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ABSTRACT

We introduce a tensor factorization approach to unsupervised

feature learning of hyper-spectral imagery, and demonstrate

its effectiveness on land type classification of publicly avail-

able datasets. We use sampled patches from hyper-spectral

images to construct a tensor and then factorize it. A dictio-

nary capturing spectral and spatial characteristics of the im-

age is then constructed using the factorization. The final fea-

ture space is then obtained by finding coefficients of all image

patches on the dictionary. The results show that this approach

can produce state of the art accuracy, compared to other meth-

ods for feature learning in the classification task.

Index Terms— Tensor decomposition, feature learning,

hyperspectral imagery

1. INTRODUCTION

Hyper-spectral images, i.e. images with a high density of

samples in the electromagnetic spectram, are powerful de-

vices in identifying ground objects according to their unique

spectral signature. These images are used in a veriety of appli-

cations including environmental sciences [1] and land-cover

mapping. But as their spectral dimension is in the range of

hundreds, a feature learning step is needed to process them.

To this end, many algorithms have been proposed which on

a high level can be classified as supervised and unsupervised

feature learning methods. In the supervised approach, known

samples are required for devising features that can then dis-

tinguish the classes. However given that hand-labling gyper-

spectral data is a laborous task; we will focus on Unsuper-

vised Feature Learning (UFL) methods, as they don’t require

prior knowledge of the structures present in images or training

data. In the unsupervised approach only the raw data is given

to the algorithm and from that alone the algorithm extracts

features representative of the data. The UFL approaches in-

clude PCA based approaches such as [2],[3], various discrim-

inant analysis based approaches such as [4], manifold learn-

ing based approaches such as [5], [6] and auto encoder based

approaches such as [7],[8]. Existing approaches use local op-

timization methods which can get stuck in local minima. In

this paper we introduce a tensor decmposition framework for

formulating feature learning of hyper-spectral imagery.

Tensor decomposition methods have been employed out-

side the scope of satellite image processing. Frequently, the

use of tensor representations focuses on de-noising and com-

pression, rather than feature learning for unsupervised classi-

fication (i.e., clustering). [9] used non-negative tensor decom-

position for dimensionality reduction of images, and demon-

strated its use for unsupervised face recognition. [10] the ten-

sor decomposition method for obtaining image descriptors.

[11] introduces the TenSR Framework for sparse representa-

tion of multidimensional signals, based on Tucker factoriza-

tion, which has the added degree of freedom of a “core” tensor

transforming the components.

1.0.0.1. Our contribution

In this paper we propose a novel tensor decomposition

based formulation for the task of UFL. To the best of our

knowledge, this is the first tensor-decomposition formula-

tion of unsupervised feature learning for satellite imagery

classification (explain the tensor PCA). Inspired by the dic-

tionary learning approach in this setting [12], we use an

overcomplete factorization in which we encourage sparsity

with respect to the patch representations. This has been used

previously in the context of Tucker decompositions [13] but

not, to our knowledge, in the context of decompositions into

linear combinations of rank-1 tensors (“CP decomposition”).

We compare the performance of our method with a state-of-

the-art method using a 3d auto-encoder [8], and show that our

new method achieves competetive performance.

2. PRELIMINARIES AND NOTATION

Here we introduce our notation for tensors and their decom-

position. Tensors or multi-way arrays are functions of three

or more indices (i, j, k, . . .). They are the generalization of

the concept of matrices. One difference between tensors and

matrices is in their decomposition. Matrix decomposition

doesn’t produce unique results unless it has strict constraints

such as orthogonality, but tensor decomposition is unique un-

der mild constraints. [14] provides a thorough review of ten-

sors and their decomposition.

We use the following notation. The size of a matrix with

n rows and m columns is denoted by (n,m), and A(:,m) is





torization on this tensor with c factors and minimizing the l1-

norm along all dimensions. This style of decomposition with

sparse factors was considered previously for Tucker decom-

positions by [13]. We note that although the CPD is unique

for the mimimum number of components c, in general we use

a non-minimal value of c. We use the sparsity-encouraging l1-

minimization constraint since we want to encourage the dif-

ferent classes to be represented by distinct spectral indices,

and the sparsity constraint discourages the construction of

common patterns that can be used across classes. In particu-

lar, when we extract features using these patterns, the decom-

positions into patterns will be unique if they are sufficiently

sparse, in spite of the possible overcompleteness with respect

to this dimension.

3) Compute new features: After the CPD factorization, we

take the c components along the band dimension (b) as spec-

tral indices. Now we define a system of equations that takes

a new image patch and decomposes it. We define a (p2b, c)
dictionary using the tensor decomposition. Take Ci to be the

ith factor of Tb. We construct p2 patterns from this one factor,

according to the following formula:

Ci,j = CiTp(j, i) j = 1, . . . , p2

Now we have p2 texture patterns, corresponding the

neighboring pixel’s spectral indices. With this procedure

we obtain p2 vectors each of size b, whic we then concate-

nate into a p2b dimension column vector. Concatenating all

these column vectors in a matrice, gives us a (p2b, c)-size

dictionary. Denote this dictionary by D.

Given a new hyper-spectral patch, we vectorize the patch

and concatenate these vectors to form a new p2b vector Vb,

analogous to our transformation of our filters earlier. Now we

have the system of constraints:

Dx = Vb s.t. x ≥ 0

where x is a c by 1 column vector. This is a linear program,

which can be solved by standard methods. In particular, if

the solution is sufficiently sparse, it is known that it is unique

[15]. Solving this system gives the decomposition of the new

hyper-spectral patch over the texture patterns. We drop all but

the top n entries of x to obtain the values of our n new features

for the patch. (We preserve the ordering of the remaining n

values.) This n is a user-defined parameter.

The extended feature space as described above is then

used in a standard classification method. In particular, in

our experiments, we considered using the SVM (with 10-fold

cross-validation) for supervised classification.

4. EXPERIMENTS

To Verify the method, three publicly available hyperspectral

datasets were used and compared against a state of the art

method ([8]), which uses 3d convolutional auto encoders for

feature learning. The Indian pines data set acquired by the

AVIRIS sensor is a 145 by 145 image of 224 bands. The cor-

rected version with 220 bands was used. The Salinas valley

dataset. The Pavia University data set. The patch size was

set to 10, 65 components were extracted from the tensor and

50 used in dictionary. 4000 randomly sampled patches were

used to construct the tensor and the classification was done

with SVM and 10-fold cross-validation. 10 percent of data

was used as training and the rest for testing. (MATLAB’s

implementation of SVM was used). In addition to normal ex-

periment settings, were features learned from the image are

used for testing we also use the other exeriment setting were

a dictionary from one image is used on the other and compare

it with reference. (in order to match the spectral signature of

different datasets, only the common bands were used and the

rest were discarded).

4.1. Results

Tables show the result of TD versus the 3D convolutional

auto-encoder method on the datasets. Tables 1 to 4 are driven

from regular experiment settings on Indian pines, Pavia uni-

versity, Pavia center and Salinas datasets. Table 5 to 8 show

the results of cross dictionary usage in testing for datasets.

Class 3DCAE TD

1 90.48 69.04

2 92.49 94.66

3 90.37 92.42

4 86.90 83.72

5 94.25 95.45

6 97.07 99.09

7 91.26 69.23

8 97.79 98.38

9 75.91 94.44

10 87.34 86.80

11 90.24 96.30

12 95.76 88.68

13 97.49 100

14 96.03 98.68

15 90.48 100

16 98.82 80.95

AA(%) 92.04 92.09+-1.58

OA(%) 92.35 96.39+-0.41

Table 1. Overall and average accuracy and class accuracies

of one run and mean var for Indian pines.

The results show that the tensor decomposition meth-

ods provides more accurate results, in separating classes of

forest and agriculture and overall accuracy. A note on the

method’s performance should be made. when comparing

the class-wise accuracies of the indian pines we can see that

although the overall and average accuracies of the proposed



Class 3DCAE TD

1 100.00 99.83

2 99.29 99.91

3 97.13 100

4 97.91 99.04

5 98.26 99.17

6 99.98 99.61

7 99.64 99.38

8 91.58 94.05

9 99.28 99.96

10 96.65 98.75

11 97.74 99.69

12 98.84 99.94

13 99.26 99.51

14 97.49 98.35

15 87.85 84.44

16 98.34 99.38

AA(%) 97.45 99.14+-0.24

OA(%) 95.81 98.47+-0.49

Table 2. Overall and average accuracy and class accuracies

of one run for Salinas.

Class 3DCAE TD

1 95.21 98.33

2 96.06 99.98

3 91.32 85.18

4 98.28 95.63

5 95.55 99.42

6 95.30 99.60

7 95.14 92.26

8 91.38 93.27

9 99.96 93.38

AA(%) 95.36 95.95+-0.50

OA(%) 95.39 97.93+-0.23

Table 3. Overall and average accuracy and class accuracies

of one run for PaviaU.

Class Ind on Sal Sal on Ind

AA(%) 63.26+-3.19 97.30+-0.11

OA(%) 71.77+-0.80 95.01+-0.10

Table 4. Overall and average accuracy and class accuracies

of one run for Indian pines trained on Salinas and vice versa.

Class SCAE-Hyperion TD

AA(%) 96.56+-0.51 93.47+-0.21

OA(%) 95.84+-0.94 96.51+-0.22

Table 5. Overall and average accuracy and class accuracies

of one run for Pavia U trained on Pavia compared with Refs

methods is higher than the 3DAE, in two classes its accuracy

is significantly lower. This can be explained by the number

of pixels belonging to these two classes campared to other

ones. As in this method, one large tensor is formed for ex-

tracting the dictionary from all the classes simoltanously,

smaller classes whose comprising portions can’t be described

well from elements of larger classes will suffer performance

wise. This need not be the case for any small class as we

see that class number 9 (Oats) also has fewer pixels but the

proposed method has a high accuracy for that class indicating

that it’s spectral-spatial signature can be reasonably recon-

structed from the larger classes. A future direction to remedy

this problem could be constructing seperate tensors for dif-

ferent classes, which would then take this method from an

unsupervised feature learning to a supervised one.

5. CONCLUSION AND DISCUSSION

We proposed a novel tensor decomposition method for unsu-

pervised feature learning. We compared our method against a

state of the art method for UFL on publicly available datasets,

where it was shown that it achieved competetive accuracy.

The drawback of the method is that if the dataset contains

classes that have few datapoints but vary widely in terms of

their spectral and spatial signatures, their class accuracy could

be low while the overall and average accuracies remain com-

petetive or even higher than the other method. One way to

remedy this would be to construct seperate tensors for var-

ious classes, which would be a supervised feature learning

approach.
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