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Abstract—We study the problem of private set intersection
(PSI). In this problem, there are two entities Ei, for i = 1, 2,
each storing a set Pi, whose elements are picked from a finite set
SK , on Ni replicated and non-colluding databases. It is required
to determine the set intersection P1 ∩ P2 without leaking any
information about the remaining elements to the other entity, and
to do this with the least amount of downloaded bits. We first show
that the PSI problem can be recast as a multi-message symmetric
private information retrieval (MM-SPIR) problem with certain
added restrictions. Next, as a stand-alone result, we derive the
information-theoretic sum capacity of MM-SPIR, CMM−SPIR.
We show that with K messages, N databases, and a given size
of the desired message set P , the exact capacity of MM-SPIR
is CMM−SPIR = 1 − 1

N
when P ≤ K − 1, provided that the

entropy of the common randomness S satisfies H(S) ≥ P
N−1

per desired symbol. When P = K, the MM-SPIR capacity is
trivially 1 without the need for any common randomness S.
This result implies that there is no gain for MM-SPIR over
successive single-message SPIR (SM-SPIR). For the MM-SPIR
problem, we present a novel capacity-achieving scheme which
builds seamlessly over the near-optimal scheme of Banawan-
Ulukus originally proposed for the multi-message PIR (MM-PIR)
problem without any database privacy constraints. Surprisingly,
our scheme here is exactly optimal for the MM-SPIR problem for
any P , in contrast to the scheme for the MM-PIR problem, which
was proved only to be near-optimal. Our scheme is an alternative
to the successive usage of the SM-SPIR scheme of Sun-Jafar.
Based on this capacity result for the MM-SPIR problem, and
after addressing the added requirements in its conversion to the
PSI problem, we show that the optimal download cost for the
PSI problem is given by min

{⌈
P1N2
N2−1

⌉
,
⌈

P2N1
N1−1

⌉}
, where Pi is

the cardinality of set Pi.

Index Terms—Secure two-party computation, private set in-
tersection, symmetric private information retrieval.

I. INTRODUCTION

The private set intersection (PSI) problem refers to the prob-
lem of determining the common elements in two sets (lists)
without leaking any further information about the remaining
elements in the sets. This problem has been a major research
topic in the field of cryptography starting with the work [1]
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(see also [2]–[4]). In all these works, computational guarantees
are used to ensure the privacy of the elements beyond the
intersection. The PSI problem can be motivated by many
practical examples, for instance: Consider an airline company
which has a list of its customers, and a law enforcement
agency which has a list of suspected terrorists. The airline
company and the law enforcement agency wish to determine
the intersection of their respective lists without the airline
company revealing the rest of its customers and the law
enforcement agency revealing the rest of the suspects in its list.
As another example, consider a major service provider (e.g.,
Whatsapp) and a new customer who wishes to join this service.
The user wishes to find out which members of his/her contact
list are already using this service without revealing his/her
entire contact list to the service provider. Similarly, the service
provider wishes to determine the intersection without revealing
its entire list of customers. For other examples, please see [2],
[3].

Since the entities in PSI want to privately retrieve the
elements that belong to the intersection of their sets P1 ∩P2,
where Pi is the set (list) that belongs to the ith entity, private
information retrieval (PIR) can be used as a building block for
the PSI problem. In classical PIR, which was introduced by
Chor et al. [5], a user wants to retrieve a message (file) from
distributed databases without leaking any information about
the identity of the desired file. This is desirable in the PSI
problem, as one of the entities wants to retrieve the intersection
P1 ∩ P2. Nevertheless, it is needed to keep the remaining
elements of the sets secret from the other entity, i.e., the first
entity wants to keep the set P1 \ P2 from the second entity
and vice versa. This gives rise naturally to the problem of
symmetric PIR (SPIR), which was originally introduced in
[6], where the retrieval scheme needs to ensure that the user
learns no information beyond the desired message. This extra
requirement is called the database privacy constraint, which
is in addition to the usual user privacy constraint in PIR.
Recently, Sun and Jafar reformulated the problems of PIR
and SPIR from an information-theoretic point of view, and
determined the fundamental limits of both of these problems,
i.e., their capacity, in [7] and [8], respectively. Subsequently,
the fundamental limits of many interesting variants of PIR and
SPIR have been considered, see for example [9]–[62].

Now, to use SPIR to implement PSI, the ith entity needs
to privately check the presence of each element in Pi at
the other entity. That is, the ith entity needs to retrieve the
occurrences of all elements that belong to its set Pi from the
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other entity. This implies that the ith entity needs to retrieve
multiple messages from the other entity, where the messages
here correspond to the incidences of each element of the set
Pi. This establishes the connection between the PSI problem
and the multi-message SPIR (MM-SPIR) problem. Apart from
the PSI problem, the MM-SPIR problem is interesting on its
own right and has remained an open problem until this work.
Reference [23] investigates the problem of multi-message
PIR (MM-PIR) without any database privacy constraints. The
results of [23] show that the user can improve the retrieval rate
by jointly retrieving the desired messages instead of retrieving
them one-by-one. In this paper, we aim to characterize the
capacity of the MM-SPIR problem as a stand-alone result,
and determine whether the MM-SPIR capacity is larger than
the single-message SPIR (SM-SPIR) capacity. Second, we aim
to unify the achievability schemes of MM-PIR and MM-SPIR
so that the query structure can be maintained with and without
the database privacy constraints.

The papers that are most closely related to our work are
the ones that focus on symmetry and multi-message aspects of
PIR. Reference [8] derives the SPIR capacity when the user
wishes to retrieve a single message as CSM−SPIR = 1− 1

N .
Reference [23] considers MM-PIR and determines the exact
capacity when the number of desired messages P is at least
half of the total number of messages K or when K/P is
an integer; for all other cases [23] provides a novel PIR
scheme which is near-optimal. Reference [35] studies multi-
server MM-PIR with private side information. References
[36], [37] study single-server MM-PIR with side information.
Reference [13] studies SPIR from MDS-coded databases. The
problem is extended to include colluding servers in [14] and
mismatches between message and common randomness codes
in [15]. Reference [16] investigates SPIR in the presence of
adversaries. Reference [17] characterizes the tradeoff between
the minimum download cost and the information leakage
from undesired messages. None of these works considers the
interplay between the data privacy constraint and the joint
retrieval of multiple messages, as needed in MM-SPIR.

In this paper, first focusing on MM-SPIR as a stand-alone
problem, we derive its capacity. Our results show that the
sum capacity of MM-SPIR is exactly equal to the capacity
of SM-SPIR, i.e., CSM−PIR = CMM−PIR = 1 − 1

N . We
show that the databases need to share a random variable S
such that H(S) ≥ P

N−1 per desired symbol, which is P
multiple of the common randomness required for SM-SPIR.
This implies that, unlike MM-PIR, there is no gain from jointly
retrieving the P messages, and it suffices to download the
P messages successively using the SM-SPIR scheme in [8],
provided that statistically independent common randomness
symbols are used at each time. For the extreme case P = K,
i.e., when the user wants to retrieve all messages, the problem
reduces to SPIR with K = 1 message, where the database
privacy and the user privacy constraints are trivially satisfied
and full capacity (i.e., CMM−SPIR = 1) is attained without
the need for any common randomness.

Further, for MM-SPIR, we propose a novel capacity-
achieving scheme for 1 ≤ P ≤ K − 1. Compared with the
one in [8], the form of this achievable scheme is much closer

to the achievable scheme in [7]. The query structure of the
scheme resembles its counterpart in [23], in particular, we
construct the greedy algorithm in [7] backwards as in [23].
The major difference between our proposed scheme here and
the MM-PIR scheme in [23] is the fact that databases add the
common randomness to the returned answer strings to satisfy
the database privacy constraint. Our scheme is surprisingly
optimal for all P and K in contrast to the scheme in [23]
which is proved to be optimal only if P is at least half of K
or K/P is an integer. By plugging P = 1, our scheme serves
as an alternative capacity-achieving scheme for the SM-SPIR
scheme in [8]. As an added advantage, our scheme extends
seamlessly the MM-PIR scheme to satisfy the database privacy
constraint without changing the query structure. Hence, by
operating such a scheme the databases can support SPIR and
PIR simultaneously. Moreover, the scheme may serve as a
stepping stone to solve some other SPIR problems, such as,
SM-SPIR or MM-SPIR with side information.

In this paper, we ultimately consider the PSI problem.
There are two entities E1 and E2. The entity Ei has a set
(list) Pi, whose elements are picked from a finite set SK
and has a cardinality Pi. The set Pi is stored on Ni non-
colluding and replicated databases. It is required to compute
the intersection P1 ∩ P2 without leaking information about
P1 \ P2 or P2 \ P1 with the minimum download cost. We
first show that this problem can be recast as an MM-SPIR
problem, where a user needs to retrieve P messages from a
library containing K messages. In this MM-SPIR problem,
messages correspond to incidences of elements in these sets
with respect to the field elements. Specifically, the entity Ei

constructs the incidence vector of its elements with respect to
the field elements. The incidence vector is a binary vector of
length K that stores a 1 in the position of the jth element
of the field if this field element is in Pi. This transforms
each set into a library of K binary messages (of length 1 bit
each). This transformation is needed since in SPIR, a user
needs to know the location of the file(s) in the databases.
Therefore, in transforming the PSI problem into an MM-SPIR
problem, two restrictions arise: First, the message size is fixed
and finite, which is 1 in this case. Second, depending on the
model assumed regarding the generation of sets P1 and P2, the
messages may be correlated. In our formulation, the message
size is 1, but the messages are independent; see the exact
problem formulation. Following these constructions, entity Ei

performs MM-SPIR of the messages corresponding to its set
Pi within the databases of the other entity. By decoding these
messages, the intersection P1 ∩ P2 is determined without
leaking any information about P1 \ P2 or P2 \ P1. This is
a direct consequence of satisfying the reliability, user privacy,
and database privacy constraints of the MM-SPIR problem.
We show that the optimum download cost of the PSI problem
is min

{⌈
P1N2

N2−1

⌉
,
⌈

P2N1

N1−1

⌉}
, which is linear in the size of the

smaller set, i.e., min{P1, P2}. The linear scaling appears in
the problem of determining the set intersection even without
any privacy constraints.
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II. PSI: PROBLEM FORMULATION

Consider the problem of privately determining the intersec-
tion of two sets (or lists) picked from a finite set1 SK . For
convenience, we denote a random variable and its realization
by using the same general uppercase letter when distinction
is clear from the context. We address this issue additionally
whenever clarification is needed. Consider a setting where
there are two entities E1 and E2. For i = 1, 2, the entity
Ei stores a set Pi. For each element of the finite set SK ,
the entity Ei adds2 this element to its set Pi independently
from the remaining field elements with probability qi. In this
work, we focus on the case of qi = 1

2 for i = 1, 2. After
generation of the set Pi, the cardinality of Pi ⊆ SPi

K is denoted
by |Pi| = Pi, and is public knowledge.3 The entity Ei stores
Pi in a replicated fashion on Ni replicated and non-colluding
databases.

The entities E1 and E2 want to compute the intersection
P1∩P2 privately (see Fig. 1). To that end, the entity4 E1 sends
N2 queries to the databases associated with E2. Specifically,
E1 sends the query Q

[P1]
n2 to the n2th database for all n2 ∈

[N2], where [N2] (and also [1 : N2]) denotes integers from 1
to N2. Since E1 does not know P2 in advance, it generates
the queries Q[P1]

1:N2
=

{
Q

[P1]
n2 : n2 ∈ [N2]

}
independently from

P2, hence,

I(Q
[P1]
1:N2

;P2) = 0 (1)

The databases associated with E2 respond truthfully with
answers A

[P1]
1:N2

=
{
A

[P1]
n2 : n2 ∈ [N2]

}
. The n2th answer

A
[P1]
n2 is a deterministic function of the set P2, the query Q

[P1]
n2

and the existing common randomness S, thus,

H(A[P1]
n2

|Q[P1]
n2

,P2, S) = 0, n2 ∈ [N2] (2)

Denote the cardinality of the intersection |P1 ∩ P2| by
M . The entity5 E1 should be able to reliably compute the
intersection P1 ∩ P2 based on the sent queries Q

[P1]
1:N2

, the

1The restriction of generating the set from a finite set is without loss of
generality as the set elements of any kind can be mapped into corresponding
finite set elements for sufficiently large size. For example, the elements of the
set that contains the names of suspected terrorists in the United States can be
mapped into elements from the finite set SK , where K is the population size
on this planet. As we will show next, the download cost is independent of K.
Hence, the optimization of the alphabet size is irrelevant to our formulation.
Nevertheless, it is advisable to choose K to be the lowest integer such that
P1,P2 ⊆ SK to minimize the upload cost. It suffices to have K > P1+P2.

2We note that our achievability scheme works for any statistical distribution
imposed on the sets, i.e., the i.i.d. generation assumption presented here is
not needed for the achievability proof.

3We note that choosing to have Pi to be a global knowledge is for
the consistency with MM-SPIR problem and convenient execution. This
knowledge enables the entities to determine which entity should initiate the
PSI process to have the least download cost (or if any is needed at all, as in
the case of Pi = K, for an i; see Remark 1). If the cardinalities are not public
knowledge, our achievability works by choosing one of the entities arbitrarily
to initiate the PSI process assuming that the other entity has sufficient common
randomness. We note, however, that keeping the cardinalities private is indeed
a challenging problem and it is outside the scope of this work.

4The entities E1, E2 should agree on a specific order of retrieval operations
such that this order results in the minimal download cost. Without loss of
generality, we assume here that the optimal order of operation starts with
entity E1 sending queries to the databases associated with entity E2.

5After calculating P1∩P2 at E1, the entity E1 sends the result of P1∩P2

directly to E2 if needed.

collected answers A
[P1]
1:N2

and the knowledge of P1 without
knowing M in advance. This is captured by the following PSI
reliability constraint,

[PSI reliability] H(P1 ∩ P2|Q[P1]
1:N2

, A
[P1]
1:N2

,P1) = 0 (3)

The privacy requirements can be expressed as the following
two privacy constraints: E1 privacy and E2 privacy. First, the
queries sent by E1 should not leak any information about6

P1, i.e., any individual database associated with E2 learns
nothing about P1 from the query Q

[P1]
n2 , the answer A[P1]

n2 , the
knowledge of P2 and the existing common randomness S,

[E1 privacy] I(P1;Q
[P1]
n2

, A[P1]
n2

,P2, S) = 0, n2 ∈ [N2] (4)

Second, E1 should not be able to learn anything further than
P1 ∩ P2, i.e., E1 should not learn the elements in P2 other
than the intersection, P2\(P1∩P2) = P2\P1. Moreover7, E1

should not learn the absence of the remaining field elements
in E2, i.e., the set (P1 ∪ P2). Thus, E1 should learn nothing
about whether E2 contains (P2 \ P1) ∪ (P1 ∪ P2) = P̄1 or
not (we denote this information by E2,P̄1

) from the collected
answers A

[P1]
1:N2

given the generated queries Q
[P1]
1:N2

and the
knowledge of P1,

[E2 privacy] I(E2,P̄1
;Q

[P1]
1:N2

, A
[P1]
1:N2

,P1) = 0 (5)

For given finite set size K, set sizes P1 and P2, and number
of databases N1 and N2, an achievable PSI scheme is a scheme
that satisfies the PSI reliability constraint (3), the E1 privacy
constraint (4), and the E2 privacy constraint (5). In this paper,
we measure the efficiency of a scheme by the maximal number
of downloaded bits by one of the entities E1 or E2 in order
to compute P1 ∩ P2. We denote the maximal number of
downloaded bits by D. Then, the optimal download cost is
D∗ = infD over all achievable PSI schemes.8

6While checking the presence of elements of P1 in P2, E1 wants to protect
P1 \ P2. However, since E1 does not know P2, the queries cannot depend
on P2 (see also (1)), and E1 should protect all of P1 in queries.

7Although it is tempting to formulate the E2 privacy constraint as
I(P2 \ P1;A

[P1]
1:N2

) = 0, this constraint permits leaking information about
the remaining field elements that do not exist in P2. More specifically, if we
adopted this constraint in the example in Fig. 1, the answers should not leak
information about e, f, g, h, however, E1 may learn that the elements i, j do
not exist in P2. To properly formalize the constraint that E1 learns nothing
other than the intersection, we need to protect (P1 ∪ P2) as well.

8A more natural efficiency metric is to consider the sum of the maximal
number of uploaded bits (denoted by U ) and the maximal number of
downloaded bits (denoted by D) by one of the entities E1 or E2 to compute
P1 ∩ P2. In this case, the most efficient scheme is the scheme with the
lowest communication cost, i.e., that achieves the optimal communication
cost C∗ = inf(U +D) over all achievable PSI schemes. The SPIR problem
[8] under combined upload and download costs is still an open problem. As
we will see, our framework builds on the SPIR problem. Therefore, in this
work, we consider only the download cost. The PSI under combined upload
and download costs is an interesting future direction, which is outside the
scope of our paper. In Section VII-B, we provide an illustrative example to
show that the upload cost can be reduced without affecting the download
cost. Nevertheless, we argue that if the PSI determination is repeated (for
example, if one list is kept the same and the other list is regularly updated,
we always use the fixed list to initiate the PSI process), the queries could
be used repeatedly without compromising the user privacy as long as the
databases do not collude. In this case, the upload cost would not scale with
the number of PSI determination rounds, unlike the download cost.
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Fig. 1. Example for the private set intersection (PSI) problem. E1 has the set P1 = {a, b, c, d} and E2 has the set P2 = {a, c, e, f, g, h}. E1 submits
queries to E2 that do not leak information about P1, while E2 responds with answers that do not leak information about e, f, g, h (or non-existence of i, j).
By decoding the answers, E1 learns that P1 ∩ P2 = {a, c}.

III. FROM PSI TO MM-SPIR

In this section, we show that the PSI problem can be reduced
to an MM-SPIR problem, if the entities allow storing their sets
in a specific searchable format. This transformation has the
same flavor as [63] and [42], where the original contents of
the databases are mapped into searchable lists to enable PIR,
which assumes that the user knows the position of the desired
file in the databases. To that end, define the incidence vector
Xi ∈ FK

2 as a binary vector of size K associated with the
set Pi. Denote the jth element of the incidence vector Xi by
Xi(j) where

Xi(j) =

{
1, j ∈ Pi

0, j /∈ Pi

(6)

for all j ∈ SK . Hence, Xi(j) is an i.i.d. random variable
for all j ∈ [K] such that Xi(j) ∼ Ber(qi). The entity Ei

constructs the incidence vector Xi corresponding to the set
Pi (see Fig. 2). The entity Ei replicates the vector Xi at all
of its Ni associated databases (see Fig. 3). Note that Xi is a
sufficient statistic for Pi for a given K. The PSI determination
process is performed over X1 or X2, and not over the original
P1 or P2.

To solidify ideas, we state the variables defined so far
explicitly over a specific example. Consider the example in
Fig. 1. Here, the entity E1 has the set P1 = {a, b, c, d} and the
entity E2 has the set P2 = {a, c, e, f, g, h}. Therefore, the in-
tersection is P1∩P2 = {a, c}. Let us assume that the alphabet,
Palph, for this example is Palph = {a, b, c, d, e, f, g, h, i, j} as

shown in Fig. 2. Then, the incidence vectors at the entities are
X1 = [1 1 1 1 0 0 0 0 0 0] and X2 = [1 0 1 0 1 1 1 1 0 0],
which are also shown in Fig. 2. For this example, P1 = 4,
P2 = 6, K = 10, and M = 2. Finally, the MM-SPIR is
conducted over the replicated incidence vectors at the two
entities as shown in Fig. 3.

Without loss of generality, assume that E1 initiates the
PSI process. E1 does not know M in advance. The only
information E1 has is P1. Consequently, E1 wants to verify
the existence of each element of P1 in P2 to deduce P1 ∩P2.
Thus, E1 needs to jointly and reliably download the bits
WP1

= {X2(j) : j ∈ P1} by sending N2 queries to the
databases associated with E2 and collecting the corresponding
answers with the knowledge of X1, i.e., H(P1∩P2|WP1

, X1)
= 0. Hence, we can write the PSI reliability constraint as,

H(WP1
|Q[P1]

1:N2
, A

[P1]
1:N2

, X1) = 0 (7)

This is exactly the reliability constraint in MM-SPIR noting
that P is known to the user; see Section V-A. Meanwhile,
given the knowledge of X1 and the intersection P1∩P2, WP1

can also be deduced by E1, i.e., H(WP1
|P1 ∩ P2, X1) = 0.

Hence, the MM-SPIR reliability constraint can revert back to
the PSI reliability constraint.

Since E1 is searching for the existence of all elements
of P1 in P2 without leaking any information about P1 to
any individual database associated with E2, the E1 privacy
constraint in (4) dictates,

I(P1;Q
[P1]
n2

, A[P1]
n2

, X2, S) = 0, n2 ∈ [N2] (8)
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Fig. 2. Example for the transformation from sets to incidence vectors. E1 has the set P1 = {a, b, c, d} and E2 has the set P2 = {a, c, e, f, g, h}. The
alphabet is Palph = {a, b, c, d, e, f, g, h, i, j}. Entity Ei constructs an incidence vector Xi to facilitate MM-SPIR.

This is exactly the privacy constraint in MM-SPIR if we
treat X2 as the messages in the databases with length 1; see
Section V-A.

As the databases associated with E2 store X2 now, to ensure
the E2 privacy constraint in (5), the answers from E2 databases
should not leak anything about E2,P̄1

, which can be further
mapped to not leaking any information about WP̄1

= {X2(j) :
j /∈ P1} as,

I(WP̄1
;Q

[P1]
1:N2

, A
[P1]
1:N2

, X1) = 0 (9)

This is exactly the database privacy constraint in MM-SPIR
as P is known to the user; see Section V-A.

Consequently, with the cardinality of sets in each entity be-
ing global knowledge, the PSI problem is formally equivalent
to the MM-SPIR problem with i.i.d. messages of length 1
bit each (also see Fig. 3), when the entities E1 and E2 are
allowed to construct the corresponding incidence vectors for
the original sets P1 and P2. The message length constraint of
1 bit per message, i.e., H(Wk) = 1 for all k ∈ [K], comes
due to messages representing incidences in the SPIR problem.
The i.i.d. property of the messages that we have here in this
paper is a consequence of the i.i.d. generation of the sets with
probability qi, and it is not true in general. In Section V, we
derive in detail the capacity of the MM-SPIR problem (see also
Section VI), which in turn gives the most efficient information-
theoretic PSI scheme in terms of the download cost.

IV. MAIN RESULT

In this section, we present our main result concerning the
PSI problem. The result provides the optimal (minimum)
download cost for the PSI problem under the assumptions in
Sections II and III. The result is based on the optimal download

cost of the MM-SPIR problem, which is presented in detail in
Section V; see also Section VI.

Theorem 1 In the PSI problem, the elements of the sets are
added independently with probability qi =

1
2 from a finite set

of size K. Once the set generation is finished, the fixed set
P1 where |P1| = P1 < K is stored among N1 databases
and the fixed set P2 where |P2| = P2 < K is stored
among N2 databases. The set cardinalities P1 and P2 are
made public. The amount of common randomness satiesfies
H(S) ≥ min {

⌈
P1

N2−1

⌉
,
⌈

P2

N1−1

⌉
}. Then, the optimal down-

load cost with one-round communication (one entity sends the
queries to the other entity and then receives feedback) is,

D∗ = min

{⌈
P1N2

N2 − 1

⌉
,

⌈
P2N1

N1 − 1

⌉}
(10)

The proof of Theorem 1 is a direct consequence of the
capacity result for MM-SPIR presented in Section V; see also
Section VI. We have the following remarks.

Remark 1 In the special case of having Pi = K for i = 1
or i = 2, the download cost is trivially zero. This is due to
the fact that if P1 = K for example, the entity E2 directly
concludes that the intersection P1 ∩P2 = P2 without sending
any queries to E1 or requiring any common randomness.

Remark 2 The relationship M = |P1|+ |P2| − |P1 ∪ P2| ≥
|P1| + |P2| − K is always satisfied automatically. However,
in the special case of M = |P1|+ |P2| −K, the entire list of
the entity that starts the PSI determination will be inevitably
leaked to the second entity, as the list sizes |P1|, |P2| are
globally known. Consequently, our results hold for the strict
inequality case M > |P1|+ |P2| −K. It is worth noting that
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Fig. 3. Example for the transformation from the PSI problem to an MM-SPIR problem. E1 needs to retrieve the elements corresponding to P1 from the
incidence vector X2 without revealing P1, while E2 responds with answer strings that do not leak P̄1.

this restriction is due to the nature of the PSI problem itself and
not an artifact of our proposed scheme. Furthermore, entity 1
cannot simply announce its list directly as the cardinality of
the intersection set M is unknown in advance.

Remark 3 The min term in Theorem 1 comes from the fact
that either entity can initiate the PSI determination process so
that the overall download cost is minimized.

Remark 4 We note that although our result is exact, i.e., the
download cost capacity (in the sense of matching achievability
and converse proofs) under the assumptions of independent
generation model for the lists with qi = 1

2 , our scheme is
achievable for any list generation model with arbitrary qi (see
Footnote 2).

Remark 5 Our result is private in information-theoretic (ab-
solute) sense and does not need any assumptions about
the computational powers of the entities. Furthermore, the
achievable scheme is fairly simple and easy to implement
compared to the fully homomorphic encryption needed in [3].
A drawback of our approach is that it needs multiple non-
colluding databases (N1 or N2 needs to be strictly larger
than 1), otherwise, our scheme is infeasible.

Remark 6 The linear scalability of our scheme matches the
linear scalability of the best-known set intersection algorithms
without any privacy constraints.

V. MM-SPIR AS A STAND-ALONE PROBLEM

In this section, we consider the MM-SPIR problem. We
present the problem in a stand-alone format, i.e., we present
a formal problem description in Section V-A, followed by the
main result in Section V-B, the converse in Section V-C, and
a novel achievability in Section V-D.

A. MM-SPIR: Formal Problem Description

There are N non-colluding databases each storing K
i.i.d. messages. Each message is composed of L 9 i.i.d. and
uniformly chosen symbols from a sufficiently large finite field
Fq . Then,

H(Wk) = L, k ∈ [K] (11)
H(W1:K) = KL (12)

In the MM-SPIR problem, our goal is to retrieve a set of
messages WP out of the K available messages without leaking
any information regarding the index set P to any individual
database where P = {i1, i2, · · · , iP } ⊆ [K] such that its
cardinality is |P| = P .10 We assume that the cardinality of
the potential message set, P , is known to all databases in the
server. This is the user privacy constraint. In addition, our
goal is to not retrieve any messages beyond the desired set of
messages WP . This is the database privacy constraint.

Following the SPIR formulation in [8], let F denote the
randomness in the retrieving strategy adopted by the user.

9As in most PIR problems, the message length L can approach infinity.
10We use the symbol P to denote the random variable corresponding to

the desired set and its realization with little abuse of notation.
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Because of the user privacy constraint, F is a random variable
whose realization is only known to the user, but is unknown
to the databases. A necessary common randomness S must be
shared among the N databases to satisfy the database privacy
constraint. The random variable S is generated independent
of the message set W1:K . Similarly, F is independent of
W1:K as the user does not know message realizations in
advance. Moreover, F and S are generated independently
without knowing the desired index set P . Then,

H(F , S,P,W1:K) = H(F) +H(S) +H(P) +H(W1:K)
(13)

To perform MM-SPIR, a user generates one query Q
[P]
n for

each database according to the randomness F and then sends it
to the nth database. Hence, the queries Q[P]

1:N are deterministic
functions of F , i.e.,

H(Q
[P]
1 , Q

[P]
2 , · · · , Q[P]

N |F) = 0, ∀P (14)

Combining (13) and (14), the queries are independent of the
messages, i.e.,

I(Q
[P]
1:N ;W1:K) = 0, ∀P (15)

After receiving a query from the user, each database truth-
fully generates an answer string based on the messages and
the common randomness, hence,

H(A[P]
n |Q[P]

n ,W1:K , S) = 0, ∀n,∀P (16)

After collecting all the answer strings from the N databases,
the user should be able to decode the desired messages WP
reliably, therefore,

[reliability] H(WP |A[P]
1:N , Q

[P]
1:N ,F)

(14)
= H(WP |A[P]

1:N ,F) = 0, ∀P (17)

In order to protect the user’s privacy, the query generated
to retrieve the set of messages WP1 should be statistically
indistinguishable from the one generated to retrieve the set of
messages WP2

where |P1| = |P2| = P , i.e.,

[user privacy] ∀n, ∀P1,P2 s.t. |Pi| = P

(Q[P1]
n , A[P1]

n ,W1:K , S) ∼ (Q[P2]
n , A[P2]

n ,W1:K , S) (18)

The user privacy constraint in (18) is equivalent to,

[user privacy] I(P;Q[P]
n , A[P]

n ,W1:K , S) = 0, ∀P (19)

In order to protect the databases’ privacy, the user should
learn nothing about WP̄ which is the complement of WP , i.e.,
WP̄ = W1:K\WP ,

[database privacy] I(WP̄ ;Q
[P]
1:N , A

[P]
1:N ,F) = 0, ∀P (20)

An achievable MM-SPIR scheme is a scheme that satisfies
the MM-SPIR reliability constraint (17), the user privacy
constraint (18)-(19), and the database privacy constraint (20).
The efficiency of the scheme is measured in terms of the
maximal number of downloaded bits by the user from all the
databases, denoted by DMM−SPIR. Thus, the sum retrieval

rate of MM-SPIR is given by

RMM−SPIR =
PL

DMM−SPIR
(21)

The sum capacity of MM-SPIR, CMM−SPIR, is the supre-
mum of the sum retrieval rates RMM−SPIR over all achiev-
able schemes.

B. MM-SPIR: Main Results

Our stand-alone result for MM-SPIR is stated in the follow-
ing theorem. We only consider N ≥ 2 as SPIR is infeasible
for N = 1.

Theorem 2 The MM-SPIR capacity for N ≥ 2, K ≥ 2, and
a fixed P ≤ K, is given by,

CMM−SPIR =


1, P = K

1− 1
N , 1 ≤ P ≤ K−1, H(S) ≥ PL

N−1

0, otherwise
(22)

The converse proof is given is Section V-C, and the achiev-
ability proof is given in Section V-D. We have the following
remarks concerning Theorem 2.

Remark 7 The result implies that the capacity of MM-SPIR is
exactly the same as the capacity of SM-SPIR [8]. Hence, there
is no gain from joint retrieval in comparison to successive
single-message SPIR [8]. This in contrast to the gain in MM-
PIR [23] in comparison to successive single-message PIR [7].
MM-SPIR capacity expression in Theorem 2 inherits all of the
structural remarks from [8].

Remark 8 Similar to the SM-SPIR problem, we observe a
threshold effect on the size of the required common random-
ness. Specifically, we note that there is a minimal required
size for the common randomness above which the problem is
feasible. This threshold is P times the threshold in SM-SPIR.
Using a common randomness in the amount of the threshold
achieves the full capacity, and there is no need to use any
more randomness than the threshold.

Remark 9 For the extreme case of P = K, the SPIR capacity
is 1 without using any common randomness. This is due to the
fact that the user privacy and the database privacy constraints
are trivially satisfied, and hence the user can simply download
all of the messages from one of the databases without using
any common randomness.

C. MM-SPIR: Converse Proof

In this section, we derive the converse for Theorem 2. In
the converse proof, we focus on the case P ≤ K−1. Because
when P = K, the trivial upper bound for the retrieval rate
R ≤ 1 and the trivial lower bound for the common randomness
H(S) ≥ 0 suffice. Further, we exclusively focus on the case
K ≥ 3. When K = 1, we have P = 1, and the converse
trivially follows since P = K. When K = 2: If P = 2,
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the converse trivially follows from the converse of P = K,
and when P = 1, the converse follows from the converse of
SM-SPIR [8].

Now, focusing on the case K ≥ 3, and P ≤ K − 1, the
total number of possible choices for the index set P is β =(
K
P

)
≥ 3. Thus, there always exist at least three non-identical

index sets P1,P2,P3 such that |Pi| = P , i = 1, 2, 3.
To prove the converse of Theorem 2, we first need the

following lemmas. Lemmas 1 are 2 are direct extensions to
[8, Lemmas 1 and 2] to the setting of MM-SPIR. Lemma 1
simply states that an answer string A

[P1]
n which is received at

the user to retrieve WP1 has the same size as A
[P2]
n , i.e., all

answer strings are symmetric in length, even if we condition
over the desired message set WP1

. This lemma is a direct
consequence of the user privacy constraint.

Lemma 1 (Symmetry)

H(A[P1]
n |WP1

, Q[P1]
n ) = H(A[P2]

n |WP1
, Q[P2]

n ), (23)

H(A[P1]
n |Q[P1]

n ) = H(A[P2]
n |Q[P2]

n ), (24)
∀n, ∀P1,P2 s.t. P1 ̸= P2, |P1| = |P2|

Proof: From the user privacy constraint (18), we have

H(A[P1]
n ,WP1

, Q[P1]
n ) = H(A[P2]

n ,WP1
, Q[P2]

n ) (25)

H(WP1
, Q[P1]

n ) = H(WP1
, Q[P2]

n ) (26)

Using the definition of conditional entropy H(X|Y ) =
H(X,Y ) − H(Y ), we obtain (23). The proof of (25) fol-
lows from the user privacy constraint as well with noting
that H(A

[P1]
n , Q

[P1]
n ) = H(A

[P2]
n , Q

[P2]
n ) and H(A

[P1]
n ) =

H(A
[P2]
n ). ■

Next, Lemma 2 states that knowing the user’s private
randomness F does not help in decreasing the uncertainty of
the answer string A

[P]
n .

Lemma 2 (Effect of conditioning on user’s randomness)

H(A[P]
n |WP ,F , Q[P]

n ) = H(A[P]
n |WP , Q

[P]
n ), ∀n,∀P

(27)

Proof: We start with the following mutual information,

I(A[P]
n ;F|WP , Q

[P]
n )

≤ I(A[P]
n ,W1:K , S;F|WP , Q

[P]
n ) (28)

= I(W1:K , S;F|WP , Q
[P]
n ) + I(A[P]

n ;F|W1:K , S,WP , Q
[P]
n )

(29)

= I(W1:K , S;F|WP , Q
[P]
n ) + I(A[P]

n ;F|W1:K , S,Q[P]
n )

(30)

= I(W1:K , S;F|WP , Q
[P]
n ) +H(A[P]

n |W1:K , S,Q[P]
n )

−H(A[P]
n |F ,W1:K , S,Q[P]

n ) (31)

= I(W1:K , S;F|WP , Q
[P]
n ) (32)

≤ I(W1:K , S;F|WP , Q
[P]
n ) + I(WP ;F|Q[P]

n ) (33)

= I(W1:K ,WP , S;F|Q[P]
n ) (34)

= I(W1:K , S;F|Q[P]
n ) (35)

Pc

Pd

Pe

Pb Pa

P1

P2

[1 : K]

Fig. 4. The relation of the index sets presented in Lemma 3 and used in
Lemmas 4 and 5.

≤ I(W1:K , S;F|Q[P]
n ) + I(W1:K , S;Q[P]

n ) (36)

= I(W1:K , S;F , Q[P]
n ) (37)

= 0 (38)

where (32) follows from the fact that the answer strings are
deterministic functions of the queries and the messages, and
(38) follows from the independence of (W1:K , S,F) and (14).
Since mutual information cannot be negative, it must be equal
to zero, and

H(A[P]
n |WP , Q

[P]
n )−H(A[P]

n |WP ,F , Q[P]
n )

= I(A[P]
n ;F|WP , Q

[P]
n ) = 0 (39)

completing the proof. ■
Next, we need Lemma 3, which is an existence proof for

index sets with specific properties. This technical lemma is
needed in the proofs of upcoming two lemmas, Lemma 4 and
Lemma 5. First, we give the definitions of relevant index sets
Pa, Pb, Pc, Pd, and an element im. Given P1 and P2, we
divide P1 into two disjoint partitions Pa and Pb (i.e., Pa ∪
Pb = P1 and Pa ∩ Pb = ∅), where Pa ⊆ P2 (i.e., P1 ∩
P2 = Pa), Pb ⊆ P̄2. Suppose |Pa| = M ∈ [1 : P−1]. Note
that since P1 ̸= P2, we cannot have M = P . We assume
that Pa = {i1, · · · , iM} for clarity of presentation. Given an
arbitrary number m ∈ [1 : M ], we define a new index set Pc =
{i1, · · · , im} which consists of exactly the first m elements in
the index set Pa. Let im be the last element from the index
set Pc. We obtain a new index set Pd = {i1, · · · , im−1} after
removing this element. That means Pc = Pd ∪ {im}. The
relation of all these mentioned index sets is shown in Fig. 4.

Lemma 3 For K ≥ 3, 1 ≤ P ≤ K − 1, given index sets P1,
P2 such that |Pi| = P for i = 1, 2 and P1 ̸= P2, we can
construct an index set P3 such that,

i) P3 ̸= P1 and P3 ̸= P2,
ii) |P3| = P , and

iii) P3 includes Pb ∪ Pd but does not include the common
element im in P1 ∩ P2.

Proof: The key is to construct an index set Pe which satisfies
the following two constraints: Pe ⊆ [1 : K]\{Pb,Pc} and
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|Pe| = M − (m − 1). As we can see, |Pa\Pc| = M − m
and |P2\Pa| ≥ 1. One way to construct the index set Pe is to
include all the (M −m) elements from the index set Pa\Pc

and one more element from the index set P2\Pa, i.e.,

Pe = (Pa\Pc) ∪ {i∗} (40)

where i∗ ∈ P2\Pa. The index set Pe is generally not unique
(for some examples, see Examples 1 and 2 below). Now, we
are ready to construct the index set P3 as,

P3 = Pb ∪ Pd ∪ Pe (41)

Since Pb, Pd, Pe are disjoint sets, |P3| = |Pb|+ |Pd|+ |Pe| =
(P −M) + (m− 1) + (M −m+ 1) = P . Thus, we are able
to construct P3 such that |P3| = P . Based on the formulation
of Pb, Pd and Pe, these three index sets do not include the
element im. Hence, im /∈ P3. Since both P1 and P2 have the
element im as im belongs to their intersection Pa, P3 is not
the same as P1 or P2, i.e., P3 ̸= P1, P3 ̸= P2 and |P3| = P .
■

The following two examples illustrate the relations between
the aforementioned sets, which will be important for the
converse proof through the proofs of Lemmas 4 and 5.

Example 1 Suppose K = 3, P = 2 and N ≥ 2 is an
arbitrary positive integer. The total possible number of index
sets is

(
K
P

)
= 3. Assume P1 = {1, 2}, P2 = {1, 3} without

loss of generality. Then, Pa = {1}, Pb = {2} and the
corresponding M is 1. Thus, m can only take the value 1.
That means Pc = {1} and Pd has to be an empty set. For
Pe, we cannot take any element from the set Pa\Pc as it is
empty, instead we can take the element 3 from the set P2\Pa.
Thus, Pe is formed as {3}, and we construct P3 = {2, 3}.

Example 2 Suppose K = 6, P = 4 and N ≥ 2 is an
arbitrary positive integer. The total possible number of index
sets is

(
K
P

)
= 15. Assume P1 = {1, 3, 5, 6}, P2 = {2, 3, 5, 6}

without loss of generality. Then, Pa = {3, 5, 6}, Pb = {1}
and the corresponding M is 3. Thus, m can take the values 1,
2 or 3. To avoid being repetitive, we only consider the cases
of m = 2 or m = 3, which are different from Example 1.

When m = 2, Pc = {3, 5} and Pd = {3}. For Pe, we
can take the element 6 from the set Pa\Pc and then take the
element 2 from the set P2\Pa. Alternatively, we can pick the
element 4 outside the union P1 ∪P2 instead of the element 6
from the set Pa\Pc. Thus, Pe is formed as {2, 6} (or {4, 6}).
Therefore, we finally obtain P3 = {1, 2, 3, 6} (or {1, 3, 4, 6}).

When m = 3, Pc = {3, 5, 6} and Pd = {3, 5}. For Pe, we
cannot take any element from the set Pa\Pc since it is empty.
We take the element 2 from the set P2\Pa or take the element
4 outside the union P1 ∪ P2. Thus, Pe is formed as {2} (or
{4}), and we construct P3 = {1, 2, 3, 5} (or {1, 3, 4, 5}).

Next, we need the following lemma. Lemma 4 states that re-
vealing any individual answer given the messages (WPb

,WPd
)

does not leak any information about the message Wim .

Lemma 4 (Message leakage within any answer string)
When 1 ≤ P ≤ K−1 and M ≥ 1, for arbitrary m ∈ [1 : M ],
the following equality is always true,

H(Wim |WPb
,WPd

, A[P2]
n , Q[P2]

n )=H(Wim |WPb
,WPd

, Q[P2]
n )
(42)

Remark 10 The goal of Lemma 4 is to prove a key step,
equation (63), in the proof of Lemma 5. We remark that
Lemma 4 is true for any m ∈ [2 : M ] when M ≥ 1 as proved
below. In the case when m = 1, the messages set Wi1:im−1

(i.e., Pd) is an empty set and thus Lemma 4 is still true in this
case.

Proof: From the user privacy constraint (18), we have,

H(WPb
,WPc , A

[P2]
n , Q[P2]

n ) = H(WPb
,WPc , A

[P3]
n , Q[P3]

n )
(43)

H(WPb
,WPd

, A[P2]
n , Q[P2]

n ) = H(WPb
,WPd

, A[P3]
n , Q[P3]

n )
(44)

Since Pc = Pd ∪ im, we have

H(Wim |WPb
,WPd

, A[P2]
n , Q[P2]

n )

= H(Wim |WPb
,WPd

, A[P3]
n , Q[P3]

n ) (45)

Similarly,

H(Wim |WPb
,WPd

, Q[P2]
n )=H(Wim |WPb

,WPd
, Q[P3]

n )
(46)

From the database privacy constraint (20), we have,

0 = I(WP̄3
;A

[P3]
1:N , Q

[P3]
1:N ,F) (47)

= I(WP̄3
;A

[P3]
1:N ,WP3 , Q

[P3]
1:N ,F) (48)

≥ I(WP̄3
;A

[P3]
1:N ,WPb

,WPd
, Q

[P3]
1:N ) (49)

≥ I(Wim ;A
[P3]
1:N ,WPb

,WPd
, Q

[P3]
1:N ) (50)

≥ I(Wim ;A[P3]
n ,WPb

,WPd
, Q[P3]

n ) (51)

= I(Wim ;A[P3]
n |WPb

,WPd
, Q[P3]

n ) (52)

= H(Wim |WPb
,WPd

, Q[P3]
n )

−H(Wim |A[P3]
n ,WPb

,WPd
, Q[P3]

n ) (53)

where (48) comes from the MM-SPIR reliability constraint
(17), (49) comes from the relationship P3 = Pb ∪ Pd ∪ Pe

(i.e, Pb ∪ Pd ⊆ P3), and (50) comes from the
relationship im ∈ P̄3. Thus, H(Wim |WPb

,WPd
, Q

[P3]
n ) ≤

H(Wim |A[P3]
n ,WPb

,WPd
, Q

[P3]
n ). This concludes the

proof by observing that H(Wim |WPb
,WPd

, Q
[P3]
n ) ≥

H(Wim |A[P3]
n ,WPb

,WPd
, Q

[P3]
n ) trivially as conditioning

cannot increase entropy. ■
Finally, the following lemma states that conditioning on an

undesired message set does not decrease the uncertainty on
any individual answer string. This is a consequence of the
database privacy constraint.

Lemma 5 (Effect of conditioning on an undesired set)

H(A[P2]
n |WP1

, Q[P2]
n ) = H(A[P2]

n |Q[P2]
n ),

∀n, ∀P1,P2 s.t. P1 ̸= P2, |P1| = |P2| (54)
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Remark 11 We note that although Lemma 5 has the same
flavor as [8, eqn. (39)], the proof is much more involved. The
main reason for this difficulty is the inter-relations between
subsets of messages of size P . Specifically, in SM-SPIR, all
message subsets are of size P = 1, and therefore, they are
disjoint. However, in MM-SPIR, the message subsets are of
size P , and they intersect in general, i.e., for a given P1, P2

such that |P1| = |P2| = P , the intersection P1 ∩ P2 is not
an empty set in general in contrast to SM-SPIR. Dealing with
message subset intersections is the essence of introducing and
proving Lemmas 3, 4 and 5.

Proof: From the database privacy constraint (20), we have,

0 = I(WP̄2
;A

[P2]
1:N , Q

[P2]
1:N ,F) (55)

≥ I(WP̄2
;A[P2]

n , Q[P2]
n ) (56)

≥ I(WPb
;A[P2]

n , Q[P2]
n ) (57)

= I(WPb
;A[P2]

n |Q[P2]
n ) (58)

= H(WPb
|Q[P2]

n )−H(WPb
|A[P2]

n , Q[P2]
n ) (59)

where (57) comes from the relationship Pb ⊆ P̄2, (58)
follows from the independence of messages and queries.
Hence, H(WPb

|Q[P2]
n ) = H(WPb

|A[P2]
n , Q

[P2]
n ) as the reverse

implication follows form the fact that conditioning cannot
increase entropy.

Case 1: M = 0: In this case, there is no intersection
between P1 and P2. WPa is an empty set of messages and
then WP1

= WPb
. Hence,

I(WP1
;A[P2]

n |Q[P2]
n ) = I(WPb

;A[P2]
n |Q[P2]

n ) = 0 (60)

where (60) follows from (58). This proves (54), the claim of
lemma, when M = 0.

Case 2: M ≥ 1: In this case, WP1
= WPa

∪ WPb
and

WPa
= {Wi1 , · · · ,WiM }.

H(WPa
|WPb

, A[P2]
n , Q[P2]

n )

= H(Wi1:iM |WPb
, A[P2]

n , Q[P2]
n ) (61)

= H(Wi1 |WPb
, A[P2]

n , Q[P2]
n )

+H(Wi2 |Wi1 ,WPb
, A[P2]

n , Q[P2]
n )

+ · · ·+H(WiM |Wi1:iM−1,WPb
, A[P2]

n , Q[P2]
n ) (62)

= H(Wi1 |WPb
, Q[P2]

n ) +H(Wi2 |Wi1 ,WPb
, Q[P2]

n )

+ · · ·+H(WiM |Wi1:iM−1,WPb
, Q[P2]

n ) (63)

= H(Wi1:iM |WPb
, Q[P2]

n ) (64)

= H(WPa |WPb
, Q[P2]

n ) (65)

where (63) comes from the direct application of Lemma 4.
Thus, we have,

I(WP1 ;A
[P2]
n |Q[P2]

n )

= H(WP1
|Q[P2]

n )−H(WP1
|A[P2]

n , Q[P2]
n ) (66)

= H(WP1
|Q[P2]

n )−H(WPa
,WPb

|A[P2]
n , Q[P2]

n ) (67)

= H(WP1 |Q[P2]
n )−H(WPb

|A[P2]
n , Q[P2]

n )

−H(WPa
|WPb

, A[P2]
n , Q[P2]

n ) (68)

= H(WP1
|Q[P2]

n )−H(WPb
|Q[P2]

n )−H(WPa
|WPb

, Q[P2]
n )
(69)

= H(WP1
|Q[P2]

n )−H(WPa
,WPb

|Q[P2]
n ) (70)

= H(WP1
|Q[P2]

n )−H(WP1
|Q[P2]

n ) (71)
= 0 (72)

where (69) follows from (59) and (65). This proves (54), the
claim of lemma, when M ≥ 1.

Combining (60) and (72) proves (54) in all cases completing
the proof. ■

Remark 12 The intuition behind Lemma 5 is as follows: If
the pair (A

[P2]
n , Q

[P2]
n ) provide any information about WP1

,
they have to provide some information about WP̄1

under the
user privacy constraint. However, database privacy constraint
is thus obviously violated if the user receives any information
about WP̄1

. Consequently, the pair (A
[P2]
n , Q

[P2]
n ) can never

provide any information about WP̄1
. Therefore, we are able to

derive H(WP1
|A[P2]

n , Q
[P2]
n ) = H(WP1

)
(15)
= H(WP1

|Q[P2]
n ),

and hence I(WP1
;A

[P2]
n |Q[P2]

n ) = 0.

Now, we are ready to construct the main body of the
converse proof for MM-SPIR, as well as the minimal entropy
of common randomness required to achieve perfect MM-SPIR.
Since we dealt with the inter-relations between message sub-
sets in the previous lemmas and reached similar conclusions
to those in SM-SPIR [8], the main body of the converse proof
will be similar in structure to its counterpart in SM-SPIR.

The proof for R ≤ CMM−SPIR:

PL = H(WP1
) (73)

= H(WP1
|F) (74)

= H(WP1 |F)−H(WP1 |A[P1]
1:N ,F) (75)

= I(WP1 ;A
[P1]
1:N |F) (76)

= H(A
[P1]
1:N |F)−H(A

[P1]
1:N |WP1

,F) (77)

= H(A
[P1]
1:N |F)−H(A

[P1]
1:N |WP1

,F , Q[P1]
n ) (78)

≤ H(A
[P1]
1:N |F)−H(A[P1]

n |WP1
,F , Q[P1]

n ) (79)

= H(A
[P1]
1:N |F)−H(A[P1]

n |WP1 , Q
[P1]
n ) (80)

= H(A
[P1]
1:N |F)−H(A[P2]

n |WP1
, Q[P2]

n ) (81)

= H(A
[P1]
1:N |F)−H(A[P2]

n |Q[P2]
n ) (82)

= H(A
[P1]
1:N |F)−H(A[P1]

n |Q[P1]
n ) (83)

≤ H(A
[P1]
1:N |F)−H(A[P1]

n |Q[P1]
n ,F) (84)

= H(A
[P1]
1:N |F)−H(A[P1]

n |F) (85)

where (74) follows from the independence of the user’s private
randomness and the messages, (75) follows from the MM-
SPIR reliability constraint (17), (78) follows from the fact that
the queries are deterministic functions of the user’s private
randomness F (14), (80) follows from Lemma 2, (81) follows
from the first part of Lemma 1, (82) follows from Lemma 5,
(83) follows from the second part Lemma 1, and (85) again
follows from the fact that the queries are deterministic func-
tions of the user’s private randomness F (14).
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By summing (85) up for all n ∈ [1 : N ] and letting P
denote the general desired index set, we obtain,

NPL ≤ NH(A
[P]
1:N |F)−

N∑
n=1

H(A[P]
n |F) (86)

≤ NH(A
[P]
1:N |F)−H(A

[P]
1:N |F) (87)

= (N − 1)H(A
[P]
1:N |F) (88)

≤ (N − 1)
N∑

n=1

H(A[P]
n |F) (89)

≤ (N − 1)
N∑

n=1

H(A[P]
n ) (90)

which leads to the desired converse result on the retrieval rate,

RMM−SPIR =
PL

DMM−SPIR
≤ PL∑N

n=1 H(A
[P]
n )

≤ N − 1

N
= 1− 1

N
(91)

The proof for H(S) ≥ PL
N−1 :

0 = I(WP̄1
;A

[P1]
1:N , Q

[P1]
1:N ,F) (92)

≥ I(WP̄1
;A

[P1]
1:N ,F) (93)

= I(WP̄1
;A

[P1]
1:N ,WP1

,F) (94)

= I(WP̄1
;A

[P1]
1:N |WP1 ,F) (95)

≥ I(WP̄1
;A[P1]

n |WP1
,F) (96)

= H(A[P1]
n |WP1

,F)−H(A[P1]
n |W1:K ,F) (97)

= H(A[P1]
n |WP1 ,F)−H(A[P1]

n |W1:K ,F)

+H(A[P1]
n |W1:K ,F , S) (98)

= H(A[P1]
n |WP1

,F)− I(S;A[P1]
n |W1:K ,F) (99)

= H(A[P1]
n |WP1

,F)−H(S|W1:K ,F)

+H(S|A[P1]
n ,W1:K ,F) (100)

= H(A[P1]
n |WP1

,F)−H(S) +H(S|A[P1]
n ,W1:K ,F)

(101)

≥ H(A[P1]
n |WP1

,F)−H(S) (102)

= H(A[P1]
n |WP1 ,F , Q[P1]

n )−H(S) (103)

= H(A[P1]
n |Q[P1]

n )−H(S) (104)

where (92) follows from the database privacy constraint (20),
(94) follows from the MM-SPIR reliability constraint (17),
(98) follows from the fact that the answer strings are deter-
ministic functions of messages and queries which are also
functions of the randomness F as in (14) and (16), (101)
follows from the independence of the common randomness,
messages, and user’s private randomness as in (13), (103)
follows from (14), and (104) follows from the steps between
(80)-(83) by applying Lemma 1, 2 and 5 again.

By summing (104) up for all n ∈ [1 : N ] and letting P
denote the general desired index set again, we obtain,

0 ≥
N∑

n=1

H(A[P]
n |Q[P]

n )−NH(S) (105)

≥ H(A
[P]
1:N |Q[P]

n )−NH(S) (106)

≥ H(A
[P]
1:N |Q[P]

n ,F)−NH(S) (107)

= H(A
[P]
1:N |F)−NH(S) (108)

≥ N

N − 1
PL−NH(S) (109)

where (108) follows from (14) and (109) follows from (88),
which leads to a lower bound for the minimal required entropy
of common randomness S,

H(S) ≥ PL

N − 1
(110)

D. MM-SPIR: Achievability Proof

Since the MM-SPIR capacity is the same as the SM-
SPIR capacity, and the required common randomness is P
times the required common randomness for SM-SPIR, we
can use the achievable scheme in [8] successively P times
in a row (by utilizing independent common randomness each
time) to achieve the MM-SPIR capacity. Although the query
structure for the capacity-achieving scheme for SPIR in [8]
is quite simple, it is fundamentally different than the query
structure for the capacity-achieving scheme for PIR in [7].
This means that user/databases should execute different query
structures for different database privacy levels. In this paper,
by combining ideas for achievability from [23] and [15], we
propose an alternative capacity-achieving scheme for MM-
SPIR for any11 P . Our achievability scheme enables us
to switch between MM-PIR and MM-SPIR seamlessly, and
therefore support different database privacy levels, as the basic
query structures are similar12. We start with two motivating
examples in Section V-D1, give the general achievable scheme
in Section V-D2, and calculate its rate and required common
randomness amount in Section V-D3.

For convenience, we use the k-sum notation in [7], [23].
A k-sum is a sum of k symbols from k different messages.
Thus, a k-sum symbol appears only in round k. We denote
the number of stages in round k by αk, which was originally
introduced in [23]. In addition, we use ν to denote the number
of repetitions of the scheme13 in [23] we need before we start
assigning common randomness symbols.

1) Motivating Examples:

Example 3 Consider the case K = 3, P = 1, N = 3. Our
achievable scheme is as follows: First, we generate an initial
query table, which strictly follows the query table generation
in [23]. For this case, from [23], we obtain the number of
stages needed in each round as α1 = 1, α2 = 2, α3 = 4.

11We note that the capacity-achieving scheme for K = P is simply to
download all messages from one of the databases, hence, without loss of
generality, we focus on the case 1 ≤ P ≤ K − 1 in this section.

12We note that the presented scheme in this section can be thought of as a
stand-alone capacity-achieving scheme for the MM-SPIR problem when the
message lengths are unconstrained. Consequently, our proposed scheme in
Section V-D cannot be applied to the PSI problem, as it requires the message
size to be constrained to L = 1.

13 When we refer to the scheme in [23], we refer to the near-optimal scheme
in [23] which was introduced for K/P ≥ 2. Reference [23] has a different,
optimal, scheme for K/P ≤ 2. However, in this paper, even when K/P ≤ 2,
we still refer to (and use) the near-optimal scheme in [23].
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From the perspective of a database, before the assignment
of common randomness symbols begins, the total number of
downloaded desired symbols in round 1 is α1P = 1× 1 = 1.
Thus, we need 1 previously downloaded common randomness
symbol for this desired symbol. Since this common randomness
symbol needs to come from the other N − 1 = 2 databases,
the required common randomness to be downloaded from each
database is 1

2 symbols (assuming a symmetric scheme that
distributes downloads equally over the other 2 databases).
Thus, in order to obtain an integer number of common
randomness symbols to be downloaded from each database,
we repeat the scheme in [23] two times (i.e., ν = 2) before
we begin assigning the common randomness symbols. Hence,
the number of stages in each round become ναk = 2αk, for
k = 1, 2, 3. That is we have 2 stages of 1-sums, 4 stages of
2-sums and 8 stages of 3-sums; see Table I.

We are now ready to start assigning the common ran-
domness symbols. We first download 1 common randomness
symbol from each database; for instance, we download s1 from
database 1. In round 1, we mix (i.e., add) a common ran-
domness symbol to each 1-sum. All the common randomness
symbols at each database should be distinct; for instance, ob-
serve that, we add s2, s3, s4, s5, s6, s7 at database 1. Second,
the common randomness symbols added to the desired symbols
(a symbols in this example) must be downloaded from other
databases; for instance, note that s2 and s3 added to symbols
a1 and a2 are downloaded from databases 2 and 3. Note that
the indices of the common randomness symbols added to the
undesired symbols (symbols b and c) increase cumulatively,
e.g., s4, s5, s6, s7 at database 1 in round 1, and these symbols
are not separately downloaded by the user.

In round 2, for every 2-sum containing a desired message
symbol, we add a side information symbol downloaded from
another database which already contains a common random-
ness symbol; for instance, we add b3 + s8 that is already
downloaded from database 2, to the desired symbol a7 at
database 1, i.e., we download a7 + b3 + s8. On the other
hand, for every 2-sum not containing any desired message
symbols, we add a new distinct common randomness symbol
with a cumulatively increasing index; for instance, for the
download b7+c7 from database 1, we add s16 which is a new
non-downloaded common randomness symbol, and download
b7 + c7 + s16. Finally, in round 3, where we download 3-
sums, and hence every download contains a desired symbol,
we add the side information generated at other databases; for
instance, we add b11 + c11 + s20 downloaded from database
2, to a31 and download a31 + b11 + c11 + s20. This completes
the achievable scheme for this case. The complete query table
is shown in Table I.

Now, we calculate the rate of this scheme. The length of
each message is L = 54, and the total number of downloads
is D = 81. Thus, the rate R of this scheme is 54

81 = 2
3 = 1− 1

3 ,
which matches the capacity expression. In addition, we used
27 common randomness symbols, hence the required common
randomness H(S) is 27 = 54

2 , which matches the required
minimum.

Example 4 Consider the case K = 5, P = 3, N = 2. Our
achievable scheme is as follows: Again, first, we generate
an initial query table, which strictly follows the query table
generation in [23]. Note that, we still use the near-optimal
scheme in [23], even though for this case K/P ≤ 2 (see
Footnote 13). For this case, from [23], we obtain the number of
stages needed in each round as α1 = 3, α2 = 1, α3 = α4 = 0
and α5 = 1. In this case, from the perspective of a database,
before the assignment of common randomness symbols begins,
the total number of downloaded desired symbols in round 1
is α1P = 3× 3 = 9. Thus, we need 9 previously downloaded
common randomness symbols for these desired symbols. These
common randomness symbols need to come from the other
N − 1 = 1 database. In this case, since 9/1 = 9 is an
integer already, we do not need to repeat the scheme unlike
the case in Example 3. Thus, ν = 1 here, there is no need for
repetition, and the underlying query structure before adding
common randomness symbols is exactly the same as [23]; see
Table II.

We are now ready to start assigning the common random-
ness symbols. We first download 9 common randomness sym-
bols from each database; for instance, we download s1, · · · , s9
from database 1. In round 1, we add a common randomness
symbol to each 1-sum. All the common randomness symbols
at each database should be distinct; for instance, observe
that, we add s10, · · · , s24 at database 1. Second, the common
randomness symbols added to the desired symbols (a, b,
c symbols in this example) must be downloaded from the
other databases; for instance, note that s10, · · · , s18 added
to symbols a1, b1, c1, a2, b2, c2, a3, b3, c3 are downloaded from
database 2. Note that the indices of the common randomness
symbols added to the undesired symbols (symbols d and e)
increase cumulatively, e.g., s19 · · · , s24 at database 1 in round
1, and these symbols are not separately downloaded by the
user.

In round 2, for every 2-sum containing only one desired
message symbol, we add a side information symbol down-
loaded from the other database which already contains a
common randomness symbol; for instance, we add d4 + s25
that is already downloaded from database 2, to the desired
bit a8 at database 1, i.e., we download a8 + d4 + s25. On
the other hand, for every 2-sum containing two of the desired
message symbols, we add a new distinct common randomness
symbol and download it separately from the other database;
for instance, for the download a7 + b4 from database 1,
we add s34 and download s34 separately from database 2,
and download a7 + b4 + s34. Therefore, for this, we need
to download 3 common randomness symbols (s34, s35, s36)
from database 2. Further, for every 2-sum not containing
any desired message symbols, we add a new distinct common
randomness symbol with a cumulatively increasing index; for
instance, for the download d7+e7 from database 1, we add s37
which is a new non-downloaded common randomness symbol,
and download b7 + c7 + s37. We skip rounds 3 and 4 because
α3 = α4 = 0. Finally, in round 5, where we download 5-sums,
we add the side information generated at the other databases;
for instance, we add d8+e8+s38 downloaded from database 2,
to a13+b5+c5 and download a13+b5+c5+d8+e8+s38. This
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TABLE I
THE QUERY TABLE FOR THE CASE K = 3, P = 1, N = 3.

Database 1 Database 2 Database 3
s1 s2 s3

a1 + s2 a3 + s1 a5 + s1
a2 + s3 a4 + s3 a6 + s2
b1 + s4 b3 + s8 b5 + s12
b2 + s5 b4 + s9 b6 + s13
c1 + s6 c3 + s10 c5 + s14
c2 + s7 c4 + s11 c6 + s15

a7 + b3 + s8 a15 + b1 + s4 a23 + b1 + s4
a8 + b4 + s9 a16 + b2 + s5 a24 + b2 + s5
a9 + b5 + s12 a17 + b5 + s12 a25 + b3 + s8
a10 + b6 + s13 a18 + b6 + s13 a26 + b4 + s9
a11 + c3 + s10 a19 + c1 + s6 a27 + c1 + s6
a12 + c4 + s11 a20 + c2 + s7 a28 + c2 + s7
a13 + c5 + s14 a21 + c5 + s14 a29 + c3 + s10
a14 + c6 + s15 a22 + c6 + s15 a30 + c4 + s11
b7 + c7 + s16 b11 + c11 + s20 b15 + c15 + s24
b8 + c8 + s17 b12 + c12 + s21 b16 + c16 + s25
b9 + c9 + s18 b13 + c13 + s22 b17 + c17 + s26
b10 + c10 + s19 b14 + c14 + s23 b18 + c18 + s27

a31 + b11 + c11 + s20 a39 + b7 + c7 + s16 a47 + b7 + c7 + s16
a32 + b12 + c12 + s21 a40 + b8 + c8 + s17 a48 + b8 + c8 + s17
a33 + b13 + c13 + s22 a41 + b9 + c9 + s18 a49 + b9 + c9 + s18
a34 + b13 + c14 + s23 a42 + b10 + c10 + s19 a50 + b10 + c10 + s19
a35 + b15 + c15 + s24 a43 + b15 + c15 + s24 a51 + b11 + c11 + s20
a36 + b16 + c16 + s25 a44 + b16 + c16 + s25 a52 + b12 + c12 + s21
a37 + b17 + c17 + s26 a45 + b17 + c17 + s26 a53 + b13 + c13 + s22
a38 + b18 + c18 + s27 a46 + b18 + c18 + s27 a54 + b14 + c14 + s23

completes the achievable scheme for this case. The complete
query table is shown in Table II.

Now, we calculate the rate of this scheme. We downloaded
13 a symbols, 13 b symbols and 12 c symbols, hence a total
of L = 38 desired symbols. The total number of downloads is
D = 76. Thus, the rate R of this scheme is 38

76 = 1
2 = 1− 1

2 ,
which matches the capacity expression. In addition, we used
38 common randomness symbols, hence the required common
randomness H(S) is 38 = 38

1 , which matches the required
minimum.

We finally note that, since we downloaded asymmetric
number of symbols from desired messages, i.e., 13 a symbols,
13 b symbols and 12 c symbols, we can repeat this scheme 3
times changing the roles of a, b and c, and have a symmetric
scheme where we download 38 a symbols, 38 b symbols and
38 c symbols. This will not change the normalized download
cost and normalized downloaded common randomness sym-
bol numbers, hence, all the calculations (rate and common
randomness calculations) will remain the same.

2) General Achievable Scheme: Our achievability scheme
is primarily based on the one in [23], with the addition of
downloading and/or mixing common randomness variables
into symbol downloads appropriately. We note that, here
we extend the near-optimal algorithm in [23], which was
originally proposed for P ≤ K

2 , to the case of P ≥ K
2 , and

therefore, use it for all 1 ≤ P ≤ K − 1 (see Footnote 13).
Our achievability scheme comprises the following steps:

1) Initial MM-PIR Query Generation: Generate an initial
query table strictly following the near-optimal procedure
in [23] for arbitrary K, P and N .

2) Repetition: Repeat Step 1 for a total of ν times. The
purpose of the repetition is to i) get an integer number
of common randomness generated at each database by a
symmetric algorithm (as exemplified in Example 3), and
ii) get equal number of symbols downloaded from each
desired message (as exemplified in Example 4). Let ν0 be
the smallest integer such that (N−1)K−PNν0

P (i.e., αKNν0

P )
is an integer. Similarly, for 1 ≤ k ≤ min{P,K −P}, let

νk be the smallest integer such that (Pk)αkνk

N−1 is an integer
(k ≤ K−P comes from αK−P+1 = · · · = αP−1 = 0 in
[23, eqn. (51)]). Then, choose ν as the lowest common
multiple of these νk, where k ∈ [0 : min{P,K − P}].

3) Common Randomness Assignment: Assign the common
randomness as follows:

a) In round 1, assign νPα1

N−1 independent common random-
ness symbols to each database, and download them.
At each database, mix every 1-sum symbol containing
a desired message symbol with an arbitrary common
randomness symbol already downloaded from another
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TABLE II
THE QUERY TABLE FOR THE CASE K = 5, P = 3, N = 2.

Database 1 Database 2
s1, s2, s3 s10, s11, s12
s4, s5, s6 s13, s14, s15
s7, s8, s9 s16, s17, s18

s31, s32, s33 s34, s35, s36
a1 + s10 a4 + s1
b1 + s11 b4 + s2
c1 + s12 c4 + s3
d1 + s19 d4 + s25
e1 + s20 e4 + s26
a2 + s13 a5 + s4
b2 + s14 b5 + s5
c2 + s15 c5 + s6
d2 + s21 d5 + s27
e2 + s22 e5 + s28
a3 + s16 a6 + s7
b3 + s17 b6 + s8
c3 + s18 c6 + s9
d3 + s23 d6 + s29
e3 + s24 e6 + s30

a7 + b4 + s34 a10 + b1 + s31
a4 + c7 + s35 a1 + c10 + s32
a8 + d4 + s25 a11 + d1 + s19
a9 + e4 + s26 a12 + e1 + s20
b7 + c4 + s36 b10 + c1 + s33
b8 + d5 + s27 b11 + d2 + s21
b9 + e5 + s28 b12 + e2 + s22
c8 + d6 + s29 c11 + d3 + s23
c9 + e6 + s30 c12 + e3 + s24
d7 + e7 + s37 d8 + e8 + s38

a13 + b5 + c5 + d8 + e8 + s38 a2 + b13 + c2 + d7 + e7 + s37

database, making sure that every 1-sum symbol at each
database is mixed with a different common randomness
symbol. Mix all other 1-sum symbols not containing
a desired symbol with a new common randomness
symbol which is not downloaded by the user.

b) In round k (k ≥ 2), assign
ν(Pk)αk

N−1 independent
common randomness symbols to each database, and
download them. At each database: Mix every k-
sum symbol containing only desired message symbols
with an arbitrary common randomness symbol already
downloaded from another database. Mix every k-sum
symbol containing p desired message symbols (1 ≤
p ≤ k−1) with the common randomness symbol from
the (k−p)-sum symbol having the same k−p undesired
message symbols downloaded at any other database.
Mix every k-sum symbol not containing any desired
message symbols with a new common randomness
symbol which is not downloaded by the user.

c) Repeat Step 3b until k reaches K. Note that if αk = 0,
nothing is done.

This scheme inherits the user privacy property from the

underlying scheme in [23], as the new common randomness
symbols, which are separately downloaded and subtracted out,
make no difference. Due to the procedure in Step 3, where
non-downloaded common randomness symbols are added to
the downloads, no undesired symbol is decodable because
of the added unknown common randomness, ensuring the
database privacy constraint.

3) Rate and Common Randomness Amount Calculation:
We calculate the achievable rate and the minimal required
common randomness for only one repetition of the scheme.
The reason for this is that, in every repetition, every involved
term would be multiplied by T , and thus T can be cancelled
in the numerator and the denominator of the normalized rate
and normalized required common randomness expressions.

For each database, before the assignment of common ran-
domness, let D1 be the total number of downloaded symbols,
U1 be the total number of downloaded undesired symbols,
U2 be the total number of downloaded symbols including
only desired message symbols, and D2 be the total number
of downloaded common randomness symbols. The achievable
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rate is then given by,

R =
D1 − U1

D1 +D2
(111)

Using the respective results in [23, eqns. (66)-(69) and (70)-
(72)], we have

D1 =
K∑

k=1

(
K

k

)
αk =

P∑
i=1

γir
K−P
i

[(
1 +

1

ri

)K

− 1

]
(112)

U1 =
K−P∑
k=1

(
K − P

k

)
αk =

P∑
i=1

γir
K−P
i

[(
1 +

1

ri

)K−P

− 1

]
(113)

In the proposed new achievable scheme, every k-sum symbol
(1 ≤ k ≤ min{P,K − P}) containing only desired message
symbols is mixed with an arbitrary common randomness sym-
bol which is downloaded from another database. In addition,
these downloaded common randomness symbols are uniformly
requested from the other (N − 1) databases. Thus,

U2 =

min{K−P,P}∑
k=1

(
P

k

)
αk (114)

D2 =
1

N − 1
U2 =

1

N − 1

min{K−P,P}∑
k=1

(
P

k

)
αk (115)

With these observations we have the following two lem-
mas where we compute the MM-SPIR rate and the required
common randomness amount.

Lemma 6 The rate of the proposed achievable scheme is,

R = 1− 1

N
(116)

Proof: We first calculate D2 in two possible settings. When
P ≤ K

2 , i.e., P ≤ K − P ,

D2 =
1

N − 1

P∑
k=1

(
P

k

)
αk (117)

=
1

N − 1

P∑
k=1

(
P

k

) P∑
i=1

γir
K−P−k
i (118)

=
1

N − 1

P∑
k=1

P∑
i=1

(
P

k

)
γir

K−P−k
i (119)

=
1

N − 1

P∑
i=1

P∑
k=1

(
P

k

)
γir

K−P−k
i (120)

=
1

N − 1

P∑
i=1

γir
K−2P
i

P∑
k=1

(
P

k

)
rP−k
i (121)

=
1

N − 1

P∑
i=1

γir
K−2P
i (N − 1)rPi (122)

=
1

N − 1

P∑
i=1

γir
K−P
i (N − 1) (123)

where (122) follows because ri is a root of the characteristic
equation [23, eqn. (59)].

When K
2 ≤ P ≤ K − 1, i.e., K − P ≤ P ,

D2 =
1

N − 1

K−P∑
k=1

(
P

k

)
αk (124)

=
1

N − 1

P∑
k=1

(
P

k

)
αk −

P∑
k=K−P+1

(
P

k

)
αk (125)

=
1

N − 1

P∑
k=1

(
P

k

)
αk (126)

=
1

N − 1

P∑
i=1

γir
K−P
i (N − 1) (127)

where (126) follows because αK−P+1 = · · · = αP−1 = 0
due to [23, eqn. (51)], and (127) follows from (123).

Therefore, from (123) and (127), for all P , where 1 ≤ P ≤
K − 1, we always have

D2 =
1

N − 1

P∑
k=1

(
P

k

)
αk =

1

N − 1

P∑
i=1

γir
K−P
i (N − 1)

(128)

Now, in order to show that R = D1−U1

D1+D2
= 1− 1

N , we need
to equivalently show that D1 = NU1 +(N − 1)D2. Thus, we
proceed as,

NU1 + (N − 1)D2

= N
P∑
i=1

γir
K−P
i

[(
1 +

1

ri

)K−P

− 1

]

+
P∑
i=1

γir
K−P
i (N − 1) (129)

=

P∑
i=1

γir
K−P
i

[
N

(
1 +

1

ri

)K−P

−N +N − 1

]
(130)

=
P∑
i=1

γir
K−P
i

[
N

(
1 +

1

ri

)K−P

− 1

]
(131)

=
P∑
i=1

γir
K−P
i

[
N

(
1 +

1

ri

)−P (
1 +

1

ri

)K

− 1

]
(132)

=
P∑
i=1

γir
K−P
i

[(
1 +

1

ri

)K

− 1

]
(133)

= D1 (134)

where (133) follows because N(1+ 1
ri
)−P = 1, which comes

from [23, eqn. (62)]. ■

Lemma 7 The minimal required common randomness in the
proposed achievable scheme is,

H(S) =
PL

N − 1
(135)

Proof: In our proposed scheme, at each database, a new
common randomness symbol is employed only in two cases.
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The first case is when a new common randomness symbol is
added to a k-sum symbol that contains only desired message
symbols. In this case, the common randomness symbols are
equally distributed over the (N−1) databases and downloaded
from them. The second case is when a new common ran-
domness symbol is assigned to a k-sum symbol that does
not contain any desired message symbol. In this case, the
common randomness symbols are not downloaded. Therefore,
we count the total number of distinct common randomness
symbols as H(S) = U1 +D2. We note that L can be written
as 1

P (D1 − U1). Thus,

PL

N − 1
=

P
P (D1 − U1)

N − 1
(136)

=
D1 − U1

N − 1
(137)

=
NU1 + (N − 1)D2 − U1

N − 1
(138)

=
(N − 1)U1 + (N − 1)D2

N − 1
(139)

= U1 +D2 (140)
= H(S) (141)

where (138) comes from (134), i.e., D1 = NU1+(N−1)D2.
■

VI. MM-LSPIR: ARBITRARY MESSAGE LENGTHS

Since the message sizes in the PSI problem are given and
fixed, in particular, they are fixed to be 1 (as the incidence
vectors are composed 0s and 1s), we need to determine the
capacity of MM-SPIR with a given and fixed message size L.
We call this setting MM-LSPIR. The capacity of MM-LSPIR
is given in the next theorem.

Theorem 3 The MM-LSPIR capacity for N ≥ 2, K ≥ 2, and
P ≤ K, for an arbitrary message length L is given by,

CMM−LSPIR =


1, P = K

PL

⌈NPL
N−1 ⌉ , 1 ≤ P ≤ K−1, H(S) ≥

⌈
PL
N−1

⌉
0, otherwise

(142)

We give the converse of Theorem 3 in Section VI-A, the
achievability in Section VI-B, and map MM-LSPIR back to
PSI in Section VI-C.

A. MM-LSPIR: Converse Proof
From the converse proof of Theorem 2, using (21) and (91),

we have

RMM−LSPIR =
PL

DMM−LSPIR
≤ PL∑N

n=1 H(A
[P]
n )

≤ N − 1

N
= 1− 1

N
(143)

Note that, for an arbitrary finite fixed message length L,
the download cost DMM−LSPIR must be a positive integer.
Thus, we have,

DMM−LSPIR ≥
⌈
NPL

N − 1

⌉
(144)

and therefore, the converse result for a finite and fixed L, is

RMM−LSPIR =
PL

DMM−LSPIR
≤ PL⌈

NPL
N−1

⌉ (145)

Similarly, the entropy of common randomness must also be
a positive integer, as the common randomness symbols are
picked uniformly and independently from the same field as
the message symbols. Thus, with a careful look at going from
(109) to (110), we have,

H(S) ≥
⌈

PL

N − 1

⌉
(146)

Therefore, (145) and (146) constitute the converse for Theo-
rem 3.

B. MM-LSPIR: Achievability Proof

Following the converse results in (144) and (146), we
provide an achievable scheme for MM-SPIR with any arbi-
trary parameters K,N,P, L in this section. Starting with the
achievable scheme presented in [8, Section IV.B.1], we set the
value of lK to be 1 and build a corresponding SPIR achievable
scheme for the case of

⌈
K
P

⌉
, N, 1, PL. The value of K

P is
taken to ensure that the total number of message symbols in
the databases are the same for SPIR and MM-SPIR. If K

P is
not an integer, we choose

⌈
K
P

⌉
, in which case there exist some

redundant message symbols in SPIR. The remedy is to make
all these redundant message symbols dummy. In other words,
all these redundant message symbols are set to be 0, and thus
will not make any difference in the following process. Thus
far, the only remaining step is to change the message symbol
index such that the converted scheme is consistent with the
original MM-SPIR problem with message length L.

For clarity, we consider a simple MM-SPIR problem with
K = 4, N = 3, P = 2, L = 1. The first step is to build
an achievable scheme with K = 2, N = 3, P = 1, L = 2
according to [8, Section IV.B.1]. Assume that we are only
interested in the first message W1 = [W1,1,W1,2] but not the
second message W2 = [W2,1,W2,2] without loss of generality.
The concrete scheme is given next: The queries sent to the
databases are,

Q
[1]
1 = [h1 h2 h3 h4] (147)

Q
[1]
2 = [h1 + 1 h2 h3 h4] (148)

Q
[1]
3 = [h1 h2 + 1 h3 h4] (149)

where h1, h2, h3, h4 are all uniform bits in F2. The corre-
sponding answers received from all the database are,

A
[1]
1 = h1W1,1 + h2W1,2 + h3W2,1 + h4W2,2 + S (150)

A
[1]
2 = h1W1,1 + h2W1,2 + h3W2,1 + h4W2,2 +W1,1 + S

(151)

A
[1]
3 = h1W1,1 + h2W1,2 + h3W2,1 + h4W2,2 +W1,2 + S

(152)

After tuning the message symbol index to coincide with the
original MM-SPIR problem, again assuming that the desired
message indices are 1 and 2, the ultimate scheme for original
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MM-SPIR problem with K = 4, N = 3, P = 2, L = 1 is as
follows: The queries sent to the databases are,

Q
[1,2]
1 = [h1 h2 h3 h4] (153)

Q
[1,2]
2 = [h1 + 1 h2 h3 h4] (154)

Q
[1,2]
3 = [h1 h2 + 1 h3 h4] (155)

where h1, h2, h3, h4 are all uniform bits in F2. The corre-
sponding answers received from all the databases are,

A
[1,2]
1 = h1W1 + h2W2 + h3W3 + h4W4 + S (156)

A
[1,2]
2 = h1W1 + h2W2 + h3W3 + h4W4 +W1 + S (157)

A
[1,2]
3 = h1W1 + h2W2 + h3W3 + h4W4 +W2 + S (158)

In summary, we can always readily construct an MM-SPIR
scheme with parameters P,L on the basis of a single-message
SPIR scheme with parameters 1, PL such that the induced
download cost and the amount of common randomness for an
arbitrary fixed message length are both optimal. The optimal
values are exactly the ones given in (144) and (146).

C. Mapping MM-LSPIR Back to PSI

Finally, we map our MM-SPIR results back to the PSI
problem to obtain Theorem 1. Recall that, in the PSI problem,
by generating the sets P1 and P2 by i.i.d. drawing the elements
from the alphabet Palph, we obtain i.i.d. messages in the
corresponding MM-SPIR problem. Further, by choosing the
probability qi of choosing each element to be included in
the set Pi to be qi = 1

2 , for i = 1, 2, we obtain uniformly
distributed messages, with message size L = 1. Therefore,
the PSI problem is equivalent to an MM-LSPIR problem with
L = 1. Now, using Theorem 3 with L = 1, we obtain the
ultimate result of this paper in Theorem 1.

VII. CONCLUSION AND DISCUSSION

We investigated the PSI problem over a finite set SK
from an information-theoretic point of view. We showed that
the problem can be recast as an MM-SPIR problem with
a message size 1. This is under the assumption that the
sets (or their corresponding incidence vectors) can be stored
in replicated and non-colluding databases. Further, the set
elements are generated in an i.i.d. fashion with a probability
1
2 of adding any element to any of the sets.

To that end, we explored the information-theoretic capacity
of MM-SPIR as a stand-alone problem. We showed that joint
multi-message retrieval does not outperform the successive
application of single-message SPIR. This is unlike the case of
MM-PIR, where significant performance gains can be obtained
due to joint retrieval. We remark that SM-SPIR is a special
case of the problem studied in this paper by plugging P = 1.
For the converse proof, we extended the proof techniques of
[8] to the setting of multi-messages. In particular, the proof
of Lemma 5 is significantly more involved than the proof in
[8]. This is due to the fact that the desired message subsets
in the case of MM-SPIR may not be disjoint. To unify the
query structures of MM-PIR and MM-SPIR, we proposed a
new capacity-achieving scheme for any P as an alternative

to the successive usage of the scheme in [8]. Our scheme
primarily consists of three steps: Exploiting the achievable
scheme in [23], making necessary repetitions to symmetrize
the scheme, and adding the needed common randomness
properly. The last step is inspired by [15]. Based on these
results, we showed that the optimal download cost for PSI is
min

{⌈
P1N2

N2−1

⌉
,
⌈

P2N1

N1−1

⌉}
.

In the following subsections, we make a few remarks about
assumptions made in this paper, and directions for further
research.

A. Data Generation Model

In this work, we add elements to each set in an i.i.d. man-
ner and with probability 1

2 . This assumption is made for
two reasons, first, to have i.i.d. incidence vectors, therefore,
i.i.d. messages in the MM-SPIR problem, and second, to
have uniform messages to avoid the need for compressing
the messages W1:K before/within retrieval. However, this
assumption may be restrictive, as with this assumption, the
expected sizes of both sets are K

2 . Even with keeping the
i.i.d. generation assumption, the probability of adding each
element to set i could be generalized to be an arbitrary qi. In
this more general case, the expected sizes of the sets, Kq1
and Kq2, could be arbitrary. This may be done by using
appropriate compression before/during retrieval, but needs to
be studied further. Regarding the i.i.d. selection of elements,
while this assumption is not needed from the achievability
side, it is needed for the converse proof. To overcome these
restrictions, as future work, it may be worthwhile to investigate
the MM-SPIR problem with correlated messages.

B. Upload Cost Reduction

In this paper, we have focused on the download cost as
the sole performance metric. A more natural performance
metric is to consider the combined upload and download cost.
In this section, we provide an illustrative example, which
shows that the upload cost may be reduced without sacrificing
the download cost. Nevertheless, the characterization of the
optimal combined upload and download cost is an interesting
future direction that is outside the scope of this paper.

Example 5 Consider the SPIR problem with K = 3, N = 2,
P = 1, L = 1. The original SPIR scheme in [8] achieves the
optimal download cost of D = 2 bits, while the upload cost
is U = 6 bits. Inspired by [64], we show that the upload cost
can be reduced to just 4 bits without increasing the download
cost. Our new achievable scheme is as follows:

For any one of the two databases, there are four possible
answers A(q)

n , where n ∈ [2], q ∈ [4] and common randomness
S is a uniformly distributed bit:

A
(1)
1 = W1 +W2 +W3 + S, A

(1)
2 = W2 +W3 + S (159)

A
(2)
1 = W1 + S, A

(2)
2 = S (160)

A
(3)
1 = W2 + S, A

(3)
2 = W1 +W2 + S (161)

A
(4)
1 = W3 + S, A

(4)
2 = W1 +W3 + S (162)
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The corresponding queries for different desired messages
are generated according to the following distributions:

W1 : (Q
[1]
1 , Q

[1]
2 ) is uniform over {(1, 1), (2, 2), (3, 3), (4, 4)},

W2 : (Q
[2]
1 , Q

[2]
2 ) is uniform over {(1, 4), (2, 3), (3, 2), (4, 1)},

W3 : (Q
[3]
1 , Q

[3]
2 ) is uniform over {(1, 3), (2, 4), (3, 1), (4, 2)}.

The reliability constraint follows from the fact for every
query pair, the user can cancel the interfering messages and
the common randomness S from the other database. For
the database-privacy constraint, we note that the undesired
messages are always mixed with S. Hence, the information
leakage from undesired messages is zero. For the user-privacy
constraint, we have

P (Q[k]
n = q) = P (Q[k′]

n = q), ∀k, k′ ∈ [3],∀n ∈ [2],∀q ∈ [4]
(163)

i.e., from the point of view of any database, the same set of
queries is used for any desired message Wi, where i = 1, 2, 3
with the same probability distribution.

For the proposed scheme, the required download cost is
D = 2 bits and the required upload cost is U = 4 bits, which
outperforms the one in [8] in terms of upload cost.

C. Communication Model

We note that our optimality result is restricted to the
presented communication scenario, where a sender submits
queries to a receiver in one round. An interesting future
direction is to investigate whether there is a more efficient
communication scheme or whether there can be an impossibil-
ity result that can assert that no other communication scheme
can outperform our presented scheme.

D. Single Database Assumption

Our scheme is infeasible for N1 = N2 = 1 due to the
capacity result for MM-SPIR. It would be interesting to see if
MM-SPIR can be made feasible with certain modifications to
the problem, e.g., side information, or alternatively, if PSI can
be transformed into other problems, in the case of a single-
server. The recent work in [65] can be a possible direction.
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