M =M +1 M@ m@G) @ GIT (108)
O =) Mm@ Mm@ m@+1 u®I" (109
O =) h@) hG) h@ o) (110)
oY) = (1) Mm@ hG) h@) hE)+117 (1)

Party P3 has five databases and P4 needs to send 13 =
(%] = 1 random vector to database 1 and reuse this vector
to retrieve all the desired symbols from databases 2 through 4.
Thus, the queries sent from P4 to P3 are generated as follows,

Q3145] M) Q) h3) k@ L))’ (112)
O =) +1 M@ MG Mm@ mE (113)
OV =) Mm@ mEG) m@+1 mE)) (114
OV = () h©@) mB) m@) hE)+17 115

The clients share the following common randomness. A
global randomness ¢ ~ uniform{1, 2, 3, 4} is shared among
all databases at all clients. A local randomness s; =
[s1(1) 51(2) s1(3)] is shared among the databases of P, and
similarly sy = [s2(1) s1(2)], s3 = [s3(1)] are shared among
the databases of P, and P3, respectively. The random vari-
able s;(¢) ~ uniform{0, 1, 2, 3, 4}. Finally, database 2 which
is associated with Pp, generates the individual randomness
tpo = [t12(1) t12(2) t12(3)]. Similarly, at P,, database 2
generates 2 = [22(1) £2(2)], and database 3 generates
12,3. Each element of the common randomness t; ; for i =1, 2
and j = 2,3 is generated uniformly and independently from
IFs. The variables (t;;, i = 1,2, j =2, 3) are sent to P3. The
individual correlated randomness 3 ; at P3 is calculated as,

32 =2—112(1) —12(1)

= t2()+n2(l)+132,=2 (116)
B33=2—-1.22)—1t3
= 112Q)+h3+133=2 (117)
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134=2—11203)—10202)
= 1203)+n22)+134=2 (118)

According to this construction, the leader receives the

following answer strings from P,

5
Al = c(Z ()X + S1<1>)

k=1

(119)
5

ol Yo m®Xik+s1() + X1 +n 2(1>> (120)
(121)

Z hy ()X + 51 <2>)

AEA,Hz = (Z hay(K)X1 x +51(2) + X14 + 11 2(2)) (122)

k=1
AP} = Zln(k)xl it s1<3>) (123)
k=1
5
AP) = o Y X1k +513) + Xis+ 1 2<3>> (124)

Similarly, P4 receives the following responses from P»,

5
Al = c(z 1 ()Xo, + sz(l))

k=1

(125)

5
Al = c(Z ()Xo + 52(1) + X2.1 + m(l)) (126)
k=1

A“‘”_C<Zh1(k)x2k+sz(1)+Xz4+t23) (127)
k=1

5
AR = c(Z Iy (k)Xo i+ s2(2>> (128)

k=1

5
A[252 = C(Z ha (k)Xo i + 52(2) + Xo.5 + t2,2(2)> (129)
k=1

Finally, P4 receives the following responses from P3,

Ay =c Zhl(k)xzk+s3(1)> (130)

(Zhl(k)X3 k+s3()+X31+13 2) (131)
AL —c<2h1(k)x3k+s3<1)+x34+r3 3) (132)

Al = C<Z hi ()X 4 s3(1) + X35 + t3,4) (133)
k=1
The leader party P4 proceeds with decoding by removing
the random responses created at database 1 of all clients Py, P>
and P3, i.e., it constructs Z; j fori =1,2,3andj=1,2,3,4,5
by subtracting the responses A; 1,

1

Zi = (X1 +112(D) = A} — A} (134)

Zig=c(Xia+1122) =A% — Al (135)
Zi5s = c(X15+1,203)) :AE%]Z —A[ls,]l (136)
Zo1 = c(Xa1 + na(D) = AN —AllY (137
Zra = c(Xo4+n3) =401 -l (138)
Zy5 = c(Xo5 + 102(2)) = AS) — AD) (139)
Zs1 = (X1 +132) = A5 Al (140)
Zs4 = (X34 +133) = A3 _Ag{;‘ M 14
Zys=c(Xss5+134) = AT — Al (142

The MP-PSI determination at P4 concludes by evaluating
the following indicators, Ej, for j =1,4,5 as,

3
Ey = Zzi,l
i=1

=c(Xi1+ X1 + X310+ t12(1) + 2(1) +132) (143)

3
E4 = Z Zi4
i=1

=c(X14+Xo4+X344+101202) +103+133)

3
Es = ZZ:',S
=1

=c(Xi5+Xo5+X35+11203) +102(2) +134) (145)

(144)

By observing that the sum of the correlated randomness in
E;j according to (116)—(118) is equal 2, we note that E; = 0
if and only if 337, X;; = 3, e, if X1; = Xoj = X3, = 1
simultaneously. Consequently, E; = E4 = 0 irrespective to c,
while E5 # 0 and P4 can reliably calculate Ni—=1 234 P;i =
{1,4}. On the other hand, for E5, X1 5+ X25+ X35+ 114 +
124413 4 1s equal to 2 and then E5 must be one value in the set
{1, 2, 3, 4} depending on the value of c. Now, we calculate the
value of the expression X 54 X3 5+ X3 5 from the perspective
of the leader party P4. If E5 is 1, P(X15 + X25 + X35 =
= }‘,Vl = {0, 1, 2, 3} because ¢ is uniformly distributed
over {1, 2, 3,4}. The conclusion is exactly the same when Ej
is equal to 2, 3 or 4. Thus, the only information that P4 can
obtain for the element 5 is that client parties Py, P, and P3
cannot contain it at the same time. The privacy of leader party
is preserved because each element in the queries is uniformly
distributed over the finite field F5. Hence, no information about
P4 is leaked from the queries. The total download cost in
this case is D = 6 + 5 + 4 = 15, which is consistent with
the download cost for the general case in (9), D = |'3*2'| +
|—3*3-| + |—3>s<5-| —15.

VII. CONCLUSION AND FUTURE WORK

We formulated the problem of MP-PSI from an information-
theoretic point of view. We investigated a specific mode of
communication, namely, single round communication between
the leader and clients. We proposed a novel achievable scheme
for the MP-PSI problem. Our scheme hinges on a careful
design and sharing of randomness between client parties prior
to commencing the MP-PSI operation. Our scheme is not a
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straightforward extension to the 2-party PSI scheme, as apply-
ing the 2-party PSI scheme M — 1 times leaks information
beyond the intersection ﬂf.‘i Pi. The download cost of our
scheme matches the sum of download cost of pair-wise PSI
despite the stringent privacy constraint in the case of MP-PSI.
We note that this work provides only an achievable scheme
with no claim of optimality. A converse proof is needed
to assess the efficiency of our scheme. Furthermore, several
interesting directions can be pursued based on this work. First,
one can investigate the MP-PSI in more general communica-
tion settings (not necessarily leader-to-clients). Second, one
can study the case where the communication between the par-
ties is done over multiple rounds (in contrast to the single
round of communication in this work). Third, one can inves-
tigate the case of calculating more general set functions (not
necessarily the intersection).
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