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Abstract
Arterial stiffness is an important biomarker formany cardiovascular diseases. Shear wave elastography
is a recent technique aimed at estimating local arterial stiffness using guidedwave inversion (GWI), i.e.
matching the computed andmeasuredwave dispersion. This paper develops and validates a newGWI
approach by synthesizing various recent observations and algorithms: (a) refinements to signal
processing to obtainmore accurate experimental dispersion curves; (b) an efficient forwardmodel to
compute theoretical dispersion curves for immersed, incompressible cylindrical waveguides; (c) an
optimization framework based on the recent observation that themeasured dispersion curve is
multimodal, i.e. itmatches for not one but two different wavemodes in two different frequency
ranges. The resulting inversion approach is validated using extensive experimental data from rubber
tube phantoms, not only formodulus estimation but also to simultaneously estimatemodulus and
wall thickness. The observations indicate that themodulus estimates are best performedwith the
information onwall thickness. The approach, which takes less than half aminute to run, is shown to
be accurate, with themodulus estimatedwith less than 4% error for 70%of the experiments.

Introduction

Arterial stiffness is a well-known biomarker of early cardiovascular diseases (Sun 2015, Palombo and
Kozakova 2016, Chirinos et al 2019). The pulsewave velocity (PWV) is a widely used biomarker for arterial
stiffness (Laurent et al 2006, Vlachopoulos et al 2010,McGarry et al 2016, Chirinos et al 2019, Segers et al 2020).
The PWV is currentlymeasured by evaluating the time delay between the pressure waveformsmeasured using
tonometry at the carotid and femoral arteries and using an estimated travel distance (Kullo andMalik 2007).
However, given the approximate and average nature of the resulting PWVestimation, there is a concerted effort
to estimate localized arterial stiffness, e.g. that of the carotid artery. This has been done usingmeasurements of
vessel distensionwith high frame rate ultrasound imaging (Luo et al 2009, Vappou et al 2010, Luo et al 2012,
Marais et al 2019, Parameswaran et al 2019).

Shear wave elastography (SWE) of the arterial stiffness using acoustic radiation force (ARF) has shown to be a
promising tool to estimate the stiffness of carotid artery (Couade et al 2010, Bernal et al 2011, Pruijssen et al
2020). Themain idea of arterial SWE is to use ARF excitation to generate waves propagatingwithin the arterial
walls, and use the characteristics of the propagating waves to estimate the arterial stiffness.

Themain approach to estimate arterial stiffness from themeasured response is through inversion, i.e.
iteratively changing the properties of amodel tominimize the difference between simulated andmeasured
dispersion curves that represent the variation of phase velocity as a function of frequency. These curves reflect
how the time domainwaveformdistorts as it propagates along the artery. Themeasured dispersion curve is
obtained fromprocessing thewallmotion data acquired using high frame rate ultrasound imaging. The

RECEIVED

15December 2020

REVISED

3May 2021

ACCEPTED FOR PUBLICATION

14May 2021

PUBLISHED

31May 2021

© 2021 Institute of Physics and Engineering inMedicine



simulated dispersion curve is obtained through a forwardmodel, i.e. analytical or computationalmodel that can
predict thewave dispersion given the arterialmaterial and geometric properties.

Various forwardmodels have been developed to computewave dispersion in arteries. Earlymodels were
focused on the simplification of geometric complexities leading to analytical solutions, with latermodels focused
on both analytical and computational techniques. Some of the existing analyticalmodels include, plate (Couade
et al 2010, Bernal et al 2011, Nguyen et al 2011, Jang et al 2015,Widman et al 2015, 2016,Maksuti et al 2016, Li
et al 2017a), hollow tube (Zhang et al 2005, Flamini et al 2015), and fluid-filled tube (Flamini et al 2015, Lin et al
2015). Amore detailed three-dimensional finite elementmodel is utilized inDutta et al (2015). In Astaneh et al
(2017) andRoy andGuddati (2021), a waveguidemodel based on semi-analytical finite element (SAFE)methods
was developed to capture the fully three-dimensional wave propagation in afluid-filled immersed tube, but with
a significantly reduced computational cost without sacrificing accuracy. Through a validation exercise in
Astaneh et al (2017), we found that the experimental dispersion curvematches notwith a single simulated curve,
butmultiple curves depending on the frequency range. The goal of this paper is to build on this observation and
develop and validate inversion approaches to estimate the arterialmodulus.

Most of the existingwork focused on estimating the shearmodulus to characterize the arterial stiffness
(Couade et al 2010, Bernal et al 2011,Nguyen et al 2011,Widman et al 2015, 2016,Maksuti et al 2016, Li et al
2017a). However, it is known that thickness also significantly contributes towards artery stiffness estimation
(Dutta et al 2015, Astaneh et al 2017,Maksuti et al 2017). Because it is small, the thickness, which is often
measured using ultrasoundB-mode images,may not always be accurate. Thus, if possible, it would be desirable
to estimate the thickness in addition tomodulus, from thewave dispersion properties. Exploring this possibility
is a secondary goal of the current study.

The outline of the paper is as follows. After summarizing the basic idea of SWE for arteries, we describe the
data acquisition and processing to obtain the experimental dispersion curve, which includes a summary of
recent signal processing refinements.We then focus on the forwardmodel to compute the simulated dispersion
curves. In the following section, we discuss the necessary details related to inversion, i.e. parameterization,
objective function, and optimization algorithms. The validation study is then presented followed by concluding
remarks.

SWEof arteries

Given that arterial wallmodulus ismuch higher than the surrounding tissue, a high frequency pulse from the
ARF generates waves that are guided along the arterial wall. The dispersion characteristics of the guidedwaves
are used to estimate the arterialmodulus and thus the stiffness (Couade et al 2010, Bernal et al 2011). The
schematic of themethodology for phantom experiments is shown infigure 1. The procedure involves twomajor
steps:

(1) Data acquisition and signal processing: The shear waves are generated inside the tube and the resulting wave
propagation response ismeasured on the top surface along the axis of the tube as shown infigure 1(a). The
recorded spatiotemporal response (figure 1(b)) is transformed into the frequency–wavenumber ( f–k)
domain through a two-dimensional fast Fourier transformation (2DFFT), as shown infigure 1(c). The
peaks in the f–k data are identified and plotted as a dispersion curve, i.e. plot of phase velocity c f k2p( )/

versus f (figure 1(d)).

(2) Inversion through optimization: The last major step is to back-calculate the properties of the tube through
matching themeasured dispersion curvewith the simulated dispersion curve by iteratively changing the
properties of the tube (figure 1(e)). The simulated dispersion curves are calculated using an analytical or
computational forwardmodel (figure 1(f)). The back-calculation (inversion) is performed through
optimization, i.e.minimizing the difference between themeasured and simulated dispersion curves.

Data acquisition and signal processing

Experimental setup
SWE experiments usingARFwere performed on ten arterymimicking urethane rubber tubes (VytaFlex 10,
Smooth-On, Inc.,Macungie, PA). The tubes weremade in a custom-mademold that could accommodate three
tubes for a given batch of the rubber. To obtain ten tubes, four different batches weremade as two tubeswere
damaged in removal from themold. The tubes are filledwith and submerged inwater, to simulate blood and
surrounding tissue respectively. The inner radius of the tubes is 3mmand thewall thickness is 1mm.The
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schematic of theARF experimental setup is shown infigure 2. In these experiments a Verasonics V1 system
(Verasonics, Inc., Kirkland,WA)was used equippedwith a linear array transducer (L7-4, PhilipsHealthcare,
Andover,MA). The 128 element transducer has elements with 0.283mmwidth, 0.025mmkerf, 7mmheight,
and an elevation focus near 25mm.AnARF push is applied at the x=10mm location infigure 2(a), and the
verticalmotion of thewall ismeasured at the top of the tube along the axis, from x=10 to 40mm.A 400μs
toneburst at 4.09MHzwas used. The push beamused 64 elements of an ultrasound transducer andwas focused
at 20mm (F-number=1, where F-number is the ratio of the focal depth to the aperture width). Planewave
imagingwith 5MHz pulses was used at a pulse repetition period of 80μs for a pulse repetition frequency of
12.5 kHz. The particle velocity of thewall was estimated from the acquired in-phase/quadrature (IQ) data using
an autocorrelationmethod (Kasai et al 1985). To average the inhomogeneity associatedwith fabrication, a total
of six configurations are tested (by performing 60° rotations around the axis). The response is obtained for
10 separate ARF excitations for each of the six configurations, leading to 60 data sets for each tube.

To facilitate the validation of the proposed inversion procedure, thematerial for each tubewas tested
mechanically, with of hyper-frequency viscoelastic spectroscopy (HadjHenni et al 2011) (Rheospectris C500+,
Rheolution, Inc.,Montreal, Quebec, Canada), resulting in the storage, Gs(ω), and loss, Gl(ω), moduli for each of
the tubes. Themoduli weremeasured from10 to 2000Hz in 10Hz increments. For each batch of rubber, three
cylindrical samples for testingwere createdwhenmaking the tubes. Themean of 3 or 4 acquisitions for each
samplewere calculated for validation. These results are shown in figure 3, whichwill be utilized later in the
validation section.

Figure 1. (a)Data acquisition, (b) data processing, (c) frequency–wavenumber plot, (d)measured dispersion curve, (e)matching of
measured and simulated dispersion curves to back-calculatematerial and geometric properties, (f) forwardmodel.

Figure 2. Schematic of experimental setup formeasuringwallmotion. (a) shows the longitudinal view of the tube andARF transducer,
while (b) shows the cross-section of the tube and the six angles used for ARF excitation and acquisition.
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Data processing
Data processing is performed on thewallmotion datafirst in the spatial-temporal domain. The standard
approach is to isolate the right propagating wave as shown infigure 4. In the proposed approach, we consider
only the dominating part of the right propagating region as shown infigure 5. Specifically, we added a few
windowing boundaries to obtain the dispersion curves that are important for inversion. Thefirst windowing
boundary, whichwe call the lower-cut, sets the lower limit on the phase velocity. The second boundary is called
the upper cut, as it sets the upper limit on the phase velocity. These lower and upper cuts partially remove the
high frequency noise, especially farther from the load at early times, as well as addresses the low signal-to-noise
ratio at later times. Finally, the signal is truncated after amaximum time (T-max) to avoid any reflections from
the edges of the tube.We consider the resulting trapezoidal region after applying a gradual Gaussianwindowing
outside these boundaries. The smooth change in the signal amplitude to zero eliminates the spuriousGibbs
ringing in the f–k domain. To this end, aGaussian smoothing function of the following form is used
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Figure 3.Material properties fromRheospectris experiments.

Figure 4. Standard approach for data processing: (a) is the actualmeasured data in space–time, which is curtailed on the left to focus
on the right propagatingwaves (b).
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In the above, the parameter controls the smoothing rate. The parameters xmax and tmax are themaximum
values of x and t in the data, and are utilized essentially as normalization constants. The values of x̄ and t̄ are
determined based on the slopes of the upper and lower cuts and are given by

x st x t
x x

s
, , 2shift

shift¯ ¯ ( )

where s is the slope of the cuts. The xshift is the shift value along the x direction as shown infigure 4. The resulting
filter is shown infigure 5(a).

The data processing parameters that describe thewindowing are chosen based on the observed phase
velocity ranges from the phantom experiments.We observe the phase velocity ranges between 4 and 10 m s−1,
therefore we choose the lower-cut slope as 3 m s−1 and upper cut slope as 15 m s−1. Both lower and upper cuts
are originated from the starting point in the space–time domain. For the truncation time (T-max), we examine
the timewhen the response is sufficiently attenuated, andwell before any boundary reflections are observed.We
also confirmed that perturbation of the signal processing parameters hasminimal effect on the dispersion curves
(results are not presented for brevity). The remaining steps for either the standard ormodified approach are the
following: (a) applying the 2DFFT to transfer the space–time data into thewavenumber–frequency domain and
(b) picking the peak values to obtain the phase velocity dispersionwith phase velocity c f k2p plotted
against frequency f .

Figure 6 illustrates the effect of data processing on the dispersion curve, where the experimental dispersion
curves are comparedwith the expected dispersion curves from themodel that will be described below, using the
material parameters fromRheospectrismeasurements (shown infigure 3). Figure 6 compares experimental
dispersion curves fromboth regular andmodified data processing approaches. Clearly, the data processing
modifications bring the experimental dispersion curvesmuch closer to the expected dispersion curves. This
improvement in the dispersion curves leads to significant change in the inverted parameters, as discussed in the
Validation section.

While other, non-Fourier,methodsmay bemore effective in separatingmultiplemodes with higher fidelity
(Tran et al 2014, Kijanka et al 2018, Kijanka andUrban 2021a, 2021b), we emphasize that the current objective is
to obtain themost dominantmode in a particular frequency range. The proposed approach is sufficient to this
end and alternativemethods are not considered at this time; theymay be explored in the future, e.g. if the
inversion is performed tomatchmultiplemodes at the same frequency.

Estimation ofmodulus and thickness

Forwardmodel
To obtain the simulated dispersion curves, the rubber tube ismodeled as a cylindrical prismmade up of an
incompressible elasticmaterial, submerged in an inviscid and incompressible fluid. The idealization of
incompressibility is adopted for both the arterial wall and the surrounding fluid because the pressure wave
velocity is two orders ofmagnitude larger than the shear wave velocity; explicit inclusion of compressibility does

Figure 5.Proposed approach for data processing: in addition to the standard approach in the previous figure, additional windowing is
applied to ensure that the dispersion curves are best capturedwithin the range of expected phase velocity. The upper cut sets the upper
limit to the phase velocity, the lower-cut sets a lower limit, while curtailing in time ensures that the reflections from the boundary does
not pollute the dispersion curves.
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not change the resultsmuch and can lead to unnecessary numerical complications. Further, the tube is assumed
to be infinite in length because the experimental data is truncated before any reflections from the tube ends are
recorded. Such an assumption facilitates the use of a SAFE formulation, where the discretization is performed in
the radial direction, while the analytical expansion is utilized in the axial and azimuthal directions (the reader is
referred to Rose 2014 for detailed explanation andNelson et al 1971, Kausel and Peek 1982,Datta et al 1988 for
some early work on this topic). The schematic of the geometry is shown in figure 7(a), and the summary of the
formulation is presented in the remainder of the section.

The tube deformation is governed by the elastodynamic equation

d

dt
L

u
0, in , 3T

S S

2

2
( )

where, S is the solid domain,σ is the stress,u is the displacement, and S is the density of the solid. The
operator Lσ is a differential operator representing the symmetric gradient; the details can be found inAstaneh
et al (2017).

Given the incompressible and inviscid nature, the Laplace equation governs the response of the fluid

p 0 in , 4F
2 ( )

where F is thefluid domain that encompasses the interior and exteriorfluid, p is thefluid pressure, and F is
thefluid density.

The interface conditions at the solid-fluid interface FS that couples the solid surfaces with both inside and
outside fluid regions are

pn n 0, on , 5s F FS· ( )

Figure 6.Comparison between simulated andmeasured dispersion curves with standard processing (a) and refined processing (b). In
the two highlighted frequency ranges, the processing refinements result in a bettermatch betweenmeasured and simulated dispersion
curves.

Figure 7.Geometry of the immersed tube (a), and finite element discretization in the radial direction (b). Fourier expansion is used in
the axial (x3) and azimuthal (x2) directions.
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Here,ns andnF are the unit vectors in the solid andfluid domain respectively, which are in opposite directions.
By following the formulation inAstaneh et al (2017), noting that the geometry andmaterial properties are
invariant in the horizontal and azimuthal directions, we consider the SAFE formulation inwhich the radial
direction is discretized withfinite elements while analytical expansion is employed for the remaining directions.
Specifically, wewrite the solution in terms of wavemodes that are harmonic in time, axial direction, z, and
azimuthal direction, θ. Linear finite element discretization is utilized in the radial direction as shown in
figure 7(b). Putting these ideas together, given the symmetry of the load and thus the response about the r–z
plane, the solid displacement andfluid pressures can bewritten as

r z t r u n k e n

r z t r u n k e n

r z t r u n k e n

u N

u N

u N
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whereNS andNF are thefinite element shape functions along the radial direction for the solid and fluid domain
respectively, n is the index of the azimuthal harmonic, kz is thewavenumber along the axial direction, f2
is the temporal frequency, and i 1 . Substituting (7) and (8) in governing equations (3) and (4), and
interface conditions (5) and (6), results in an eigenvalue problem
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where is the normalization factor to improve the conditioning of the system. The solid domain contribution
matrices, K K M, , ,S S S

2 0 thefluid domain contributionmatrices, K K, ,F F
2 0 and thefluid-structure interaction

matrix, CSF are defined inAstaneh et al (2017); they depend on the geometry (inner radius and thickness) and
thematerial properties (densities and shearmodulus). The quadratic eigenvalue problem is solved for each
frequency , to result in thewavenumber k ,z resulting in the dispersion relationship. The dispersion curves can
either be plotted in kz space, or a plot of phase velocity (c kp z) versus cyclic frequency ( f 2 ).
Consistent with the convention followed in experimental data processing (figure 5), we follow the latter
approach.

The intricacies of the forwardmodeling include (a) treating incompressibility related linearfinite element
locking through selective reduced integration (Hughes 2000), (b) simulating the unbounded exterior with
perfectlymatched discrete layers (Savadatti andGuddati 2010), and (c)normalization to improve the
conditioning in the limit of incompressibility (Roy andGuddati 2021). Further details can be found inRoy and
Guddati (2021), where the results from the forwardmodel are comparedwith the reference solution obtained
through convergence analysis (the reference solution is obtained using discretizationwith highly accuratefive-
nodedfinite elements (Astaneh et al 2017).

Beforemoving on to inversion, we emphasize that the forwardmodel captures fully three-dimensional wave
propagation in the artery. The simulation is simplifiedmainly due to the simplicity of the tube geometry,
allowing the use of SAFE formulation to reduce the computational effort significantly, thus enabling us to use the
existing in-house code (Vaziri Astaneh andGuddati 2017)with theminormodifications for the incompressible
waveguides and then the off-the-shelf iterative optimization algorithms to estimate thematerial properties,
which is described in the next section.

Inversion through optimization
Ourmain goal is to estimate the shearmodulus of the artery given the radius andwall thickness. Looking ahead
to in vivo application ofmethodology, we observe that thewall thickness, which is obtained fromB-mode
images,may not be accuratelymeasured (because the thickness is just a few pixels wide). Given this, we add to
our objective the case of simultaneous estimation of shearmodulus andwall thickness for known radius of the
tube. It is expected fromwave physics that the phase velocity will be influenced by both the shearmodulus and
thickness,making this a plausible goal (we also confirmed that thickness is an influential parameter through
sensitivity analysis presented later). Further, at this stage, we assume that the time/frequency dependence of
viscoelasticity of thewall is known, and only the scalarmeasure of the shearmodulus is not known. Specifically,
we express viscoelastic (complex-valued) shearmodulus G ( ) as

G G iG G G , 10s l 0( ) ( ) ( ) ( ) ( )
where Gs and Gl are the (real-valued) storage and lossmoduli, respectively. Complex-valued F ( ) captures the
frequency dependence of G ,( ) while G0 captures the overallmagnitude.Without loss of generality, we assume
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G G 20 ,0 ∣ ( )∣ because 20 is thefirst frequency point in Rheospectris data (note that this is
arbitrary). In our inversion framework, we assume that G0 is the unknown to be determined, while F ( ) is
assumed to be known (obtained from the Rheospectrismeasurements). Inverting for frequency dependency is
indeed of interest, but beyond the scope of the current study. Thus, the parameters for our inversion is thewall
thickness (h) and the single shearmodulus parameter (G0).

The thickness andmodulus are estimated byminimizing the difference between the experimentally
measured dispersion curves and theoretical dispersion curves computed from themodel. Note that there exists a
singlemeasured dispersion curve, which is obtained froma single peak in the f–k plot for each frequency
(obtainingmultiple peaks is not practical due to the low signal-to-noise ratio, especially for in vivo data). As
highlighted inAstaneh et al (2017), thismeasured dispersion curve does not coincide with a single-mode of the
simulated dispersion curve, butmatches with differentmodes for different frequency ranges. Specifically, as
discussed inAstaneh et al (2017) and highlighted infigure 6, themeasured dispersion curvematcheswith
flexuralmode 2, F(2, 1), for 300–500Hz, while itmatcheswith flexuralmode 1, F(1, 1), for 900–1200Hz
frequency range.Here, we follow thework ofGazis (1959a, 1959b) for themode numbers notation. In addition,
we confirmed thismatch by comparingwith the theoretical dispersion curves of otherwavemodes that lie in the
vicinity (see figure 8; note thatmodeswith significant evanescence arefiltered at low frequencies). As seen in the
figure, the L(0, 1)mode asymptoticallymerges with the F(1, 1) in the higher frequency range; it is possible that
thismodemay contribute significantly to themeasured dispersion curve for some geometries,material
properties and frequency ranges. However, our focus is on frequencies below 1000Hz, and given that the
measured dispersion curvemore closelymatches with F(2, 1) and F(1, 1) in this range, we chose to invert by
matchingwith F(2, 1) and F(1, 1).

In the inversion analysis, we consider the 900–1000Hz frequency band for themode 1 due to the fact that we
will not have necessary data beyond 1000Hz for the in vivo case. Given this observation, we define the objective
function as the relative least-squares difference between the dispersion curves:

F
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q h G
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where, c s
1 and c s

2 are the simulated phase velocities corresponding to themodes 1 and 2, respectively, and cm is
the phase velocity from themeasured data. Consistent with the discussion above, f1=300, f2=500, f3=900,
and f4=1000Hz. These frequency rangesmay change depending on the geometry andmay need to be revisited
for in vivo experiments. Note that in the objective function, we consider the phase velocity dispersion instead of
the k ( ) dispersion. The reason is that the phase velocity is fairly constant in the considered frequency range
unlike the k ( ) dispersion case;matching k ( ) curves will give higher weights to higher frequency data which is
undesirable.

The inverse problem thus involves estimating the parameters G0 and h, given themeasured dispersion
curve, radius of the tube, and the viscoelastic time dependency F .( ) This can be performed, e.g. by formulating
in a robust PDE constrained optimization frameworkwith explicit formulation of gradient andHessian,

Figure 8.Comparison of the theoretical andmeasured dispersion curves for the viscoelastic tube.
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potential with adjoint operators. Such an approach is beneficial for a large parameter space and expensive
forwardmodels. However, given that we are inverting for just two parameters and have an extremely efficient
forwardmodel, we resort to the black-box optimization algorithms implemented inMATLAB, some of them
based onfinite difference gradients.

Inversionmodels
Tominimize the objective function in equation (11), we consider both local and global optimization
approaches.While the local optimization gives aminimizer, global optimization removes the possibilities of
obtaining a spurious localminimizer. In the local optimization framework, we consider (a) interior point
methodwith the BFGSHessian (Waltz et al 2006), (b)Nelder–Mead algorithm (Lagarias et al 1998), (c)
nonlinear optimizationmesh adaptive direct search (NOMADS) algorithm (Currie andWilson 2012). The
global optimization algorithms that we consider include (d) particle-swarm (Kennedy and Eberhart 1995). Note
that except theNelder–Mead algorithm, all other consideredmodels are constrained optimization and in these
cases, we impose box constraints, limiting each parameter to bewithin 30% of themean value. For all the
above-mentioned inversionmodels, we employ theMATLABoptimization toolbox except for theNOMADS
algorithm forwhichwe use the available function in Anon (n.d.).

Results and discussion

Parameter sensitivity
Before embarking on the actual inversion process, we perform formal sensitivity analysis to ensure that the
modulus and thickness are identifiable and influential.We perform the local sensitivity analysis by forming the
Fishermatrix (Smith 2013). The Fishermatrix is computed using thefinite differencemethodwith a step size of
10 .5 The parameters are scaledwith respect to theirmean values to avoid any potential numerical issues. The
rank of the resulting Fishermatrix is 2 and the condition number approximately 187, indicating that both
thickness h andmodulus parameterG0 are identifiable parameters. The global sensitivity study is performed
using the Saltelli Sobol analysis (Saltelli et al 2007)with 4500 randomly generated points within a 45%
rectangular range in the parameter space around themean value of each parameter h G, .0 The resulting first-
order Sobol indices are [0.66, 0.27] and the total Sobol indices are [0.63, 0.50], indicating sensitivity to both
parameters, with higher sensitivity to thickness.

Validation
Weperform validation of the proposed inversion procedure using the experimental data in two different ways:
(a) estimate themoduluswith known (directlymeasured) thickness, and (b) simultaneous inversion of the
thickness andmodulus. The results are comparedwith the actual values to assess the effectiveness of the
proposed technique. The results fromone-parameter (modulus) inversion are shown infigure 9(a), which
indicates that the proposed inversion approach results in high accuracy, irrespective of the optimization
technique used (the error is less than 4% for 70%of the cases). The computational cost is presented in
figure 9(b), which indicates that all the optimization algorithms converge fairly quickly. Because the interior
pointmethodwith the BFGSHessian is consistentlymore efficient, thismethod is advocated for inverting for the
tubemodulus. The number of function evaluations for the BFGSmethod is between 10 and 15. This, combined
with the efficiency of the forwardmodel, results in a highly efficient and practical inversion of themodulus, with
a runtime of around 20 s, for the BFGSmethod, on a standard desktop computer (Intel® Core(TM) i7-6700
CPU, 3.40 GHzwith 32.0GBRAMand 64 bit OS), as shown infigure 9(b). Here, we highlight that the inversion

Figure 9. (a)Error in the inverted shearmodulus parameter,G0; (b)CPU time formodulus inversion.
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analysis is carried out for all 60measurements for each tube simultaneously, i.e. weminimize the total error by
combining the difference between each of the 60measured dispersion curves with a single theoretical dispersion
curve. Thus, the result would be a single estimate of themodulus parameter.

The results from two-parameter inversion formodulus and thickness are shown infigure 10. As expected,
the results are not as accurate as those from single-parameter inversion. For only 40%of the cases, both
parameters have an error of less than 10%. Based on this, at this time, we advocate the use of single-parameter
inversion by relying on themeasured thickness, whichmay have some error for in vivo cases. The computational
cost for two-parameter inversion is shown infigure 11. Again, as expected, the convergence is not as fast as the
single-parameter inversion, but the number of function evaluations is still fairly small. The interior point
methodwith the BFGSHessian required 40–50 iterationswith a total computational cost of around aminute on
the same standard desktop computer.

Aswe observe for tube 2, both inversion analyses (modulus aswell asmodulus-thickness inversion), the
percent difference is quite high compared to the other tubes. This can be justified by looking at themeasured
dispersion curves for this tube as shown infigure 12(a). Recall that we apply the ARF individually at six angular
positions and repeat the acquisition ten times for each of the six angular positions. In the case of tube 2, we notice
good correlationwithin each set of ten acquisitions, but low correlation across the six angular cases. This
indicates the tubemay not be homogeneous due to imperfect fabrication. On the other hand, tube 5, which has
yielded lower error in the inversion analysis, has tight correlation across all acquisitions and angular cases as

Figure 10.Error in the inverted shearmodulus parameter,G0 (a) and thicknesses, h (b).

Figure 11.CPU time for combined inversion formodulus and thickness.
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presented infigure 12(b).With respect to the significantly high error for tube 2with theNelder–Mead algorithm
(inversion for bothmodulus and thickness), the solution seemed to have converged to a localminima far from
the solution as the underlying optimization framework does not allow any constraints. This is a reason, in
addition to computational cost, that we propose to use BFGS approach as themethod of choice.

Effect of data processing
Earlier in the paper, we illustrated that data processing details are critical to obtaining accurate dispersion curves.
However, dispersion curves are only of intermediate interest, with the final objective being themodulus
estimation. The natural question then is, what if the inversion is performedwithout the data processing
refinements?Weperformed this exercise and observed that standard data processing resulted in an average
modulus error of 22.4% compared to a significantly reduced error of 5%when the data processing refinements
are employed.

Effect ofmultimodal inversion
Another important question thatmay arise is: how important is it tomatchwith different simulated curves for
the two frequency ranges (multi-modal inversion)?What if the inversion is performed bymatchingwith a single,
fundamental dispersion curve for both frequency ranges (single-mode inversion)? For example, when applied to
tube 1, it turns out that single-mode inversion (with thefirstmode, n=1) results in higher errors in the
estimatedmodulus (10.6%) compared to that frommulti-modal inversion (0.6%), confirming the benefit of
multimodal inversion.

The proposed study is only a step towards estimation of arterial stiffness usingARF excitation. The issues
that require attention before applying it to in vivo data fromhuman arteries include: (a) automatic
determination of signal processing parameters (they are currently determinedmanually); (b) estimating the
frequency dependence directly fromARFmeasurements instead of using the information fromRheospectris
measurements; (c) validation studies for differing thicknesses (we validated themodel with single thickness of
1mmas dictated by themold and it would be useful to validate for other thicknesses); (d) optimizing the
experimental setup including the number of acquisitions (the number of acquisitions and orientations are
chosen arbitrarily in this paper, erring on the conservative side), (e) validation using ex vivo data, e.g. using
porcine aortas; and (f) examining the effect of surrounding tissues as well as physiologicalmotion. Further
research is underway in several of these directions andwill be reported in the future.

Conclusions

This paper presents a new SWE approach to estimate the arterial stiffness fromARFmeasurements. The
methodology is built on various refinements in different steps of SWE: (a) signal processing refinements through
simplewindowing informed by physical understanding, (b) efficient forwardmodel for incompressible
viscoelastic tubes, and (c) inversion bymatching themeasured dispersion curvewith not one, but two separate
dispersion curves (multimodal inversion). Through validation studies using extensive ARF experimental data,
we observed that the proposed inversion approach results in high accuracy in estimating the shearmodulus (less

Figure 12.Measured dispersion curves for tube-2 (a) and tube-5 (b).
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than 4% in 70%of the cases).We also observed that not using signal processing improvements ormultimodal
inversion degrades the accuracy of themodulus estimates. Finally, owing to the computational efficiency of the
underlying forwardmodel, the inversion procedure is highly efficient, taking less than 20 s on a regular
computer.

In addition to inverting for just shearmodulus, we also explored the possibility of simultaneous inversion of
both shearmodulus andwall thickness. The resulting accuracy is not as good as the accuracy of inverting for just
shearmodulus. Given this, at this time, we suggestmeasuring thewall thickness and then estimating the
modulus from the proposed inversion framework. For in vivo settings, the thicknessmeasured fromultrasound
imagesmay not be accurate, butwill be close to the actual value, with some level of known error variance based
on the transducer. Thus, themeasured thickness can be used as prior information in a simultaneous
probabilistic inversion for shearmodulus and thickness. On the other hand, the radius, which is not as small as
the thickness, can reliably bemeasured through ultrasound.Moreover, the dispersion curves are not as sensitive
to radius perturbations as to thickness perturbations (Astaneh et al 2017). To address imperfect thickness
measurements, fortunately, probabilistic inversion is feasible due to the efficiency of the forwardmodel; this is
the subject of ongoing research. In the current work, wefix the time/frequency dependency of themodulus and
estimated the overallmagnitude of themodulus. In reality, the complex viscoelasticmodulus (both the
amplitude and time dependency)needs to be estimated, which is also the subject of ongoing research. Finally,
our study assumes isotropic elasticity, which is valid for phantom experiments. For real arteries, further
beneficial enhancements would include: tissue anisotropy (Li et al 2017b, Shcherbakova et al 2017) and non-
prismatic geometry (Karageorgos et al 2020,Wang and Lee 2020); these are subjects of future research.
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