A TENSOR DECOMPOSITION METHOD FOR UNSUPERVISED FEATURE LEARNING ON
SATELLITE IMAGERY

ABSTRACT

We introduce a tensor factorization approach to unsupervised
feature learning of hyper-spectral imagery, and demonstrate
its effectiveness on land type classification of publicly avail-
able datasets. We use sampled patches from hyper-spectral
images to construct a tensor and then factorize it. A dictio-
nary capturing spectral and spatial characteristics of the im-
age is then constructed using the factorization. The final fea-
ture space is then obtained by finding coefficients of all image
patches on the dictionary. The results show that this approach
can produce state of the art accuracy, compared to other meth-
ods for feature learning in the classification task.

Index Terms— Tensor decomposition, feature learning,
hyperspectral imagery

1. INTRODUCTION

Hyper-spectral images, i.e. images with a high density of
samples in the electromagnetic spectram, are powerful de-
vices in identifying ground objects according to their unique
spectral signature. These images are used in a veriety of appli-
cations including environmental sciences [1] and land-cover
mapping. But as their spectral dimension is in the range of
hundreds, a feature learning step is needed to process them.
To this end, many algorithms have been proposed which on
a high level can be classified as supervised and unsupervised
feature learning methods. In the supervised approach, known
samples are required for devising features that can then dis-
tinguish the classes. However given that hand-labling gyper-
spectral data is a laborous task; we will focus on Unsuper-
vised Feature Learning (UFL) methods, as they don’t require
prior knowledge of the structures present in images or training
data. In the unsupervised approach only the raw data is given
to the algorithm and from that alone the algorithm extracts
features representative of the data. The UFL approaches in-
clude PCA based approaches such as [2],[3], various discrim-
inant analysis based approaches such as [4], manifold learn-
ing based approaches such as [5], [6] and auto encoder based
approaches such as [7],[8]. Existing approaches use local op-
timization methods which can get stuck in local minima. In
this paper we introduce a tensor decmposition framework for
formulating feature learning of hyper-spectral imagery.

Tensor decomposition methods have been employed out-
side the scope of satellite image processing. Frequently, the
use of tensor representations focuses on de-noising and com-
pression, rather than feature learning for unsupervised classi-
fication (i.e., clustering). [9] used non-negative tensor decom-
position for dimensionality reduction of images, and demon-
strated its use for unsupervised face recognition. [10] the ten-
sor decomposition method for obtaining image descriptors.
[11] introduces the TenSR Framework for sparse representa-
tion of multidimensional signals, based on Tucker factoriza-
tion, which has the added degree of freedom of a “core” tensor
transforming the components.

1.0.0.1. Our contribution

In this paper we propose a novel tensor decomposition
based formulation for the task of UFL. To the best of our
knowledge, this is the first tensor-decomposition formula-
tion of unsupervised feature learning for satellite imagery
classification (explain the tensor PCA). Inspired by the dic-
tionary learning approach in this setting [12], we use an
overcomplete factorization in which we encourage sparsity
with respect to the patch representations. This has been used
previously in the context of Tucker decompositions [13] but
not, to our knowledge, in the context of decompositions into
linear combinations of rank-1 tensors (“CP decomposition”).
We compare the performance of our method with a state-of-
the-art method using a 3d auto-encoder [8], and show that our
new method achieves competetive performance.

2. PRELIMINARIES AND NOTATION

Here we introduce our notation for tensors and their decom-
position. Tensors or multi-way arrays are functions of three
or more indices (i, j,k,...). They are the generalization of
the concept of matrices. One difference between tensors and
matrices is in their decomposition. Matrix decomposition
doesn’t produce unique results unless it has strict constraints
such as orthogonality, but tensor decomposition is unique un-
der mild constraints. [14] provides a thorough review of ten-
sors and their decomposition.

We use the following notation. The size of a matrix with
n rows and m columns is denoted by (n,m), and A(:,m) is



the mth column of A. Vectorization of a matrix along the
columns is the process of concatenating all its columns into a
long vector, and similarly for row vectorization.

Here we work with three-way tensors, and (/, J, K) is the
size of the tensor 7' along each dimension. The Canonical
Polyadic Decomposition (CPD) of T" with ¢ components ex-
tracts from it three matrices with sizes (I,¢), (J,¢), (K, c),
each of which are the concatenation of ¢ rank-1 vectors of

appropriate size, as shown in Figure 1.
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Fig. 1. Canonical Polyadic Decomposition with ¢ compo-
nents.

3. TENSOR DECOMPOSITION FEATURE
LEARNING

We now describe our new method for learning features using
tensor decomposition. An overview is shown in Figure 2.
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Fig. 2. Flowchart summary of the proposed method.

1) Create tensor: The input to the algorithm is a set of ran-
domly sampled hyper-spectral patches (with uniform distri-
bution), where the size of these patches is a user-defined pa-
rameter. We define the variables p as size of the dimension of
each patch, b as the number of spectral bands, and s as total
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Fig. 3. The process of building a tensor out of randomly
sampled multi-spectral patches. Colors represent the differ-
ent spectral bands. Patches of each band are flattened and
concatenated into a tensor.

number of the patches. Each band of the patch is vectorized
to get vectors of size p?. (We flatten the patch as we do not
wish to factorize the spatial dimensions—we would like to be
able to capture arbitrary intensity patterns in a patch with our
filters.) Then a matrix of size (p?, s) is created by concatenat-
ing all the vectors as rows of the matrix. The tensor is then
constructed by adding each band as the third index. These
processes are shown in Figure 3.

2) Factorize tensor: We now have a (p?, s,b) tensor. To in-
terpret the results of a tensor factorization with ¢ components,
consider the element (i, j, :), which is the vectorization of all
spectral bands of the ith pixel in the jth sampled patch. The
following equation holds between the original tensor and its
factorization, where 7" is the original tensor and 7}, T} and
T are the factors along each original dimension:

T(,7,:) ZT (i, 0)Ts(7,0)Tu(:, €)

From the above equation, we can see that the elements
of Ty (:, ¢) can be interpreted as a decomposition of the origi-
nal spectrum of bands (in T) into ¢ indices for each spectrum
(can be thought of as learning spectral indices present in the
image). With this insight, we perform non-negative CPD fac-



torization on this tensor with ¢ factors and minimizing the /;-
norm along all dimensions. This style of decomposition with
sparse factors was considered previously for Tucker decom-
positions by [13]. We note that although the CPD is unique
for the mimimum number of components ¢, in general we use
anon-minimal value of c. We use the sparsity-encouraging l; -
minimization constraint since we want to encourage the dif-
ferent classes to be represented by distinct spectral indices,
and the sparsity constraint discourages the construction of
common patterns that can be used across classes. In particu-
lar, when we extract features using these patterns, the decom-
positions into patterns will be unique if they are sufficiently
sparse, in spite of the possible overcompleteness with respect
to this dimension.

3) Compute new features: After the CPD factorization, we
take the ¢ components along the band dimension (b) as spec-
tral indices. Now we define a system of equations that takes
a new image patch and decomposes it. We define a (pb, c)
dictionary using the tensor decomposition. Take C; to be the
ith factor of T;,. We construct p? patterns from this one factor,
according to the following formula:

Cij=CiTp(j,1) j=1,...,p°

Now we have p? texture patterns, corresponding the
neighboring pixel’s spectral indices. With this procedure
we obtain p2 vectors each of size b, whic we then concate-
nate into a p?b dimension column vector. Concatenating all
these column vectors in a matrice, gives us a (p2b, c)-size
dictionary. Denote this dictionary by D.

Given a new hyper-spectral patch, we vectorize the patch
and concatenate these vectors to form a new p2b vector Vj,
analogous to our transformation of our filters earlier. Now we
have the system of constraints:

Dx=V, st. >0

where z is a ¢ by 1 column vector. This is a linear program,
which can be solved by standard methods. In particular, if
the solution is sufficiently sparse, it is known that it is unique
[15]. Solving this system gives the decomposition of the new
hyper-spectral patch over the texture patterns. We drop all but
the top n entries of x to obtain the values of our n new features
for the patch. (We preserve the ordering of the remaining n
values.) This n is a user-defined parameter.

The extended feature space as described above is then
used in a standard classification method. In particular, in
our experiments, we considered using the SVM (with 10-fold
cross-validation) for supervised classification.

4. EXPERIMENTS

To Verify the method, three publicly available hyperspectral
datasets were used and compared against a state of the art
method ([8]), which uses 3d convolutional auto encoders for

feature learning. The Indian pines data set acquired by the
AVIRIS sensor is a 145 by 145 image of 224 bands. The cor-
rected version with 220 bands was used. The Salinas valley
dataset. The Pavia University data set. The patch size was
set to 10, 65 components were extracted from the tensor and
50 used in dictionary. 4000 randomly sampled patches were
used to construct the tensor and the classification was done
with SVM and 10-fold cross-validation. 10 percent of data
was used as training and the rest for testing. (MATLAB’s
implementation of SVM was used). In addition to normal ex-
periment settings, were features learned from the image are
used for testing we also use the other exeriment setting were
a dictionary from one image is used on the other and compare
it with reference. (in order to match the spectral signature of
different datasets, only the common bands were used and the
rest were discarded).

4.1. Results

Tables show the result of TD versus the 3D convolutional
auto-encoder method on the datasets. Tables 1 to 4 are driven
from regular experiment settings on Indian pines, Pavia uni-
versity, Pavia center and Salinas datasets. Table 5 to 8 show
the results of cross dictionary usage in testing for datasets.

| Class [3DCAE| TD |
1] 90.48 69.04
2| 9249 94.66
3] 9037 92.42
41| 86.90 83.72
5] 9425 95.45
6 || 97.07 99.09
7] 9126 69.23
8 97.79 98.38
9 7591 94.44
10 ]| 87.34 86.80
11 ][ 90.24 96.30
121 9576 88.68
13 9749 100
14 ][ 96.03 98.68
15[ 9048 100
16 || 98.82 80.95
AA(%) || 92.04 | 92.09+-1.58
OA(%) || 9235 [ 96.39+-0.41

Table 1. Overall and average accuracy and class accuracies
of one run and mean var for Indian pines.

The results show that the tensor decomposition meth-
ods provides more accurate results, in separating classes of
forest and agriculture and overall accuracy. A note on the
method’s performance should be made. when comparing
the class-wise accuracies of the indian pines we can see that
although the overall and average accuracies of the proposed



Class || 3DCAE TD
1 ]| 100.00 99.83
2] 9929 99.91
3 9713 100
41 9791 99.04
51 9826 99.17
6 || 99.98 99.61
7] 99.64 99.38
8 [ 91.58 94.05
9 | 99.28 99.96
10 || 96.65 98.75
11 9774 99.69
12 [ 98.84 99.94
13 9926 99.51
14 [ 9749 98.35
15 ]| 87.85 84.44
16 || 9834 99.38
AA(%) || 9745 ] 99.14+-0.24
OA(%) || 95.81 [ 98.47+-0.49

Table 2. Overall and average accuracy and class accuracies
of one run for Salinas.

| Class [3DCAE| TD |
1] 9521 98.33
2 || 96.06 99.98
3] 9132 85.18
4] 98.28 95.63
51 9555 99.42
6 [ 9530 99.60
7] 95.14 92.26
8 || 91.38 93.27
9 [ 99.96 93.38
AA(%) || 9536 | 95.95+-0.50
OA(%) || 9539 | 97.93+-0.23

Table 3. Overall and average accuracy and class accuracies
of one run for PaviaU.

[ Class [| Ind on Sal Sal on Ind
AA(%) || 63.26+-3.19 | 97.30+-0.11
OA(%) || 71.77+-0.80 | 95.01+-0.10

Table 4. Overall and average accuracy and class accuracies
of one run for Indian pines trained on Salinas and vice versa.

| Class || SCAE-Hyperion | TD \
AA(%) 96.56+-0.51 93.47+-0.21
OA(%) 95.84+-0.94 96.51+-0.22

Table 5. Overall and average accuracy and class accuracies
of one run for Pavia U trained on Pavia compared with Refs
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(3]

(4]

(5]

methods is higher than the 3DAE, in two classes its accuracy
is significantly lower. This can be explained by the number
of pixels belonging to these two classes campared to other
ones. As in this method, one large tensor is formed for ex-
tracting the dictionary from all the classes simoltanously,
smaller classes whose comprising portions can’t be described
well from elements of larger classes will suffer performance
wise. This need not be the case for any small class as we
see that class number 9 (Oats) also has fewer pixels but the
proposed method has a high accuracy for that class indicating
that it’s spectral-spatial signature can be reasonably recon-
structed from the larger classes. A future direction to remedy
this problem could be constructing seperate tensors for dif-
ferent classes, which would then take this method from an
unsupervised feature learning to a supervised one.

5. CONCLUSION AND DISCUSSION

We proposed a novel tensor decomposition method for unsu-
pervised feature learning. We compared our method against a
state of the art method for UFL on publicly available datasets,
where it was shown that it achieved competetive accuracy.
The drawback of the method is that if the dataset contains
classes that have few datapoints but vary widely in terms of
their spectral and spatial signatures, their class accuracy could
be low while the overall and average accuracies remain com-
petetive or even higher than the other method. One way to
remedy this would be to construct seperate tensors for var-
ious classes, which would be a supervised feature learning
approach.
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