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Abstract—We investigate the problem of multi-party private set
intersection (MP-PSI). In MP-PSI, there are M parties, each stor-
ing a data set Pi over Ni replicated and non-colluding databases,
and we want to calculate the intersection of the data sets ∩M

i=1Pi
without leaking any information beyond the set intersection to
any of the parties. We consider a specific communication pro-
tocol where one of the parties, called the leader party, initiates
the MP-PSI protocol by sending queries to the remaining parties
which are called client parties. The client parties are not allowed
to communicate with each other. We propose an information-
theoretic scheme that privately calculates the intersection ∩M

i=1Pi

with a download cost of D = mint∈{1,...,M}
∑

i∈{1,...,M}\t� |Pt|Ni
Ni−1 �.

Similar to the 2-party PSI problem, our scheme builds on the
connection between the PSI problem and the multi-message sym-
metric private information retrieval (MM-SPIR) problem. Our
scheme is a non-trivial generalization of the 2-party PSI scheme
as it needs an intricate design of the shared common randomness.
Interestingly, in terms of the download cost, our scheme does not
incur any penalty due to the more stringent privacy constraints
in the MP-PSI problem compared to the 2-party PSI problem.

Index Terms—Secure multi-party computation, private set
intersection, symmetric private information retrieval.

I. INTRODUCTION

THE TWO-PARTY private set intersection (PSI) problem
refers to a classical privacy problem, which is introduced

in [1]. In its classical setting, two parties, each possessing
a data set, need to calculate common elements that lie in
both data sets. This calculation is performed in such a way
that neither party reveals anything to the counterparty except
for the elements in the intersection. Ubiquitous schemes have
been investigated to tackle the PSI problem using crypto-
graphic techniques; see for example [2]–[4]. Many practical
applications are tied to PSI. To see this, consider the fol-
lowing scenario: suppose that the national security agency
(NSA) and the customs and border protection (CBP) need
to check whether a specific group of suspected criminals
has entered the country. The NSA has a list of suspected
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criminals, while the CBP has a complete list of individu-
als who entered the country. Both agencies want to find the
intersection between these lists. However, the NSA does not
want to share its complete list of suspects, and the CBP can-
not reveal the entire catalog of records either. This is a natural
application for the 2-party PSI problem. Reference [5] formu-
lates the 2-party PSI problem from an information-theoretic
perspective. Interestingly, [5] explores an intriguing connec-
tion between the PSI problem and the private information
retrieval (PIR) problem [6]. Specifically, [5] investigates the
PSI determination using the multi-message symmetric PIR
(MM-SPIR) procedure. Surprisingly, under some technical
conditions, MM-SPIR proves to be the most-efficient 2-party
PSI protocol under absolute privacy guarantees. The efficiency
is measured by the total download cost, which is the num-
ber of bits needed to be downloaded to calculate the set
intersection at one of the parties. The optimality proof builds
on the rich literature of characterizing the fundamental limits
of PIR and related problems, starting with the seminal work
of Sun and Jafar [7]. Further fundamental limits of many vari-
ations of the PIR problem have been investigated; see [8]–[62]
for example.

The MM-SPIR framework to solve the PSI problem in [5],
however, works only for 2-party PSI. This is because the
original PIR problem (and the SPIR problem) involves two
parties, the user and the server(s). Unlike PIR, the PSI problem
may involve more than two parties. Returning to the example
involving the NSA and CBP above, suppose now that the NSA
needs to narrow down the search to check whether the sus-
pects have entered the country via a specific airline. The airline
company has a list of all passengers that took its flights all
over the world. The company needs to protect the privacy of
its passengers as well. The problem of finding the set of sus-
pects who entered the country via this specific airline becomes
a 3-party PSI. Unfortunately, the NSA cannot just apply a
2-party PSI scheme with the airline company and the CBP,
as the NSA will learn extra information than the intersection
of the three lists, for example, the NSA will learn about
some of its suspects who boarded a flight with this airline
company but never landed in this country. Another example
of 3-party PSI is related to ad clicks. Consider a company
which sells a certain product (e.g., shoes), a company which
makes ads and posts them at various Web-hosts, and another
company which is a Web-host that hosts ads. All of these
parties have their individual lists of clicks that they wish to
keep private, but may want to compute the intersection, i.e.,
actual customers who bought the product from the company
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Fig. 1. Multi-party private set intersection (MP-PSI) system model.

after seeing an ad produced by the ad company hosted at
the particular Web-host company, to determine the effective-
ness of the ad company and the Web-host company. Note
again that pairwise intersections leak additional information
beyond the three-way intersection. These examples motivate
the multi-party PSI (MP-PSI) problem. They also illustrate
that the MP-PSI is a non-trivial extension of the 2-party PSI
as it cannot be implemented via multiple 2-party PSI. To
make this point even stronger, consider three parties with sets
P1 = {1, 2, 3}, P2 = {1, 2} and P3 = {1, 3}. The intersection
of these three sets is P = P1 ∩ P2 ∩ P3 = {1}. When any
one these parties is chosen as the leader party and applies a
3-party PSI protocol, the leader party should learn only this
three-way intersection. However, if the leader party applies a
2-party PSI with the two client parties, it will learn information
more than the three-way intersection. For instance, if the leader
party is the first party, and if it applies a 2-party PSI with the
second and third parties, it will learn P1 ∩ P2 = {1, 2} and
P1 ∩P3 = {1, 3}. Even though the leader party can obtain the
three-way intersection by taking the intersection of these two
two-way intersections, i.e., {1, 2}∩{1, 3} = {1}, this sequential
use of 2-party PSI for the 3-party PSI problem leaks further
information to the leader party. For instance, the leader party
learns that the second party has {2} and the third party has
{3} further than the overall intersection {1}. Thus, 3-party PSI
cannot be implemented by two 2-party PSI. In the computa-
tional privacy literature, the first MP-PSI achievable scheme
was proposed by Freedman et al. [1]. Though considerable
progress has been made in the construction of various 2-party
PSI schemes, only few works exist for MP-PSI schemes [63].1

1An anonymous reviewer brought to our attention the works of [64]
and [65] during the review process. The work of [64] is a classical computation
paper which is concerned about presenting a minimal, yet powerful, model for
secure computation of a function. In [64, Appendix B], the authors present an
interesting ‘AND’ function protocol as an extension for their original 2-input
formulation. Their scheme shares some resemblance to our proposed scheme
as both use additive and multiplicative common randomness. This idea is gen-
eralized in [65]. Nevertheless, our work is significantly different in terms of
the problem formulation as we use multiple servers per party in our problem
in contrast to an external helper in [64]. Our work is significantly different
also in terms of the privacy constraints (i.e., symmetric “user” and “database”
privacy constraints we have here as in SPIR) and how our scheme satisfies
these constraints.

In this article, we investigate the MP-PSI problem from
an information-theoretic perspective. In MP-PSI, there are
M independent parties. The ith party is denoted by Pi, for
i = 1, . . . , M. Each party possesses a data set Pi, where
i ∈ {1, . . . , M}. The elements of all data sets are picked from
a finite set SK with cardinality |SK | = K for sufficiently large
K.2 The data set Pi is stored in Ni replicated and non-colluding
databases. We aim at privately determining the intersection of
all the M data sets, i.e., we aim at calculating P = ∩M

i=1Pi

in such a way that no party can learn any information beyond
the intersection P . Inspired by the classical achievable scheme
in [1], [66], we focus on a specific communication strategy
between the parties in this work; see Fig. 1. In particular, we
assume that the parties agree on choosing one of them as a
leader party, while the remaining parties act as client parties.
Without loss of generality, we pick PM as a leader party, and
then the remaining parties P1, . . . , PM−1 are all client par-
ties. The leader party PM initiates the MP-PSI determination
protocol by generating and submitting queries to the client
parties. At the clients’ side and before MP-PSI, the clients
are allowed to generate and share common randomness (com-
mon randomness residing in the jth database of party Pi is
shown by Ri,j in Fig. 1). This is motivated by the results
of [5], [12], [67], which assert that using common randomness
is strictly necessary to enable symmetrically private commu-
nication. Furthermore, we assume that the leader party PM

can communicate with each client party in only one round,
and communication between any two client parties is not
allowed during the protocol. The client parties respond truth-
fully to the leader’s queries without leaking information about
the elements outside P with the aid of the assigned common
randomness.

In this article, we first formulate the MP-PSI problem from
an information-theoretic perspective. We show that MP-PSI
can also be recast as a MM-SPIR problem, which extends
the formulation of the 2-party PSI problem [5]. This can be
done by mapping the data sets at each party into an incidence

2Without loss of generality, one can assume that SK = {1, . . . , K}.
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vector3 to facilitate the MM-SPIR of the elements that belong
to PM (the leader’s data set). Next, we propose a novel achiev-
able scheme for MP-PSI determination. The structure of the
queries that the leader party submits in our scheme is the
same as the SPIR queries in [12] (which can be traced back
to the original work of Chor et al. in [6]). Despite the sim-
ilarity of the queries, the answering strings in MP-PSI are
fundamentally different. This is due to the fact that the leader
party cannot perform M − 1 pair-wise PSI operation to calcu-
late P = ∩M

i=1Pi without leaking extra information about the
individual intersections PM ∩ Pi, i = 1, . . . , M − 1, as dis-
cussed above. Note that, in general the joint intersection set
P �= ∪M−1

i=1 (PM ∩ Pi). To alleviate this problem, we design
an intricate protocol of generating and sharing the common
randomness among the databases of the parties. By properly
incorporating the common randomness to the answer strings,
we prevent the leader party from learning about the elements
that lie in ∪M−1

i=1 (PM ∩ Pi) but not in ∩M
i=1Pi. This constraint

is referred to as the clients’ privacy constraint. By correlating
some of the components of the common randomness in a spe-
cific way, we show that the leader party can reliably identify
the elements in P , but nothing beyond it. The download cost
of our scheme is mint∈{1,...,M}

∑
i∈{1,...,M}\t� |Pt|Ni

Ni−1 �. Note that
the optimal download cost with one-round communication is
D∗ = min{� P1N2

N2−1�, � P2N1
N1−1�} in the 2-party PSI problem [5].

This means that although in MP-PSI, the clients’ privacy con-
straint is more stringent than that in the PSI problem, we incur
no penalty for it. In addition, our achievable download cost
scales linearly with the cardinality of the leader set, which out-
performs the best-known MP-PSI scheme, which scales with
the sum of the cardinalities of the data sets [63]. Furthermore,
our scheme has an advantage of simpler implementation in
addition to providing absolute (information-theoretic) privacy
guarantees compared to the computationally private techniques
in the literature.

II. PROBLEM FORMULATION

Consider a setting where there are M independent parties,4

denoted by Pi, i = 1, 2, . . . , M. The ith party possesses a data
set Pi for i ∈ [1 : M]. The data set Pi is stored within Ni

replicated and non-colluding databases.5 Given that K is large

3As investigated in [5], in MM-SPIR problem, a user needs to retrieve
P messages from N replicated servers containing K messages. The 2-party
PSI problem can be recast as MM-SPIR by considering that the messages
correspond to incidences of elements in its data set with respect to the finite
set of all elements. Specifically, [5] transforms each data set into a library of
K binary messages of one-bit length. Finally, in [5], party P1 (or P2) performs
MM-SPIR of the messages corresponding to its data set P1 (or P2) within
the databases of the other entity.

4In this work, we only consider semi-honest (honest but curious) parties
in the sense that parties exactly follow the prescribed scheme but curious to
learn more about the others. MP-PSI under malicious/adversarial attacks and
in the presence of dishonest parties is an interesting future direction that is
outside the scope of this work.

5We note that the multi-server assumption exists in almost all information-
theoretic PIR literature. In practice, the data content may be distributed to the
databases by a central content generator who does not communicate directly
with other parties, i.e., does not have access to the exchanged queries. The
databases do not have any direct communication links among each other and
they update their content by downloading the data from the content generator.
Hence, in this setting, the databases are replicated but not colluding.

enough, the elements in each data set Pi are picked indepen-
dently from a finite set SK of cardinality K with an arbitrary
statistical distribution.6 More specifically, before the data sets
generation, the data sets Pi, i ∈ [1 : M] are all random vari-
ables and they are mutually independent. We assume that the
cardinality of data set |Pi| is public knowledge.

Motivated by the relation between 2-party PSI and MM-
SPIR in [5], the ith party maps its data set Pi into a searchable
list to facilitate PIR. To that end, the party Pi constructs
an incidence vector Xi, which is a binary vector of size K
associated with the data set Pi for all i ∈ [1 : M], such that

Xi,j =
{

1, j ∈ Pi

0, j /∈ Pi
(1)

where Xi,j is the jth element of Xi for all j ∈ SK . Note that Xi

is a sufficient statistic for Pi for a given K. Hence, the MP-PSI
determination is performed over Xi instead of Pi.

We consider a specific communication protocol in this work.
The parties agree on a leader party, which sends queries to
the remaining parties and eventually calculates the desired
intersection ∩M

i=1Pi. The remaining parties are called client
parties. Without loss of generality, assume that the leader party
is PM . The leader party PM sends the query Q[PM]

i,j to the jth
database in the client party Pi for all i ∈ [1 : M − 1] and
j ∈ [1 : Ni]. Since PM has no information about data set Pi

before the communication, the generated queries Q[PM]
i,j are

independent from Pi. Hence,

I
(

Q[PM]
i,j ;Pi

)
= 0, ∀i ∈ [1 : M − 1],∀j ∈ [1 : Ni] (2)

The jth database associated with the client party Pi responds
truthfully with an answer A[PM]

i,j for all i ∈ [1 : M − 1], and
j ∈ [1 : Ni]. The answer is a deterministic function of the
query Q[PM]

i,j , the data set Pi, and some common randomness7

Ri,j that is available to the jth database of Pi. Thus,

H
(

A[PM]
i,j |Q[PM]

i,j ,Pi,Ri,j

)
= 0,∀i ∈ [1 : M − 1],

∀j ∈ [1 : Ni] (3)

Let us denote all the queries generated by the leader party
PM as Q[PM]

1:M−1,1:Ni
and all the answers collected by PM as

A[PM]
1:M−1,1:Ni

, i.e.,

Q[PM]
1:M−1,1:Ni

=
{

Q[PM]
i,j : i ∈ [1 : M − 1], j ∈ [1 : Ni]

}
(4)

A[PM]
1:M−1,1:Ni

=
{

A[PM]
i,j : i ∈ [1 : M − 1], j ∈ [1 : Ni]

}
(5)

6The presented achievability scheme works for any data set generation
model and even for distribution-free data sets. The specific data set generation
model in the 2-party PSI problem in [5] was introduced only for settling the
converse.

7We note that the common randomness (key) exchange is an interesting
stand-alone problem that is outside the scope of this article. One practical
solution to this problem in our setting is to have an external helper, who gen-
erates and shares the common randomness prior to the MP-PSI determination
process. The external helper is not involved in the MP-PSI process itself, i.e.,
it does not observe the queries or the answers. In this case, the client parties
do not need to communicate with each other to exchange the common ran-
domness and there is no leakage from their queries/answers to the external
helper. We note that the SPIR problem [12] (and by extension our scheme)
is infeasible if no common randomness exists.
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Three formal requirements are needed to be satisfied for the
MP-PSI problem.

First, the leader party PM should be able to reliably deter-
mine the intersection P = ∩M

i=1Pi based on Q[PM]
1:M−1,1:Ni

,

A[PM]
1:M−1,1:Ni

and the knowledge of PM without knowing |P| in
advance. This is captured by the following MP-PSI reliability
constraint,

[
MP-PSI reliability

]

H
(
P|Q[PM]

1:M−1,1:Ni
, A[PM]

1:M−1,1:Ni
,PM

)
= 0 (6)

Second, the queries sent by PM should not leak any
information about PM except the cardinality of PM to any
individual database. Thus, PM should be independent of all
the information available in the jth database of Pi for all
i ∈ [1 : M − 1] and j ∈ [1 : Ni]. This is described by the
following leader’s privacy constraint,

[
Leader’s privacy

] ∀i ∈ [1 : M − 1],∀j ∈ [1 : Ni]

I
(
PM; Q[PM]

i,j , A[PM]
i,j ,Pi,Ri,j

)
= 0 (7)

Note that the communication between any two client parties
is not allowed in our protocol. This implies that the party Pi

is not able to get any information about the remaining M − 2
client parties. Thus, the mutual independence required by the
problem formulation is thereby satisfied from the perspective
of the party Pi.

Third, client’s privacy requires that the leader party does not
learn any information other than the intersection P from the
collected answer strings. Let Xi,P̄ be the set of elements in Xi

that do not belong to P , i.e., Xi,P̄ = {Xi,k : k ∈ P̄}. Hence, the
set {X1,P̄ , . . . , XM−1,P̄ } = {X1,k, . . . , XM−1,k, k ∈ P̄} should
be independent of all the information available in PM . Note
that if an element in PM is not in the intersection P , the leader
party is supposed to conclude that not all the client parties
contain this element simultaneously. On the basis of this fact,
we define a new set XP̄ = {{X1,P̄ , . . . , XM−1,P̄ } : X1,k +· · ·+
XM−1,k < M−1,∀k ∈ PM ∩P̄}, we have the following client’s
privacy constraint,

[
Client’s privacy

]

I
(

XP̄ ; Q[PM]
1:M−1,1:Ni

, A[PM]
1:M−1,1:Ni

,PM

)
= 0 (8)

For a given field size K and individual parties with associ-
ated databases, an MP-PSI achievability scheme is a scheme
that satisfies the MP-PSI reliability constraint (6), the leader’s
privacy constraint (7) and the client’s privacy constraint (8).
The efficiency of an achievable MP-PSI scheme is measured
by its download cost8 which is the number of downloaded bits

8We note that although a more natural performance metric is to consider
the combined upload and download cost, we argue that the upload cost may
not scale with the number of MP-PSI determination rounds if the MP-PSI
is regularly repeated [5, Footnote 8]. Since the core of [5] (and the current
paper also) relies on SPIR, we give a detailed discussion of how to reduce the
upload cost of the SPIR scheme without sacrificing the download cost in [5,
Sec. 7.2]. The optimal download cost of the SPIR problem is characterized
in [12] with keeping the upload cost unconstrained. In addition, the optimal
upload cost of the SPIR problem is characterized in [68] with keeping the
download cost unconstrained. The optimal combined download and upload
cost for the canonical SPIR problem is still an open problem.

(denoted by D) by one of the parties in order to compute the
intersection P . The optimal download cost is D∗ = inf D over
all MP-PSI achievability schemes.

III. MAIN RESULT

In this section, we state our main result concerning the
performance of our MP-PSI scheme in terms of the down-
load cost. This is summarized in the following theorem, whose
proof is given in Section V.

Theorem 1: In the MP-PSI problem with M independent
parties with data sets Pi, assuming that the parties follow
a leader-to-clients communication policy, if the data sets are
stored within Ni replicated and non-colluding databases for
i = 1, . . . , M, then the optimal download cost, D∗, is upper
bounded by

D∗ ≤ min
t∈{1,...,M}

∑

i∈{1,...,M}\t

⌈ |Pt|Ni

Ni − 1

⌉

. (9)

Remark 1: In the special case of having an arbitrary party
Pi where |Pi| = K, we discard this party Pi before we perform
the MP-PSI determination process, and thereby, the M-party
MP-PSI problem reduces to an M − 1-party MP-PSI problem.
In the extreme case, where all parties have |Pi| = |SK | =
K, the download cost becomes zero, i.e., no party needs to
exchange any information with any other, as the intersection
is immediate.

Remark 2: The minimization problem in (9) in Theorem 1
corresponds to the fact that the parties can agree on the party
with the minimum

∑
i∈{1,...,M}\t� |Pt|Ni

Ni−1 � to be the leader party.
We note that the leader party may not be the party with the
least |Pi|, as the download cost also depends on the number
of the databases at all parties.

Remark 3: The download cost of our achievability scheme
is equal to the sum of the download costs of M − 1 pair-wise
PSI schemes. This implies that there is no penalty incurred
due to adopting a stringent clients’ privacy constraint over the
E2 privacy constraint. Note that the E2 privacy constraint is a
relaxed version of client’s privacy (8) when M = 2 [5]. More
specifically, the E2 privacy constraint asserts that the leakage
from elements outside the set P1 in the answers returned by
E2 is zero, i.e., I(P̄1; A[P1]

1:N2
) = 0.

Remark 4: Our achievability scheme is private in the
information-theoretic (absolute) sense and is fairly simple to
implement. A drawback of our approach is that it needs
multiple replicated non-colluding databases as in the 2-party
PSI problem in [5]; otherwise, our scheme is infeasible if
Ni = 1 for all i.

Remark 5: Comparing our result with the most closely
related information-theoretic MP-PSI schemes [69], we argue
that our scheme outperforms theirs in terms of the communica-
tion cost as our download cost is linear in both the number of
parties M and the size of the sets p, assuming that |Pi| = p for
all i = 1, . . . , M in contrast of O(M4p2) in [69]. We note, how-
ever, that the work [69] allows for potential distrust between
the parties in the sense that an active adversary may corrupt
up to M/3 parties. The issue of parties’ misbehavior is an
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interesting future direction for our work, which is outside the
scope of this article.

IV. MOTIVATING EXAMPLE: 3 PARTIES WITH 3
DATABASES EACH (M = 3 WITH

N1 = N2 = N3 = 3)

In this section, we motivate our scheme by presenting the
following example. In this example, we have M = 3 par-
ties, each possessing Ni = 3 replicated and non-colluding
databases. Assume that each party stores an independently
generated set Pi ⊆ SK , where SK = {1, 2, 3, 4}. Specifically,
we assume that P1 = {1, 2}, P2 = {1, 3}, and P3 =
{1, 4}. We aim at reliably calculating the intersection P1 ∩
P2 ∩ P3 = {1} without leaking any further information to
any of the parties according to the defined communication
policy. Without loss of generality, we pick P3 to be the
leader party. The remaining parties P1, P2 are referred to as
clients.

We map the sets into the corresponding incidence vectors
as in [5], i.e., we construct a vector Xi, such that Xi,k = 1 if
k ∈ Pi, hence,

Party P1: P1 = {1, 2}
⇒ X1 = [

X1,1 X1,2 X1,3 X1,4
]T = [1 1 0 0]T (10)

Party P2: P2 = {1, 3}
⇒ X2 = [

X2,1 X2,2 X2,3 X2,4
]T = [1 0 1 0]T (11)

Party P3: P3 = {1, 4}
⇒ X3 = [

X3,1 X3,2 X3,3 X3,4
]T = [1 0 0 1]T (12)

To carry out the MP-PSI calculations, the parties agree on
a finite field FL, where L is a prime number such that L ≥ M.
Therefore, we pick L = 3 in our case, i.e., all summations are
performed as modulo-3 arithmetic.

The leader party P3 initiates the MP-PSI determination pro-
tocol by sending queries Q[P3]

i,j for i ∈ {1, 2} and j ∈ {1, 2, 3}.
The queries aim at privately retrieving the messages X1,1,
X1,4 and X2,1, X2,4 using the SPIR retrieval scheme in [12]
(the same query structure was introduced in the original work
of [6]). Note that in this example we have Ni = |P3|+1, thus,
the leader party sends exactly 1 query to each client database.
More specifically, let hk, where k = 1, . . . , 4, be a random
variable picked uniformly and independently from F3, then,
for client party P1, the queries sent from the leader party P3
are generated as follows,

Q[P3]
1,1 = [h1 h2 h3 h4]T (13)

Q[P3]
1,2 = [h1 + 1 h2 h3 h4]T (14)

Q[P3]
1,3 = [h1 h2 h3 h4 + 1]T (15)

i.e., the leader party sends a random vector h = [h1 h2 h3 h4] ∈
F

4
3 to the first database as a query. The queries for the remain-

ing databases add a 1 to the positions corresponding to P3.
For client party P2, the leader party submits the same set of
queries,

Q[P3]
2,1 = [h1 h2 h3 h4]T (16)

Q[P3]
2,2 = [h1 + 1 h2 h3 h4]T (17)

Q[P3]
2,3 = [h1 h2 h3 h4 + 1]T (18)

Originally in 2-party PSI, the client databases obtain the
inner product of Xi and Q[P3]

i,j and add a common random-
ness. In MP-PSI, however, we note that applying the answering
strategy of [5], [12] compromises the clients’ privacy con-
straint (8). This is due to the fact that the leader, in this
case, can decode that X1,4 = 0 and X2,4 = 0 and not
only the intersection ∩i=1,2,3 Pi. Consequently, the clients’
databases need to share intricate common randomness prior
to the retrieval phase to prevent that. To that end, the client
parties generate and/or share the following randomness (see
Fig. 2).

1) Local randomness: This is denoted by the random vari-
able si, for i = 1, 2. The random variable si is picked
uniformly from F3 independent of all data sets and other
randomness sources. The local randomness si is shared
among all the databases belonging to the ith client party
and not shared with other parties. This local randomness
acts as the common randomness needed for SPIR [12],
and is added to the inner product of the incidence vector
and the query.

2) Individual correlated randomness: This is possessed by
each client’s database, and is denoted by the random
variables ti,j for i = 1, 2, and j = 1, 2, 3. This is needed
to prevent the leader party from decoding X1,4, and
X2,4. However, since we also need the leader party to
decode the intersection, the random variables ti,j need
to be correlated such that their effect can be removed if
Xi,j belongs to the intersection. To that end, we choose
t1,1 = t2,1 = 0. Database 2 of the party P1 generates
uniformly and independently t1,2 from F3 and sends it
to database 2 of party P2. Database 2 of the party P2 cal-
culates t2,2 = 1 − t1,2. Similarly, database 3 of the party
P1 generates t1,3 uniformly and independently from F3
and shares it with database 3 of P2. Hence,

t1,j ∼ uniform{0, 1, 2}, j = 2, 3 (19)

t1,j + t2,j = 1, j = 2, 3 (20)

This randomness is added to each response as well. Note
that client parties do not know each other’s data sets
while generating/sharing this randomness.

3) Global randomness: This is denoted by the random vari-
able c. The random variable c is generated randomly
and independently of all data sets and other randomness
variables. The global randomness c is picked uniformly
from F3 \ {0} = {1, 2}. The global randomness is shared
among all databases of all client parties P1 and P2.
The global randomness is used as a multiplier to the
responses.

After sharing the common randomness needed to construct
the answer strings as shown above, the jth database of the ith
client party responds to the query Q[P3]

i,j as follows,

A[P3]
i,j = c

(
XT

i Q[P3]
i,j + si + ti,j

)
, i = 1, 2, j = 1, 2, 3 (21)
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Fig. 2. MP-PSI for the motivating example.

Hence, noting that t1,1 = 0, the answer strings from P1 can
be explicitly written as,

A[P3]
1,1 = c

(
4∑

k=1

hkX1,k + s1

)

(22)

A[P3]
1,2 = c

(
4∑

k=1

hkX1,k + X1,1 + s1 + t1,2

)

(23)

A[P3]
1,3 = c

(
4∑

k=1

hkX1,k + X1,4 + s1 + t1,3

)

(24)

Similarly, the answer strings from P2 are,

A[P3]
2,1 = c

(
4∑

k=1

hkX2,k + s2

)

(25)

A[P3]
2,2 = c

(
4∑

k=1

hkX2,k + X2,1 + s2 + t2,2

)

(26)

A[P3]
2,3 = c

(
4∑

k=1

hkX2,k + X2,4 + s2 + t2,3

)

(27)

Note that, by this construction, the local randomness si is
used to protect the random sum

∑4
k=1 hkXi,k as in SPIR, and

the individual randomness ti,j is needed to prevent the leader
party from directly decoding Xi,j+1. Note that s1 and s2 need
to be independent to avoid the information leakage about the
relationship between

∑4
k=1 hkX1,k and

∑4
k=1 hkX2,k.

a) Reliability: To calculate ∩i=1,2,3 Pi based on the answer
strings the leader party has received, the leader party subtracts
A[P3]

1,1 and A[P3]
2,1 from the remaining answer strings. Denote the

result of subtraction related to the jth element in SK at Pi by
Zi,j. This leads to,

Z1,1 = c
(
X1,1 + t1,2

) = A[P3]
1,2 − A[P3]

1,1 (28)

Z1,4 = c
(
X1,4 + t1,3

) = A[P3]
1,3 − A[P3]

1,1 (29)

Z2,1 = c
(
X2,1 + t2,2

) = A[P3]
2,2 − A[P3]

2,1 (30)

Z2,4 = c
(
X2,4 + t2,3

) = A[P3]
2,3 − A[P3]

2,1 (31)

Now, let Ej be an indicator of having the jth element in SK

in the intersection ∩i=1,2,3 Pi, such that Ej = 0 if and only if
j ∈ ∩i=1,2,3 Pi. To that end, define Ej as the modulo-L sum
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of Zi,j along all clients, i.e.,

Ej =
M−1∑

i=1

Zi,j (32)

Looking deeper at E1, we note that,

E1 = Z1,1 + Z2,1 (33)

= c
(
X1,1 + X2,1 + t1,2 + t2,2

)
(34)

= c
(
X1,1 + X2,1 + 1

)
(35)

where t1,2 + t2,2 = 1 by the construction of the individ-
ual correlated randomness. Therefore, E1 = 0 if and only if
X1,1 = 1 and X2,1 = 1 simultaneously. In this case, E1 = 0
irrespective of the value of c and the leader party verifies that
{1} ⊆ ∩i=1,2,3 Pi.

On the other hand, when P3 calculates E4,

E4 = Z1,4 + Z2,4 = c
(
X1,1 + X2,1 + 1

) �= 0 (36)

Consequently, the leader party confirms that ∩i=1,2,3 Pi =
{1} and does not include 4.

b) Leader’s Privacy: The leader’s privacy constraint fol-
lows from the user’s privacy constraint of the inherent SPIR
scheme [12]. The queries of the leader to any party have the
same structure as the queries of the user in the SPIR problem.
More specifically, the privacy of leader party is preserved as
each element in the queries is uniformly distributed over the
finite field F3. Hence, no information about P3 is leaked from
the queries.

c) Client’s Privacy: To see the client’s privacy, we note that
no information is leaked about P1 ∩ P3 or P2 ∩ P3 due to
s1 and s2, respectively. Nevertheless, in MP-PSI, we need to
verify that the leader does not know which of the two parties
possesses the element {4}, i.e., knowing the fact that E4 �= 0,
we need to show that P(X1,4 + X2,4 = 0) = P(X1,4 + X2,4 =
1) = 1

2 . Specifically, if E4 is 1, P(X1,4 +X2,4 = 0) = P(X1,4 +
X2,4 = 1) = 1

2 because c is uniformly distributed over 1 and 2
and the sum t1,3 + t2,3 = 1 by construction. The conclusion is
exactly the same when E4 equals 2. Thus, the only information
that P3 can obtain for the element 4 is that client parties P1
and P2 do not contain it at the same time (this is no further
leak, as if they did contain it at the same time, it would have
been in the intersection). Hence, c is used such that the leader
party P3 does not know whether the sum X1,4 +X2,4 is 0 or 1.

d) Download Cost: In our example, the leader party P3
downloads Ni = |PM| + 1 symbols from each client party.
Hence, the total download cost is D = (M −1)(|PM|+1) = 6.

V. ACHIEVABILITY PROOF

In this section, we describe our general achievable scheme
for MP-PSI for arbitrary number of parties M, arbitrary set
sizes |Pi|, and arbitrary number of databases per party Ni,
for i ∈ {1, . . . , M}. The leader’s querying policy is based
on the SPIR scheme presented in [12] (originally introduced
in [6]). Our novel ideas in this scheme are concerned with
the construction of the answering strings. More specifically,
the scheme hinges on the intricate design of generating and
sharing common randomness among the clients’ databases in
such a way that the leader party cannot learn anything but the
intersection ∩M

i=1Pi.

A. General Achievability Scheme

In the following, assume that Pi ⊆ SK , where |SK | = K.
1) Initialization: The parties agree on a retrieval finite field

FL to carry out the calculations needed for MP-PSI
determination protocol. L is chosen such that,

L = min {L ≥ M : L is a prime} (37)

The parties agree on a leader Pt∗ such that:

t∗ = arg min
t∈{1,...,M}

∑

i �=t

⌈ |Pt|Ni

Ni − 1

⌉

(38)

Without loss of generality, we assume that t∗ = M
in the sequel. Furthermore, assume that Pt∗ = PM =
{Y1, Y2, . . . , YR} with cardinality |PM| = R.

2) Query generation: The leader party PM indepen-
dently and uniformly generates κ random vectors
{h1, h2, . . . , hκ }, where κ is given by,

κ = max
i∈{1,...,M−1}

⌈ |PM|
Ni − 1

⌉

(39)

The vector h�, for � = 1, 2, . . . , κ is picked uniformly
from FK

L such that,

h� = [h�(1) h�(2) · · · h�(K)] (40)

Denote ηi = � |PM |
Ni−1�, and P�i

M = {Y�i
1 , Y�i

2 , . . . , Y�i
Ni−1},

for i = 1, . . . , M−1. The leader party PM submits ηi ran-
dom vectors from {h1, h2, . . . , hκ } to the first database
of the ith client party as queries. Each submitted random
vector can be reused in the remaining Ni − 1 databases
to retrieve Ni − 1 symbols. This can be done by adding
1 to the positions corresponding to the desired symbols.
More specifically, take �i to be a running index, i.e.,
�i = 1, 2, . . . , ηi, and assume that PM = ∪ηi

�i=1P�i
M ,

where P�i
M ⊆ PM are disjoint partitions of PM such that

|P�i
M| = Ni − 1 (except potentially for the last subset

Pηi
M ), then for i = 1, 2, . . . , M − 1, the query structure

is given by:

Q

[
P�1

M

]

i,1 = [h1(1) h1(2) · · · h1(K)} (41)

Q

[
P�1

M

]

i,2 =
[
h1(1) · · · h1

(
Y�1

1 − 1
)

h1

(
Y�1

1

)
+ 1

h1

(
Y�1

1 + 1
)

· · · h1(K)
]

(42)

...

Q

[
P�1

M

]

i,Ni
=

[
h1(1) · · · h1

(
Y�1

Ni−1 − 1
)

h1

(
Y�1

Ni−1

)
+ 1

h1

(
Y�1

Ni−1 + 1
)

· · · h1(K)
]

(43)

...

Q

[
Pηi

M

]

i,1 = [
hηi(1) hηi(2) · · · hηi(K)

}
(44)

Q

[
Pηi

M

]

i,2 = [
hηi(1) · · · hηi

(
Yηi

1 − 1
)

hηi

(
Yηi

1

) + 1

hηi

(
Yηi

1 + 1
) · · · hηi(K)

]
(45)
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...

Q

[
Pηi

M

]

i,Ni
=

[
hηi(1) · · · hηi

(
Yηi

Ni−1 − 1
)

hηi

(
Yηi

Ni−1

)
+ 1

hηi

(
Yηi

Ni−1 + 1
)

· · · hηi(K)
]

(46)

i.e., PM simply partitions the set PM into subsets of size
Ni − 1. For each set, PM uses different h�. PM submits
h� into the first database. For the remaining databases, it
adds 1 for the positions that corresponds to the partition.

3) Common randomness generation: In order to respond to
the leader party, the clients need to generate and share
common randomness. Specifically, there are three types
of randomness.

• Local randomness: This is denoted by si =
[si(1) si(2) si(ηi)]. Each element of si is generated
independently and uniformly from FL. The local
randomness si is shared between the databases asso-
ciated with Pi. The local randomness is added to the
responses as in SPIR [12]. Note that each database
uses a different element from si for each submitted
query.

• Individual correlated randomness: The jth database
associated with the ith client possesses an individ-
ual randomness ti,j = [ti,j(1) ti,j(2) ti,j(ηi)] for
i = 1, . . . , M − 1, and j = 1, . . . , Ni. The elements
ti,1 = 0 for all i. For i = 1, . . . , M − 2, the vector
ti,j is independently and uniformly picked from Fηi

L .
All these random vectors are sent to the party PM−1.
The client PM−1 generates its individual randomness
tM−1,j according to the received individual random-
ness from the remaining parties. For simplicity, let
us (re)denote the individual randomness components
by t̃i,k, where i is the index of the client party and
k = 1, 2, . . . , R is just a monotonically increasing
index of the randomness component used within the
databases 2 to Ni of the ith client. Thus,

t̃i,1 = ti,2(1), t̃i,1 = ti,2(2), . . . , t̃i,R = ti,Ni(ηi)

(47)

With this re-definition, the client PM−1 calculates
its individual randomness as,

t̃M−1,j = L − (M − 1) −
M−2∑

i=1

t̃i,j, j = 1, 2, . . . , R

(48)

This ensures that the individual randomness are cor-
related such that

∑M−1
i=1 t̃i,j = L − (M − 1). The

individual randomness is added to the responses.
• Global randomness: This is denoted by c. c is

picked uniformly and independently from FL \ {0}.
c is shared among all the databases at all clients. c
is used as a multiplier for the answering string.

4) Response generation: The clients respond to the submit-
ted queries by using the queries as a combining vector
to their contents, i.e., each database calculates the inner
product of the query and its contents. Next, it adds the
local and individual randomness. Finally, it multiplies
the result by the global randomness. More specifically,

the answer string of the jth database, which is associated
with the ith client to retrieve one of the elements of the

partition P�i
M , A

[P�i
M ]

i,j , is given by,

A

[
P�i

M

]

i,j = c

(

XT
i Q

[
P�i

M

]

i,j + si(�i) + ti,j(�i)

)

(49)

From the collected answers the leader party can determine the
intersection ∩M

i=1Pi reliably and privately.

B. Download Cost, Reliability, Leader’s Privacy, Clients’
Privacy

a) Download cost: By observing the queries associated with
the MP-PSI scheme in the previous section, one can note that
the desired symbols are divided into ηi = � |PM |

Ni−1� subsets.
Each subset consists of Ni − 1 desired symbols. The leader
needs to download 1 bit from all Ni databases to query the
entire subset, as the leader downloads useless random linear
combination of the contents from the first database. Hence,
the download cost is given by,

D =
M−1∑

i=1

Niηi (50)

=
M−1∑

i=1

⌈ |PM|Ni

Ni − 1

⌉

. (51)

b) Reliability: To verify reliability, we follow the leader’s
processing of the responses. First, we note that the answer
string that is returned from database 1 is a random linear com-
bination of the contents of the database besides the common
randomness, and is given by,

A

[
P�i

M

]

i,1 = c

(
K∑

k=1

h�i(k)Xi,k + si(�i)

)

, i = 1, . . . , M − 1 (52)

Note that ti,1 = 0 by construction. The leader subtracts this
response from each response that belongs to the same partition.
Denote the subtraction result at the ith client that contains the
element Xi,k by Zi,k, hence,

Zi,k = c
(
Xi,k + t̃i,k

) = A

[
P�i

M

]

i,j∗ − A

[
P�i

M

]

i,1 , k ∈ P�i
M (53)

for some unique j∗ that A
[P�i

M ]
i,j∗ is a response of the query that

adds 1 to the kth position of the query vector. In particular, for
the special case of Ni = |Pi| + 1 for all i = 1, . . . , M − 1, we
have j∗ = k + 1 and P�i

M = PM (one partition). Note that we
used the alternative notation t̃i,k as it is counted in sequence.

Next, the leader constructs the intersection indicator variable
Ek, where Ek is given by,

Ek =
M−1∑

i=1

Zi,k (54)

= c

(
M−1∑

i=1

Xi,k +
M−1∑

i=1

t̃i,k

)

(55)

= c

(
M−1∑

i=1

Xi,k + L − (M − 1)

)

(56)
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where (56) follows from the construction of the individ-
ual randomness. Now, the element Ek = 0 if and only if∑M−1

i=1 Xi,k = M − 1, which implies that Xi,k = 1 for all
i = 1, 2, . . . , M − 1. Consequently, Yk ∈ ∩M

i=1Pi if and only if
Ek = 0. This proves the reliability of the scheme.

c) Leader’s privacy: The leader’s privacy follows from the
fact that the random vectors {h1, . . . , hκ } are uniformly gen-
erated over FK

L . Adding 1 to these vectors does not change the
statistical distribution of the vector. Since the leader submits
independent vectors each time it queries a database, all queries
are equally likely and the leader’s privacy is preserved.

d) Clients’ privacy: Without loss of generality, we derive
the proof of the client’s privacy for the homogeneous number
of databases, i.e., Ni = R + 1,∀i ∈ [1 : M − 1]. The general
proof in the heterogeneous case follows the same steps and
after removing the response of the first databases, we will
be left with Zi,k that has the same structure of homogeneous
case. Consequently, we present the homogeneous case here
for convenience only. In the following proof, we adopt the
notation that for a random variable ζi,j indexed by two indices
(i, j),

ζi1:iM,j1:jR = {
ζi,j : i ∈ {i1, . . . , iM}, j ∈ {j1, . . . , jR}} (57)

For the proof, we need the following lemmas. Lemma 1
shows that the effect of the local randomness is to make the
response of the first database at all parties independent of XP̄ .

Lemma 1: For the presented achievable scheme, we have,

I
(

XP̄ ; A[PM]
1:M−1,1|Z1:M−1,Y1:YR , Q[PM]

1:M−1,1:Ni
,PM

)
= 0. (58)

Proof: Intuitively, the proof follows from the fact that
A[PM]

i,1 , i ∈ [1 : M − 1] is a random variable uniformly dis-
tributed over [0 : L − 1] because of the local randomness
si, and thus, is independent of the data sets, queries and the
subtraction results. More specifically,

I
(

XP̄ ; A[PM]
1:M−1,1|Z1:M−1,Y1:YR , Q[PM]

1:M−1,1:Ni
,PM

)

= H
(

A[PM]
1:M−1,1|Z1:M−1,Y1:YR , Q[PM]

1:M−1,1:Ni
,PM

)

− H
(

A[PM]
1:M−1,1|XP̄ , Z1:M−1,Y1:YR , Q[PM]

1:M−1,1:Ni
,PM

)
(59)

≤ H
(

A[PM]
1:M−1,1

)
− H

(
A[PM]

1:M−1,1|X1:M−1, c, XP̄ ,

Z1:M−1,Y1:YR , Q[PM]
1:M−1,1:Ni

,PM

)
(60)

≤ (M − 1) − H(s1, . . . , sM−1) (61)

= (M − 1) − (M − 1) = 0 (62)

This concludes the proof, since,

I
(

XP̄ ; A[PM]
1:M−1,1|Z1:M−1,Y1:YR , Q[PM]

1:M−1,1:Ni
,PM

)
≥ 0

Lemma 2 asserts that for i ∈ [1 : M − 2], j ∈ [1 : R] the
effect of individual randomness ti,j+1 is to force the random
variables Zi,Yj to be independent of XP̄ . Note that we do not
claim anything about ZM−1,Yj as the individual randomness are
correlated at party M − 1.

Lemma 2: For the presented scheme, we have,

I
(

XP̄ ; Z1:M−2,Y1:YR |EY1:YR , Q[PM]
1:M−1,1:Ni

,PM

)
= 0. (63)

Proof: Intuitively, similar to the proof of Lemma 1, the proof
follows from the fact that Zi,Yj , i ∈ [1 : M − 2], j ∈ [1 : R]
is a random variable uniformly distributed over [0 : L − 1]
because of the individual randomness ti,j+1, and thus, is inde-
pendent of the data sets, queries, and the data sets in the client
parties EYj ,

I
(

XP̄ ; Z1:M−2,Y1:YR |EY1:YR , Q[PM ]
1:M−1,1:Ni

,PM

)

= H
(

Z1:M−2,Y1:YR |EY1:YR , Q[PM ]
1:M−1,1:Ni

,PM

)

− H
(

Z1:M−2,Y1:YR |XP̄ , EY1:YR , Q[PM ]
1:M−1,1:Ni

,PM

)
(64)

≤ H
(
Z1:M−2,Y1:YR

)

− H
(

Z1:M−2,Y1:YR |X1:M−1, c, XP̄ , EY1:YR , Q[PM ]
1:M−1,1:Ni

,PM

)

(65)

≤ ((M − 2)R) − H
(
t1:M−2,Y1:YR

)
(66)

= ((M − 2)R) − ((M − 2)R) = 0 (67)

This concludes the proof as the reverse implication is true by
the non-negativity of mutual information.

The following lemma asserts that indicator functions EYj for
all j do not leak any information about XP̄ .

Lemma 3: For the presented scheme, we have,

I
(

XP̄ ; EY1:YR , Q[PM]
1:M−1,1:Ni

,PM

)
= 0. (68)

Proof: Note that if Yj ∈ PM is in the intersection, EYj = 0
has nothing to do with XP̄ since XP̄ is defined on the elements
not in the intersection. However, if Yj is not in the intersection,
EYj = c(X1,Yj + · · · + XM−1,Yj + L − (M − 1)), Yj ∈ PM ∩ P̄
received by the leader party would be a realization within
the range of FL \ {0} because of the global randomness c.
However, the leader party only knows that the global ran-
domness c is uniformly distributed over FL \ {0} and has no
information about the specific value of c in the client par-
ties. As a result, from the perspective of the leader part PM ,
X1,Yj +· · ·+XM−1,Yj +L−(M−1) is uniformly distributed over
[1 : L−1] according to the information contained in EYj . This
comes from the fact that the set FL \ {0} of all L − 1 non-zero
elements must form a finite cyclic group under multiplica-
tion given a finite field FL. That means that, in the additive
table under multiplication operation, each element in FL \ {0}
appears precisely once in each row and column of the table.
The probability P(X1,Yj + · · · + XM−1,Yj + L − (M − 1) = l)
would always be 1

L−1 for any l ∈ [1 : L − 1]. Then, X1,Yj +
· · · + XM−1,Yj is uniformly distributed over [M − L : M − 2]
(i.e., [0 : M − 2] ∪ [M : L − 1]) and we can further con-
clude that X1,Yj + · · · + XM−1,Yj is uniformly distributed over
[0 : M − 2] because its largest possible value is M − 2 if Yj is
not in the intersection. Thus, the only information we can learn
from EY1 , . . . , EYR and the accompanying queries about XP̄ is
X1,k + · · · + XM−1,k < M − 1,∀k ∈ PM ∩ P̄ without knowing
the specific value of X1,k +· · ·+ XM−1,k, which already exists
in the definition of XP̄ . Thus, we obtain,

I
(

XP̄ ; EY1:YR , Q[PM]
1:M−1,1:Ni

,PM

)

= I
(

XP̄ ; EY1:YR |Q[PM]
1:M−1,1:Ni

,PM

)
(69)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 19,2021 at 20:52:49 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: MULTI-PARTY PRIVATE SET INTERSECTION: INFORMATION-THEORETIC APPROACH 375

= H
(

XP̄ |Q[PM]
1:M−1,1:Ni

,PM

)

− H
(

XP̄ |EY1:YR , Q[PM]
1:M−1,1:Ni

,PM

)
(70)

= H
(
XP̄

) − H
(
XP̄

)
(71)

= 0 (72)

where (69) follows from the fact that queries and PM are
independent of the data sets in the client parties EYj in (2).

Now, we are ready to show that our achievability satisfies
the client’s privacy constraint,

I
(

XP̄ ; Q[PM]
1:M−1,1:Ni

, A[PM]
1:M−1,1:Ni

,PM

)

= I
(

XP̄ ; A[PM]
1:M−1,1, Z1:M−1,Y1:YR , Q[PM]

1:M−1,1:Ni
,PM

)
(73)

= I
(

XP̄ ; Z1:M−1,Y1:YR , Q[PM]
1:M−1,1:Ni

,PM

)

+ I
(

XP̄ ; A[PM]
1:M−1,1|Z1:M−1,Y1:YR , Q[PM]

1:M−1,1:Ni
,PM

)
(74)

= I
(

XP̄ ; Z1:M−1,Y1:YR , Q[PM]
1:M−1,1:Ni

,PM

)
(75)

= I
(

XP̄ ; Z1:M−2,Y1:YR , EY1:YR , Q[PM]
1:M−1,1:Ni

,PM

)
(76)

= I
(

XP̄ ; EY1:YR , Q[PM]
1:M−1,1:Ni

,PM

)

+ I
(

XP̄ ; Z1:M−2,Y1:YR |EY1:YR , Q[PM]
1:M−1,1:Ni

,PM

)
(77)

= I
(

XP̄ ; EY1:YR , Q[PM]
1:M−1,1:Ni

,PM

)
(78)

= 0 (79)

where (73) follows from the fact that there is a bijec-
tive transformation between A[PM]

1:M−1,1:Ni
and (A[PM]

1:M−1,1,

Z1:M−1,Y1:YR), (75) follows from Lemma 1, (76) follows from
the fact that there is a bijective transformation between
Z1:M−1,Y1:YR and (Z1:M−2,Y1:YR , EY1:YR), (78) follows from
Lemma 2, and (79) follows from Lemma 3.

VI. FURTHER EXAMPLES

In this section, we present two examples of our achievable
scheme. Unlike the motivating example in Section IV, in these
examples, the number of databases per party does not need to
be Ni = |PM| + 1 or even be homogeneous in general.9

A. An Example for Ni < |PM| + 1

In this example, we use the same setting of Section IV
with P1 = {1, 2}, P2 = {1, 3}, and P3 = {1, 4} with P3
being the leader party and the retrieval field being F3. The
incidence vectors Xi, for i = 1, 2 remain the same. However,
to illustrate that our scheme works for Ni < |PM| + 1, we
assume that N1 = N2 = 2. As we will show next, when
Ni < |PM| + 1, we need to send κ = ηi = � |PM |

Ni−1� = 2
queries to the first database of the ith party (in contrast to
1 query only when Ni ≥ |PM| + 1). Moreover, the common
randomness components si, and ti,j need to be vectors of size
� |PM |

Ni−1� = 2. Note that, in this case, the leader’s set is divided

into 2 subsets P�1
M = {1} and P�1

M = {4} as |P�i
M| = Ni −1 = 1.

9For Ni > |PM |+1, we just use any arbitrary |PM |+1 databases to execute
the MP-PSI determination protocol.

For the queries, since both client parties have the same num-
ber of databases, the leader P3 submits the same query vectors
to the databases of both clients. The first databases of each
client receives 2 uniformly generated vectors h, h̄ ∈ F

4
3, where

h = [h1 h2 h3 h4]T and h̄ = [h̄1 h̄2 h̄3 h̄4]T . P3 submits the same
two vectors to the second databases of P1 and P2 with adding
1 to the desired positions. More specifically, let Q[k]

i,j be the
query to the jth database of Pi to retrieve the element k, then
P3 submits the following queries:

Q[1]
1,1 = Q[1]

2,1 = [h1 h2 h3 h4]T (80)

Q[1]
1,2 = Q[1]

2,2 = [h1 + 1 h2 h3 h4]T (81)

Q[4]
1,1 = Q[4]

2,1 = [
h̄1 h̄2 h̄3 h̄4

]T
(82)

Q[4]
1,2 = Q[4]

2,2 = [
h̄1 h̄2 h̄3 h̄4 + 1

]T
(83)

At the clients’ side, the clients share a global randomness
c ∼ uniform{1, 2} among all the databases of both clients. For
i = 1, 2, the ith client generates and shares a local random-
ness si = [si(1) si(2)]T , such that si(�) ∼ uniform{0, 1, 2}
among the databases that belong to the ith client. Finally, for
i = 1, 2, the second database of the ith client has an individ-
ual correlated randomness ti,2 = [ti,2(1) ti,2(2)]T , such that
t1,2(1) ∼ t1,2(2) ∼ uniform{0, 1, 2}, t1,2(1) + t2,2(1) = 1, and
t1,2(2)+ t2,2(2) = 1. Assume that t1,1 = t2,1 = 0. All random-
ness components are independently generated of each other
and of the data sets.

The answer string A[k]
i,j , for i = 1, 2, j = 1, 2, k = 1, 4, is

given by,

A[k]
i,j = c

(
XT

i Q[k]
i,j + si(�(k)) + ti,j(�(k))

)
(84)

where �(1) = 1 and �(4) = 2.
Thus, the leader party receives the following answer strings

from P1,

A[1]
1,1 = c

(
4∑

k=1

hkX1,k + s1(1)

)

(85)

A[1]
1,2 = c

(
4∑

k=1

hkX1,k + X1,1 + s1(1) + t1,2(1)

)

(86)

A[4]
1,1 = c

(
4∑

k=1

h̄kX1,k + s1(2)

)

(87)

A[4]
1,2 = c

(
4∑

k=1

h̄kX1,k + X1,4 + s1(2) + t1,2(2)

)

(88)

and the following answer strings from P2,

A[1]
2,1 = c

(
4∑

k=1

hkX2,k + s2(1)

)

(89)

A[1]
2,2 = c

(
4∑

k=1

hkX2,k + X1,1 + s2(1) + t2,2(1)

)

(90)

A[4]
2,1 = c

(
4∑

k=1

h̄kX2,k + s2(2)

)

(91)
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A[4]
2,2 = c

(
4∑

k=1

h̄kX2,k + X1,4 + s2(2) + t2,2(2)

)

(92)

The leader party constructs the subtractions Zi,j as follows,

Z1,1 = c
(
X1,1 + t1,2(1)

) = A[1]
1,2 − A[1]

1,1 (93)

Z1,4 = c
(
X1,4 + t1,2(2)

) = A[4]
1,2 − A[4]

1,1 (94)

Z2,1 = c
(
X1,1 + t2,2(1)

) = A[1]
2,2 − A[1]

2,1 (95)

Z2,4 = c
(
X1,4 + t2,2(2)

) = A[4]
2,2 − A[4]

2,1 (96)

These are exactly the statistics in (28)–(31). Hence, the relia-
bility and privacy constraints follow exactly as in Section IV.
The total download cost in this case is D = 4+4 = 8, which is
consistent with the download cost for the general case in (9),
D = � 2∗2

2−1� + � 2∗2
2−1� = 8.

B. An Example for Heterogeneous Number of Databases

In this example, we consider a general case, where there
are no constraints on the number of databases associated with
each party or on the cardinality of the sets. In this example, we
have M = 4 parties with N1 = 2, N2 = 3, N3 = 5, and N4 = 4
associated databases. The four parties have the following data
sets and the corresponding incidence vectors,

Party P1: P1 = {1, 2, 3, 4}
⇒ X1 = [

X1,1 X1,2 X1,3 X1,4 X1,5
]T = [1 1 1 1 0]T

(97)

Party P2: P2 = {1, 2, 4}
⇒ X2 = [

X2,1 X2,2 X2,3 X2,4 X2,5
]T = [1 1 0 1 0]T

(98)

Party P3: P3 = {1, 3, 4}
⇒ X3 = [

X3,1 X3,2 X3,3 X3,4 X3,5
]T = [1 0 1 1 0]T

(99)

Party P4: P4 = {1, 4, 5}
⇒ X4 = [

X4,1 X4,2 X4,3 X4,4 X4,5
]T = [1 0 0 1 1]T

(100)

First, we choose party P4 for the role of the leader party, as
it results in the minimum download cost Dt = ∑

i �=t� |Pt|Ni
Ni−1 �.

Since M = 4, we choose a retrieval field FL, such that L = 5,
as L is the smallest prime number that satisfies L ≥ M.

Now, κ = maxi � |P4|
Ni−1� = 3. Hence, for the queries, the

leader P4 generates κ = 3 random vectors. From which, it
submits ηi = � |P4|

Ni−1� to the first database associated with the
ith party, i = 1, 2, 3. Each random vector can be reused for
retrieving Ni − 1 elements from the remaining databases by
adding 1 to the query vector in the positions of the desired
symbols.

Specifically, party P1 has only two databases and P4 is sup-
posed to submits η1 = � 3

2−1� = 3 random vectors to database
1, denoted by h� = [h�(1)h�(2) · · · h�(5)]T , where � = 1, 2, 3.
The leader’s set is divided as P11

4 = {1}, P12
4 = {4}, and

P13
4 = {5} with |P�1

M | = N1 − 1 = 1. These random vectors
are generated uniformly from F

5
5. Thus, the queries sent from

P4 to P1 are generated as follows,

Q[1]
1,1 = [h1(1) h1(2) h1(3) h1(4) h1(5)]T (101)

Q[1]
1,2 = [h1(1) + 1 h1(2) h1(3) h1(4) h1(5)]T (102)

Q[4]
1,1 = [h2(1) h2(2) h2(3) h2(4) h2(5)]T (103)

Q[4]
1,2 = [h2(1) h2(2) h2(3) h2(4) + 1 h2(5)]T (104)

Q[5]
1,1 = [h3(1) h3(2) h3(3) h3(4) h3(5)]T (105)

Q[5]
1,2 = [h3(1) h3(2) h3(3) h3(4) h3(5) + 1]T (106)

Party P2 has three databases and P4 only needs to send
η2 = � 4

3−1� = 2 random vectors to database 1 of client P2.
Each random vector can be reused at databases 2, 3 to retrieve
2 desired symbols. The leader’s set is divided as P21

4 = {1, 4},
and P22

4 = {5}. Without loss of generality, P4 uses h1 to
obtain the information of X2,1, X2,4 and h2 is used to obtain
the information of X2,5. Note that, in this case no query is
needed to be sent to the third database to retrieve X2,5. Thus,
the queries sent from P4 to P2 are generated as follows,

Q[1,4]
2,1 = [h1(1) h1(2) h1(3) h1(4) h1(5)]T (107)

Q[1,4]
2,2 = [h1(1) + 1 h1(2) h1(3) h1(4) h1(5)]T (108)

Q[1,4]
2,3 = [h1(1) h1(2) h1(3) h1(4) + 1 h1(5)]T (109)

Q[5]
2,1 = [h2(1) h2(2) h2(3) h2(4) h2(5)]T (110)

Q[5]
2,2 = [h2(1) h2(2) h2(3) h2(4) h2(5) + 1]T (111)

Party P3 has five databases and P4 needs to send η3 =
� 4

5−1� = 1 random vector to database 1 and reuse this vector
to retrieve all the desired symbols from databases 2 through 4.
Thus, the queries sent from P4 to P3 are generated as follows,

Q[1,4,5]
3,1 = [h1(1) h1(2) h1(3) h1(4) h1(5)]T (112)

Q[1,4,5]
3,2 = [h1(1) + 1 h1(2) h1(3) h1(4) h1(5)]T (113)

Q[1,4,5]
3,3 = [h1(1) h1(2) h1(3) h1(4) + 1 h1(5)]T (114)

Q[1,4,5]
3,4 = [h2(1) h2(2) h2(3) h2(4) h2(5) + 1]T (115)

The clients share the following common randomness. A
global randomness c ∼ uniform{1, 2, 3, 4} is shared among
all databases at all clients. A local randomness s1 =
[s1(1) s1(2) s1(3)] is shared among the databases of P1, and
similarly s2 = [s2(1) s1(2)], s3 = [s3(1)] are shared among
the databases of P2 and P3, respectively. The random vari-
able si(�) ∼ uniform{0, 1, 2, 3, 4}. Finally, database 2 which
is associated with P1, generates the individual randomness
t1,2 = [t1,2(1) t1,2(2) t1,2(3)]. Similarly, at P2, database 2
generates t2,2 = [t2,2(1) t2,2(2)], and database 3 generates
t2,3. Each element of the common randomness ti,j for i = 1, 2
and j = 2, 3 is generated uniformly and independently from
F5. The variables (ti,j, i = 1, 2, j = 2, 3) are sent to P3. The
individual correlated randomness t3,j at P3 is calculated as,

t3,2 = 2 − t1,2(1) − t2,2(1)

⇐⇒ t1,2(1) + t2,2(1) + t3,2 = 2 (116)

t3,3 = 2 − t1,2(2) − t2,3

⇐⇒ t1,2(2) + t2,3 + t3,3 = 2 (117)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 19,2021 at 20:52:49 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: MULTI-PARTY PRIVATE SET INTERSECTION: INFORMATION-THEORETIC APPROACH 377

t3,4 = 2 − t1,2(3) − t2,2(2)

⇐⇒ t1,2(3) + t2,2(2) + t3,4 = 2 (118)

According to this construction, the leader receives the
following answer strings from P1,

A[1]
1,1 = c

(
5∑

k=1

h1(k)X1,k + s1(1)

)

(119)

A[1]
1,2 = c

(
5∑

k=1

h1(k)X1,k + s1(1) + X1,1 + t1,2(1)

)

(120)

A[4]
1,1 = c

(
5∑

k=1

h2(k)X1,k + s1(2)

)

(121)

A[4]
1,2 = c

(
5∑

k=1

h2(k)X1,k + s1(2) + X1,4 + t1,2(2)

)

(122)

A[5]
1,1 = c

(
5∑

k=1

h3(k)X1,k + s1(3)

)

(123)

A[5]
1,2 = c

(
5∑

k=1

h3(k)X1,k + s1(3) + X1,5 + t1,2(3)

)

(124)

Similarly, P4 receives the following responses from P2,

A[1,4]
2,1 = c

(
5∑

k=1

h1(k)X2,k + s2(1)

)

(125)

A[1,4]
2,2 = c

(
5∑

k=1

h1(k)X2,k + s2(1) + X2,1 + t2,2(1)

)

(126)

A[1,4]
2,3 = c

(
5∑

k=1

h1(k)X2,k + s2(1) + X2,4 + t2,3

)

(127)

A[5]
2,1 = c

(
5∑

k=1

h2(k)X2,k + s2(2)

)

(128)

A[5]
2,2 = c

(
5∑

k=1

h2(k)X2,k + s2(2) + X2,5 + t2,2(2)

)

(129)

Finally, P4 receives the following responses from P3,

A[1,4,5]
3,1 = c

(
5∑

k=1

h1(k)X3,k + s3(1)

)

(130)

A[1,4,5]
3,2 = c

(
5∑

k=1

h1(k)X3,k + s3(1) + X3,1 + t3,2

)

(131)

A[1,4,5]
3,3 = c

(
5∑

k=1

h1(k)X3,k + s3(1) + X3,4 + t3,3

)

(132)

A[1,4,5]
3,4 = c

(
5∑

k=1

h1(k)X3,k + s3(1) + X3,5 + t3,4

)

(133)

The leader party P4 proceeds with decoding by removing
the random responses created at database 1 of all clients P1, P2
and P3, i.e., it constructs Zi,j for i = 1, 2, 3 and j = 1, 2, 3, 4, 5
by subtracting the responses Ai,1,

Z1,1 = c
(
X1,1 + t1,2(1)

) = A[1]
1,2 − A[1]

1,1 (134)

Z1,4 = c
(
X1,4 + t1,2(2)

) = A[4]
1,2 − A[4]

1,1 (135)

Z1,5 = c
(
X1,5 + t1,2(3)

) = A[5]
1,2 − A[5]

1,1 (136)

Z2,1 = c
(
X2,1 + t2,2(1)

) = A[1,4]
2,2 − A[1,4]

2,1 (137)

Z2,4 = c
(
X2,4 + t2,3

) = A[1,4]
2,3 − A[1,4]

2,1 (138)

Z2,5 = c
(
X2,5 + t2,2(2)

) = A[5]
2,2 − A[5]

2,1 (139)

Z3,1 = c
(
X3,1 + t3,2

) = A[1,4,5]
3,2 − A[1,4,5]

3,1 (140)

Z3,4 = c
(
X3,4 + t3,3

) = A[1,4,5]
3,3 − A[1,4,5]

3,1 (141)

Z3,5 = c
(
X3,5 + t3,4

) = A[1,4,5]
3,4 − A[1,4,5]

3,1 (142)

The MP-PSI determination at P4 concludes by evaluating
the following indicators, Ej, for j = 1, 4, 5 as,

E1 =
3∑

i=1

Zi,1

= c
(
X1,1 + X2,1 + X3,1 + t1,2(1) + t2,2(1) + t3,2

)
(143)

E4 =
3∑

i=1

Zi,4

= c
(
X1,4 + X2,4 + X3,4 + t1,2(2) + t2,3 + t3,3

)
(144)

E5 =
3∑

i=1

Zi,5

= c
(
X1,5 + X2,5 + X3,5 + t1,2(3) + t2,2(2) + t3,4

)
(145)

By observing that the sum of the correlated randomness in
Ej according to (116)–(118) is equal 2, we note that Ej = 0
if and only if

∑3
i=1 Xi,j = 3, i.e., if X1,j = X2,j = X3,j = 1

simultaneously. Consequently, E1 = E4 = 0 irrespective to c,
while E5 �= 0 and P4 can reliably calculate ∩i=1,2,3,4 Pi =
{1, 4}. On the other hand, for E5, X1,5 + X2,5 + X3,5 + t1,4 +
t2,4+t3,4 is equal to 2 and then E5 must be one value in the set
{1, 2, 3, 4} depending on the value of c. Now, we calculate the
value of the expression X1,5 +X2,5 +X3,5 from the perspective
of the leader party P4. If E5 is 1, P(X1,5 + X2,5 + X3,5 =
l) = 1

4 ,∀l = {0, 1, 2, 3} because c is uniformly distributed
over {1, 2, 3, 4}. The conclusion is exactly the same when E5
is equal to 2, 3 or 4. Thus, the only information that P4 can
obtain for the element 5 is that client parties P1, P2 and P3
cannot contain it at the same time. The privacy of leader party
is preserved because each element in the queries is uniformly
distributed over the finite field F5. Hence, no information about
P4 is leaked from the queries. The total download cost in
this case is D = 6 + 5 + 4 = 15, which is consistent with
the download cost for the general case in (9), D = � 3∗2

2−1� +
� 3∗3

3−1� + � 3∗5
5−1� = 15.

VII. CONCLUSION AND FUTURE WORK

We formulated the problem of MP-PSI from an information-
theoretic point of view. We investigated a specific mode of
communication, namely, single round communication between
the leader and clients. We proposed a novel achievable scheme
for the MP-PSI problem. Our scheme hinges on a careful
design and sharing of randomness between client parties prior
to commencing the MP-PSI operation. Our scheme is not a
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straightforward extension to the 2-party PSI scheme, as apply-
ing the 2-party PSI scheme M − 1 times leaks information
beyond the intersection ∩M

i=1Pi. The download cost of our
scheme matches the sum of download cost of pair-wise PSI
despite the stringent privacy constraint in the case of MP-PSI.
We note that this work provides only an achievable scheme
with no claim of optimality. A converse proof is needed
to assess the efficiency of our scheme. Furthermore, several
interesting directions can be pursued based on this work. First,
one can investigate the MP-PSI in more general communica-
tion settings (not necessarily leader-to-clients). Second, one
can study the case where the communication between the par-
ties is done over multiple rounds (in contrast to the single
round of communication in this work). Third, one can inves-
tigate the case of calculating more general set functions (not
necessarily the intersection).
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