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Abstract. We study a full-knowledge pursuit-evasion problem where cooperating pursuers
attempt to capture a single evader of equal speed in a closed, bounded, two-dimensional arena whose
boundaries may be curved. By a famous result of Besicovitch, a point-sized lion (pursuer) can evade
a single point-sized man (evader) indefinitely. If the lion is endowed with a capture radius in the
form of an outstretched paw of length r, by a result of Alonso, Goldstein, and Reingold, the man
can evade the lion for time that is superlinear in the diameter of circular arena. We propose a
pursuit algorithm by which two pursuers can capture an evader in a simply connected arena in time
that is linear in the diameter of the arena, even when the capture radius is zero. This algorithm
is asymptotically optimal, highlights the performance gap between one pursuer and two pursuers
(even in a convex domain) and establishes that no more than two pursuers are needed for optimal
pursuit in simply-connected domains. Furthermore, we propose a pursuit algorithm by which three
pursuers are guaranteed to capture an evader in a general two-dimensional arena with A obstacles
in time that is proportional to hd (when the capture radius is zero). To the best of our knowledge,
this is the first algorithm that ensures guaranteed capture in an arbitrary two-dimensional domain
in continuous-time (the hardest case) and that yields the best time-capture bounds.
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1. Introduction. In the late 1930s, Richard Rado introduced the Lion and
Man problem, in which a lion and a man—each modeled as a single point—run about
an arena, modeled as a closed circular disk. The lion tries to capture the man by
occupying the same point, and the man tries not to be caught. Both players move
continuously with the same maximum speed, and can react instantaneously to each
other’s positions. For more than a decade, it was wrongly believed that the lion could
always catch the man in finite time by starting at the center and unfailingly staying
on the same radial segment as the man. In 1952, Abram S. Besicovitch discovered a
startling strategy by which the man can evade the lion forever, by running along a
piecewise linear path whose segments have successively shorter lengths that sum to
infinity. Although the lion can draw arbitrarily close to the man, the distance is never
reduced to zero [30, 9.

In this article, we consider a pursuit-evasion game in which several cooperating
pursuers attempt to capture an evader moving with equal speed in a bounded, two-
dimensional arena. The arena may contain arbitrarily shaped obstacles that players
must go around. The evader is captured when it comes within a distance r > 0 from
the nearest pursuer, called the capture radius. We suppose the players (evader and
pursuers) have full knowledge, meaning they know at all times the locations of all
the other players and can react instantaneously to them. Several questions naturally
arise. What pursuit strategies guarantee that the evader will be captured? How
many pursuers are needed? How quickly can the evader be captured? Can we obtain

*Stern School of Business, New York University and IBM Research. Email: zyzhou@stanford.edu.

fCorresponding author.

T Department of Electrical Engineering and Computer Sciences, University of California, Berkeley.

TDepartment of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-
Champaign.

§Kleiner Perkins.



(asymptotically) optimal bounds on the capture time?

The Lion and Man problem has sustained the interest of researchers for decades
[4, 14, 15, 18, 37]. Alonso, Goldstein, and Reingold [5] consider the problem for
a single lion in a circular arena of diameter d. To circumvent Besicovitch’s proof of
impossibility, they endow the lion with a capture radius in the form of an outstretched
paw of length r. They describe a strategy for the lion that guarantees the capture of
the man in O(d - log(d/r)) time, and a strategy for the man that evades capture for

Q (d . %) time. It is an open problem to narrow the gap between these two

bounds. Alexander, Bishop, and Ghrist [3] show that the simplest strategy, direct
pursuit (i.e., always moving towards the current position of the evader at maximum
speed), suffices eventually to capture a man in any bounded, simply connected arena
if r is positive. Moreover, their result generalizes to higher-dimensional domains, and
to many other topologies besides Euclidean domains. Kopparty and Ravishankar [28]
describe the precise initial conditions for which multiple lions can capture a man
in R™ or in an unbounded convex polyhedron. Alexander, Bishop, and Ghrist [4]
consider pursuit-evasion games in arbitrary convex and unbounded domains. The
above-mentioned works all assume that no obstacles reside in the domain. Bhadauria,
Klein, Isler, and Suri [8] consider the problem for polygonal arenas, not necessarily
convex, that may include polygonal obstacles. They show that three lions are sufficient
and sometimes necessary for a successful capture in such environments. We compare
in detail their work and ours in Section 1.1.

A rich literature studies pursuit-evasion games on discrete graphs, where players
move discretely from vertex to vertex [1, 2, 6, 19, 20, 21, 36, 35]. These papers
differ in how the players move, whether they know each others’ positions, and what
questions are studied. On the other hand, many pursuit-evasion games that are
continuous in time and space, including those we study in this article, can be modeled
as dynamical non-cooperative games [7, 10, 22, 26]. For example, Isaacs [26] finds
optimal strategies for both the pursuer and the evader in the homicidal chauffeur
game, in which a car with limited turning radius tries to run over a nimble pedestrian,
by solving a Hamilton-Jacobi-Isaacs (HJI) equation backward in time. Flynn [17] and
Lewin [29] employ HJI methods to solve the Lion and Man problem. More generally,
HJT methods have been employed to solve different types of differential games [25, 16].
However, only simple games with very simple geometries can be solved analytically.
[43] considered Voronoi-based pursuit strategies in simple convex domains (without
obstacles) and derived an analytical pursuit strategy that guarantees capture under a
single pursuer (with a positive radius). However, no capture time bound is given and
the pursuit strategy does not extend to simply connected domains (let alone domains
with obstacles). More complicated games such as capture-the-flag have been solved
numerically [24, 34]. HJI methods offer a powerful conceptual framework, but they
suffer from the curse of dimensionality; in practice, games with more than two players
cannot be solved numerically.

We mention that dynamical non-cooperative games [22, 10] also model a number
of other important and related problems, such as motion planning problems [23, 27,
39], reach-avoid problems [42, 11, 12, 13, 41] pursuit-evasion problems with a focus on
evasion strategies [33, 32, 31] and so on. Finally, there is also an extensive literature
in applying techniques developed in pursuit-evasion games to robotics: see [40] for an
articulate article and the references therein.



1.1. Our Contributions. The main purpose of this article is to describe pursuit
strategies that are asymptotically faster than previous strategies, and to establish
guaranteed capture times for these strategies. We have three main contributions.

First, for arenas that are simply connected, we give a pursuit strategy called
orthographic pursuit by which two pursuers can capture the evader in O(d) time,
where d is the intrinsic diameter of the arena: the length of the longest shortest path
connecting two points in the arena. More precisely, the intrinsic distance between
two points is the length of the shortest path connecting them that stays in the arena,
and the intrinsic diameter of an arena is the greatest intrinsic distance between two
points in the arena. This capture time is clearly asymptotically optimal, and is
guaranteed even if the capture radius is zero (recall that the evader can evade a
single pursuer indefinitely). Recall also that even in the presence of a positive capture
radius, Alonso et al. [5] gave a superlinear lower bound (in terms of the intrinsic
diameter of the domain) for capture by a single pursuer. Consequently, our results
in Section 3 highlight that two lions are asymptotically better than one; and to the
best of our knowledge, this is the first asymptotically optimal capture bound for two
pursuers in a simply connected domain. Furthermore, we also give explicit constants
in the capture time bound, as we believe subsequent improvements in these constants
can also be meaningful. In particular, for the important special cases of convex and
bounded simply connected domains, we obtain capture times proportional to the
domain diameter.

Second, we show that three pursuers are sufficient and sometimes necessary to
guarantee capture in a bounded but otherwise general arena (i.e., possibly with any
number of obstacles) by designing a novel three-pursuer cooperative pursuit strategy.
To put this guaranteed capture result in perspective, we note that the existing state-
of-the-art [8] gives a pursuit strategy and establishes that for polygonal arenas with
a finite number of polygonal obstacles, three pursuers are sufficient and sometimes
necessary for a successful capture!. This result leaves two important fronts open.
First, the proof of guaranteed capture by Bhadauria et al. [8] relies inherently on the
induction on the finite number of vertices of the polygons, which is not applicable
to general-shaped arenas. In particular, it is not clear whether applying the pursuit
strategy given by Bhadauria et al. would lead to guaranteed capture in general arenas.
Consequently, the assumption of a polygonal environment is not only a modeling
convenience, but also a crucial feature in establishing the theoretical guarantee. In
comparison, we lift the polygonal restriction and work with general arenas. Second
and perhaps more importantly, Bhadauria et al. adopt a discrete-time model where
each player takes turns to move. Specifically, Bhadauria et al. assume that “in each
move, a player can move to any position whose shortest path distance from its current
position is at most one.” One implication of this assumption is that this discretization
of time also discretizes the space: pursuers are now effectively equipped with a positive
radius of 1, which can be different from a radius of 0. (Our result handles the case
r = 0; recall Besicovitch’s result that an evader can evade a single pursuer forever
when the capture radius is zero.) More broadly, this discrete-time model is a special
case of our continuous-time model, where pursuers move continuously by selecting
instantaneous control inputs at all times (rather than just at discrete time points). In
particular, given any continuous-time pursuit strategy, a pursuer can easily convert
it into a discrete-time pursuit strategy (by simply integrating the continuous-time

IThe three-pursuer necessity proof of Bhadauria et al. [8] adapts a construction of Aigner and
Fromme [2] on graphs to two-dimensional Euclidean spaces.
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control over a unit time interval to obtain the final location and moving directly
to it), whereas it seems difficult to convert a discrete-time pursuit strategy into a
continuous-time strategy. As such, our result provides a meaningful generalization
of the result of Bhadauria et al. [8] and settles the open problem raised by Aigner
and Fromme [2]: how many pursuers are needed to guarantee capture in a general
bounded arena? Our necessity proof adapts a similar construction as in [2, 8], and is
included in the appendix for both completeness and the modeling differences.

Third, we analyze our proposed pursuit strategy for the general arena in detail and
characterize the capture time bound. Specifically, we show that three pursuers can
capture the evader in O(hd) time, where h (for “holes”) is the number of obstacles in
the arena. This capture time bound provides a substantial performance improvement
over the best comparable previous work [8] mentioned above, which gives a strategy
by which three pursuers in a polygonal arena are guaranteed to capture an evader
in O(vd?) time, where v is the number of vertices of the arena (obstacles included).
Note that in addition to the linear dependence on the intrinsic diameter, we have
h < v/3 for polygonal domains. We emphasize that for a polygonal representation
to approximate the general-shaped obstacles, a large number of vertices are required
in order to achieve a fine approximation, in which case h < v; in such cases, it
is particularly important for the capture time bound to depend on the number of
obstacles, rather than the number of vertices.

To highlight the connection between the orthographic pursuit strategy in simply
connected domains and the pursuit strategy in general domains, we note that part of
the sharp performance in O(hd) comes from utilizing the two-pursuer orthographic
pursuit as a subroutine during the final phase of the pursuit process, where the evader
has been trapped in an obstacle-free environment. Consequently, orthographic pursuit
is not only interesting on its own, but also has broader implications.

2. Problem Formulation. Our planar pursuit-evasion game takes place in a
bounded two-dimensional domain with a finite number of obstacles. Let Q C R? be
a closed, bounded, nonempty, simply connected ambient space. We use OS2 to denote
the boundary? of the ambient space Q. To rule out pathological structures such as
fractals, we restrict 92 to be of finite length and piecewise smooth with finitely many
pieces and finitely many inflection points. In the ambient space there are h pairwise
disjoint obstacles w; C € that satisfy all the same restrictions as € except that they
are open point sets, not closed. Their union is w = U?:l w;. Players move in a free
space Qgree = Q\ w, which is a closed, connected point set. The boundary of the
free space Qfree 1S 0Nfree = O U U?:1 Ow;: we emphasize that the boundary of the
free space includes both the boundary of the ambient space and the boundary of the
obstacles. Figure 1 depicts a representative game domain.

In this pursuit-evasion game, one or more pursuers chase a fleeing evader whose
goal is to evade capture for as long as possible. Following the standard terminology
and notation of control theory, all the players (a player is either a pursuer or an
evader) have simple motion dynamics, where the control input is the instantaneous
velocity. More specifically, let N be the total number of pursuers, and let pi(t) € R?
be the position of pursuer i (1 < i < N) at time ¢. Let e(t) € R? be the position of

2This is often colloquially called a wall in the literature.
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Fic. 1. A pursuit-evasion game domain. The free space is gray, and includes its boundary.
Obstacles appear in black.

the evader at . The equations of motion for all the players are:
é(t) = d(t), e(0) = ¢°,
pi(t) = wi(t), p'(0) =p™°, i=1,...N, (2.1)

where d(t) € R? and u;(t) € R? are the velocity control inputs of the evader and
pursuer ¢, respectively, and €2, p»? € ) are the initial evader and pursuer positions. We
assume all players have equal maximum speed and hence, without loss of generality,
we can normalize each player’s maximum to be 1. Consequently, all players’ control
inputs are constrained to lie within the set D C R?, where D is the unit disk.

d(t) € D, u;(t) € D,Vt > 0,Vi; D = {d : |2 < 1}. (2.2)

Further, the pursuers and the evader are restricted to the free space Qe and hence
the motions of the evader and pursuers, as described by equation (2.1), are also
constrained to lie within the region Qfee, i.€.,

€(t), pv(t) € eree; vt > 0. (23)

Any velocity input d(t) or u;(t) satisfying the constraint (2.2) and not causing a player
to leave Qe is called an admissible input for the player. For simplicity, we assume
that the control functions d(-) and u;(-) are piecewise continuous in time, a weak and
common assumption in the pursuit-evasion and robotics literatures®.

The evader is captured if a pursuer comes within a disk of radius r centered
on the evader; r is called the capture radius. Throughout the rest of this article,
unless otherwise specified the capture radius r is 0. This is the hardest case: recall
Besicovitch’s result that an evader can evade a single pursuer (with equal maximum
speed) forever when the capture radius is 0 in a bounded and circular arena. Finally,
at all times, we assume each pursuer knows the position and velocity of the evader
and can react instantaneously to it; we call this assumption full-knowledge pursuit.
Our goal is to provide the pursuers with a pursuit strategy that guarantees capture;
moreover, the worst-case capture time should be small. Intuitively, a (joint) pursuit
strategy is a contingency plan that specifies how each pursuer should move based on
the evader’s current state (including both the current position and current velocity)
as well as the game domain Qe = 2\ w. More formally, a joint pursuit strategy

3This assumption can be further relaxed without altering the results in the article. For instance,
we only need to require that d(-) and u;(-) are measurable functions that are also Lebesgue integrable.
However, doing so would overcomplicate the exposition and obscure the important ideas in the article.
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is a function F' that maps the evader’s current position e(t), current velocity d(t),
all pursuers’ current position p(¢) and the game domain e to the joint control of
all pursuers F(e(t),d(t),p(t), Quee). That is, F(e(t),d(t), p(t), Qree) represents the
current velocities of all the pursuers. Pursuer i’s control can then be conveniently
denoted by F;(e(t),d(t),p(t), Qree). Consequently, in describing a pursuit strategy,
we need only specify at each time ¢, prior to capturing the evader, what each pursuer’s
velocity is given the current configuration of the pursuit-evasion game.

If it seems strange that a pursuer can take into account the evader’s current
velocity to decide its own velocity, bear in mind that a pursuer has the challenging goal
of exact capture (i.e., 7 = 0); it must coincide exactly with the evader at some point
in time. If the pursuers cannot know the evader’s exact velocity, the evader can evade
capture forever through fractal random variations in its direction or speed of motion
(even if its velocity is constrained to be continuous). If the capture radius is strictly
positive (i.e., r > 0), our pursuit strategy can easily be modified to operate without
knowing the evader’s velocity, being a function only of all the players’ positions and
the domain. We omit the details.

For a pursuit strategy to be admissible, two requirements must be satisfied. 1)
The resulting instantaneous control F;(e(t),d(t),p(t), Qree) for each pursuer ¢ must
be admissible. 2) The resulting control trajectory Fj(e(-),d(:),p(+), Qree) for each
pursuer ¢ must be piecewise continuous.

For the rest of this article, we develop efficient pursuit strategies that ensure cap-
ture of the evader, regardless of how the evader moves, where efficiency is measured
in terms of the capture time. Of course, the number of pursuers and the number of
obstacles influence whether such a strategy exists, and if so, its capture time. Con-
sequently, to streamline the presentation of pursuit strategies and to obtain sharp
capture time bounds, we divide the exposition on pursuit strategies into two cate-
gories: 1) simply connected arenas (i.e., domains where no obstacles exist); 2) general
arenas with obstacles. This division of presentation is due to the differences between
these two categories. First, general arenas with obstacles require three pursuers to
guarantee capture while two pursuers are sufficient for capture in simply connected
domains. Second, the pursuit strategy for simply connected arenas is much simpler
than the strategy for general arenas. Third, the capture time bounds are different.

Despite these differences, an important building block shared by all the pursuit

strategies (for different classes of domains) in the article lies in defending some path.
We next introduce the notion of a defendable path.
Definition 1 A path s C Qe is defendable if there is a strategy by which a pursuer
can position himself on s in finite time, and thereafter move on s to guarantee that
he will coincide with the evader at any time the evader moves onto s. A pursuer that
is correctly positioned and following this strategy is said to be defending s.

Under this definition, once the pursuer is correctly positioned on the path s, the
evader cannot cross s without being captured: at the moment when the evader is
crossing s, the pursuer will coincide with the evader, at which point exact capture
occurs. It turns out that in any domain, every shortest path is defendable. However,
the strategies used to defend a shortest path, as an important building block of the
overall pursuit strategy, vary according to the category of the domain. In particular,
even though a shortest path can be defended in different ways, a particular defending
strategy will be chosen to synthesize a good pursuit strategy. We will discuss the
different pursuit strategies as well as the corresponding defending strategies in the
next two sections. We finish this section with a little more notation.
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Fi1c. 2. The orthographic pursuil strategy in a convex domain. Left: P projects the evader’s
velocity onto CD. In this ezample, the projected velocity on C'D has magnitude 1, so P> matches that
velocity. By contrast, the projected velocity on AB is zero, so P1 does not have a velocity component
parallel to AB. Instead, it moves at full speed orthogonally to AB, advancing AB toward E. Right:
An evader with a different velocity. Both Py and Ps project the evader’s wvelocity onto AB and
CD, respectively. Each matches the projected evader velocity (parallel to the line segment), and any
remaining speed (with mazimum speed 1) is used to advance the line segments toward the invader.

Definition 2 Let s(z,y) C Qee denote the shortest path in the free space between
two points x,y € Qee. The length of the path s(x,y), denoted d(x,y), is called the
intrinsic distance between x and y. The intrinsic diameter of Qpee s diam(Qpee) =
MaXe yeQy,,. AT, Y)-

Remark 1 We sometimes use subscripts to indicate the domain in which a path is
shortest, e.g., sq(x,y), or a path along which distance is measured, e.g., ds(z,y).

3. Two Pursuers in a Simply Connected Arena. In this section, we show
that two pursuers are sufficient to capture an evader in a simply connected arena.
(The simply connected topology implies that Q = Qfee.) We establish bounds for the
capture time that are asymptotically optimal. We do so by designing a joint pursuit
strategy we call orthographic pursuit. Our main result is that with orthographic
pursuit, two pursuers can capture an evader of equal speed in a simply connected
domain Q in time O(diam(Q?)), which is clearly asymptotically optimal. We divide
the presentation into two parts: one where the arena is convex, and another where no
assumption is made beyond simply connectedness. We do so for two reasons: first,
the exposition of orthographic pursuit is easier for convex arenas; second, the capture
time bound is smaller when the arena is convex.

We introduce some definitions that will be used throughout this section. The
x-length of a path s C Q is fs |dz|, where dzx is a measure of displacement along
the z-coordinate. In other words, if we subdivide s into a set of z-monotone paths,
the z-length of s is the sum of the horizontal widths of those paths. The z-distance
d,(v,w) between two points v,w € 2 is the minimum z-length among all paths
connecting v to w in . Define the y-length and the y-distance d, (v, w) analogously.
It is straightforward to show that the intrinsic shortest path between two points in
a simply connected domain also has the shortest x-length and the shortest y-length.
(This is not true of a domain with obstacles.)

3.1. A Convex Arena. We begin by explaining how to defend a line segment (a
particular type of shortest path). Defending a line segment is simple: the pursuer need
only stand at the point on the segment that is closest to the evader, and track that
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closest point as it moves along the segment. There are at least two different ways to
define “closest point”: we could use the Euclidean distance or the intrinsic distance.
In a convex domain, the Euclidean and intrinsic distances between two points are
always the same; but in a nonconvex domain, the intrinsic distance becomes more
interesting. We discuss it further in Section 3.2.

If we choose the closest point by Euclidean distance, then regardless of the type
of domain, the closest point is the orthogonal projection of the evader onto the line
if that projection lies on the line segment; or an endpoint of the segment otherwise.
Note that the closest-point operation onto a line segment is itself a projection (i.e.,
the projection of a projection is the same as the projection) called the Fuclidean
projection, which is not always the same as the orthogonal projection (unless the line
segment is a line). In any domain, a pursuer can defend the evader’s Euclidean closest
point on a line segment, because the projection of the evader’s velocity onto the line
has magnitude at most 1.

Figure 2 illustrates two pursuers P; and P, pursuing an evader E. P; is defending
a line segment AB by tracking the projection of E onto AB, and P, is defending a line
segment C'D (orthogonal to AB) by tracking the projection onto CD. P» achieves this
by projecting E’s velocity onto C'D and matching that velocity. In the example at left,
E’s velocity is parallel to C'D with magnitude 1, and so is P»’s velocity. Consequently,
E can never cross C'D without getting captured by Ps.

3.1.1. Orthographic Pursuit in a Convex Arena. Of course, just defending
CD does not suffice to capture F. If E always moves parallel to C D, then so does
P5, and hence P, can never capture E. In our orthographic pursuit strategy, a second
pursuer P; is defending a line segment AB orthogonal to CD. At any time, at least one
of the two pursuers can make progress toward capture by advancing its line segment
toward the invader. For example, in Figure 2, left, E’s velocity is orthogonal to AB,
so P; can move toward E at full speed. When it does so, the line segment AB is
not fixed in place; rather, it advances toward E. In other words, we are not defining
AB to be a fixed line segment (though its orientation is fixed); rather, at any point
in time, we define AB to be the line segment currently passing through P; with its
endpoints on the domain boundary.

A second example appears at right in Figure 2. In this example, E’s velocity
is parallel to neither AB nor CD. P, projects E’s velocity onto CD and matches
that velocity; then uses the leftover speed to advance C'D toward E, so the velocity
of P, has magnitude 1. P; does the same with AB. Consequently, P; and P, are
simultaneously defending AB and C'D and advancing the line segments toward FE.

Observe that P; can guarantee that E will never be able to cross AB and P, can
guarantee that £ will never be able to cross C'D. Moreover, at any given time, at
least one of the two line segments is advancing toward E. Hence FE is guaranteed to
be captured.

A special case arises when a pursuer lies on the domain boundary 02 and either
the evader’s orthogonal projection onto its line is outside the domain or the evader’s
motion would cause the pursuer to try to walk outside the domain. For example, in
Figure 3 the orthogonal projection of E onto the line through AB does not lie on AB,
and the Euclidean projection of E onto AB is the endpoint A. In this case, P; moves
along the boundary 0f2, thereby advancing the line while sufficing to ensure that E
will not be able to cross AB. Before E could cross AB, first E’s Euclidean projection
onto AB must coincide with the endpoint A, whereupon P; would resume coinciding
with E’s projection.



Fic. 3. A demonstration of the orthographic pursuil strategy in a convexr, simply connected
domain. P1 is at the boundary. In this case, the evader’s Euclidean projection onto the line through
AB is outside the domain, so P; moves along the boundary to guarantee that E will not be able to
cross AB without getling captured. P» is again moving according to the same strategy.

At the very beginning of pursuit, each pursuer is probably not defending a line
segment: the evader’s Euclidean projection onto the line segment may not coincide
with the initial position of the pursuer. Hence the pursuit strategy begins by letting
each pursuer sweep along its line segment until the pursuer coincides with the evader’s
Euclidean projection on the line segment. From that moment on, the pursuer defends
its line segment.

Algorithm 1 in Figure 4 specifies our orthographic pursuit strategy. We divide it
into two phases: in Phase I the pursuers move to start defending their line segments,
and in Phase II they defend their line segments while advancing them. As written, the
two pursuers enter Phase II simultaneously; but in practice, the two pursuers could
enter Phase I asynchronously, perhaps speeding up the capture.

Since Euclidean projection is a continuous operator and the boundary of the
domain is piecewise smooth, when the evader’s control is piecewise continuous, the
resulting control from orthographic pursuit for each pursuer is also piecewise smooth.
Consequently, orthographic pursuit is admissible.

3.1.2. Upper Bound on Capture Time. We show that if the domain is con-
vex, the worst-case capture time of the orthographic pursuit strategy is 4 - diam().
To proceed, let wy, be the width of the range of y-coordinates that the pursuer p; has
visited; that is, the largest y-coordinate p; has visited minus the smallest y-coordinate.
Symmetrically, let wo, be the width of the range of xz-coordinates that the pursuer
p2 has visited. Observe that w;, and wg, are initially zero, never decrease, and can
never exceed diam(§2).

Lemma 3 If () is convez, then at any time when p1 is moving along 9 in a direction
that is not precisely vertical or precisely horizontal, py is visiting y-coordinates it has
not previously visited, so w1y is increasing.

Proof Consider an instant in time when p; is moving along 9€). Suppose without loss
of generality that p; is moving up and to the right; i.e., both its x- and y-coordinates
are increasing. Let ¢ be the line through p; parallel to p;’s direction of motion; hence
t is tangent to a piece of 92 at p;. The fact that ¢ is not precisely vertical implies that
p1 cannot move straight up without leaving 2. Because €2 is convex, the interior of {2
lies entirely below t. The fact that p; is not moving precisely horizontally implies that
e has a greater y-coordinate than p;. The z-coordinate pi, is always monotonically
nondecreasing, and p; has never been above the line ¢, so p; is visiting y-coordinates
it has not previously visited. l



Algorithm 1 Orthographic Pursuit in a Convex, Simply Connected Domain

1: Choose an arbitrary coordinate system.

2: Phase I:

3: Direct p; to defend the vertical line (relative to the coordinate system) that passes
through p?; and direct py to defend the horizontal line that passes through p3.

4: Phase II:

5: Project evader’s velocity onto the vertical line and set p;’s vertical velocity to be
the same; i.e., p1y, = é,. Choose the horizontal velocity pi, so that ||p1]|2 = 1,
with the sign of p1, chosen so the vertical line moves toward the evader.

6: if p; € 90 and (p1, # e, or motion in direction p; immediately exits Q) then

7 Set py’s velocity p; to trace 92 with magnitude 1, with the direction chosen so

the vertical line moves toward the evader.

8: end if

9: Project evader’s velocity onto the horizontal line and set ps’s horizontal velocity
to be the same; i.e., pa, = é,. Choose the vertical velocity pa, so that ||pal2 =1,
with the sign of py, chosen so the horizontal line moves toward the evader.

10: if py € 90 and (pa, # e, or motion in direction po immediately exits 2) then

11:  Set po’s velocity ps to trace 02 with magnitude 1, with the direction chosen so
the horizontal line moves toward the evader.

12: end if

Fic. 4. Algorithm 1.

By symmetry, Lemma 3 applies also with p; and w;, replaced by ps and wa,.

Theorem 4 With the orthographic pursuit strategy, two pursuers capture an evader
of equal speed in a convexr domain Q) in time at most 4 - diam(Q).
Proof Let p) and p§ be the initial positions of p; and py, and consider the objective
¢ = d(p?,p1) + dy(p3,p2) + w1y + wo,. Initially, all four terms are zero, and so
is ¢. None of the four terms ever decreases. None of the four terms can ever exceed
diam(Q), so ¢ < 4 - diam(2).

When p; initially moves to defend its line, w, = 1; once p; reaches the closest-
point projection of e onto its line, it will stay at e’s projection thereafter. Likewise,
when po initially moves to defend its line, w9, = 1. Hence, ¢ > 1 throughout Phase I.

If one of the pursuers is moving along 9f) in a direction that is not precisely
vertical or precisely horizontal, suppose without loss of generality that pursuer is p;.
By Lemma 3, the rate of change of d,(p?,p1) + w1y is [P1z| + |P1y]| > 1, s0 ¢ > 1.

Otherwise, both pursuers are defending the evader’s projection onto their respec-
tive lines, and neither pursuer is moving diagonally along the boundary, so pi,, is track-
ing e, and pa, is tracking e,. It follows that the rate of change of d,(p, p1)+dy, (p3, p2)
is at least [pro| + [p2y| > P1, + 93, = 2 — 3, — P, = 2 — €2 — é2 > 1. In every case,
¢ > 1, so ¢ will reach 4 - diam(Q) in time at most 4 - diam(2). By that time (or
sooner), both d,(p},p1) and d,(p3, p2) have reached their maximum possible values,
so the evader is captured. B

3.2. A General Simply Connected Arena. In our pursuit algorithm for sim-
ply connected arenas, a pursuer defends a line segment not by tracking the evader’s
Euclidean closest point on the line segment, but rather by tracking the evader’s in-
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trinsic closest-point on the line segment.

Definition 5 Given a shortest path s C Q and an evader at a point e € Q, The
intrinsic closest point to e on s is the point € € s that minimizes the intrinsic distance
d(e,e).

If the domain is simply connected, then the intrinsic closest point to an evader
on a line segment moves continuously with speed at most 1, so again a pursuer can
defend the intrinsic closest point. However, in a domain with obstacles, the intrinsic
closest point to the evader can change discontinuously, so following the closest point
is not a valid strategy.

The intrinsic closest-point projection can be viewed as the right generalization of
the Euclidean projection for a general simply connected domain: in a convex domain,
whenever the evader’s FEuclidean projection onto a line segment lies inside the domain,
that projection is also the intrinsic closest-point projection. In a general simply con-
nected domain, tracking the evader’s intrinsic closest-point projection is sufficient to
defend a path, as formalized by the following lemma (whose proof is in the appendix).
Lemma 6 Let £ be a line segment included in a simply connected domain Q. A
pursuer tracking the evader’s intrinsic closest-point projection defends it.

3.2.1. Orthographic Pursuit in a Simply Connected Arena. Orthograph-
ic pursuit in a general simply connected arena is similar to orthographic pursuit in
a convex domain, with one important difference: a pursuer uses the intrinsic closest-
point projection rather than the Euclidean projection in choosing its velocity.

As before, one pursuer, p1, always tries to defend the vertical line segment that
passes through p; from one wall to another. The second pursuer, ps, always tries
to defend the horizontal line segment through ps. Both pursuers follow the evader’s
intrinsic closest-point projection onto their respective paths. They do not stick to
stationary paths; both pursuers try to advance the paths they are defending so the
evader becomes cornered.

At a fixed point in time, let ¢1 C Q be the longest vertical line segment through
p1 in Q. The top priority of p; is to move along ¢, until p; lies at the intrinsic closest-
point projection e; of the evader e onto ¢1, and then to stay on the projection as it
moves along ¢1. Subject to this priority, p; also tries to advance the line segment ¢,
so that it sweeps through the domain and forces the evader into a corner. The second
pursuer ps follows the same strategy, except that ps always defends a horizontal line.
Each pursuer always moves with a speed of 1, so any leftover speed not needed to
follow the evader’s projection is used to advance the line.

A key observation about this strategy in a simply connected domain is that once p;
has reached the evader’s projection on ¢1, the evader can never again cross ¢; without
being captured, even after the line p; is defending has advanced. Therefore, ¢; slices
Q into two portions, one of which the evader can never visit again. When possible, p;
moves to enlarge the latter portion and shrink the portion containing e. Sometimes
p1 advances its line to a “corner-turn” where the boundary 02 is not z-monotone
and the line ¢; suddenly lengthens, as illustrated in the third and fifth drawings in
Figure 5. At that moment, p; might no longer lie at the evader’s projection on the
newly lengthened ¢, and therefore ¢; is not properly defended until p; moves to the
new projection. Fortunately, the evader cannot cross the “old” portion of £1, so no
progress is lost. While p; is moving to the new projection e, ¢ may cross the new
portion of #1, but once p; reaches e; the evader must have chosen one side of ¢;, which
determines the direction in which p; will continue to advance its line.

Consider p;’s strategy when it is at e;. Let s C Q be the intrinsic shortest path
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FI1G. 5. One pursuer’s (p1) role in the orthographic pursuit strategy.

from e to £;. Then p; = e; = s N {1 is the intrinsic closest-point projection of e
onto ¢1. Because s is the shortest path, either s meets ¢; at a right angle or e; is an
endpoint of 1 (or both). In the former case, the most common action is that p; moves
vertically at the same speed as e;—call that speed pi,—and horizontally at a speed
P12, where p? +p§y = 1. However, if e is an endpoint of ¢1, then p; = e; € 91, and
a movement by p; that matches the y-velocity of e may exit the domain 2, in which
case we readjust p; to follow the boundary 99; then its velocity is tangent to (a piece
of) the boundary.

In the case where the path s does not meet ¢ at a right angle, again p; = e; € 910,
and again we move p; along the boundary 9f2. This occurs in the fourth drawing in
Figure 5 (and also sometime between the second and third drawings). Algorithm 2 in
Figure 6 provides a formal description of the pursuit strategy in the above discussion.

Here we do not divide the pursuit strategy into two phases as we did in Algo-
rithm 1, due to the nature of a nonconvex domain. Even after each pursuer has reached
a projection of e and started defending its line segment, e’s intrinsic closest-point pro-
jection can still suddenly jump because the line segment suddenly lengthens. (This
never occurs in a convex domain.) In that case, a pursuer has to retreat to “Phase I1,”
moving to a position where it can again start defending its line segment.

3.2.2. Capture Time Bound. Since intrinsic closest-point projection is a con-
tinuous operator, when the evader’s control is piecewise continuous, the control from
orthographic pursuit for each pursuer is also piecewise smooth. Consequently, or-
thographic pursuit in a general simply connected domain is an admissible pursuit
strategy.

Theorem 7 With the orthographic pursuit strateqy, two pursuers capture an evader
of equal speed in a simply connected domain Q in time at most (44 2+/2) - diam(2) =
6.828 - diam(€2).

Proof Let p{ be the initial position of p;. Let p; denote the position of pursuer
p1 at an arbitrary, current moment in time. Because p; defends a vertical path,
advances the path horizontally, and never allows the path to retreat to a prior position,
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Algorithm 2 Orthographic Pursuit in a Simply Connected Domain

1: Choose an arbitrary coordinate system.
2: Let £; be the vertical line segment defended by p; and let £5 be the horizontal line
segment defended by ps. Let e; and es be the intrinsic closest-point projections
of e onto ¢; and /5, respectively.
if e; does not coincide with p; then
p1 moves along ¢; with speed 1 toward e;.
else
If the shortest path from p; to e is a horizontal line segment, let pi1, = éy;
otherwise, let py, = 0.
7. Choose the horizontal velocity pi, so that ||p1]2 = 1, with the sign of p;, chosen
so the vertical line moves into the shortest path from p; to e.
8 if p; € 90 and (the shortest path from p; to e does not meet p; at a right
angle or motion in direction p; immediately exits ) then
9: Set p1’s velocity p; to trace 9 with magnitude 1, with the direction chosen
so the vertical line moves into the shortest path from p; to e.
10:  end if
11: end if
12: if e5 does not coincide with ps then
13:  po moves along fo with speed 1 toward es.
14: else
15:  If the shortest path from ps to e is a vertical line segment, let ps, = é,; other-
wise, let po, = 0.
16:  Choose the vertical velocity po, so that ||p2||2 = 1, with the sign of pa, chosen
so the horizontal line moves into the shortest path from py to e.
17: if py € 9N and (the shortest path from py to e does not meet py at a right
angle or motion in direction ps immediately exits Q) then
18: Set po’s velocity po to trace 92 with magnitude 1, with the direction chosen
so the horizontal line moves into the shortest path from ps to e.
19:  end if
20: end if

AN

Fic. 6. Algorithm 2.

the z-length of the path p; has trodden so far is the minimum possible, namely,
d.(p?,p1). However, this is not true of the y-length of p;’s path; in defending its
line, p; may have done quite a bit of backtracking along the y-axis to follow e’s
projection. Symmetrically, the path that p, traces always has a y-length of d,, (P9, p2),
the minimum y-length possible, but there is no such guarantee for its z-length.

No two points in Q can be separated by an z-distance greater than diam(2), nor
by a y-distance greater than diam(2). Therefore, if either d,(p,p1) or dy(p3, p2)
grows as great as diam(§2), the evader is captured.

Consider the objective function ¢ = d,(p?, p1) + dyy(p3, p2) — dy (e, p1) — du (e, p2).
Initially, the first two terms are zero and the last two terms have magnitude at most
diam(€2), so initially ¢ > —2-diam(2). The terms dy(e,p1) and d, (e, p2) are nonneg-
ative, so the evader is captured by the time ¢ reaches 2 - diam(Q).

The rate of change of d,(p?,p1) is the z-speed |p;.| of pursuer p;, and the rate of
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change of d, (p3, p2) is the y-speed [p,| of pursuer po. The rate of change of dy (e, p1)
is —|p1y| £ |éy], and the rate of change of dy (e, p2) is —|p2s| £ |é|. Therefore, the rate
of change of ¢ is ¢ = [pra| + [Pry| + [P2c| + [P2y| £ [é2] £ |éy] > 2= v/2, and the evader
is captured in time at most 4 - diam(Q)/(2 — v2) = (4 + 2v/2) - diam(2). B

4. Three Pursuers in a General Arena: A Divide-and-Conquer Pursuit
Strategy. In this section we propose a divide-and-conquer strategy for three pursuers
chasing an evader of equal speed in a domain Q... with obstacles. We start by de-
scribing a strategy for defending a shortest path in a general arena in Section 4.1
and some concepts related to game subdomains in Section 4.2. Both serve as impor-
tant building blocks in our pursuit strategy discussed in Section 4.3. We provide a
demonstration of the pursuit strategy in action in Section 4.4.

4.1. Defending a Shortest Path via Level-Set Projection. Unlike in the
previous section, neither a Fuclidean projection nor an intrinsic closest-point projec-
tion provides the correct vehicle to defend an arbitrary shortest path in a general
arena. Instead, we use a level-set projection.

Definition 8 Given a shortest path s C Qgee with two endpoints x, y and an evader
e € Qpee, the level-set projection of e onto s is the point € € s such that d(z,€) =
d(z,e), if such a point exists. No such point exists if d(x,y) < d(z,e), in which case
the level-set projection is defined to be y.

Remark 2 Level-set projection is closely related to the concept of level sets: Given a
point & € Qe and a real value o > 0, the a-level set of the distance function d(x,-) is
the set of all points whose shortest path to x has length a.. The level sets are piecewise
smooth curves. A pursuer p tracking an evader’s level-set projection tries to stay on
the same level set as the evader, subject to the constraint that p must stay on the path.

We then have following result. (The proof is in the appendix.)

Lemma 9 For any two points x,y € Qpee, let s(x,y) C Qee be a shortest path
connecting © and y. Then s(x,y) is defendable, and a pursuer tracking the evader’s
level-set projection defends it.

Remark 3 Consider two different points on a path that are different projections of the
same evader; for instance, one point might be the intrinsic closest-point projection,
and the other might be the level-set projection. Then all the points on the interval
between those projections are projections too. Therefore, a pursuer can switch from
shadowing one type of projection to another type at any time without allowing the
evader to cross s.

The following question will be useful in analyzing the capture time later: Given
an arbitrary shortest path s of length A, how long (in worst case) does it take for
a pursuer to start defending it? Our usual procedure is to first move to the path’s
midpoint (by length), taking time at most diam(ec), then move to the evader’s
projection e, taking time at most \/2. Typically this is fast, but we will see that
occasionally A is much longer than the diameter diam(Q¢ee). In the worst case, it is
hard to improve this time: the evader could wait at the midpoint until the pursuer
comes arbitrarily close, then run along the path. However, if a second pursuer is free,
the following interval trap takes time at most 2-diam(Q4.cc). Let a,b € s be the points
at a distance (measured along s) of diam(Qf.ee) from the initial projection € in each
direction, taking endpoints of s if they are closer. In time at most diam(Qgee), two
pursuers can move to a and b; then in time at most diam(Q4.e), they can move along
s until one of them meets e. That pursuer continues defending s, while the other
pursuer is free to leave.
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4.2. Game Subdomains. The high-level summary of the divide-and-conquer

strategy is as follows. Pursuers defend paths that subdivide the game domain into
subdomains. While two pursuers prevent the evader from escaping a subdomain, the
third pursuer subdivides it further, eventually freeing one of the first two pursuers to
do the same in turn. Consequently, a game subdomain is an important object that
runs through the design of the pursuit strategy.
Definition 10 A closed point set ¥ is a game subdomain of a game domain 2 =
Qtree Uw if U C Q and its boundary OV is a piecewise smooth Jordan curve of finite
length with OV C Qpee. A game subdomain inherits the obstacles ¢ = Uwa\Il w; and
the free space VUieo = ¥\ 9 C Qpree. -

A typical game subdomain is obtained by choosing a shortest path that connects
two distinct points on 0f, thereby dividing €2 into two or more pieces, each of which
may include some of the original obstacles. Each piece is a game subdomain of €,
and a domain in its own right. The pursuers defend subdomains of a particular
configuration, illustrated in Figure 7. Let Q = Qgee Uw be a game domain, and
let ¥ = Wgeo U be a game subdomain of 2. The subdomain W is of the triangle
configuration if there are three points a, b, and ¢ on O¥ that subdivide OV into three
paths s1, so, and w that are disjoint except at their endpoints, such that s; is a
shortest path from a to b in Weee, So is a shortest path from a to ¢ in Ve, and w
is a natural boundary path included in 9Qfee. (Some of these paths may have length
zero.) If the evader is in a game subdomain ¥ of the triangle configuration and two
pursuers are defending s; and s3, then by Lemma 9, s; and s are defendable, even if
they are not shortest paths in Qgee; it suffices that they are shortest paths in Ugee. (If
the evader could escape ¥, those paths might no longer be defendable.) It is possible
that b and ¢ are the same point, and there are two different shortest paths from that
point to a.

A path s touches an obstacle v; if the relative interior of s intersects dv;. (The
endpoints of s do not count.) A touching point is a point in the intersection. A path
w is a natural boundary path if w is a connected subset of Q... The intersection of a
path s with an obstacle can be one point, a path, or a union of paths and points. While
two pursuers defend the boundary of W, the third pursuer subdivides a subdomain
by choosing a shortest path within the subdomain and defending it. To ensure that
this shortest path is not identical to a path defended by the other two pursuers, we
modify the free space to remove points where a defended path touches an obstacle.
We thereby connect such obstacles to the infinite space outside V.

Definition 11 The blocked free space of a subdomain Ve whose boundary includes
the defended paths s1,s2 C OV is Wpiock = Pree \ (O N (51 U 52)).

In general, W0k is @ neither closed nor open point set. In Figure 7, Wy lacks
points that Vg, possesses where the obstacles touch s; and s3. The removal of these
points prevents any new shortest path from a to b from taking the same path as si.
(Obstacles outside ¥ do not affect Wpoek-)

4.3. A Divide-and-Conquer Pursuit Strategy. We now present our divide-
and-conquer pursuit strategy for three pursuers. The strategy repeatedly subdivides
a game subdomain of the triangle configuration so the evader is trapped in a smaller
game subdomain of the triangle configuration, each time reducing the number of ob-
stacles or increasing the number of obstacles touched by the defended paths. Suppose
p1 and po are defending s; and so, respectively. There are three cases.

1. The subdomain ¥ encloses no obstacle.
2. Either s; or s5 touches an obstacle in ¥, as in Figure 7.
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FiG. 7. The upper left drawing shows the original domain 2, where pursuer p1 is defending path
s1 and pursuer p2 is defending path s2. The upper right drawing shows the subdomain ¥ bounded
by s1, s2, and a natural boundary path w connecting b to c. In this subdomain, the shortest path
between a and b is s3, which touches an obstacle s1 already touches. Note that the blocked free space
Whlock (i-€., the free space in W) omits the points where the obstacles in U meet s1 and s2: this
is why the shortest path s3 between a and b in Vyoc takes a different path from s;. The bottom
two drawings show another domain Q0 (and V), where taking the shortest path s3 between a and b
therein touches an obstacle that neither s1 nor sa touches.

3
C c

Fic. 8. Case 3. Neither s1 nor s2
touches an obstacle in ¥V, and the blocked Fig. 9. A subdomain whose blocked
free space is the same as the free space. The
point d is chosen on w so that the shortest
path between a and d touches an obstacle.

free space has more than one connected
component.

3. ¥ includes one or more obstacles, but none touches s; or ss, as in Figure 8.
(As the figure suggests, obstacles outside ¥ do not count.)

In case 1, the third pursuer executes direct pursuit. Direct pursuit means that
at any given point, the pursuer always moves towards the evader at full speed 1. As
mentioned in the introduction, it is known that direct pursuit with a single pursuer is
guaranteed to capture the evader with any positive capture radius. In Section 5.1.1
we will replace direct pursuit with a better endgame strategy that both is faster and
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guarantees capture with capture radius zero. However, for simplicity, we settle for
direct pursuit here.

In case 2, suppose without loss of generality that s; touches at least one obstacle.
We find the shortest path s3 between a and b in Wyock, as illustrated in Figure 7.
In Section 5.1.2, we show (Lemma 12) that s3 touches at least one obstacle in .
Although s3 is probably not a shortest path in g (as sq is), it is a shortest path
in Wpock, and therefore is defendable so long as the evader is trapped in Ypioex. We
direct p3 to defend s3. Once p3 reaches the evader’s projection on sz and is defending
s3, the evader cannot cross s3, which splits ¥ into two subdomains of the triangle
configuration and frees one of the pursuers p; or ps to defend a new path.

In case 3, we use the following path shooting procedure to find a point d on w such
that the shortest path s3 between a and d in V... touches an obstacle, as illustrated
in Figure 8. Let ¢ be any point in the closure of ©. Let sy (a,q) C ¥ be the shortest
path from a to ¢ in U. (We emphasize that this is a path in U, not in g, so the
path can pass through an obstacle’s interior.) If ¢ lies on the boundary of U, let d = g;
otherwise, observe that a sufficiently small neighborhood of ¢ in sy(a, q) is a straight
line segment, and let sg(a,d) be the path found by extending that line segment until
it strikes a point d on the boundary of ¥. The point d always lies on the natural
boundary path w, by the following reasoning. In case 3, neither s; nor s, touches any
obstacle inside ¥, so both paths can bend outward (turning away from the domain)
but can nowhere bend inward. Hence the point d does not lie on s; nor on ss; it must
lie on w. In Section 5.1.2 we show (Lemma 14) that sy (a,d) is a shortest path and
the related shortest path s3 = sy, (a,d) touches an obstacle (albeit not necessarily
the same obstacle that touches ¢). The path s3 also splits ¥ into two subdomains of
the triangle configuration and frees one of the pursuers p; or ps.

In either case 2 or case 3, if the new, smaller subdomain has a blocked free
space with two or more connected components, as illustrated in Figure 9, then we
reduce the subdomain to the connected component that contains the evader. If the
evader is trapped in the connected component that contains a, labeled Region I in
Figure 9, then Region I becomes the new subdomain; we shorten the pursuer’s paths
accordingly and iterate. If the evader is in a connected component of a quadrangle
configuration like Region II, the freed pursuer moves to defend the shortest path in
Region II between the points labeled ¢ and d in Figure 9. Once the pursuer has
reached the evader’s projection on s(c¢,d) and is defending that path, the evader is
in Region ITA or Region IIB. Either region is of the triangle configuration, and frees
one of the pursuers to defend a new path. Regardless of which connected component
the evader is in, any obstacle that touches two of s1, s3, and s3 is not inside the
new subdomain. To bootstrap the pursuit, we simply choose a point a = b = ¢ on
the boundary of the ambient space {2 as a degenerated triangle configuration. The
discussion above is summarized in Algorithm 3 in Figure 10.

4.4. Demonstration of the Capture Strategy. In this section we demon-
strate how the proposed pursuit strategy may be applied to a general game domain.
The example we use is the domain shown in Figure 11. In each step, one of the pur-
suers acts to partition the game domain into subdomains, one of which contains the
evader. This strategy is iterated until the evader is trapped within a simply connected
subdomain. Then the evader is captured by a pursuer using direct pursuit.

In the first drawing in Figure 11, a defendable path is established between points
a and b by p1, partitioning the domain into three subdomains: two simply connected
regions and a third containing two obstacles. Note that this effectively removes the
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Algorithm 3 Divide-and-Conquer Pursuit in a General Arena

1:
2:

o

10:
11:

12:
13:
14:

Initialize the game subdomain ¥ = ).
Initialize a = b = ¢. Set the shortest paths s; = ab and sy = ac to be the paths
defended by two pursuers.
while Uy is not simply connected do
if either s; or sy touches an obstacle in ¥ then
Find a shortest path s3 between a and b (or between a and ¢) in ¥yock. The
path s3 splits ¥ into two subdomains.
Direct the third, free pursuer to defend s3.
Once s3 is defended, update ¥ to be the subdomain that contains the evader.
Free one of the two pursuers on s; and s accordingly. Rename s3 to be
either s; or sy defending on which path is no longer needed.
else
Find a point d € w such that the shortest path s3 € Vg between a and d
touches an obstacle.
Direct the third, free pursuer to defend s3.
Once s3 is defended, update ¥ to be the subdomain that contains the evader.
Free one of the two pursuers on s; and sy accordingly. Rename s3 to be
either s; or sy defending on which path is no longer needed.
end if
end while
The free pursuer executes direct pursuit.

Fic. 10. Algorithm 3.

a a

b b

Step 1 Step 2

a a
Step 3 Step 4
C &
d

Fic. 11. Demonstration of the divide-and-conquer pursuit strategy.

large irregular obstacle from the game, as it touches the boundary. In the second
drawing, po establishes a defendable path between a and a point ¢, selected according
to the procedure outlined in the forthcoming Lemma 14 and freeing p;. In the third
drawing, a second path between a and c established by p; partitions the resulting
subdomain, removing the triangular obstacle. If the evader is not in one of the simply
connected regions, ps is free to establish a path between a and a new point d, removing
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F1G. 12. The endgame strategy. At left, pursuers p1 and p2 move from the evader’s level-set
projections to the evader’s intrinsic closest-point projections. At center, the two pursuers switch
to defending straight line segments. The third pursuer arrives in the shrunken domain. At right,
pursuers p1 and p3 carry out the orthographic pursuit strategy while pa2 continues to defend a fized
path s2.

the elliptical obstacle, as in the fourth drawing.

5. Analysis of the Divide-and-Conquer Pursuit Strategy. In this section,
we establish the correctness and the efficiency of our divide-and-conquer pursuit strat-
egy for a general arena with obstacles.

5.1. Correctness of the Divide-and-Conquer Pursuit Strategy. Here, we
establish that the divide-and-conquer pursuit strategy guarantees the capture. To do
so, we start by providing in Section 5.1.1 an improved pursuit strategy in endgame (i.e.
the last phase of the game where no obstacles are present in the game subdomain). We
do so for two reasons: 1) As we mentioned in the previous section, the original strategy
of the third free pursuer performing direct pursuit is sufficient only for capture with
a positive capture radius (i.e., » > 0), but not for capture with capture radius zero.
Second, the improved strategy in the endgame will be provably faster than direct
pursuit.

5.1.1. Improved Capture Strategy in the Endgame. When the evader is
trapped in a subdomain ¥ of the triangle configuration that encloses no obstacle, the
pursuers execute the following endgame strategy, illustrated in Figure 12.

Unfortunately, it is possible that a subdomain W, might have diameter substan-
tially greater than the diameter of the complete domain Qg.ee, and it is possible that
the paths s; and s might be substantially longer than that diameter; see Section 5.2.2
for examples. Accordingly, our first task is to shrink the subdomain so its intrinsic
diameter is at most 2d, where d = diam(Qfee). The pursuers p; and p, stand at the
level-set projections of the evader e onto s; and sg, respectively. In the first step of
the endgame strategy, p; and ps simultaneously move to the intrinsic closest-point
projections instead. (Note that all projections are with respect to intrinsic distances
in ¥, which is simply connected, therefore the intrinsic closest-point projection de-
fends the path.) As Remark 3 discusses, this switch from one projection to another
does not permit the evader to cross the paths.

Because the subdomain encloses no obstacle, the two defended paths s; and so
are concave: they curl away from the domain if they turn at all. Upon reaching the
intrinsic closest-point projection of e onto si, pursuer p; instantly switches to defend-
ing the straight line-segment path that meets the shortest path sg(e,p1) at a right
angle (Figure 12, center). Observe that p; is already at the intrinsic closest-point
projection of e onto the new, straight path, so this switch takes no time. Pursuer
p2 does likewise. These path switches can reduce but not increase the subdomain in
which the evader is trapped. After the switch, the evader is caught in a subdomain of
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the triangle configuration whose boundary consists of a portion of the natural bound-
ary and two defended line segments—or sometimes just one line segment, because a
pursuer may single-handedly trap the evader in a pocket. (In the latter case, assume
without loss of generality that pursuer is p;.) Either way, Theorem 18 in Section 5.2
shows that this subdomain has the intrinsic diameter at most 2d.

In the second step, ps moves to a point in the evader’s subdomain in time at
most d. In the third and final step, p; and ps use the orthographic pursuit strategy
to capture the evader in that subdomain (Figure 12, right). Rather than defend
horizontal and vertical paths, p; defends paths that are parallel to the path it started
within the third step, and p3 defends paths perpendicular to that path. Observe that
although part of the boundary of the subdomain is not directly defended—while ps
continues to defend a fixed path, p; advances the path it defends—the evader never
has an opportunity to leave the subdomain. (Optionally, ps can advance its path too.)

The first of these three steps can be slow if s or ss is very long. To help speed
up the change in projections, ps creates an interval trap. Let € be the point on s; U ss
nearest e by intrinsic distance—that is, e’s closest-point projection onto s; or so,
whichever is closest. Suppose without loss of generality that € lies on s;. To create
the trap, let b be the point at a distance of d from € along s; such that € is trapped
between p; and b. (If there is no such point, let b be the corresponding endpoint of
s1.) While p; slides along s; toward €, ps moves to the point b in time at most d. If
p1 has not reached e by then, p; and p3 move toward each other until one of them
reaches e. If p3 gets there first, the two pursuers swap identities. By Lemma 17 in
Section 5.2, it takes time at most 3d/2 for one of the pursuers to reach € and start
defending the straight line-segment path that replaces s;.

At that time, the evader may be trapped in a subdomain bounded solely by the
new, straight s; and a natural boundary path, in which case the second step of the
endgame begins. Otherwise, the pursuer po might or might not still be chasing the
evader’s projection onto so. If it is, p3 again creates an interval trap that catches it
in time at most 3d/2. If p3 gets there first, the two pursuers swap identities.

5.1.2. Guaranteed Capture in the Divide-and-Conquer Strategy. We
start by studying paths that are locally shortest in the sense that they cannot be
made shorter by a small perturbation, although it might be possible to find a shorter
path by taking a different route around the obstacles. A path s is taut if there is an
€ > 0 such that no point p € s has an open neighborhood in s of diameter less than ¢
that could be shortened by replacing it with a straight line segment included in Q¢cc.
If a taut path were a piece of string, pulling its ends would not change it. Every
shortest path is taut, but not every taut path is a globally shortest path. A point
p € s is a turning point if no open neighborhood of p in s is a straight line segment.
Turning points can be curve points at which there is a well-defined line tangent to s
though s is not straight, or corners at which the line tangent to s is not defined. If
we suppose s is directed from x to y, then every turning point is either a left turn or
a right turn. At a left turn, a taut path must touch a component of R? \ Qe on its
left side, and at a right turn it must touch a component of R?\ Q4. on its right side.
Lemma 12 Let 51,82 C Qgee be two distinct taut paths connecting two points x,y €
Qfree, with so longer than sy or equally long. Then s U so encloses an obstacle in
Qpree that touches sa.

Corollary 13 If Qgee has no obstacles, then any two points x,y € Qgee are connected
by exactly one taut path, which is the unique shortest path connecting them.
Lemma 14 Let Q = Qpee Uw be a game domain, with Q a topological disk, and
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suppose w is nonempty. Then for every point x € Qgee, there exists a point y on
the boundary of Q) such that every taut path s C Quee connecting x and y touches an
obstacle, and the path shooting procedure described in Section 4 finds such a y.

Our strategy always makes progress toward an obstacle-free subdomain by in-

duction on the characteristic number x(¥) of a subdomain ¥, which is the number
of obstacles in ¥ plus the number of obstacles in ¥ that neither s; nor s, touches.
(Thus, the latter obstacles are counted twice.) For example, in Figure 9, x(¥) = 3,
because the subdomain encloses one obstacle that touches s; and sy and one obstacle
that touches neither. The square obstacle outside the subdomain is not counted.
Theorem 15 Let ¥ = Ug o U be a game subdomain of the triangle configuration,
with respect to a game domain Q@ = Qgee Uw. Suppose that at some point in time
the evader is in VU, one pursuer py is defending s1, a second pursuer ps is defending
S, and a third pursuer is available. Then the divide-and-conquer strategy guarantees
that the three pursuers capture the evader.
Proof If x(¥) = 0, the subdomain encloses no obstacle, and the evader is caught as
described in Section 5.1.1. For cases 2 and 3, let s3 be the newly defended path, and let
t > 1 be the number of obstacles that s3 touches in W. For each obstacle that touches
s3 but not s; nor sy (see Figures 7 and 8), y decreases by at least one, because each
such obstacle is counted twice in x(¥) but at most once in each of its two subdomains.
Likewise, for each obstacle that touches s3 and s1, or s3 and sy, x decreases by one
(see Figure 7, top). Each such obstacle either will be on the opposite side of s3 as
the evader or will subdivide the new subdomain into connected components; in the
latter case, the obstacle will not be inside the connected component that contains the
evader. Overall, y decreases by at least ¢. By induction on the sequence of iterations,
X is eventually reduced to zero and the evader is caught. B

5.2. Efficiency of the Divide-and-Conquer Pursuit Strategy. In this sec-
tion, we characterize the efficiency of the proposed pursuit strategy.

5.2.1. Trimming the Paths. The divide-and-conquer pursuit strategy we have
presented works, but it is not always as fast as we want. Sometimes, the path s3 shares
portions of s1, So, w, or all three. By shortening s3 to reduce the overlap, we help p3
to reach the evader’s projection and start defending the path more quickly.

Imagine walking along s3 from a until you touch an obstacle, then continuing until
you touch the natural boundary path w (possibly simultaneously). At that point we
trim s3 so it goes no further, yielding a path s%. (Ideally we would not let s§ touch
w except at its final endpoint, but s§ must touch at least one obstacle.)

To guarantee a three-pursuer capture time of O(hd), the subdividing pursuer ps
must defend a path that intersects the boundary paths s; and s nowhere but at its
endpoints. Accordingly, we further trim the path by setting s% + s3 \ (s1 U sg). If
that set has multiple connected components, we set s5 to be one of the connected
components that touches an obstacle. This is the path that ps defends. In the single-
component case, the evader cannot cross any part of the untrimmed s3, but part of
it might be defended by p; or ps.

Trimming the path introduces a new difficulty: if p3 defends only the trimmed
path s3, can any pursuer be relieved? The answer is yes, but often one of the pursuers
has to modify the path it is defending. The easy case is when the evader’s projection
onto s3 lies on the trimmed portion s3: once ps arrives at that projection, ps3 can
immediately start defending the entire path sz, and the pursuit strategy proceeds as
usual. The fast case is when the evader’s projection onto s3 does not lie on s3: we
modify s; or se by patching sj over the portion of s; or so that the evader can no
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Fic. 13. (a) A shortest path sz touching h obstacles in a game subdomain can have length
O(hd). (b) A convoluted shortest path between two obstacles implies that the intrinsic diameter of
Qfree 18 at least half the length of the inner path connecting as to as, because the shortest path in
Qfree from the midpoint m to any point outside the shaded region R has length at most d.

longer reach, freeing p3 immediately to defend a new path. (Note that we do not even
need to wait for ps to reach sj!)

5.2.2. The Capture Time for Three Pursuers. In a domain of intrinsic
diameter d = diam(Qee) with h holes, the main difficulty in showing that three
pursuers can capture an evader in O(hd) time is that the paths the pursuers defend
can be very long. Although a shortest path in the original domain Qe has length
at most d, the subdomains that arise later can have intrinsic diameters as great as
Q(hd), as Figure 13(a) shows—insinuating that our pursuit strategy might have a
worst-case capture time of Q(h2d).

We meet this difficulty by showing that a shortest path whose relative interior
touches ¢ obstacles, but not the subdomain boundary, has length O(td). The path
cuts a subdomain into two subdomains whose characteristic numbers are smaller by
at least t. As the characteristic number of Q is 2h, it takes only O(hd) pursuit time
to reduce the playing field to an obstacle-free subdomain.

Another difficulty is that paths between nonconvex obstacles can be twisty and
very long; imagine interlocking gears or combs, as illustrated in Figure 13(b). A path
may revisit the same obstacle arbitrarily many times. We handle this difficulty by
showing that long passages imply that d is large.

Lemma 16 Let s = s(x,y) be a shortest path in a blocked free space Wik of the
triangle configuration. Suppose s intersects the defended paths s1 and s only at its
endpoints x and y. Let t > 1 be the number of obstacles that s touches. (Obstacles
intersecting only endpoints of s do not count.) The length of s is at most 10td — 6d.

Proof The path s subdivides Wycx into two subdomains, partitioning its obsta-
cles. Consider obstacles w; and w; on opposite sides of s. Suppose that as you walk
along s, you touch w;, then w; (possibly simultaneously); then you subsequently touch
both obstacles again (possibly simultaneously). (The path may touch other obstacles
in between those four contacts.) Let a; and as be the first points where s touches
w; and wj, respectively; let as be the last point where s touches one of those two ob-
stacles; and let ag be the last point where s touches the other obstacle, as illustrated
in Figure 13(b). The shortest (in Wpiock) paths s(ai,az2), s(as,as), and s(as,aq) are
subpaths of s. Consider the region R bounded by portions of dw;, dw;, s(a1,as), and
s(as, aq), shaded in Figure 13(b). Let m be the midpoint (by length) of s(as,az). We
see that R C Uyocc because the subdomain boundary paths s; and s do not cross s
or any obstacle boundaries. We ask, can there be a path from m to as in Qe shorter
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than the shortest path s(m,as2) in Upee? If such a path existed, it would have to
leave R through s(ai,as2) or s(as,as) before reaching as; but no shorter path can
reach s(a1,a2) or s(as,aq). Therefore, the path s(az,m) is a shortest path in Qe as
well as in Upjoek, so d = diam(Qgee) is at least as long as s(ag, m). Symmetrically,
the length of s(m,as3) is at most d, thus the length of s(as,as) is at most 2d.

We call s(ag, as) an inner path. Observe that every inner path starts at a point as
where s touches an obstacle for the first time, and an inner path cannot start where s
touches its first obstacle unless it also touches its second obstacle at the same point.
Therefore, there are t — 1 points on s where an inner path can start, so inner paths
contribute at most 2(¢ — 1)d to the length of s. If we remove the inner paths from
s, the remainder of s can be subdivided into two types of subpaths. An interpath
is a straight line segment whose endpoints lie on two different obstacles, or on one
obstacle and one endpoint of s. An intrapath is a subpath that starts and ends on the
boundary of the same obstacle, turns or curves only to one side, and turns solely on
account of that obstacle.

We use amortized analysis to show there are at most 2¢ interpaths (excluding
inner paths). We claim that where s includes a straight subpath (that doesn’t overlap
an inner path) from a point on Ow; to a point on Ow;, s either touches w; for the first
time or touches w; for the last time. We charge the cost of the subpath to w; in the
former case; to w; in the latter case. If there are straight subpaths from the endpoints
of s to the first and last obstacles s touches, we charge those obstacles for that. Each
obstacle is charged at most twice: the first time and last time s touches it. Hence,
there are at most 2t interpaths with total length 2td. To justify this claim, observe
that if w; and w; are on the same side of s, then s cannot touch wj, w;, w; again, and
w; again in that order, because the obstacles are disjoint and each is connected.* If
w; and w; are on opposite sides of s, and there is a straight subpath of s from w; to
w; where s neither touches w; for the first time nor w; for the last time, then that
subpath is part of an inner path.

Intrapaths are flanked by inner paths and interpaths, so there are at most 3t — 2
intrapaths. Each intrapath has length at most 2d. To see this, consider an intrapath
s(z,y) connecting two points x and y on the boundary of an obstacle w;, and let m be
its midpoint. By definition, s turns in one direction only, and only where it touches
w;. Because s(m, x) is a shortest path in Wpjex, the only circumstance in which there
might be a shorter path connecting m to z in Qe is if the path went around w; the
other way; but such a path would have to go around s(m,y) before reaching x, and
therefore cannot be shorter than s(m,y). It follows that s(z,m) and (symmetrically)
s(m,y) are shortest paths in Qgee, their lengths are at most d, and the length of
s(z,y) is at most 2d. Summing the contributions from inner paths, interpaths, and
intrapaths, we find that the length of s is at most 10td — 64. B

The following two lemmas help to establish the pursuit time in the endgame.
Lemma 17 FEach interval trap described in Section 5.1.1 guarantees that a pursuer
reaches the evader’s intrinsic closest-point projection € in time at most 3d/2, where
d = diam(Qfyee)-

Lemma 18 Let Wy be a subdomain of the triangle configuration. Suppose that the

4The sequence of obstacles that s touches on one side only is a Davenport—Schinzel sequence
of order two, which is known to have length at most 20 — 1 where o is the number of obstacles on
that side [38]. The sequence of obstacles touched by s on both sides, after deleting inner paths, is
not quite a Davenport—Schinzel sequence of order two, but it is close enough that we are using an
amortization argument designed for such sequences.
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outer boundary of Wee consists of two straight line segments s1, so C Qpee (defended
by pursuers) and a natural boundary path w € Ogee. Then diam(Viee) < 2d, where
d = diam(Qfree) -

Theorem 19 With the divide-and-conquer pursuit strategy, three pursuers capture
an evader of equal speed in a domain Qe with h obstacles in time at most (10h +
8 + 4+/2) - diam(Qpree) = (10h + 13.657) - diam(Qpree ) -

Proof The initial subdomain Q.. has a characteristic number of 2h. In each iteration
of the pursuit strategy, a pursuer moves to defend a path of length 10td — 6d whose
relative interior touches ¢t > 1 obstacles inside the subdomain, where d = diam(Qfyee).
It takes time at most d to move to the midpoint of the path and time at most
5td — 3d to move to the evader’s projection, for a total of 5td — 2d. Afterward, the
characteristic number of the new subdomain containing the evader is reduced by at
least t. Therefore, after time 10hd — 4d the characteristic number is reduced to zero
and the subdomain is simply connected. (The worst case is two successive iterations,
each taking time 5hd — 2d.)

Next, it takes time at most 3d for the two pursuers defending the subdomain to
switch from a level-set projection to an intrinsic closest-point projection. These two
pursuers immediately switch to defending straight paths, whereupon the shrunken
subdomain containing the evader has the diameter at most 2d. It takes time at most
d for the third pursuer to reach a point in that subdomain. Finally, it takes time at
most (8 + 41/2)d to capture the evader with the orthographic pursuit strategy. W

If the convex hulls of the obstacles have mutually disjoint interiors, ruling out
the circumstances illustrated in Figure 13(b), the bound of Lemma 16 improves to
3td + d, and the capture time improves to (4h + 12+ 4v/2) - diam(Qee). We omit the
proof.

6. Future Work. It remains an open problem to find a pursuit strategy with an
asymptotic capture time better than O(hd), given three pursuers in a bounded arena
of diameter d with h obstacles. It is conceivable that there might be a strategy with
an O(d) capture time, but that would probably require a new pursuit strategy very
different from ours. If no such strategy exists, then understanding the fundamental
limits of pursuit is an important problem. We conjecture that there exists a strategy
with O(dlogh) capture time, which we would expect if there were an efficient way to
repeatedly partition a subdomain into two subdomains each having half the obstacles;
but we have not been able to find one. We view the question of the optimal capture
time as a fundamental open problem in pursuit-evasion problems.
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Appendix A. Deferred Proofs.

Proof of Lemma 6 So long as the shortest path through 2 from e to ¢ is a straight
line segment perpendicular to ¢, the projection € is the orthogonal projection of e onto
£, which moves continuously with speed at most 1. Otherwise, € does not move at all.
When the shortest path from e to ¢ does not meet ¢ orthogonally, & remains fixed at
an endpoint of £. When the shortest path is not straight, the straight portion of that
path that leaves ¢ perpendicularly remains fixed until e moves so that the straight
portion is the entire path.
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Proof of Lemma 9 A pursuer can move to a point on s(x,y) in time diam(Qgee). It
can then move to the projection é of an evader in finite time, regardless of the motion
of €, because the path is acyclic. By the following reasoning, the projection () cannot
move faster than unit speed on the path s(z,y). The distance function d(-, ) satisfies
the triangle inequality: for any two points p, ¢ € Qgee, d(x,p) < d(x, q) +d(p, q). This
implies that where the gradient Vd(z, -) is defined, its magnitude nowhere exceeds one.
For any At > 0, |d(z,e(t + At)) — d(z,e(t))] < d(e(t + At),e(t)) < At. The second
inequality follows because the evader has unit speed. The projection é(t) is defined
so that d(z,e(t)) = min{d(z,e(t)),d(z,y)}, so |d(x,e(t + At)) — d(x,e(t))| < At.
Therefore, the projection € of the evader cannot travel a distance greater than At
along s(x,y) in time At¢. This holds true for any positive At, even infinitesimal. Tt
follows that € never moves faster than unit speed, even instantaneously, and once a
pursuer coincides with €, he can stay with € indefinitely.

Proof of Lemma 12 We call a Jordan curve (1-manifold without boundary) in the
plane a loop. Because s; and so are distinct with shared endpoints, s; U so includes
one or more loops; moreover, in at least one of these loops, the portion of s; in the
loop is as least as long as that of s;. At least one turning point p € s, on that loop has
curvature toward the region enclosed by the loop. Therefore, p lies on the boundary
of a component of R? \ Qe enclosed by the loop. This component is bounded and
therefore is an obstacle.

Proof of Lemma 14 Recall that the path shooting procedure chooses a point ¢
in the closure of w and extends sq(z,q) until it meets OQ at a point y. Because
sa(x,q) is a taut path in Q, sq(x,y) is also a taut path in Q. As Q has no obstacles,
sa(x,y) is a shortest path by Corollary 13, and no other path connecting x to y in
Q is equally short. Let s C Qe be a taut path connecting z and y in Qpee. If
q € s, it immediately follows that s touches an obstacle. Otherwise, s must differ
from sq(z,y), and therefore must be longer than sq(z,y). The union s U sq(x,y)
includes one or more loops; in one of these loops, the portion provided by s is longer
than the portion provided by sq(x,y). Therefore, some turning point p € s on that
loop has curvature toward the region enclosed by the loop. As s is taut, p lies on the
boundary of a component of w.

Proof of Lemma 17 The shortest path from e to s; U s2 in Qe has length at most
d and, as it cannot cross s; U so, lies entirely in W. Hence dy(e,€) < d during the
first interval trap described in Section 5.1.1, where € is the point on s; U sy closest to
e. Without loss of generality, assume € lies on s;. The pursuer p; is initially at some
projection of e onto s1; by definition, ds, (p1,€) < dy(e, &) < d. While p; chases €, p3
moves to a point d away from the initial position of € in time at most d, then chases é.
Hence, it takes time at most 3d/2 for p; and ps to meet. During the second interval
trap described in Section 5.1.1, s7 is a straight line segment and € is the point on s
closest to e. Let a be the point where s; and s; meet. The shortest path from e to
So in Qgee has length at most d and cannot cross so. If it crosses s; at some point =,
we can shorten the shortest path by replacing the remainder of the path with the line
segment xa; therefore the shortest path does not cross sy, and it lies entirely in W.
Hence, dy (e, €) < d during the second interval trap. By a repetition of the reasoning
above, it takes time at most 3d/2 for ps and ps to meet.

Proof of Lemma 18 Let x be a point in Ve, and let a be the apex where s; and
so meet. Let s be the shortest path from z to a in Qgee; its length is at most d. The
path s is included in Wgee; if it were not, s would leave Vg, through some point ¢
that lies on s1 U s9, and s could be shortened by replacing its exterior portion with a
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FiG. 14. On the left is the discrete dodecahedron graph. On the right is a domain with the
graph of a dodecahedron. Each tunnel between two degree-three junctions has the same travel time.

straight line segment ga, a contradiction. Therefore, the shortest path through We.ee
from a to any point in Wgee has length at most d. By the triangle inequality, the
shortest path through V. connecting any two points in g, has length at most 2d.

Appendix B. The Necessity of Three Pursuers. We show that three pur-
suers are necessary for an arbitrary game domain via an example in which an evader
can evade two pursuers indefinitely, regardless of the controls chosen by the two pur-
suers. Consider the game domain 2 in Figure 14. The free space in this domain
consists of the straight and wiggly black lines, representing tunnels of width zero. All
tunnels, straight or wiggling, have the same travel time of 1 to get from one junction
to a neighboring junction. Let the initial position of the evader be a junction. Sup-
pose the two pursuers p; and po begin at positions with distance at least 0.5 from the
evader. The following is a strategy for the evader: (1) The evader remains stationary
at a junction until at least one pursuer comes within an intrinsic distance of 0.5 (half
a tunnel length) from the evader. (2) If a pursuer—assume without loss of generality
it is p;—is within a distance of 0.5 or less from the evader, the evader flees. The
evader chooses between the two tunnels that do not contain p;. The evader commits
to the tunnel which, upon arriving the other end, would maximize the distance of the
evader from the current position of ps.

Proposition 20 The preceding strategy enables the evader to evade indefinitely.

Proof: The evader is safe resting at a junction so long as no pursuer is within
a distance of 0.5 from the evader. When the evader is required to flee a pursuer py,
that pursuer cannot get closer to the evader than a distance of 0.5, as both run at the
same speed. The two tunnels that do not contain p; are part of a cycle of length five
(with no shortcuts between any two points of the cycle), so no matter where the other
pursuer po moves, the evader chooses a tunnel such that when it reaches the junction
at the other end of the tunnel, py is still at least a distance of 0.5 away. Therefore,
no pursuer ever gets closer to the evader than a distance of 0.5.
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