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Abstract. Brenier’s theorem is a cornerstone of optimal transport that
guarantees the existence of an optimal transport map 71" between two
probability distributions P and Q over R? under certain regularity
conditions. The main goal of this work is to establish the minimax esti-
mation rates for such a transport map from data sampled from P and
() under additional smoothness assumptions on 7'. To achieve this goal,
we develop an estimator based on the minimization of an empirical ver-
sion of the semi-dual optimal transport problem, restricted to truncated
wavelet expansions. This estimator is shown to achieve near minimax
optimality using new stability arguments for the semi-dual and a com-
plementary minimax lower bound. Furthermore, we provide numerical
experiments on synthetic data supporting our theoretical findings and
highlighting the practical benefits of smoothness regularization. These
are the first minimax estimation rates for transport maps in general
dimension.
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1. INTRODUCTION

Wasserstein distances and the associated problem of optimal transport date back to the work of
Gaspard Monge [Mon81] and have since then become important tools in pure and applied math-
ematics [Vil03, Vil09, Sanl5]. Tools from optimal transport have been successfully employed in
machine learning [AGCJ18, PC19, SHB'18, FCCR18, ACB17, GPC18, JCG18, MMC16, RCP16,
SHB*17, GJB19, SCSJ17, AJJ18, ACB17, DBGGL19, CR12] computer graphics [LCCS18, SAGP 15,
SPKS16, FCVP17|, statistics [SC15, AGP18, RW18, WB19, ZP19, PZ19, BGK"17, CSB'18,
RTC17, CS18, TM18, KTM18, BCP17, dBGLL19, KSS19], and, more recently, computational
biology [SST*19, YDV *18].

Monge asked the following question: Given two probability measures P,Q in R¢, how can we

transport P to () while minimizing the total distance traveled by this transport. A classical instan-
tiation of this problem over R? is to find a map Tp: R? — R? that minimizes the objective

mjin / |T(z) — z||3dP(x), s.t. TP =Q, (1.1)
Rd
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which is known as the Monge problem, where Ty P denotes the push-forward of P under T', that is,
TyP(A) = P(T~'(A)), for all Borel sets A. (1.2)

The highly non-linear constraint in (1.2) made the mathematical treatment of the Monge problem
seem elusive for a long time, until the seminal work of Kantorovich [Kan42, Kan48|, who considered
the following relaxation. Instead of looking for a map Ty, look for a transport plan I'g in the set
of all possible probablity measures on R¢ x R? whose marginals coincide with P and @, which we
denote by II(P, Q). This leads to the optimization problem

min / le — yl3dT(z,y) st T € I(P,Q), (1.3)

which is known as the Kantorovich problem, and whose value is the square of the 2-Wasserstein
distance, WQQ(P, @), between the two probability measures P and @. The two optimization prob-
lems are indeed linked: Brenier’s Theorem (Theorem 1 below), guarantees that under regularity
assumptions on P, a solution 'y to (1.3) is concentrated on the graph of a map Tj. That is, using a
suggestive informal notation, I'g(x,y) = P(x) dy—Ty(x)» Where § denotes a point mass. Moreover, Tj
is the gradient of a convex function fo. While cost functions other than ||z —y||3 could be of interest,
such as ||z — y||5 for p > 1, this work entirely focuses on the quadratic cost, which allows leveraging
the well-established theory of convex functions and formulating key assumptions in terms of strong
convexity.

Statistical optimal transport describes a body of questions that arise when the measures P and Q)
are unknown but samples are available. While the question of estimation of various quantities such
as Wa(P,Q), for example, are of central importance, for applications such as domain adaptation
and data integration [DKF*18, CFT14, CFHR17, SDF*18, PCFH16, CFTR17, FHN'19, RW19],
the main quantity of interest is the transport map T} itself since it can be used to push almost every
point in the support of P to a point in the support of (). Moreover, the optimal transport map plays
an important role in characterizing the Riemannian geometry that arises from endowing probability
measures that have finite second moments with the 2-Wasserstein-distance. In particular, it can
be used to define the right-inverse to the exponential map in that space [Gigll], which in turn
enables the generalization of PCA (principal component analysis) to spaces of probability measures
[BGK ™17, MPZ19]. The goal of this paper is to study the rates of estimation of a smooth transport
map T from samples.

To fix a concrete setup assume that we have at our disposal 2n independent observations

Xi,...,X, from P and Y7,...,Y, from (), based on which we would like to find an estimator
T for Ty. This statistical problem poses several challenges:
(i) The most straightforward estimator is obtained by replacing P and @ by their empirical coun-
terparts [MCO98]. It leads to a finite-dimensional linear problem that can be approximated very
efficiently due to recent algorithmic advances [Cutl3, AWRI17, PC19, DGK18]. However, even
if the resulting optimizer I' is actually a map (matching), which it is not in general, it is not
defined outside the sample points. In particular, it does not indicate how to transport a point
x ¢ {X1,...,X,}. In contrast, we would like to obtain an estimator 7' with guarantees in L2(P),
that is, with convergence of

17— Tol2a(p) = / I7(2) - To(@)|3 dP(x). (L4)

Note that such an estimator of Tj could be obtained by post-processing the above optimizer f, for
example by interpolation techniques, see [ABM16]. We also employ related techniques in Section
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6 to obtain practical estimators for Ty. However, we are not aware of a statistical analysis of these
procedures.

(i) It is known that the estimator WZ(P, Q) can be a poor proxy for W (P, Q) if the underlying
dimensionality of the distributions P and @) is large, as it suffers from the so-called curse of dimen-
sionality. For example, if both P and ) are absolutely continuous with respect to the Lebesgue
measure in R?, d > 4, it is known that up to logarithmic factors, B[|[Wa(P, Q) — Wa(P, Q)|] =< n~1/4
(see INWR19]). In fact, we show in Theorem 6 that without further assumptions on either P, @, or
Tp, no estimator can have an expected squared loss (1.4) uniformly better than n=2/¢,

(iii) While many heuristic approaches have been brought forward to address the previous point,
a thorough statistical analysis of the rate of convergence has so far been lacking. This can be
partly attributed to the structure (or lack thereof) of problem (1.3). Being a linear optimization
problem, it lacks simple stability estimates that are key to establish statistical guarantees by relating
||T — Tol|z2(py to the sub-optimality gap

/ |7(x) - 2|2 dP(x) - / | To(x) — 2|2 dP(x).
Rd R

In this paper, we aim to address these problems by imposing additional assumptions on the
transport map Tp that lead to a rate faster than n=2/%. One assumption we impose on the transport
map Tp is smoothness, a standard way of alleviating the curse of dimensionality in non-parametric
estimation. Another key assumption is based on an observation of Ambrosio published in an article
by Gigli [Gigl1]. They show that the optimization problem (1.1) has quadratic growth, in the sense
of a stability estimate

17 = Tol2ap) S /R IT(@) el dP(z) - /R Toz) - 2l3dP (), (L5)

provided Ty = V fy is Lipschitz continuous on R¢ and Ty P = Q. While this observation does not
immediately lend itself to the analysis of an estimator due to the presence of the push-forward
constraint, we show in Proposition 10 that under similar assumptions, the so-called semi-dual
problem (see (2.5) below) admits a stability estimate.

Due to the rising interest in Optimal Transport as a tool for statistics and machine learning,
many empirical regularization techniques have been proposed, ranging from the computationally
successful entropic regularization [Cut13, GCPB16, AWR17], £2-regularization [BSR17], smoothness
regularization [PCFH16], to regularization techniques specifically adapted to the application of
domain adaptation [CFT14, CFTR17, CFHR17]. Notably, [GCPB16] also consider regularization
based on the semi-dual objective and reproducing kernel Hilbert spaces. However, the statistical
performance of these regularization techniques to estimate transport maps from sampled data has
been largely unanswered, with the following exceptions.

The estimation of transport maps has been studied in the one-dimensional case under the name
uncoupled regression [RW19] where the sample Y7,...,Y,, is subject to measurement noise. There,
the main statistical difficulty arises from the presence of this additional noise and boils down to
obtaining deconvolution guarantees in the Wasserstein distance. Such guarantees were recently
obtained under smoothness assumptions on the underlying density [CCDM11, DM13, DFM15] but
they do not translate directly into rates of estimation for the optimal transport map beyond the 1D
case. Note that in the presence of Gaussian measurement noise, the rates of estimation are likely
to become logarithmic rather than polynomial as deconvolution is a statistically difficult task.

Concurrently to this work, [FLF19] study the estimation of linear transport maps and establish
a fast rate of convergence in this parametric setup. Moreover, after finishing the first version of
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this paper, the authors became aware of the parallel work [Gun18]. There, Gunsilius analyzes the
asymptotic variance of an estimator for fi under smoothness assumptions on the densities of the
marginals P and () and states the problem of obtaining estimation rates for the transport map Ty
explicitly as an open problem, which we address in this paper. A similarity between [Gunl8] and
this work is that the rates for the variance are obtained by applying empirical process theory to the
semi-dual objective function. However, we note the following key differences: First, Gunsilius obtains
curvature estimates for the semi-dual objective via variational techniques, while we use strong
convexity of the candidate potentials. Note that under slightly stronger regularity assumptions, i.e.,
uniform convexity of the supports, his assumptions would imply strong convexity for the ground
truth potential, as shown in [Gigl1]. Second, by assuming smoothness of the transport map instead
of the distributions P and @), our results are more flexible and can be applied in cases where
neither distribution possesses Holder smooth densities. Third, by appealing to Cafarelli’s global
regularity theory, [Vil09, Theorem 12.50(iii)], [Caf92b, Caf92a, Caf96], we can obtain a variance rate
of n—20/(2a=2+d) (up to log factors) under assumptions quantitatively comparable to Gunsilius’s,
while his results imply a sub-optimal rate of n~(2¢=2)/(2a=2+d) see Section E in the appendix.

We note that both in the application of Caffarelli’s theorem in Appendix E and in the state-
ment of our main result, Theorem 2 below, currently available analytical tools limit the extent
to which minimax results can be established. In Appendix E, the lack of uniformity in Cafarelli’s
global regularity theory prevents us from claiming (near) minimax optimality over Hoélder smooth
densities, see Remark 36. Similarly, in Theorem 2, (near) minimax optimality is attained by consid-
ering fixed marginal supports because of the need for uniformly bounded constants in some of the
classical inequalities we employ (for example, Poincaré inequality), see Remark 3. In effect, further
strengthening these minimax results poses an interesting open problem involving deep analytical
questions.

The rest of this paper is organized as follows. In Section 2, we review some important concepts of
optimal transport, mainly duality and Brenier’s theorem. These are instrumental in the definition
of our estimator, which is postponed to Section 5. Indeed, since the main goal of this paper is to
establish minimax rates of convergence for smooth transport maps, we present these rates in Sec-
tion 3 and prove lower bounds in the following Section 4, since this proof illustrates well the source
of the nonstandard exponent in the rates. We then proceed to Section 5 where we define a minimax
optimal estimator constructed as follows. First, we define an estimator for the optimal Kantorovich
potential as the solution to the empirical counterpart of the semi-dual problem restricted to a class
of wavelet expansions. Then, our estimator is defined as the gradient of this potential. We prove that
it achieves the near-optimal rate in the same section. In Section 6, we present numerical experiments
on synthetic data, introducing two estimators that exploit smoothness of the transport map. The
first illustrates that a version of the estimator considered in Section 5 can in fact be implemented,
at least in low dimensions. The second is heuristically motivated and based on kernel-smoothing the
transport plan between empirical distributions, showing that practical gains in higher dimensions
can be achieved for smooth transport maps. Finally, some useful facts from convex analysis (Section
A), approximation theory for wavelets (Section B), empirical process theory (Section C), and tools
for proving lower bounds (Section D), are appendix. Moreover, the appendix also contains a version
of our upper bounds based on smoothness assumptions on the densities instead of the transport
map (Section E), the deferred proofs (Section F), additional lemmas (Section G), and more details
on the numerical experiments (Section H).

NOTATION. For any positive integer m, define [m] := {1,...,m}. We write |A4| for the cardinality
of a set A. The relation a < b is used to indicate that two quantities are the same up to a constant
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C, a < Cb. The relation 2 is defined analogously, and we write a < b if a < b and a 2 b. We denote
by ¢ and C' constants that might change from line to line and that may depend on all parameters
of the statistical problem except n. We abbreviate with a V b, a A b the maximum and minimum
of a € R and b € R, respectively. For a € R, the floor and ceiling functions are denoted by |a|
and [a], indicating rounding a to the next smaller and larger integer, respectively. We use supp f
to denote the support of a function or measure f, and diamQ for the diameter of a set Q C R%.
We denote by B; the unit-ball with respect to the Euclidean distance in R?, where d should be
clear from the context. For a real symmetric matrix A and A € R, we write A < A if all eigenvalues
of A are bounded below A, and similarly for A < X. Moreover, we denote the smallest and largest
eigenvalues of A by Amin(A), Amax(A), respectively.

For p € [1,00], we denote by ¢P either the space R? endowed with the usual ¥ norms || . ||,, or, by
abuse of notation, the spaces of multi-dimensional sequences vy : Z™ — R with ||[V]|}, = >, com [P
for m € N. Further, for p € [1,o0], we denote by LP the Lebesgue spaces of equivalence classes of
functions on R? or subsets Q C R? with respect to the Lebesgue measure A on R?, whose norms
we denote by || . || zrra) and ||. || (), respectively. By abuse of notation, for a different measure P,
we denote the associated Lebesgue norms by | .| z»(py. We abbreviate with “a.e.” any statement
that holds “almost everywhere” with respect to the Lebesgue measure.

For a differentiable one-dimensional function f: R O 2 — R, we denote its derivative by % f
For a function f: R? D Q — R, we denote by 9; = 0/(dx;) its weak derivative in the sense of distri-
butions in direction x;, which coincides with the usual (point-wise) derivative if f is differentiable
in Q. For a multi-index b € N¢, we set

L. 0 0 d
af:?g...%f, and yb|:;bi.

The symbol J9f is also used to denote the sub-differential of a convex function f, while we use

the symbols V f for the gradient of a function f and Dg for the derivative of a vector-valued

function g: R4 D Q — R%, Vf = (01f,...,0;f)" and Dg = (Vg1,...,Vga,) ' respectively, and

D?f = DV f denotes the Hessian of f.

If @ C RY is a closed set with non-empty interior and a > 0, the Holder spaces on  as defined
in Appendix B are denoted by C%({2) and their associated norms by || . |ca(q). Similarly, the p-
Sobolev spaces of order « for p € [1, 00] are denoted by W*P(Q) with norms || . [[yyer(q), as defined
in Appendix B.

We say that © C R? is a Lipschitz domain if its boundary can be locally expressed as the sublevel
set of Lipschitz functions [Tri06, Definition 1.103].

2. BRENIER’S THEOREM AND THE SEMI-DUAL PROBLEM

We begin by recalling the Monge and Kantorovich problems given in Section 1. Let P, Q) be two
Borel probability measures on R with finite second moments.
The Monge (primal) problem is defined as

mjinPM(T) st. TyP =Q,

1
where Pyi(T) = 3 /Rd |T(z) — z||3dP(x),

and the push-forward T P is defined as Tj P(A) = P(T~'(A)) for all Borel sets A.
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Its relaxation, the Kantorovich (primal) problem, is given by

mrinﬁK(r) st. T e II(P, Q) (2.1)

where PK / |z — yH2 dl'(z,y),

and II(P, @) denotes the set of couplings between P and @, that is, the set of probability measures
I' on R? x R such that I'(A x R?) = P(A) and T'(R? x A) = Q(A) for all Borel set A C R
The value of problem (2.1) is the square of the 2-Wasserstein distance, denoted by

W2(P,Q) := in  Px(D).
5 (P,Q) Ferﬁl(ng)PK()

Note that we can expand the objective in (2.1) as

1
_1 / o — yl3dT(z, )

=5 [ Iel3ar@)+ 5 [ IvlBdQw) - [ (o) dre.y),

Since the first two terms above do not depend on I'; we obtain the equivalent optimization problem
maxPe(l) st TEM(PQ), where P(l) = [ (o9} dT(w.). (2:2)

We focus on this equivalent formulation for the rest of the paper because it is more convenient to
work with.

Problem (2.2) is a linear optimization problem, albeit an infinite-dimensional one. Hence, it is
natural to consider its dual problem:

mln/f )dP(z —I—/g s.t. (2.3)
>

f(@) +9(y) = (z,y), P®Q-ae,
feLi(P),ge LNQ).

The dual variables f and g are called potentials, and for an optimal pair (fo,go), fo is called a
Kantorovich potential.

The dual problem (2.3) can be further simplified: Assume we are given a candidate function f
in (2.3) above. Then, we can formally solve for the corresponding ¢ to get an optimal g given by
the Legendre-Fenchel conjugate (see Section A) of f:

9r(y) = sup (z,y) — f(z) = f*(y), (2.4)
zeR4

Plugging solution (2.4) back into the optimization problem leads to the so-called semi-dual
problem,

mlnS /f YdP(z /f VdQ(y) s.t. f e LY(P), (2.5)

where the supremum in (2.4) is interpreted as an essential supremum with respect to P. By tran-
sitioning to the semi-dual, we effectively solved for all constraints in (2.3), leaving us with an
unconstrained convex problem that is not linear anymore. Under regularity assumptions, a solution
to the semi-dual provides a solution to the Monge problem as indicated by the following theorem,
which is a cornerstone of modern optimal transport.
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THEOREM 1 (Brenier’s theorem, [KS84, Bre9l, RR90]). Assume P is absolutely continuous
with respect to the Lebesque measure and that both P and ) have finite second moments. Then,
a unique optimal solution to (2.2) exists and is of the form Ty = (id, To)x P, where Ty = V foy is
the gradient of a convex function fo: R — R. In fact, fo can be chosen to be a minimizer of the
semi-dual objective in (2.5).

Brenier’s theorem implies that a solution to the semi-dual problem readily gives an optimal
transport map. Our strategy is to minimize an approximation of the semi-dual and establish stability
results as well as generalization bounds to conclude that the minimizer to the approximation is close
to the minimizer of the original problem.

3. MAIN RESULTS

Let X1., = (X4,...,X,) and Y1, = (Y1,...,Ys) be n independent copies of X ~ P and Y ~
Q = (To) 4P respectively. Furthermore, assume that X7., and Y., are mutually independent. Our
goal is to estimate Ty. To that end, we consider the following set of assumptions on P, () and Tj.
Throughout, we fix a constant M > 2.

A1 (Source distribution). Let M = M(M) be the set of all probability measures P with support
Q = [0,1)? that admit a density pp with respect to the Lebesgque measure such that M—' < pp(z) <
M for almost all x € Q. Assume that the source distribution P is in M.

A2 (Transport map). Let Q = [—1,2]¢ denote the enlargement of €2 by 1 in every direction.
Let T = T (M) be the set of all differentiable functions T': @ — R? such that T = Vf for some
differentiable convex function f: Q — R and

(i) |T(x)] < M for all x € Q, )
(ii) M~ < DT(z) < M for all z € Q,
(iii) supp TP = Q = [0,1]¢.

For R>1 and o > 1, assume that Ty € To, = To(M, R), where
Toa(M,R) ={T € T(M) : T is |o|-times differentiable and || T oo gy < R}.

Our main result is the following theorem. It characterizes, up to logarithmic factors, the minimax
rate of estimation of an a-smooth transport map Ty € 7, in the setup described above.

THEOREM 2. Fiz o> 1, then

. a 1
inf  sup E {/ |1T(z) — To(z)||3dP(z)| = n~ e AV (3.1)
T PeM,ToETa n
where the infimum is taken over all measurable functions T of the data X1., = (X1,...,Xpn), Y1p =

(Y1,...,Y,). Moreover, if P € M and Ty € T,, there exists an estimator T, given in Section 5,
that is near minimax optimal. More specifically, there exists an integer ng = no(d, o, M, R) such
that for any n > ng, it holds,

. o 1
sup B [ / I7(e) — To(@)|3 dP(a) | S n~ 5= 57 (log(n))? v — . (3.2)
PeM, ToeT, n
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REMARK 3. Assumption A1 can be significantly relaxed with respect to the geometry of 0 and
the density of P. In fact, the upper bounds are given under more general assumptions in Section 5.
Similarly, the assumption A2(ii) that supp(Q) = [0, 1]% can also be relazed.

However, the constants in the resulting upper bounds exhibit a dependence on the geometry of
the supports of both P and Q as well as on the enclosing set Q through functional analytical results
used in the proofs. While it may be possible to make this dependence explicit in terms of geometric
features of the sets supp(P),supp(Q) and Q—see for example [Jon81, ENT11, TMS" 13] for such
estimates under restrictive assumptions—providing a uniform control on these quantities in terms
of easily interpretable properties of the sets is beyond the scope of this article. Instead, we chose to
present Theorem 2 under these simplified assumptions to make the results more readable.

To discuss the remaining assumptions, we note that the most essential ones to obtain upper
bounds are the following: first, the lower bound in A2 (i), M—' < DT(z), in particular on the
support of P, x € Q. This yields convergence estimates for the optimal transport map as shown in
[Gigl11], see (1.5), and might be necessary to obtain fast rates for transport map estimation since
it provides curvature estimates commonly needed to prove error bounds for M-estimators [Vd V00,
Chapter 5]. Second, the Sobolev regularity of Ty is what governs the approzimation rates of Ty by
wavelet expansions (see Section 5.5 below) and thus enables fast rates via a bias-variance trade-off.
All remaining assumptions in A1 and A2, including the existence of extensions of Ty to a superset
Q, are of technical nature and serve to give explicit bounds as needed in the proof of the upper
bound. While one might be able to relax these assumptions, especially in specific problem instances,
we do not pursue this here beyond the more general versions given in B1 and B2 below.

We conjecture that the logarithmic terms appearing in the upper bound are superfluous and
arise as an artifact of our proof techniques. We briefly make a qualitative comment on the rate

n_mzi(;rd. Note first that it appears from this rate that estimation of transport maps, like the
estimation of smooth functions suffers from the curse of dimensionality. However, as a — oo, this
curse of dimensionality may be mitigated by extra smoothness with the parametric rate n=! as
a limiting case. Note also that we can formally take the limit o — 1, which corresponds to the
case where no additional smoothness condition holds beyond having a strongly convex Kantorovich
potential with Lipschitz gradient. This is essentially the minimal structural condition arising from
Brenier’s theorem with additional bounds on the derivative of Tg. In this case, one formally recovers
the rate n=2/% and we conjecture that this is the minimax rate of estimation in the context where
Ty is only assumed to be the gradient of a strongly convex function with Lipschitz gradient. If either
of these two additional requirements is not fulfilled, our stability results no longer hold.

REMARK 4. Since the transport map Ty is the main focus of our results, our assumptions impose
smoothness directly on Ty. In fact, smoothness of Ty can also be seen as a consequence of smoothness
of the source and target distribution using Caffarelli’s regularity theory [Caf92b, Caf92a, Caf96].
For completeness, we also give a version of our upper bound results under smoothness assumptions
on P and Q in Theorem 33, Section E of the Appendizx.

REMARK 5. By prescmbmg a known base measure P, such as the uniform distribution on [0, 1]¢,
and considering Q T#P estimation rates for T immediately translate into rates for estimating
Q in the 2-Wasserstein distance [WB17, SP18, WB19]. In fact, W3(Q,Q) can be bounded by
Ep[|T — Ty|3], since (T, To)#P is a candidate transport plan between Q and Q. Up to log factors,
our rates obtained below match those obtained in [WB19] for the estimation of a smooth density on
[0,1]% in the 2- Wasserstein distance.
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4. LOWER BOUND

In this section we begin by proving the lower bound (3.1) as it sheds light on the source of the
non-standard exponent 20137%“_’_[1 in the minimax rate. We prove the following theorem.

THEOREM 6. Fiz o> 1. It holds that

. o 1
inf  sup E[/MTuﬁib@M@dP@ﬁ 2 n TR Y
T PeM,ToeTa n

where the infimum is taken over all measurable functions of X1,...,X,, Y1,...,Y,.

PROOF. The proof uses standard tools to establish minimax lower bounds, [Tsy09, Theorem 2.5,
Lemma 2.9, Theorem 2.2], that we restate in Appendix D for the convenience of the reader as
Theorem 30, Lemma 31, and Theorem 32, respectively. It relies on the following construction.

Set P = Unif(]0,1]?) € M, the uniform distribution on the hypercube. For a > 1, let £: R — R
be a non-zero function in C*°(R) with support contained in [0, 1] such that there exists zp € [0, 1]
with &(zg) # 0, % (zg) # 0, for example a bump-function. Define g: R — R by

g(@) = [[ @), 2= (21,...,2),

and note that Vg(zo,...,7o) # 0 and supp(g) = [0, 1]? by the above assumptions on &.

1
Let m = [#n2e=2%d| be a positive integer where 6 is a universal constant to be chosen later. We
form a regular discretization of the space [0,1]¢ by defining the collection of vectors {z() : j €

[m]?} C [0,1] to have coordinates 2 (ji—1)/m,i=1,...,d and let

i =

9:(x) = —g(m(x — 1)),

for a constant & > 0 to be chosen later. Note that supp(g;) € 2) + [0, 1/m]? and hence that the
supports of the functions {g; }je[m]d are pairwise disjoint.

Next, let b € N% be a multi-index and observe that the differential operator 8 applied to 9j
yields @°g;(-) = mPl=e=19°g(m(- — x;)). Since ¢ € C**1 | if @ > 1, a second-order Taylor expansion
yields that g; has uniformly vanishing Hessian: || D?g;|| Leo(ré) — 0 as m — oco. In particular, in that
case, there exists mg such that ||D2g;(z)|op < 1/2 for all x € R, m > my, j € [m]?. If a = 1, the
same can be obtained by choosing x small enough. By the same reasoning, we can also guarantee
IVgjll oo may < 1.

For m? > 8, the Varshamov-Gilbert lemma, Lemma 31, guarantees the existence of binary vectors
7O 7O ) ¢ {0,137 7O = (0,...,0), K > 27"/8 such that ||7®) —7¢)|2 > md/8 for
0 <k # k' < K. With this, we define the following collection of Kantorovich potentials:

1 k
ok(z) = 5llzl* + S W), k=0, K.
jE€lm]?
It is easy to see (Lemma 38) that for any £ = 0,..., K and m > mg, V¢ is a bijection from

[0,1]% to [0, 1]¢. Moreover, by Weyl’s inequality and the above bound || D?g;(x)|op < 1/2, for all k,

Amin(D*$(2)) 2 1= > Amax(D?g;(x)) >

j€[m]d

N[ =



10 HUTTER AND RIGOLLET

Similarly, we obtain ||Vl pec(jo170) < 2 and Amax(D?¢r (7)) < 2 for all 2 € RY. Hence, T}, :=
Vor € To(M,R) for M > 2 and k small enough. We now check the conditions of Theorem 30,
where we consider the distance measure

d(Ty, Ti)* = / | T — T ||*dz, 0 <k, k' < K.
[0,1)¢

First, observe that for 0 < k # k' < K, it holds that
/[0 7960~ Vor @ aa

1
_ 2
mzm Z 8 [ Va2 o

This yields
/ Vb1 (x) — Vo (2|2 dz > n~737a,
[0,1]4

which completes checking the separation condition (i) of Theorem 30.
To check condition (ii) of Theorem 30, recall the Kullback-Leibler (KL) divergence between two
measures ), P such that @ is absolutely continuous with respect to P is defined by

dQ

D(Q||P) = Elog (dP

(W)) , W~Q.

In view of Lemma 38, for any k = 0, ..., K, the measure Q; = (V)4 P is supported on [0, 1]¢
and in particular, it is absolutely continuous with respect to P. By the change of variables formula,
it admits the density

dQp o 1

T 0 = b H(Ve 0 € 011 (42)

Moreover, let X ~ P and Y ~ @) be two random variables. It holds
d d
DIQuIP) = Blog (2:(¥)) = B1og (S (Vo (1)) (43)
= —/ log (det D2¢k(aj)) dz
[0,1)¢

Recall that D¢y, = Iy + > jefm] T](k)Dng where I; denotes the identity matrix in R?. Therefore,
since the functions g; have disjoint support, we have for all z € [0, 1]¢ that

d
log (det D@y () Zlog (1+n( Y D))

j€[m]d
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where \;(A) denotes the [th eigenvalue of a matrix A. Since log(1 + z) > z — 22/2 for all z > 0,

log (det D*¢y,(x) Z T Tr Z 1D%g;(x)
j€m Je[m]d
where | - || denotes the Frobenius norm. Thus,

D@QIP) < — S 7 [ Te(D%g;(x)) de

je[m]d [071]d
1

by X[ P
jelmje 7O

On the one hand, by the divergence theorem and the fact that g; has bounded support,
/ Tr(D?g;(x)) dz = / (v(z),Vgj(z))de =0,
[0,1]¢ a[0,1]4

where 9[0,1]? denotes the boundary of the unit hypercube and v(z) its outward-pointing unit
normal vector. On the other hand

1
Z / 1D?g;(x) || dz = m2a Sa—2+d Z / 1D?g(2) || dz < N 2a—2
[0,1]¢ je[m]d
The above three displays yield

n d  log K

D(P®" @ Q"||IP®" @ PP") = nD(Qk|IP) < S S

2042—

NE

for 0 large enough. This completes checking (ii) in Theorem 30 and hence the proof of the first part
of the minimax lower bound.
To show the remaining lower bound of 1/n, repeat the same argument as above with the two

potentials ¢o(z) = ||z]|3/2 and ¢1(z) = ¢o(z) + (8//n)g(z) for § chosen to ensure ¢g, ¢y € Ta,
applying Theorem 32 in Appendix D. The separation condition is given by

62 1
/ IVoo() — Ve ()2 de = & / V()3 de > L,
[0,1)¢ nJio,1)d n

and the KL divergence between the associated probability distributions can be estimated by
QN Qmn Qn Qn 92 2 2 1
(P & Q7| P @ Po) = nD(@i|[P) £ = [ D) S

)

for 0 large enough. O

Looking back at this proof, we get a better understanding of the exponent in the minimax
2 _2(,87k)

rate n~ 2e—2+d. Given that n~ 26+d is the minimax rate of estimation of the kth derivative of a

B-smooth density in L? [MGT79], the rate that we obtain is formally that of an “antiderivative”

(k= —1) of a f = a— 1-smooth signal in this model. This is due to the fact that, on the one hand,
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the information structure, measured in terms of Kullback-Leibler divergence, is governed by the
derivative of the signal T, i.e., the Hessian of the o + 1-smooth Kantorovich potential, see (4.3),
which is a — 1-smooth. This follows directly from the Monge-Ampere equation (4.2). On the other
hand, we measure the performance of the estimator in terms of the L?(P) distance between T and
Ty, corresponding to the antiderivative of the Hessian. Of course, in the absence of the classical
fundamental theorem of calculus in dimension d > 1 for arbitrary maps 7: R — R, the existence
of an antiderivative needs to be guaranteed a priori, as in the case of transport maps by assuming
T =Vf for f: R* - R.

Similar rates arise in the estimation of the invariant measure of a diffusion process when smooth-
ness is imposed on the drift [DRO7, Str18]. This is not surprising as the drift is the gradient of the
logarithm of the density of the invariant measure in an overdamped Langevin process.

Finally, note that the multivariate case is singularly different from the traditional univariate case
where the rate of estimation of linear functionals such as anti-derivatives is known to be parametric
regardless of the smoothness of the signal [TH81].

5. UPPER BOUNDS

In this section, we give an estimator T that achieves the near-optimal rate (3.2). We present this
estimator under the following more general assumptions on the distribution and the geometry of
the support of both P and Q = (Tp)4P. We also need slightly weaker conditions on the regularity of
the transport map (Sobolev instead of Holder regularity). After stating these weaker assumptions,
we present our estimator and restate the main upper bound. Its proof relies on a separate control
of approximation error and stochastic error, similar to a standard bias-variance tradeoff.

5.1 Assumptions

Throughout, we fix two constants M > 2,3 > 1.

B1 (Source distribution). Let M = M(M) be the set of all probability measures P whose
support Qp C M By is a bounded and connected Lipschitz domain, and that admit a density pp with
respect to the Lebesque measure such that M1< pp(z) < M for almost all x € Qp. Assume that
the measure P € M.

B2 (Transport map). For any P € M with support Qp, let Qp denote a conver set with
Lipschitz boundary such that Qp C MBy, and Qp + M~'B; C Qp. Let T = 7'(M) be the set of
all differentiable functions T: Qp — R such that T =V f for some differentiable convex function
f:Qp — R and

(i) |T(z)| < M for all z € Qp, )
(is) M~ < DT(z) = M for all x € Qp.

For R>1 and a > 1, assume that

To € To = Ta(M, R) = {T € T(M) : [|Tll g5 () V | T lype@rypy < RB}-

These new conditions have two implications. First, they imply regularity of the Kantorovich
potential fy, where Ty = V f, and second, they imply some conditions on the pushforward measure
Q@ = (To)4 P that subsume the generalization of Assumption A2(iii). These results are gathered in
the following proposition (see Section F.1 for a proof).
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PROPOSITION-DEFINITION 7.  Assume that P satisfies B, Ty satisfies B2 and let X = X (M)
be the set of all twice continuously differentiable functions f: Qp — R such that

(i) |f(z)| < 2M? and |V f(z)| < M for all z € Qp,
(ii) M~ < D?f(x) = M for all x € Qp.

Then there exists a Kantorovich potential fo € X (M) such that Ty =V fo,

Wollgass gy V lfollyassaap < B+ 205, (5.1)

Further, Q = V(fo)xP has a connected and bounded Lipschitz support Qg C M By and admits a
density pg with respect to the Lebesque measure that satisfies M-+ < po(y) < MY for all
Yy € QQ.

Note that the simplified Assumptions A1l and A2 from Section 3 follow from B1 and B2 in the
case Qp = Q = [0,1]¢ and Qp=Q= [~1,2]%. Additionally, the simplified assumptions restrict the
class of transport maps to those such that Qg = [0,1]¢ and for which 8 = «. Indeed, noting that
||T0||Wa,2(Q) < ||T0||CQ(Q), we can fold the two smoothness conditions into one.

5.2 Estimator

To construct an estimator for Ty, we observe that if we had access to a Kantorovich potential
fo, then Ty = V fy by Brenier’s Theorem, Theorem 1. In turn, fy is the minimum of the semi-
dual objective (2.5). Hence, we replace population quantities with sample ones in its definition to
obtain an empirical loss function. Moreover, to account for the assumed smoothness of the transport
map and to ensure stability of the objective, we constrain our minimization problem to smooth
and strongly convex Kantorovich potentials, restricted to a compact superset of the support of P.
Then, our estimator is the gradient of the solution to this stochastic optimization problem.

More precisely, for a measurable function f, let us write

Pf = / @) dP(z), Qf = / £(1) dQ(y),
Pr=3TRX) QF =3I,
=1

where, as in Section 3, X1., = (X1,...,X,) and Y., = (Y1,...,Y,) are n i.i.d. samples from P and
@, respectively, that are mutually independent as well. Recall from Section 2 that the semi-dual
objective is defined as S(f) = Pf + Qf* for f € L'(P), where f* denotes the convex conjugate
of f. Replacing both P and @ by their empirical counterparts, we obtain the empirical semi-dual,

S(f)=Pf+Qf* (5.2)

In order to incorporate smoothness regularization into the minimization of (5.2), we consider
the restriction of potentials f to a wavelet expansion of finite degree, a strategy that is frequently
used in non-parametric estimation [HKPT98, GN16|. For the purpose of this section, it is enough
to think about wavelets as a graded orthogonal basis of L?(IR?), leading to nested subspaces

VoCViC---CVyC--- CLARY),
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that roughly correspond to increasing frequency ranges of the continuous Fourier transform of
a function f € L?(RY). Truncated wavelet decompositions yield good approximations for smooth
functions and we control their approximation error in Lemma 13. We only consider the span VJ(Q P)
of those basis functions of the wavelet expansion whose support has non-trivial intersection with Qp.
This is a finite-dimensional vector space as long as the elements of the wavelet basis have compact
support. The cut-off parameter J is chosen according to the regularity of fy in assumption B2, see
Section 5.6, or alternatively can be chosen adaptively by a straightforward but technical extension
using a penalization scheme [Mas07] that we omit for readability. Alternatively, other selection
methods such as Lepski’s method [Lep91, Lep92, Lep93| could be used. In order to ensure the
necessary regularity and the compact support of the elements of the wavelet basis, we assume
throughout that the wavelet basis is given by Daubechies wavelets of sufficient order. For a more
detailed treatment of wavelets, we refer the reader to Section B.

To ensure stability of the minimizer of the semi-dual with respect to perturbations of the input
distributions P and @), we further restrict the potentials f to mimic the assumptions in Proposition-
Definition 7, in particular, we enforce upper and lower bounds on the Hessian D2f on Qp by
demanding f € X (2M).

Combined, both wavelet regularization and strong convexity lead to the set

Fj=X2M)NVi(Qp) (5.3)
of candidate potentials, based on which we define the estimators
f7 € argminS(f), Ty =V, (5.4)
fEF;

for the Kantorovich potential and transport map, respectively.
Note that since we consider candidate potentials only on the compact set Qp, f* above is defined
as
F*(y) = sup (z,y) — f(z) = sup (x,y) — (f +15,)(x), yeER,
zEQp z€eR?
where ¢, is the usual indicator function in convex analysis (see Section A).
With this, we can restate the upper bound of Theorem 2.

THEOREM 8. Under assumptions B1 and B2, there exists ng € N and J such that for n > ng,

~ __ 2« ].
B i | [ 1T060) = To@)B dP(o)| < ¢ [ togtn?v o).
where ng, C, and J may depend on d, M, R,{p,$1q, Qp, no may additionally depend on B, C may
additionally depend on a, and J depends on n.
The cutoff J depends on « if d > 3, but in the cases d = 1 and d = 2, J can be chosen
independently from c.

REMARK 9. A few remarks are in order.

(i) Similar upper bounds hold with high probability and can be inferred from the proof.

(i) As written, the estimator fJ is not directly implementable since the calculation of f* in-
volves computing a maximum over a continuous subset of RY. However, this limitation can
be overcome by a discretization of the space, although this is not practical even in moderate
dimensions. We provide such an example implementation in Section 6, along with a more
practical estimator for which we give no theoretical upper bounds.
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(i7i) The numerical experiments in Section 6 suggest that restricting the optimization in (5.4) to
X (2M), while necessary for our proofs, might not be necessary in practice.

(iv) The estimator employed in Theorem 8 can be made adaptive to the unknown smoothness
parameter o using a standard penalization scheme, see [Mas07]. We omit this straightforward
extension and instead focus on establishing minimazx rates of estimation. For a more detailed
account, we refer the reader to [HI9).

(v) For the sake of readability, we do not explicitly track the dependence on the parameter M.
However, an inspection of the proof yields that the final rate scales like M 4t¢2 for constants
c1,c2 > 1, 1.e., there is an exponential dependence on the dimension d. Further, the dependence

2(d—2) )
on R is captured in (5.15) below and amounts to R2e=2%d log(R) in the case d > 3. We do
not claim an optimal dependence of our rates on these parameters.

In the rest of this section, we present the proof of Theorem 8. We begin by stating our key result,
which relates the semi-dual objective to the square of our measure of performance. This result
also allows us to employ a fixed-point argument when controlling the risk of our estimator using
empirical process theory. Combined with approximation results for truncated wavelet expansions,
these lead to a bias-variance tradeoff that achieves the minimax lower bound of Theorem 6 up to
log factors.

5.3 Stability of optimal transport maps

In this section, we leverage the assumed regularity of the optimal transport map to relate the
suboptimality gap in the semi-dual objective function S and the L2-distance of interest.

PROPOSITION 10. Under assumptions B1 — B2, for all f € X(2M) as defined in Proposition-
Definition 7, we have

SiMHVf(:c) — Vfo(@)Z2p) < S(f) = S(fo) <2M ||V f(x) = V fo(@)|72(p) (5.5)

and

IV W)~ VW) < S — S(o). (5.6)

Proor. It follows from Proposition-Definition 7(ii) and a second-order Taylor expansion that f
is of quadratic type [Kolll] around every x € Qp:

oollz =l < F2) — f@) — (Vi(@)z—a) < Tle—alf, forzepzedp,  (5)

for all L > 2M. It turns out that these conditions are sufficient to obtain the desired result.
The upper bound in (5.7) is of the form

f(2) € qu(2) = f(2) +(Vf(2),2 —x) + gHz — 3+, (2).

Since the convex conjugate is order reversing and because the convex conjugate ¢} of the quadratic
function ¢, can be computed explicitly (Lemma 21), we have

F (Vfo(x)) = ¢z(Vfolz)) = %vao(ﬂ?) — V(@) + (&, Vfo(x)) — f(z)

_ §d2(Vf0(aj)£ Vi) _ 9:7(213) :
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The squared distance term vanishes for L = 4M: by the triangle inequality ||V fo(z) — Vf(z)]2 <
4M and since x € Qp, it holds that

Vfo(x) - Vf(l‘)
L

Together with the fact that Q = (V fo)4 P, this yields

—.CUEQP.

S(f)=Pf+Qf = / (@) + (Y fo(x)))dP()

> IS = Vhollae + [ (@ T hola)dPla).

Moreover, by strong duality, we have
S(h) = Ph+ Qs = [ o,V fu(@))dP(a).

The above two displays yield S(f) —S(fo) > (8M)7 ||V f — VfoH%Q(P). In the same way, using the
lower bound in (5.7), we get that S(f) — S(fo) < 2M||Vf — Vf0||%2(P), which concludes the proof
of (5.5).

It turns out that (5.6) is even easier to prove. Indeed, by Proposition-Definition 7(ii) and
Lemma 17, we get that the upper bound in (5.7) is also true for f* on all of R?. In this case,
we can simply take L = 2M and get similar results. O

There are many ways to leverage strong convexity in order to obtain faster rates of convergence,
often known as fized-point arguments [Mas07, Koll1l, GN16]. In this work, we employ van de Geer’s
“one-shot” localization technique originally introduced in [vdG87] and stated in a form close to our
needs in [vdG02].

5.4 Control of the stochastic error via empirical processes

In light of Proposition 10, the performance of our estimator T; = Vf; defined in (5.4) requires
the control of S(f;) — S(fo), which can be achieved using tools from empirical process theory. To
that end, for any f, define

So(f) =S8(f)—S(fo) and  So(f) =S(f) —S(fo),

and let f; € F;. We observe that by optimality of f 7 for S ,

So(£1) = So(f1) < [So(fr) — So(f1)] + [So(fr) — So(f)]-
To proceed, we control the localized empirical process

sup So(f) — So(f)]-
FEFy :So(f)<r?

for some fixed 72 > 0. More precisely, we prove the following result in Appendix F.2.

PROPOSITION 11. Let assumptions B1 — B2 be fulfilled and define Fj as in (5.3). For any
7> 0, define
Fi(r?) ={f € Fy:So(f) < 12}
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Then, there exists C; = C1(d, Qp, Qp, Qg, M) > 0 such that with probability at least 1 — exp(—t),

sup [So(f) — So(f)] < C1 <¢J(T2) +T\/Z+ t) ,

fEF;(72) n
where
2/(d=2)/2 7 C 2/d=2) g C T
D=2 1 1+ | 1+ 2L — .
og(7%) Tn Jog( + . + - og 1+ - +\/ﬁ (5.8)

Equipped with this result, we can apply van de Geer’s localization technique. To simplify the
presentation, assume that f = f; € argmin rer, S(f) exists. If not, we may repeat the proof with an
e-approximate minimizer and let ¢ — 0. Throughout the proof, we write f = f; and ||| = ||-|| L2(P)-

Fix o > 0 to be defined later and set

o

fs:3f+(1_3>.f7 §= x — (5'9)
o+ |[IVf=Vfl
Note that since s € [0, 1] and F; is convex, we have fs € Fy.
On the one hand, fs is localized in the sense that
. : o OIVF-Vf
IVf il = sl vf v = TV =V
o+ [IVf=V/f]

By Proposition 10 and the triangle inequality respectively, this yields
So(fs) < 2M||Vfs — Vfol> <4M (o> + ||V f — V fo|?) =: 72.

Therefore, fs € fJ(TQ).AFOI' the same reason, we also have that fe ]{1(7’2).
On the other hand, fs, akin to f, has empirical risk smaller than f. Indeed, by convexity of S
and the fact that f minimizes S over G, we obtain

which yields

Together with Jensen’s inequality and Proposition 10 respectively, the above display yields
IV fs = VI <20V F = Voll> + 2V fo = VFI? < 16MSo(fs) + 16MSo(f)

< 32MSo(f) +32M  sup |So(f) — So(f)].
feF (2)

Next, note for s as in (5.9), we have that |V f, — Vf| > o/2 iff |[Vf — Vf|| > 0. Hence
P(IVf = Vfoll > o +IVF = Viol) <P(IVSs = VFI* > 0?/4)

<P( sup [So(f) = So(f)] > i —So(f))

feF () 128M

T2 1 -

IVf =V fol* = So(f))-

— =S > —
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Recalling Proposition 11, we take ¢ such that

2 2
T 1 2 Mt M7t
SEIE ZS(f)+128M||Vf V foll” + Ch <¢J( JE T\ >,

so that we get A i
P(|Vf -Vl >0+ |Vf-Vil) <e?

In particular, we can check that (5.10) is fulfilled if we choose o such that

3 2J(d72)J 14+¢
0> 2 So(f) + = log (14 Com) + ——,

for a suitable choice of Cy > 0.

With this, and applying Theorem 10 again, we get that with probability at least 1 —e™¢,

) B 2J(d-2) 5 14t
195 = Vholl? S IVF = Fholl + = log (1+ Com) + —

Moreover, integrating the tail with respect to ¢ readily yields by Fubini’s theorem that

. 5 _ 5 2J(d—2)J
E[Vf=Vhl*SIVf=Vfol" + ————log(1+ Can) +

We have proved the following result.

PROPOSITION 12.  Let B1 — B2 hold and define Fy as in (5.3). Then, writing

9J(d-2) g
Ejy:= Tlog(leCQn)Jrf

the estimator T defined in (5.4) satisfies

EHTJ—T0||%2(1>)< inf [V - TollZ2(py + Eu-

Moreover, with probability at least 1 — exp(—t),

. t
2 : 2
1T = Tollz2p) S flen]f‘J IVf = Tollz2p) + Es + s

5.5 Control of the approximation error

(5.10)

it holds

(5.11)

Next, we control the approximation error inf s 7, |V f =V fo| 12(p) that appears in Proposition 12.
In fact, it is sufficient to control |V f — V fo| r2(p) Where f = Il ext fy is the truncation of fy to
its first J wavelet scales after extending fy to all Rd In light of Theorem 23, we may assume that

ext f has the same CP- and W®2-norm as f up to a constant depending on Qp.

To control the approximation associated with truncating a wavelet decomposition, we rely on

the following lemma for Besov functions.
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LEMMA 13. Let f € B;q(IRd) and denote by Il; its projection onto the first scale J wavelet
coefficients. That is, if

=X S oA, west Mof=30 30 3 Al
j=0 geGI kezd Pt

where \I!i’g are multi-dimensional Daubechies wavelets and G the associated index sets as in Sec-
tion B. Then, for all1 < p,q < oo, s >0,

ML fllBs ey < I fllBg (5.12)
Ly f = s, ey < I fB;,- (5.13)
Moreover, for every ¢’ € [1,00], s’ >0, and 1 < p < p' < oo such that s —d/p > s —d/p,
TS = Sl S 2t g
v q

In particular: If f € COTY for o > 1, then || f —IL;f|lce < 277 V|| fl|casr and if f € WotL2] for
a >0, then ||f =Ty fllyr2 < 277 fllwa+rz.

PRrOOF. Write «y for the wavelet coefficients of f. The statements (5.12) and (5.13) follow imme-
diately from the wavelet characterization of the Besov norms, (B.2).

To prove the remaining statements, note that for every j, because || .|,,» <. |le» and || .|| and
| .|l4 are comparable up to a constant due to |G’| < 2¢ being finite,

2j(s’+%—ﬁ)[ Z ( Z |’y£,g|p/>q’/p’}l/q’

9€GI keZd
=2 H DD T (5 )]
geGI  kezd
< =g )2j(s+g—%)[ 3 ( 3 IV#,'I,)q/p} 1/q
geGI kel

j(s'— & —(s—9))
<2

Then, plugging this into the wavelet expansion of Il f — f, we obtain

o0 ! /
’ . /+471/ i /Q/p
s = fl, = 30 27 S (30 )

J=J+1 geGi  kezd
© N UG < g (== D) e
p p
<2 PN, 27T,
j=J+1
Finally, to obtain the special cases, note that [|. [|ps, _ < |- llcs |- [l  and || [lws2 = || || B3,
by Theorem 22. 0

The above lemma together with Proposition-Definition 7 allows us to check that f € Fy. Indeed,
by Weyl’s inequality, we have for any = € Qp that

Amin (D?TLy ext fo(2)) = Amin(D? fo()) — | D*ILy ext fo(x) — D? fo(@)l|op
> ]\4*1 _ C”HJ ext fO - fO”C’Q(QP)'
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It follows from Lemma 13 that [|ILy ext fo — follc2(q,) S 2-B=DJ(M3 + R) < 1/(2M), if

J > Jo:=Cs log (2M* + 2RM) ,

g—1
and C3 = C3(d, 3, Qp) is large enough. This yields Apin (D11 ext fo(x)) > 1/(2M) and f is strongly
convex. Similarly, we get Amax(D?IL; ext fo(x)) < 2M and hence that f € F;. Thus,

VS = Vil < IV = Vol S [ 1V~ Vol dAa)
P
<|f- f0||12/V1,2(QP) S R?27Y

where we used Assumption B2 and Lemma 13.
We have thus proved that

. 2 2 90—2Jc
flen]gl IVf =V follfzp) S B2 for J > Jp. (5.14)

5.6 Bias-variance tradeoff

We are now in a position to complete the proof of Theorem 8. Combining the bounds (5.11)
and (5.14), we get
. 1 1
BTy — Toll2sp) < R22727 4 2702 7108(0) | 1
n n

We conclude the proof by optimizing with respect to J. It yields

n~t ifd=1,
|7y — Tol22p) < { log(R)n™" (log(n))? itd=2, (5.15)

—2a

R? (1/R?)z-5%4 log(R) n%a-2+d (log(n))? if d > 3.

We note that since o > 1, in the first two cases, d € {1, 2}, the cut-off J can be picked independently
from «. Finally, high-probability bounds can be obtained in a similar manner.

6. NUMERICAL EXPERIMENTS

In this section, we provide numerical experiments with synthetic data that illustrate how lever-
aging the smoothness of the underlying transport map can lead to dramatically improved rates.
We give two estimators exploiting smoothness: the first, Tway below, is an approximation to the
estimator 77y in (5.4), illustrating that (5.4) can be implemented in low dimensions and that this ap-
proximation achieves favorable rates in d = 3. The second, Ter below, is a more practical heuristic
two-step procedure based on smoothing the optimal matching between the empirical distributions
via radial basis functions. We compare these to a baseline estimator given by the optimal transport
plan between the empirical distributions.

Additional implementation details and comments on these experiments are provided in Section
H of the Appendix.

6.1 Estimators

6.1.1 Baseline estimator In order to highlight the benefit of regularization, we consider the fol-
lowing simple estimator based on the optimal transport matrix between the empirical distributions
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as a baseline. Denote the empirical distributions of P and @) by

respectively, and calculate the optimal transport matrix I' € R™*™

I';; >0Vi,j € [n],

n
I'= argmin Z ”XZ - 1/]'HQFZ}J' : 'l = ]l/n FT]l —_ ]l/n

ij=1
which can be solved exactly by linear optimization toolkits or approximated by entropic regular-
ization [PC19]. An estimated transport function on the observations X; is then obtained by

Temp( —nZPJYJv

which corresponds to the conditional mean of the couphng given X;. Note that since we assume
that the sample sizes from P and ) are both n, the optimal [ is in fact a (rescaled) permutation
matrix, leading to a matching 7 : [n] — [n], and hence t0 Tump(X;) = Y-

Because Temp(Xi) above is only defined on the sample points and we do not want to introduce
additional bias against the estimator, we consider the following error measure, approximating the
L?(P) norm analyzed in Theorem 2:

n

MSEy, (Temp) = :LZ

=1

N 2
Tomp(X3) — To(X;) ,

6.1.2 Wavelet estimator Next, we turn to an approximation of (5.4). Assume that in addition
to a superset Qp D Qp, we are also given a superset QQ 2 g, and that both Qp and QQ are
boxes (hypercubes). We consider all functions originally defined over Qp and QQ as given by their
samples on grids with resolution N € N, = (2;);cn)e € (RHN and y = (Yi)icne € (RHN,
respectively. In particular, we write f = (fi);c(nje € RM for the discretization of the potential f

and T = (T});enpe € (IRd)[N]d for the discretization of the transport map 7" on the grid «. Here,
we pick N = 65.
We employ the following discretization/approximation schemes:

(i) The restrictions to functions up to wavelet scale J € N can be obtained by parametrizing f
by the inverse discrete wavelet transform up to order J, which we write as f = WJTfy j for
wavelet coefficients v; € R™7 with m; € N. For these experiments, we use db4 Daubechies
wavelets, i.e., Daubechies wavelets with four vanishing moments.

(ii) An approximation to the (continuous) Legendre transform is given by the discrete Legendre

transform,
L(f)j = LUF)IY;j) = Lasy(F)(Y;) (6.1)
= :E\%d{<$iayi> — fii € [N]"},

for f € (RN and j € [N
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(iii) The gradient of f on grid-points can be calculated by a finite-difference scheme, which we
write as Vg f.

(iv) To obtain values of these approximations at non-grid points, we appeal to linear interpolation,
which we write as P, _,(x, .. x,}J for the interpolated value of f defined on the grid = at the
point {Xi,...,X,} € R% collected in one vector.

Given i.i.d. observations Xi., = {X1,...,X,} and Y1, = {Y1,...,Y,} from P and @, respec-
tively, we arrive at the following optimization problem as approximation to (5.4):

Go= i 1T Pa, WS+ 1T Py, L0V ). (62)
Note that we dropped all boundedness and convexity constraints that were given by X'(2M) in
(5.4). In practice, this can lead to degraded estimation quality of the gradient of WJTW 7 near the
boundary of Qp, see Section H.3 in the Appendix, which we remedy by computing the convex
envelope of the resulting estimator, yielding an estimator of fy that is convex. This envelope can,
for example, be calculated by applying the Legendre transform twice, and we set

With this, we denote by T V(V‘Q, the function obtained by linearly interpolating Ty,

Tv(vi\)/(x) = P;L-_>1-TJ, S QP.
For the purpose of these experiments, we select the wavelet scale J by an oracle choice, i.e., as the
minimizer of an approximation to the population semi-dual (2.5), see Section H.1, while in practice,

one would resort to cross-validation methods for this purpose. Finally, we set
Twav = TV(\;;‘\)/
To obtain an error measure for 7. wav that is easily comparable to MSE,, (T emp); We consider the

empirical L?(P) norm on the sample points,
. 1<) 2
MSEn(Twav) - g z; HTan(Xi) - TO(Xz) ‘2
1=

Note that the objective function in (6.2) can be calculated in linear time with respect to the
underlying grid, that is, in O(N?), thanks to efficient algorithms for the discrete wavelet transform
[Mal99] and the Linear-Time Legendre Transform algorithm [Luc97]. It can be checked that the
objective is convex, rendering first-order methods provably convergent. We use the L-BFGS Quasi-
Newton method to find 47, even though the objective is not smooth for every v due to the form
of the discrete Legendre transform. In practice, we observe that it converges faster than simple
(sub-)gradient descent methods.

Since Thay is mainly used to illustrate the practical behavior of a wavelet-based regularization
of the semi-dual objective, we do not explicitly analyze the convergence of Tway to the estima-
tor Ty considered in Section 5. We remark, however, that our approximations closely follow the
definition of 7; and that the omitted constraints defining the set X'(2M) could be incorporated
into the approximation by means of a finite-difference discretization as well, albeit at an additional
computational cost.
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6.1.3 Kernel smoothing estimator While the estimator T wav closely follows our theoretical anal-
ysis, its applicability is limited to low dimensions by the fact that a discretization grid is needed.
As a heuristic alternative, we consider smoothing the assignment obtained by Temp. The idea of
smoothing the empirical transport matrix has been previously used in practice, see for example
[SST*19], where regularized linear regression was used as a post-processing step, and kernels have
been applied for smoothing potential functions in [GCPB16]. Here, we obtain a smoother version
of Temp by smoothing it via kernel-ridge regression [Murl2].

Let H denote a reproducing kernel Hilbert space (RKHS) with associated kernel k(x,y), z,y €
R?, and norm |||y for T € H. Here, we consider the RKHS given by Gaussian radial basis
functions,

k(x7y) = eXp(_Vkernel||$ - y||2)7 HRTIS Rda Vkernel > 0.

~ A~

We fit an RKHS function T' to the pairs (X;,Y; = Temp(X;)) by solving the regularized kernel
regression objective

T}EeVIr-ldg&Vkernel) arjgn;[ln Z HY T( 7/)”% + I/ridgeHT”%_l, (63)
€ i=1

for 14iqge > 0. By the representer theorem [Murl2], (6.3) has a solution

n
~ (Vridge V N
Tlfe;ldge kernel) ($) — E wlk,($“ T

where _
Wy Y1
W= 1 | =(K+viael)”'Y, with K;; = k(X;,X;) and Y = | :
W) Y,
We measure its performance by

2

MSE ( k(;’;ldgeﬂ/kernel Z "Tkggldgeyljkernel (Xz) _ T(] (XZ) (64)

2.

Similar to T wav, We select the tuning parameters Vyernel and t4iqge by an oracle procedure, picking
those parameters from a finite grid that minimize (6.4) on an independent hold-out sample Xj.p,,
and denote the resulting estimator by Tie,.

6.2 Setup
For d € N, we consider the following examples of smooth potentials and transport maps:
1 1 1 .
0 (@) = 5l V(@) =2, @R (id)
d
=Y exp(@i), (Ty(2))i = expla;), = €R%, ield) (exp)

where for (id), P = QM) = Unif([0, 1]%). For (exp), P = Unif([0,1]%), and the target measure is
defined as Q2 = (Téz))#P@). Note that these potentials and transport maps are C*° and strongly
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1.0 %, — 05
% 0.0 9.0 %

(b) Transport map estimator from empirical
distributions and 1-NN interpolation

(fker)l

(¢c) Wavelet estimator, J =1 (d) Kernel estimator, vyidge = Vkernel = 1073

Figure 1: Qualitative comparison between Temw Twav, and Tker. Both the wavelet-based estimator
Tway and the kernel estimator Tie, produce a qualitatively smoother output then the optimal
coupling between the empirical measures. Visualizations of the first coordinate of the transport
maps.

convex on any compact convex subset of R?%. For the purpose of qualitative comparisons, we consider
case (id) in d = 2. In order to determine the quantitative behavior of the estimators, we study both
cases for d € {3,10}.

The runtime of computing the optimal transport matching via linear programming scales unfa-
vorably with the sample size, a shortcoming that could be remedied by employing recent numer-
ical approximation techniques [ABRNW19]. Similarly, computing the kernel regression (6.3) with
off-the-shelf methods scales with O(n?). For the sake of this comparison, we simply restrict our
experiments on Temp and 7T ier to sample sizes < 10%. Likewise, we do not compute Twav ind=10
due to the large computational cost.

6.3 Results

6.3.1 Qualitative comparison in 2D To give a qualitative idea of the considered estimators com-
pared to the baseline T¢yp, we visualize the first coordinate of the transport map estimators for
case (id) with d = 2 and n = 100 observations from P = Q = Unif([0,1]?) in Figure 1, together

with the ground truth transport map (Tél))l. To depict the coupling Temp induced by the empirical
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distributions, we employ 1-nearest-neighbor (1-NN) interpolation to obtain a map on [0,1]2. We
observe that the wavelet-based regularization in Figure 1c produces a visibly smoother map com-
pared to the unregularized ’femp in Figure 1b. The kernel estimator in Figure 1d is even smoother
and visually very similar to the ground truth in Figure la, due to the possibility of employing a
large amount of regularization.

MSE for (id), d = 3 MSE for (id), d = 10

o B 0
107 S [slore =-0.693] —e— MSEy(Temp) 10 :\.\
s, P2 A \ ®.
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. \
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-2 N
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o
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(a) Identity transport map, d = 3
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|} \ ®
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N\
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(b) Identity transport map, d = 10
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(¢) Exponential transport map, d = 3 (d) Exponential transport map, d = 10
Figure 2: Log-log plot of MSE plotted against n, showing the median error over 32 replicates. See
Section 6.2 for details.

6.3.2 Quantitative comparison in 3D and 10D To obtain a quantitative comparison, for both
test cases and d € {3,10}, we compute Temp, Taw (only d = 3), and Tier OVEr 32 replicates and a
logarithmically spaced selection of sample sizes n, reporting the median error over the replicates
in Figure 2. Here, the dashed lines indicate the result of linear regression on the logarithmically
transformed sample sizes and error results for a selected subset of n.

In 3D, for both test cases, the error curves for the standard empirical measure-based estimator
—2/3 rate. This corresponds to the decay of the average £ cost of optimal

~

Temp roughly follow a n
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matchings between samples from the uniform distribution on the cube [Tall4, Yuk06] (and Gaussian
distributions [Led19]), and also matches the n=2/% rate for the convergence of W2(P, P). We are,
however, not aware of a generalization of this rate to the error measure MSE in the case of a
transport map different from the identity.

The error curves for the wavelet estimator Ty all follow a similar trend. For low sample sizes,
we obtain rates faster than n~0% showing the large statistical benefit of fitting only functions
that have wavelet expansions of low order. For large sample sizes, the error flattens out, which
can be explained by the numerical approximation errors dominating the statistical ones. This can
be readily seen from repeating the experiment with a smaller grid resolution (N = 33), which
shows the same trend for smaller values of n, see Section H.2 in the Appendix. Moreover, for all
sample sizes we considered, the error curves for T wav all lie below the baseline estimator. The kernel
estimator Tier performs even better, attaining rates close to n~! and yielding consistently better
rates than Twav.

We observe that the favorable behavior of Twav suggests that the restriction of candidate poten-
tials to X'(2M) in (5.4) might not be necessary and could possibly be omitted.

In 10D, for both test cases, Temp shows a convergence rate of about n =92, which is slightly better
than the expected n=2/¢ = =02 rate. It is vastly outperformed by the kernel-based estimator that
achieves rates better than n~%6 in both examples.

Further plots showing individual error curves for varying values of the regularization parameters
can be found in Section H.4 of the appendix, illustrating the sample size-dependent performance
gain achieved by Twav and rf’ker.

To summarize, in cases where smoothness of the transport map can be assumed, its estimation
greatly benefits from smoothness regularization. In particular, these experiments suggest further
research on proving error bounds for the kernel estimator Tier under regularity assumptions on Tp,
for which the minimax rates established in this work can serve as a benchmark.
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APPENDIX A: CONVEX ANALYSIS

In this section, we recall some useful facts from convex analysis. We refer the reader to [HLO1]
for a comprehensive treatment.

Recall that a set U C R? is convex if for all z,y € U, t € [0,1], tx + (1 —t)y € U. A function
f: U — RU{+00} is convex if for all z,y € U, t € [0,1], it holds that

flte+ (1 —t)y) <tf(z) + (1 —1)f(y).

Moreover, we call a function p-strongly convex if for all z,y € U, t € [0,1], we have

fte + (1= t)y) < tf(@) + (1= Df(y) - S0 = )l =yl
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For twice differentiable functions, it is often more convenient to employ the following analytic
criterion for strong convexity.

LEMMA 14 ([HLO1, Theorem B.4.3.1]). Let U C RY be an open conver set and f: U — R twice
differentiable. Then, f is p-strongly convex if and only if Amin(D?f(x)) > p for all x € U.

Note that even if U C R¢ is a proper convex subset of R? we can always consider a function
f:U = RU{+00} to be defined on all of R¢ by setting it to +oco outside of U. To that end, let ¢y
be the indicator function defined by

LU(x):{O, rxelU

+ 00, otherwise.

We define the extension of f outside U by f + ¢y, which by abuse of notation we also denote by f.
Note that if f is (strongly) convex on U then its extension outside U is also (strongly) convex. We
call dom(f) = {x € R?: f(x) < +o0} the domain of a convex function.

We now recall two important notions associated with convex functions f.

First, the subdifferential of f at x € dom(f) is defined as

of(x) ={a e RY: f(y) > (a,y — x) + f(z) for all y € R},

As indicated by the following lemma, the subdifferential reduces to the gradient for differentiable
functions.

LemMA 15 ([HLO1, Corollary D.2.1.4]). Let f: R? — R U {400} be a convex function. If f is
differentiable at x € Re with gradient V f(x), then Of (z) = {V f(z)}.

Conversely, if 0f (x) = {a} consists of only a single element, then f is differentiable at x with
gradient V f(z) = a.

Second, the convex conjugate, or Legendre-Fenchel conjugate, is defined for any function f: R¢ —
R U {+o0} as

f*(y) = sup (z,y) — f(z), yeR™L
z€R4

By considering f + ty, this definition extends to functions f: U — R U {400}.
We recall the following standard facts about the convex conjugate, stated here without proof
(see [HLO1, Part E] for details).

LEMMA 16. If f: RY — R U {400} is convex and lower semi-continuous, then f** = f.

LEMMA 17. Let U be a closed, convex set. If f: U — R is p-strongly convex, then dom(f*) =
RY, and Vf* is p~-Lipschitz:

* * 1
IV () = VI W)l < pllx —yl2,  VayeR

LEMMA 18. Denote by f: RY = RU{+00} a lower semi-continuous and convex function. Then,
for z,y € R?,
') =(z,y) — f(z) <= yedf(x) < z€df(y).
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LEMMA 19. If f,9: U —» R, f(z) < g(z) for allz € U, then f*(y) > g*(y) for all y € R.

LEMMA 20. Given two functions f,g : U — R for a compact set U. Abusing notation, denote
the convex conjugate of the function f +wy by f*. Then, ||f* = g%l peomay < IIf — 9l -

The next lemma provides an explicit form for the convex conjugate of a quadratic function. It is
instrumental in the stability proof for the semi-dual objective function (see Proposition 10).
LEMMA 21. Leta >0, b,t c R% ce R and let U C R? be a closed, convex set. Define

qi(z) = ng—t\@—i—(b,x—t)+c+LU(x), z e Re.

Then,
— bl|2 —b

2a a

where d* denotes the squared distance d*(z,U) = inf ey ||z — y||3.

PRrROOF. Note first that for any y € R¢,

¢t (y) = sup (z,y) — q(z —t) = sup (z +t,y) — q(x) = ¢"(y) + (t,v), (A1)
zC€R4 z€R4
where a
q(z) = 5”3:”% +b'z+e+ ty+t(zx)
Moreover,
q"(y) = sup (z,y) — q(x) = — inf {q(z) — (z,y)}. (A.2)
zeR? zeR?
Writing
a y—>bi2 y—0l3
q(w) — (z,y) = §H93* a HQ* % +c+ ()

we see that the infimum in (A.2) is achieved by the projection z of (y —b)/a onto the closed convex
set U + t. Moreover, the value of the objective at T is given by

v _an(y=Db lly —ol3
q(z) — (z,y) = 2d <a ,U—I—t> Ty +c
an(y—>b ly — bll3
=_d*|—-t,U) -T2
2 < a ’ > 2a €
Together with (A.1) and (A.2), this completes the proof of the lemma. O

APPENDIX B: WAVELETS AND FUNCTION SPACES

In this section, we give a brief overview of the different function spaces used in the paper and
how their norms can be related to their wavelet coefficients.

First, we recall the definition of Holder and Sobolev spaces. Let 2 C R? be a closed set with
non-empty interior and denote by C,,(£2) the set of uniformly continuous functions on Q2. The Holder
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norms for any f € () are defined as follows. For any integer k£ > 0 and f that admits continuous
derivatives up to order k, define

[ fllex ) = Z 18 f1l Low o)

b|<k

and for any real number « > 0, define

O f(x) — &
Z 10 f () f(y)l.

b= #yv en l — g~

[fllee@) = [[flletes @

The space C%(2) is then defined as the set of functions for which this norm is finite. For a vector-
valued function T: Q — RY, T = (T1,...,T,;) ", we similarly define the norms as the sum over the
individual norms,

d
1Tl o) = Z T3] ¢ (2)
i=1
Similarly, for an integer & > 0 and p € [1, o], the Sobolev norms are defined as
Hf”W’w’(Q) = Z ||8bf\|LP(Q),

b|<k

where the derivative 8” is to be understood in the sense of distributions and the Sobolev space
W™2(Q) is the space of all functions for which this norm is finite. This definition can be extended
to a > 0, for example by defining W*?2(12) as the Besov space BS§5(Q), which we define shortly.

Next, we define wavelet bases and Besov spaces, following the definitions given in [Tri06, Section
3], and we refer the reader to this reference for further details on wavelets. Denote by ¥ € C"(IR)
and ¢z € C"(R) a compactly supported wavelet and scaling function, respectively, for example
Daubechies wavelets. This implies that

I,Z)j ¢%(=’U—k)a J=0,k€Z,
| 2002y (2 — k),  jeNkeZ,
is an orthonormal basis of L?(IR). To obtain a basis of L2(IR%), for j € N, set

Gj:{S,Qﬁ}d\{(S,...,S)}, GOZ{(&;---ag)}y
and for g € G7 UGY,
w(x) = H%i(fb‘i — k), kezl
i=1
This gives the orthonormal basis
Wi {‘Pi(m), j=0,9eG% kez?
k

UG (277 ),  jeN, ge @ ke,

Wavelet coefficients, defined as the expansion coefficients with respect to the above basis for
L?(R%) functions, can be used to characterize the so-called Besov spaces: Let 1 < p,q < o0, s > 0,
and let the regularity of the above wavelets satisfy
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With this, if f admits the wavelet representation

F=3000 3 Aoy, (B.1)

Jj=0 geGJ kez

we define the family of norms ||. ||p; by
15, = 171155 ey = Il (B.2)
- a/p] V4
S o Dol
Jj=0 geGI \kezd

In particular, by the orthonormality of the wavelets {\I/i’g Yigiks
1 lBg, = Ivllex = Il fll 22 may-

For a bounded Lipschitz domain © C R?, we can define the Besov spaces B, ,(Q) by restrictions
of functions on R¢ with norm

1135, @ = inf{lglls, ey : 9l = 13-

Note that since we work with compactly supported wavelets, for a function f with compact
support, only a finite number of wavelet coefficients are non-vanishing in (B.1). In particular, for
non-zero wavelet coefficients are contained in a set A(j) with [A(5)| < 277

The following theorem collects some basic properties of Besov spaces and their relationship to
Holder and Sobolev spaces.

THEOREM 22. Let Q C R? be a bounded Lipschitz domain.

(i) [GN16, Proposition 4.3.6] Let s,s" > 0, 1 < p,p',q,q' < co. Then, the following inclusions
hold in the sense of continuous embeddings:

(a) B;,q - B;yqu ifq<¢,
(b) Bs, C BY

P = Tpg’
(i3) [Tri06, Theorem 1.122] Let k € N. Then, W*2(Q) = B§’2(Q) and we define W2(Q) =
B§5(Q) for o > 0 not an integer.
(i1i) [Tri06, Theorem 1.122], [GN16, Proposition 4.3.20] Let o > 0. If «v is not integer, then

if s > 8,

C?(2) = B, (),

If « is integer, then
Loo(2) € C%(Q) € BS, oo()). (B.3)

1,00
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Note that the proof in [GN16] of (B.3) is given in 1D, but extends naturally to arbitrary dimen-
sions by summability of the wavelet coefficients.

A very useful tool to handle function spaces on domains is the availability of extension operators
that preserve the norms. The following theorem guarantees the existence of such an extension
operator that is the same among all Besov spaces. This allows us to characterize Besov functions
on domains via the wavelet coefficients of their extensions.

THEOREM 23 (Extension operator, [Tri06, Theorem 1.105], [Ryc99]). Let Q C R? be a bounded
Lipschitz domain. Then, there exists a linear extension operator ext that preserves L?-, CP-,

and W®2-norms. That is, there exists an estension operator ext = ext(Q) such that for A €
{L2,C8, W2 : 3> 0,a > 0}, there exist constants C = C(Q, A) with

lext fllamay < Cllflla), and extflg=f, forfeA

We conclude this section by a lemma that provides uniform control of a function by its wavelet
coefficients. It is useful to control bracketing entropy numbers.

LEMMA 24. Let f € V3(RY) with wavelet coefficients ’yi’g for compactly supported mother and
father wavelets. Then, || fllso < 272 |17|lo0 < 2742||7|-.

~

PROOF. Let z € R? and write

J J
F@I =10 3 @) < e Y. Y [ ()

J=0 geGi kez J=0 geGi kez

J
Sl Y 2792 < 2792y ||,
j=0

where we used Holder’s inequality and the fact that only a finite number of k enters the summation
for each fixed x € R%. The last inequality is trivial. O

APPENDIX C: METRIC ENTROPY AND SUPREMA OF STOCHASTIC PROCESSES

Here, we collect some basic results about empirical processes that are needed in the proofs. Note
that because all suprema we deal with are over subsets of finite-dimensional vector spaces, we do
not consider issues of measurability in the remainder.

Denote the bracketing number of a set F with respect to a norm ||.|| by Nj(6,F, | . ||) and define
the Dudley integral as

Dyl ol = [T+ Tos Ny 6.7 ) s (€1)

THEOREM 25 (Bernstein chaining, [vWO07, Lemma 3.4.2] ). Let F be a class of measurable
functions such that E[f%] < 02 and ||f|lcc < M for all f € F. Then,

Dyy(o, F, La(P))
o2\/n M)

E[sup V(P — P)fy} < Dy(o, F, LQ(P))<1 n
feF
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THEOREM 26 (Concentration, see [Mas07, Equation (5.50)], going back to [Bou02]). Under the
same assumptions as Theorem 25,

IP(sup Vn|(P = P)f] > 2E[sup v/n|(P — P)f|] + o2z + %w> < exp(—x).
ferFr feF \/ﬁ

LEMMA 27 (Bracketing numbers from L> covering numbers). Let P be a probability measure
and A C F be a set of functions with N (A, L®(P),5/2) < ¢(6). Then, Ny(A, L*(P),8) < ¢(6).

Moreover, if for every function in the original class f € F, B[f?] < 0% and [ fllzoe(py < M, then
every bracket [f1, fa] in a §-cover above (note that fi and fo need not be members of F) satisfies

1 .
E[f}] <20”+ 5% fillee) < M +6/2. je {12}

PRrROOF. Denote by {fi,...,fn} the centers of a minimal §/2-covering of F in L*°(P). Let
i € {1,...,N}. Then, each §/2 ball around f; is contained in the bracket [f; — /2, f; + §/2].
Moreover, the L?(P) diameter of the above bracket is bounded by its L>°(P) diameter, which is J,
so the collection of those brackets yields the desired covering with brackets.

The rest of the lemma follows from

)
BI(f +6/27%) < 2B+ 387  If £06/2m) < Wl + 5.
O

The following lemma can be shown by directly specifying a grid or by a volume argument such
as [Verl8, Proposition 4.2.12].

LEMMA 28 (Covering numbers for norm balls). Fiz p € N and denote by Boo(A) the £° ball of
R? with radius A. Then, N(Buso(A), |- |lcs,d) < (34/6)".

LEMMA 29 ([Raul0, Lemma 10.3]). For a >0,

/ Viog(1 +t=1)dt < ay/1 +1log(1 +a1).
0

APPENDIX D: TOOLS FOR LOWER BOUNDS

For the convenience of the reader, in this section we restate the standard tools we use in the
proof of Theorem 6 to establish lower bounds based on Fano’s inequality and the Varshamov-Gilbert
Lemma, taken from [Tsy09, Theorem 2.9, Lemma 2.9, Theorem 2.2].

THEOREM 30 (Lower bounds from multiple hypotheses). [Tsy09, Theorem 2.9] Let K > 2,
© ={Ty,..., Tk} a collection of hypotheses, and let d be a pseudometric, i.e., a bi-variate function
on © such that

(¢) d(Ty,Ty) >
(b) d(T;,T;) =

0;
0;
(c) d(T;,Ty) =d

(Tk"Tj);
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(d) d(Ty,Ty) < d(Ty, Ty) + d(Tk, Te);

for all0 < j,k,0€{0,...,K}.
Suppose © fulfills:

(i) d(Tj,T) > 25> 0, for all0< j < k < K;
(i) P;j < Py, for all j € [K], and

K

1

7 2 D(Pi[| 7o) < Clog KK
j=1

with 0 < C < 1/8, where P; = Pr, denotes a probability distribution associated with every Tj
forallj=0,1,..., K.

Then,

. VK 2C
inf sup Pr(d(T,T)>s) > ——[1-2C—4/—— | > 0.
T Teo r(d( ) ) 1+ VK log K
LEMMA 31 (Varshamov-Gilbert lemma). [T'sy09, Lemma 2.9] Let D > 8. There exists a subset
7O ) of {0,1}P such that 7 = (0,...,0),

D : D
S ) > g Joral0<j<k<K
/=1

and
K > 2D/8,

THEOREM 32 (Lower bounds from two hypotheses). [T'sy09, Theorem 2.2] Let Ty, T1 be two
hypotheses with associated probability measures P; = Pr, for j € {0,1}. Denoting s = d(To,T1)/2,

if
D(PlHP()) <(C< o0,

then
, . 1 1-/C/2
1I%fjg%§} P;(d(T,T;) > s) > 2 exp(—C) Vv TR

> 0.
APPENDIX E: ALTERNATIVE ASSUMPTIONS VIA CAFFARELLI'S REGULARITY
THEORY

In this section, we show how to apply Theorem 8 under smoothness assumptions on the source
and target distribution instead of the transport map. This is enabled by Caffarelli’s regularity theory
[Caf92b, Caf92a, Caf96], Theorem 33 below, which gives regularity estimates on the transport map
Ty under regularity assumptions on the source and target densities and their supports.

For simplicity, we denote an open, convex set 2 with C? boundary as uniformly convez if it can
be written as the sublevel set, Q = {f < 0}, of a strongly convex function f. Note that uniform
convexity can also be characterized by the positivity of the second fundamental form of 2 on its
boundary 9 [Vil09].
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C1 (Supports). Assume Qp,Qq are two uniformly convex, bounded, open subsets of R® with
cle=1+2 poundaries.

C2 (Densities). With Qp,Qq as in Assumption C1, assume that pp € C*1(Qp) and pg €
CoY(Qq) are two probability densities on R? with supp(pp) = Qp, supp(pg) = Qg that are
bounded from above and below on their support. Further, denote the associated probability distribu-
tions by P and @, respectively.

THEOREM 33 (Caffarelli’s global regularity theory).
[Vil09, Theorem 12.50(iii)], [Caf96]. Let o > 1 and assume that Assumptions C1 and C2 hold.
Then, for the optimal transport potential fy, i.e., the solution to (2.5) for P and Q, which is unique
up to an additive constant, it holds that fo € C*TH(Qp).

Moreover, we need the following extension lemma to smoothly extend the potential (and associ-
ated transport map) to a larger set as required by Assumption B2. Similar statements have been
shown in [Gho02, Yan14, AM19].

LEMMA 34. Let Q be a convex compact subset of R, f: Q — R a conver C*(Q) function for
a > 2 with
Hli%zl Amin(D2f(z)) > 0.
Te

Then, there exists an € > 0 and an extension f of f to Q. = Q+€B(0,1) such that f € C*(Q,) and

min Amin(D%f(z)) > 0. (E.1)

PRrOOF. The claim follows from extending f via Theorem 23 to all of R? while preserving the
Holder class C%, and observing that the strong convexity condition (E.1) on an enlargement of
can be ensured by uniform continuity of the extension. O

COROLLARY 35. Let a > 1. Under Assumptions C1 and C2, writing fo and Ty = V fo for the
Kantorovich potential and optimal transport map between P and Q, respectively, there exists an
estimator 1" such that

1

Bt | [ 1760) - T@IBaP()] < o255 togn)? v .

where X1.n, Y1., denote i.i.d. observations from P and @, respectively.

PROOF. The statement follows by verifying the assumptions B1 and B2 on the original transport
map and concluding by Theorem 8, using the same estimator.

Assumption Bl is satisfied for Qp by the (stronger) conditions imposed on it in Theorem 33.

To show Assumption B2, denote by fy the optimal transport potential and by Tj the optimal
transport map for the problem given by pp and pg. By Theorem 33, fo € C**1(Qp) and thus
Ty = Vfo € C%(Qp,R%). Denoting by fo the extension of fy to Qp = (Qp), from Lemma 34, we
observe that Qp is connected and has a Lipschitz boundary. This follows from the general fact that
the Minkowski sum of a convex set with C'' boundary and another convex set has a C'! boundary
[KP91]. From the regularity of Ty = fo and the compactness of Qp, all requirements in B2 can now
be easily checked. O
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An inspection of the proof of our lower bound results, Theorem 6, readily yields a lower bound
under smoothness assumptions on P and @ as well. In particular, after changing the domain from
[0,1]¢ to the unit ball in d dimensions, the explicit form of the density of Q in (4.2) guarantees
that the candidate densities fulfill assumptions C1 and C2. This indicates that the above rate is
optimal up to log factors.

REMARK 36. In Corollary 35, we do not claim any uniform bound over a reqularity class,
such as an explicit dependence of the constant on the C*~'-norms of pp and pg alone. Although
the statement of Theorem 33 strongly suggests a bound on | fol cos1(q, in terms of ||pp||Ca,1(§P)
and HpQ”C@*(ﬁQ)’ to the best of our knowledge, such bounds are not available in the literature
for the “global” version of Caffarelli’s reqularity theory as stated Theorem 33. On the other hand,
such bounds hold “locally”, that is, | folce+1(ry can be bounded for strictly open subsets of Qp,
see [Vil09, Theorem 12.56], [Caf92b]. This deficiency is due to the non-constructive nature of the
available proofs of Theorem 33 and could possibly be remedied, but we consider it out of the scope
of this paper.

APPENDIX F: OMITTED PROOFS
F.1 Proof of Proposition-Definition 7

We proceed in order of statement of the results.

(i) It follows from B2 that there exists fy such that V fo = Ty and by B2(i) that |V fo(z)] < M
for all z € Qp. Moreover, since fy is defined up an additive constant, assume that fo(zo) = 0 for
some zy € Qp. A first-order Taylor expansion yields that for any z € Qp,

|fo(@)] = |fo(z) — folzo)| < sup ||V fo(2)l2llz — zoll2 < M diam(Qp) < 2M2,

2€Qp

where in the second inequality, we used B2(i), and in the third one, we used that diam(Qp) < 2M
according to B2.
(ii) follows immediately from B2(ii).
Next, as in (i), (5.1) follows from a first-order expansion: For any = € Qp, note that on the one
hand
|fo(@)| = | fo(x) = folzo)| < 2/|Toll2M < 20

so that || fol[zee < M? and || fol|z2 < 2M3. Together with the fact that T = V fo, this allows us to
shift the smoothness index by one speaking about potentials.

To show the statements about @, by Lemma 14 and (ii) above, fy is strongly convex on int(Qp)
and can be extended to +oo outside of Qp and thus be also be considered a strongly convex function
on R?. By Lemmas 17 and 18, we conclude that Ty = V fj is a bijection from Qp onto its image Qg =
supp((V fo)#P), with both Vfy and (Vfo)~! being continuously differentiable; in other words,
Vfo is a C'-diffeomorphism between Qp and Qgq. Since C'-diffeomorphisms preserve Lipschitz
domains [HMT07, Theorem 4.1] and connectedness, we can conclude that g is a connected and
bounded Lipschitz domain, and the fact that Qg C M By follows from T'(x) < M for all z € Q p.

Finally, we turn to check the condition on the density pg. To that end, note that by the change
of variables formula, () has the density

1
pQ(y) = | det D2fo((V fo)~1(y))]

pr((Vfo) ™' (¥))1(y € Q).
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This readily yields the desired bound in light of B1 which assumes boundedness of pp and (ii)
which gives boundedness of the Hessian D? fj.

F.2 Proof of Proposition 11

We first bound the expectation of the supremum of interest and then obtain the high-probability
bound via concentration. To begin, note that

So(f) =So(f) = (P =P)(f— fo) + Q- Q) — £3), (F.1)
which yields

E[ sup [So(f) — So(f)l]

feFs(r2)
<E[ sup [(P=P)(f-f)ll+E[ sup [(Q—Q)(f* — )]
feF(r2) feF(r2)
=T + Ts.

We first focus on the T5-term. Once understood, the Ti-term can be bounded similarly.

Bound on T5-term.

We estimate 75 from above by two suprema, corresponding to low and high frequencies. To this
end, we center all functions and consider the extension of a restriction of the functions to 2g, which
allows us to use wavelet expansions for harmonic analysis.

First, because (Q — Q)(g + ¢) = (Q — Q)g for every function g and constant ¢ € R, we may
assume without loss of generality that

/ (f*(2) — f5(2)dA(z) =0 S € F.
Qq

Note that f* and f; are defined over all of R? but we do not control their norms over the whole
space. To overcome this limitation, with a slight abuse of notation, we denote by ext f* (resp.
ext fi') the Lipschitz extension of the restriction of f* (resp. fg;) to Qg. The existence of a linear
extension operator is guaranteed by Theorem 23. In particular, we control the norms of ext f* and
ext f.

For a function g with wavelet expansion

o0
1=3 5 3

j=0 geGJ kezd

as defined in Section B, we define the two L?-projections

J 00
Myg=> > > w7,  Thyg= > > > %»'¥

J=0 geGi kcZd Jj=J+1 geGi kezd
With this, we write Th = T271 + T272, where
Toy =E[ sup [(Q—Q)yext(f* — f3)[],
feF;(r2)

Too=E[ sup [(Q—Q)syext(f*— f7)]].
feF(72)
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Note that the projected functions are again well-defined continuous functions: By assumption,
all f and fy are strongly convex, hence their conjugates have Lipschitz-continuous gradients and
therefore bounded B2, , (Qq)-norm. In turn, their projections also have bounded B2, . (Qq)-norm,
and by Theorem 23, this implies that both TI;ext(f* — f&) and Il jext(f* — fg) are in C*(RY),
for s < 2, and hence they are continuous.

Bound on 75 ;-term.

Recall that it follows from Proposition-Definition 7 that €g is a connected Lipschitz domain, so
we can apply the Poincaré-Wirtinger inequality, Lemma 39, together with (5.6) from Proposition 10,
to get

/ F*— fPdA < / IV5* — VA2 dA < Me2,
Qq Qq

where we used that we assumed f* — f; to be centered.
Hence, f € Fy(r?) implies ||f* — follwizo) < 7, and therefore due to the properties of the
extension operator ext,

[ext(f* = fo)llwremay < Car, (F.2)
for some constant Cy = Cy4(Qq, M). Since II; is a non-expansive operator on Besov spaces, it
follows from the above display that

Ty < sup{|(Q — Q)h| : h € Vs(RY), |hllwremay < Car}.

Bounding the empirical process over this standard function class can now be performed as follows.
Observe first that for any function h € V;(IR%) with wavelet decomposition

J
h=Y" 3" Y 4w, (F.3)

J=0geGJ kezd

the condition [|hly12(ray < Cs 7 is equivalent to

J
SN Y e < ot

J=0 geGJ kezd

Next, by symmetrization, for independent copies of Rademacher random variablese;, i = 1,...,n,

R 1 &
E —Q)h| < Esup - h(Y),
sup|(@ ~ Q)b < Bsup 23 eih(¥)

where both suprema are taken over the set &; = {h € V;(R?), [Allw12@may < Cat}. To control
the Rademacher process, fix h € &; with wavelet decomposition (F.3). By the Cauchy-Schwarz
inequality,

1/2

Zn:az-h(Yi) < (Z22jlvi’g!2)1/2(z (Zn: %\yggm)f)
=1 '

1=

<ar (Y (X Suem))”
1

1=
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where here and below, all sums without indices are over {0 < j < J, g€ G/, k € Zd}. Since the
right-hand side in the display above does not depend on h, we get by Jensen’s inequality that

E sup — ZEZ < C4T (EZ (En: ;; \Ifi’g(Yi)>2)1/2 :

Since Y; € g, a compact set by assumption, for given j and g, ‘lfj 9(Y;) is non-zero only for k € A(j)
where A(j) depends on the diameter of g, and |A(j)| < 274 Together with the independence of
the g;, this yields

EZ(Z \I;ng)>2: Z zn: [\I,Jg )}.
seGrhens)

By Proposition-Definition 7 and the fact that the \Ili’g form an orthonormal basis in L?(R%),

E[007) < [ wwraw < [ ewRae -
Q

Thus,
n . n7 d = )
1 27d
> B (W0 e Y S5 50 i=2
gegézcgei\’(j) i=1 0<5<J n2J(d—2)7 d> 3.
We have proved that
1, d=1,
T271 5 itJv vy = \/jv d= 27 (F4)
N i
2772 d>3.

Bound on 75 s-term.

To control the term 75 o, we use a chaining bound for bracketing entropy (Theorem 25). To that
end, we exhibit bounds on the L®-covering numbers of the corresponding function space, which
in turn implies control of L?-bracketing numbers. The idea is to bound the covering numbers in
the original space F(72) and exploit continuity properties of the transformations that lead to the
function class in the definition of 75 9, in particular the operation of taking the convex conjugate.

Define the function space

Fr(r?) = {lsyext(f* — £3) : f € Fi(r?)},

and let f1, fo € F;(7%) have wavelet coefficients given by the sequences 71 and 7. Observe that by
linearity of the projection and extension operators, we have for any cutoff J’ > 0,

T g ext(fi — fo) — sy ext(fs — f5)ll e (aq)
= [IIsyext(fi — f2)llLe ()
< sy I yext(fi = f3)ll L= (o) + ML Is s ext(ff — f3)ll e o) -

To control the first term in the right-hand side above, in the following lemma, we establish
bounds on the potentials in F7(72). Its proof is deferred to the next section.
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LEMMA 37. There exists a constant Cs = Cs(Qp, Qp, Qg, M) such that for all f € X(2M),

Cs

lext f* gz, _(ray < o

Moreover, under assumptions B1 — B2, || ext f§| g2 _me) < C5/2 as well.

It follows from Lemma 37 that there exists Cs such that for any f € F(72), we have
L yext(fy — f2)llpz, ., < Cs.
Therefore, by Lemma 13, we get
T Ty ext(F — £l iegogy < 22 T g ext(ff — F)llpe,_ <

if we choose J' = [log (Cs/¢) /2] so that C5272/ <e.
To control the second term, we get from Lemma 24 that
LT g ext(ff = f3)llp0g) S 272yl < 27922
= 2792 ext(ff = £5) |l L2mo)-

Moreover, using respectively the fact that ext is a Lipschitz operator on Besov spaces, (g is
bounded, and the convex conjugate is non-expansive in L*° by Lemma 20, we have

[ext(fi — fo)llLemay S I — f2llzeq) S I — f2llze o)

Jd
<1 = foll oy S 27211 = alloos

where in the last inequality, we used Lemma 24. We have proved that
T s ext(fi = f5) — sy ext(fs — fo)ll oo (aq) < Co 20/ Y4/2)|71 — yo)lo0 + €,

for some constant Cs = Cﬁ(Q P, Qq). This inequality allows us to control the L>-bracketing numbers
of F;(72) using £>°-covering numbers for the wavelet coefficients. To control the latter, note that for
all f € Fy(r%) C X(2M), it holds 1 fllB2, _(mey S M? so that ||y||e < M?2. Moreover, these wavelet

coefficients are in a space of dimension at most C'27%, C(Qp, M) > 0 because F;(72) C V;(Qp).
Hence, choosing € = §/4, Lemmas 27, 28, and the previous display yield

log Nij(F5(7%), |- 22 0) < 1og N(Fy(r2), || - [l (0g): 6/2)

1
<274 4 274)0g (5> . (F.5)

To apply the chaining bound of Theorem 25, note that by (F.2) and Lemma 37, respectively,
combined with Lemma 13, we have

HQHH(W) S Cy 2777, HQHLOO(]Rd) S Cs 27/, for g e ~7}J(72)-

Thus,
Dy

1 1
%DH (1 + Cf 2-2J 72,/

522y = Lp (145 LU
5 \/ﬁ [ 77'2\/’71 )

Tro S
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where D) = Dpj(Cy 2/, F7(72), L*(Q)) is the Dudley integral defined in (C.1). Moreover, by (F.5)
and Lemma 29, we have

Ci27 77
Dy 5/0 V142947 + 27410g (1/5) 4o

d;

<27 /T log (14 Cs/7),

and therefore,

Ji2 9J(d=2) J
Tn VT log (1 + C5/7) + — log (1+C5/7).

2
TQ’Q S T

Together with (F.4), we have Ty < ¢(72) with ¢ defined as in (5.8) and we absorbed t; for

~

d > 2 into the first term on the right-hand side.

Bounding T7. 71 can be bounded completely analogously to how we bounded T5, with the
exception that Lemma 20 is not needed. Thus, we obtain Ty < ¢;(72).

Final bound and concentration. Collecting the above bounds on T} and 75, we get
E[ sup [So(f) = So(f)] S ¢u(7?).
feFs(r?)

To obtain a bound that holds with high probability, we apply the concentration result of Theo-
rem 26. For this, note that (F.1) can be written as

So(f) = So(f) = (P2 Q) — (PRQ)((f — fo) @ (£ — f3)),

where P ® @ denotes the product measure and (f ® g)(z,y) = f(x) + g(y). Following the same
argument as in the proof of Lemma 37, we get

I(F = f0) ® (F* = &)l e(apxrgy < Cs-
Moreover, similarly to Proposition 10, we have for any f € F;(72) that

1(f = fo) @ (f* = fo)lr2(pog) < Car.

We can therefore apply Theorem 26 and conclude that with probability at least 1 — e~¢, it holds

that

sup  |So(f) — So(f) §¢J(72)+T\ﬁ+t,

f€.7:,](7'2) n n

which concludes our proof.
F.3 Proof of Lemma 37

By the boundedness conditions in the definition of X'(2M) in Proposition-Definition 7, and the
boundedness of {2p and §2g, we have for y € Qg that

7@ = swp (,y) ~ f()] < 5C5(p, 2, M).

CEEQP
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Moreover, by Lemma 17, V f* is 2M-Lipschitz. Therefore, since {1 is bounded,
lext 7Bz, _(ag) Seq I/ lc2@g) < Cs.

We can similarly deduce the second claim by Proposition-Definition 7 since fy € X(M), possibly
choosing a larger C5.

APPENDIX G: ADDITIONAL LEMMAS

LEMMA 38. In the notation of the proof of Theorem 6, for any k =0,..., K and m > mgy, Vy,
is a bijection from [0,1]¢ to [0, 1]¢.

PrROOF OF LEMMA 38. By construction, ¢ is strongly convex and has Lipschitz continuous
derivatives, hence so does its convex conjugate ¢; by Lemma 17. In particular, ¢;, is defined on all
of R¢ and for each ,

Pr(y) = Sgp<$,y> — ¢p(z).

Hence, the equation V¢ (x) = y has a unique solution z(y) for every y € R? which implies that
V¢ is injective and that for any y € [0, 1]¢, there exists * = z(y) € R? such that Vog(z) = .
It remains to check that z(y) € [0,1]? for all y € [0,1]%. To that end, note that ¢x(z) = ||=||?/2
for = ¢ [0,1]%. Hence x(y) = y whenever y ¢ [0,1]%. In particular, if y € [0,1]%, we must have
z(y) € [0,1]%. This completes the proof. O

LEMMA 39 (Poincaré inequality, [Eval0, Section 5.8.1], [Leol7, Theorem 13.27]).
Let Q C RY be a bounded and connected Lipschitz domain. Then, there exists a constant C = C(d, Q)
such that for any function f € WH2(Q),

I - /Q £(2) AN@) |2 < ClIVull 20,

APPENDIX H: NUMERICAL EXPERIMENTS, CONTINUED

In this section, we give additional details on the numerical experiments in Section 6, using the
same notation used there to define Tt p, Tiway and Tie,.

H.1 Implementation details

All simulations are done with Python 3.8.0 and Numpy 1.17.3, where some calculations are
accelerated by the just-in-time compiler of Numba 0.47.0, in particular the calculation of the Linear-
Time Legendre transform [Luc97]. The discrete wavelet transform is calculated with PyWT 1.1.1
[LGW*19]. We use a second-order finite difference operator for the calculation of the numerical
gradient provided by the findiff package, version 0.8.0. The optimization (6.2) is performed with the
L-BFGS algorithm [LN89] as implement in Scipy 1.4.1, stopping at a relative decrease in objective
function value of less than 107 and a maximum iteration number of 10000. The baseline estimator
is computed with the ot.emd function of the Python Optimal Transport package, version 0.6.0.
The kernel regression problem (6.3) is solved via scikit-learn, version 0.22.2 [PVG*11]. Plots were
made using Matplotlib 3.1.2 and Seaborn 0.9.0.

The boxes in the calculation of f; are picked to be Qp = QQ = [~0.5,1.5] in the case (id) and
Qp = [-0.5,1.5]%, Qg = [0,4] in the case (exp). To compute f for different .J, we initialize the
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optimization at all scales of J with the all zeros vector. An approximation to the ground truth semi-
dual objective (2.5) is obtained by integrating both WJTW 7 and the interpolation Py%TO(m)E(WJTfy 7)
over [0,1]? with Simpson’s rule, exploiting the fact that integration over @ is equivalent to integra-
tion over P under the push-forward Tj.

The parameters Viernel and vrigge are chosen via an oracle procedure, picking the best Viernel €
{1079,1078, ..., 107}, thigge € {107°,10745,... 1071} as determined by evaluating MSE for an
independent draw from P.

The data for all quantitative plots are obtained by taking the median over 32 i.i.d. replicates.
Error bars are not shown since 95-percentile bootstrapped confidence intervals were not visible for
most estimators at the present scale of the plots.

Running on one core of server processors such as an Intel® Xeon® E5-2670 v3 (2.30GHz),
the calculation of all wavelet scales of Tyay for one replicate takes between 10 and 70 minutes,
depending on the sample size and hence the conditioning of the problem. We note that the runtime
and space complexity of the algorithm is determined both by the discretization size N and to a
lesser extent by the sample size n, as opposed to computing the optimal transport plan between
empirical distributions, whose complexity in the regimes considered here is governed entirely by
the sample size n. As a comparison, computing all 100 different parameter settings for Tier With
n = 10000 takes about five hours.

H.2 Numerical error dominates for large sample size

To investigate the observed flattening out of the Tway €TOr curves in Figure 2, we repeat the
experiment for (id) and d = 3 with a lower resolution discretization, N = 33. In Figure 3, we
compare the resulting error to the N = 65 case considered in Section 6. The error bottoms out for
much lower values of n, suggesting that numerical accuracy is indeed responsible for this behavior.

MSE for (id), d = 3, varying accuracy

-1 V.

AN MSE,(Tway), N = 65

W,

\ —v— MSEy(Tuar), N = 33

Y,

1072 \\

10

(‘-}-') A
s \
\ A
. \V\
10 ——
10" 10° 10° 10° 10°

Figure 3: Estimation errors for (id), d = 3, low and high accuracy discretization. Median over 32
replicates. The error curve flattens out earlier for N = 33, suggesting that numerical approximation
errors are responsible for this phenomenon.



MINIMAX ESTIMATION OF TRANSPORT MAPS 43

MSE for (id), d = 3,
effect of convex envelope

0 R
10 \ —— MSEn(Twav, direct)
MSE(Tuay)
107" \
5 \

10 -

5 N\

MSE

10
10 10° 10° 10° 10°

Figure 4: Estimation errors for (id), d = 3, direct output of (6. 2) wav,direct, compared to its convex
envelope Tyay. Median over 32 replicates. For low sample sizes, taking the convex envelope improves
the estimation rate.

H.3 Improved gradient estimation by computing convex envelope

Write f 7= W}f? 7. We observe that while f 7 by itself often qualitatively yields good results on
Qp (the support of P), the lack of additional global regularity conditions in the optimization (6.2)
often leads to poor approximation outside of the support, i.e., on Qp \ Qp. In particular, certain
regions could simply not enter the optimization at all due to the form of the discrete Legendre
transform £ in (6.1). The numerical gradient estimate is somewhat sensitive to this, especially near
the boundary, which prompts us to regularize the result further by instead considering its convex
envelope, i.e., the largest convex function that lies entirely below the graph of f 7

We give a qualitative visual example of this in Figure 5. Depicted for d = 2 are first the ground
truth potential fo(z) = 4||z[|3 corresponding to the identity transport map (Figure 5a) and its
derivative in the first coordinate (Figure 5b), where we set P = Unif([0, 1]?). The parts of those
functions corresponding to the support of P are depicted in yellow, while those outside of the
support are colored blue. Results of the optimization for n = 100 ¢.4.d. samples from P and @ =
Unif([0, 1]) are shown in Figures 5¢ (potential) and 5d (first coordinate of numerical gradient) for
J = 1. While the estimator yields a good approximation to fy and Tj on the interior of Qp, the
outside appears very ragged. This is remedied by applying £ twice, see Figures 5e (potential) and
5f (numerical gradient).

We also quantitatively compare the estimation accuracy of a linear interpolation of V, f 7, de-
noted by Tiay, direct to that of T by repeating the experiment for (id) and d = 3, plotting the
results in Figure 4. One can observe that for low sample sizes, considering the convex envelope
indeed significantly improves the estimation accuracy.

H.4 Performance for varying regularization strength

In order to further investigate the performance of the proposed regularized estimators Tway and
Ti ker, We show error plots for a selection of fixed regularization parameters in Figure 6. In the case
of Twav, we plot T v(vaz, for the whole range of J € {0,...,3} that can be calculated by means of the
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Figure 5: Numerical instability of the boundary is remedied by computing the convex envelope of f ,
see Section H.3. Visualization of potentials (ground truth (a), estimated potential (c), and convex

envelope of estimated potential (e)), and the first coordinate of the associated gradients (b, d, f,
respectively) for the identity transport map and P = Unif([0,1]?) in d =2, J =1, n = 100.
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discrete wavelet transform when N = 65. In the case of Tker, we plot a subset of all considered
combinations Vernel € {1072,10785, ... 107}, tyiqqe € {1075,10745, ..., 1071}

First, for the wavelet estimators Tv(v‘i\),, we observe that the best bias-variance trade-off is achieved
by J = 0 for smaller values of n and by J = 1 for n > 10%5. Moreover, the curve for J = 3,
corresponding to no regularization, roughly follows the shape of the error curve of Temp, until it
flattens out due to the numerical error. This is most likely due to the grid approximations involved
in the definition of Twav.

Next, the kernel estimators 7, lgr“dge’yke"‘el) in 3D show mostly similar error curves for the range
of parameters considered, although a trade-off that depends on the sample size can be observed
between (Vridge Vkernel) € {(1077,107%), (1077, 1073)}. Moreover, in the case of very strong regular-
ization, (Vridges Vkernel) = (1075,107°), the error curve flattens out for values of n as low as 10%°.
In general, for Tker, we observe that its performance is more sensitive to changes in veme than to
those in vigge.

Last, In 10D, we observe a wider range of error curves according to the regularization strength,
ranging from a curve that closely matches that of T. emp fOT (Vridges Vkernel) = (1079,1071) to a curve
that matches most of the error curve shown in Figure 2d for (Vyidge, Vkernel) = (1077,107%).
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Figure 6: Log-log plot of MSE for the exponential transport map, plotted against n, showing the
median error over 32 replicates. Individual curves correspond to the performance for different values
of the regularization parameters, with errors for T¢y, shown for comparison.
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