Interactive All-Hex Meshing via Cuboid Decomposition

LINGXIAO LI, PAUL ZHANG, DMITRIY SMIRNOV, S.

Massachusetts Institute of Technology, USA

’
¥
s

MAZDAK ABULNAGA, and JUSTIN SOLOMON,

Fig. 1. A sampling of hexahedral meshes produced by our method. Our user-in-the-loop interactive pipeline facilitates the creation of high-quality hex meshes,
giving the user the option to control the final result at any desired level of granularity.

Standard PolyCube-based hexahedral (hex) meshing methods aim to de-
form the input domain into an axis-aligned PolyCube volume with integer
corners; if this deformation is bijective, then applying the inverse map to
the voxelized PolyCube yields a valid hex mesh. A key challenge in these
methods is to maintain the bijectivity of the PolyCube deformation, thus
reducing the robustness of these algorithms. In this work, we present an
interactive pipeline for hex meshing that sidesteps this challenge by using a
new representation of PolyCubes as unions of cuboids. We begin by deform-
ing the input tetrahedral mesh into a near-PolyCube domain whose faces
are loosely aligned to the major axis directions. We then build a PolyCube
by optimizing the layout of a set of cuboids with user guidance to closely fit
the deformed domain. Finally, we construct an inversion-free pullback map
from the voxelized PolyCube to the input domain while optimizing for mesh
quality metrics. We allow extensive user control over each stage, such as edit-
ing the voxelized PolyCube, positioning surface vertices, and exploring the
trade-off among competing quality metrics, while also providing automatic
alternatives. We validate our method on over one hundred shapes, including
models that are challenging for past PolyCube-based and frame-field-based
methods. Our pipeline reliably produces hex meshes with quality on par
with or better than state-of-the-art. We additionally conduct a user study

Authors’ address: Lingxiao Li, lingxiao@mit.edu; Paul Zhang, pzpzpzpl@mit.edu;
Dmitriy Smirnov, smirnov@mit.edu; Mazdak Abulnaga, abulnaga@mit.edu; Justin
Solomon, jsolomon@mit.edu, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, MA, 02139, US.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

0730-0301/2021/12-ART256

https://doi.org/10.1145/3478513.3480568

with 21 participants in which the majority prefer hex meshes they make
using our tool to the ones from automatic state-of-the-art methods. This
demonstrates the need for intuitive interactive hex meshing tools where the
user can dictate the priorities of their mesh.

CCS Concepts: « Computing methodologies — Shape analysis; Mesh
models; Volumetric models; - Human-centered computing — User
interface toolkits; Graphical user interfaces.

Additional Key Words and Phrases: Polycube, interactive, hex meshing

ACM Reference Format:

Lingxiao Li, Paul Zhang, Dmitriy Smirnov, S. Mazdak Abulnaga, and Justin
Solomon. 2021. Interactive All-Hex Meshing via Cuboid Decomposition.
ACM Trans. Graph. 40, 6, Article 256 (December 2021), 17 pages. https:
//doi.org/10.1145/3478513.3480568

1 INTRODUCTION

Hexahedral (hex) meshes historically have been preferred over tetra-
hedral meshes in various graphics and simulation applications due
to their reduced numerical error and usage of fewer elements [Shep-
herd and Johnson 2008]. In particular, the regular structure of layers
of hex elements in a hexahedral mesh enables natural support of
tensor product function bases [Liu et al. 2015] and multilevel hierar-
chies of nested meshes for efficient PDE solvers [Nieser et al. 2011].
However, few reliable techniques exist to generate a high-quality
hex mesh that conforms to the input domain while having desirable
properties such as low distortion and uniform edge lengths.
Among hex meshing methods, PolyCube-based algorithms stand
out for their relative robustness. The PolyCube-based pipeline typ-
ically starts by deforming the input mesh into a near-PolyCube, a
mesh whose surface normals are roughly axis-aligned [Huang et al.

ACM Trans. Graph., Vol. 40, No. 6, Article 256. Publication date: December 2021.

https://doi.org/10.1145/3478513.3480568
https://doi.org/10.1145/3478513.3480568
https://doi.org/10.1145/3478513.3480568

256:2 « Lingxiao Li, Paul Zhang, Dmitriy Smirnov, S. Mazdak Abulnaga, and Justin Solomon

2014]. Various heuristics and repairs can be applied to transform
the near-PolyCube into a PolyCube, whose surface normals are ex-
actly axis aligned [Sokolov and Ray 2015; Zhao et al. 2019]. If the
deformation map from these two steps maintains bijectivity, and
the PolyCube has integer corners, then one can voxelize the Poly-
Cube and pull it back through the map to obtain a boundary-aligned
hex mesh of the input domain [Fu et al. 2016; Gregson et al. 2011;
Livesu et al. 2013]. The obtained hex mesh can then be improved
using various techniques, from optimizing element quality [Livesu
et al. 2015] to pushing boundary singularities inwards [Cherchi et al.
2019].

However, obtaining a bijective deformation map from the input
domain to a PolyCube while satisfying integer constraints remains
unsolved [Protais et al. 2020; Sokolov and Ray 2015]. In this work,
we circumvent this difficulty by decomposing a near-PolyCube de-
formed from the input into a union of axis-aligned cuboids, which
represents the generated PolyCube. Borrowing ideas from computer
vision [Smirnov et al. 2020; Tulsiani et al. 2017], we optimize the
PolyCube structure by optimizing over constituent cuboids’ param-
eters. This representation effectively controls the complexity of the
PolyCube via the number of cuboids, resulting in few corners. At
the same time, it is compact and resolution-independent compared
to methods based on voxelization [Yang et al. 2019; Yu et al. 2014].

Although our PolyCube generation using cuboids sidesteps the
typical robustness issues in deformation-based methods [Gregson
et al. 2011; Huang et al. 2014; Sokolov and Ray 2015], it comes at
the cost of losing the map between the PolyCube and the near-
PolyCube (and, by extension, the input mesh). Instead of trying to
recover this missing link, we compute a locally injective map from
a voxelized PolyCube directly to the input domain to get the final
hex mesh. This is made possible by three components: a smooth
distortion energy [Garanzha et al. 2021] that forces local injectivity
of the map, an inversion-free pullback step that guides the hex mesh
to progressively deform to the input domain, and a bi-directional
proximity energy that encourages the recovery of the input surface.
A mesh quality optimization step then follows to further improve
the final hex mesh.

Rather than making our pipeline fully automatic, we instead cre-
ate an interactive system to give the user significant freedom on how
their hex meshes are generated so as to accommodate application-
dependent requirements. As the resulting hex mesh largely depends
on the PolyCube structure, we allow the user to build the PolyCube
interactively by adding or modifying the constituent cuboids in an
intuitive way, while also providing the automatic option to adjust
the existing cuboids using our PolyCube optimization method. In
addition to PolyCube generation, the user can substantially affect
other parts of the pipeline, e.g., by digging or extruding layers on the
voxelized PolyCube, modifying surface vertex positions of the final
hex mesh, and exploring the trade-off among competing metrics in
the refinement step.

Compared to past automatic and interactive hex-meshing meth-
ods, our system reliably generates all-hex meshes for a wide range
of input domains with mesh quality on par with or surpassing that
of prior work. At the same time, our system allows intuitive and
extensive user control across all stages of the pipeline. We perform
a user study with 21 participants; most participants are satisfied

ACM Trans. Graph., Vol. 40, No. 6, Article 256. Publication date: December 2021.

with their results over the ones from www.hexalab.net and enjoy
the fact that they are able to make fine-grained adjustments.

Contributions. We present an end-to-end interactive pipeline for
robust hexahedral meshing based on cuboid decomposition. Our
main contributions include:

e a method for continuous optimization of PolyCube structure via
cuboid decomposition and signed distance fields;

e a method for computing a low-distortion, inversion-free volumet-
ric map from a voxelized PolyCube to the input mesh; and

e an integrated interactive system that gives the user extensive
and intuitive controls over the proposed pipeline with automatic
alternatives.

2 RELATED WORKS

PolyCube construction and hex meshing. Tarini et al. [2004] first
suggest using PolyCube maps to create seamless texture mappings
with manual PolyCube construction. Lin et al. [2008] subsequently
introduce the first automatic approach to construct a PolyCube
based on segmentation using Reeb graphs but with a limited set of
primitives.

Gregson et al. [2011] propose a hex-meshing pipeline that de-
forms the input domain into a PolyCube and then pulls back a
voxelized PolyCube to obtain the hex mesh. To obtain a PolyCube,
they segment the surface into charts based on rotations and flatten
the charts by solving a Poisson equation. Livesu et al. [2013] cast
the segmentation in PolyCube generation as a multi-label graph cut
problem. Huang et al. [2014] suggest using the #;-norm of surface
normals to encourage cubeness during the deformation while con-
straining the total surface area to prevent degeneracy. Fang et al.
[2016] cut tunnel loops of the input surface to allow generation of
hex meshes with a much larger class of singularity patterns using
PolyCubes, but their method is expensive due to consistency con-
straints across the cuts. Fu et al. [2016] alternate between smoothing
the surface normals and deforming the surface to be axis-aligned un-
til a valid PolyCube is generated, using the AMIPS energy [Fu et al.
2015] to enforce inversion-free deformation. More recently, Guo
et al. [2020] cut PolyCube edges open to inject internal singularities
connected with the boundary while preserving a set of prescribed
feature curves. None of these methods guarantees the generation
of a bijective map that deforms the input domain to a valid Poly-
Cube, a challenge that our approach sidesteps, and non-exhaustive
heuristic fixes are typically used. Many [Fu et al. 2016; Gregson et al.
2011; Livesu et al. 2013] also limit the type of PolyCubes to the ones
where every corner is adjacent to three charts, a sufficient but not
necessary condition [Eppstein and Mumford 2010], whereas our
proposed pipeline has no such limitation (Fig. 19).

Yu et al. [2014] directly voxelize the near-PolyCube deformed
from the input mesh, a procedure of obtaining a PolyCube with guar-
anteed success similar to ours. Morphological operations then sim-
plify the voxelized PolyCube. However, they separate computation
of the surface and volume components of the backward mapping,
while we formulate a cohesive optimization scheme that computes
both simultaneously, avoiding situations where a fixed surface map-
ping does not admit a low-distortion mapping of the volume. As
a follow-up, Yang et al. [2019] use erasing-and-filling operators to

www.hexalab.net

reduce the number of corners in the voxelized PolyCube, but they
are only concerned with producing a surface PolyCube map. In
contrast to both voxelization-based methods, our pipeline builds
the PolyCube in a top-down manner: cuboids are placed one by one
to form the PolyCube whose complexity increases gradually.

Aside from robustness issues, all these fully-automatic pipelines
consist of multiple stages where the correctness of each successive
stage relies heavily on the success of previous stages. As the errors
can accumulate unpredictably, it is strenuous to tweak the param-
eters to yield desirable results. In contrast, our interactive system
allows the user to ensure the quality of each stage separately using
intuitive controls before moving onto the next one.

Interactive hex meshing. Contrary to the extensive research in
interactive quadrilateral meshing [Campen and Kobbelt 2014; Ebke
et al. 2016; Jakob et al. 2015], few methods for interactive hex mesh-
ing have been proposed. Takayama [2019] introduce dual-sheet
hexahedralization by asking the user to design sheets that are com-
binatorial duals of a hex layout followed by a primalization step that
recovers the hex mesh. The representation of dual sheets as zero
isosurfaces of implicit functions allows intuitive user editing and
simplifies computation. Although their method can generate a large
class of all-hex meshes with internal singularity patterns, the sheet
configuration needs to satisfy a series of complicated conditions
and requires a manual fix otherwise. Moreover, these conditions
are not sufficient to obtain a valid hex topology, and generating hex
meshes with uniform edge lengths is difficult in their framework.

The industry standard for hex meshing is CUBIT, an interactive
tool [Quadros 2021]. CUBIT operates directly on CAD geometries
and supports user-guided sweeping operations by which a quad
mesh can be extruded into hexes. Usage of CUBIT requires a signifi-
cant amount of training, and their technical details are unpublished.

Other hex meshing techniques. A promising line of work extends
cross-field-based quadrilateral meshing [Bommes et al. 2009] to
3D by computing a smooth boundary-aligned frame field on an
input domain to guide the hex layout [Huang et al. 2011; Palmer
et al. 2020; Ray et al. 2016; Solomon et al. 2017]. While frame-field-
based methods do not limit their singularities to the surface and can
generate high-quality meshes, they frequently fail even on fairly
simple domains [Viertel et al. 2016]. Corman and Crane [2019]; Liu
et al. [2018] add topological constraints to frame field generation,
but these methods have not managed to increase robustness of
end-to-end field-based hex mesh generation.

Gao et al. [2019] use an octree to adaptively generate hex elements
that fill the input domain while preserving features. However, their
method is slow and cannot generate hexes of uniform size. Livesu
et al. [2020] use a surface frame field to guide creation of cuts that
partition the input mesh, generating hex-dominant meshes rather
than all-hex meshes. We compare against these methods in Section 6.

Various postprocessing techniques [Cherchi et al. 2019; Fu et al.
2015; Gao et al. 2015; Livesu et al. 2015; Marschner et al. 2020]
have been suggested to improve the quality of a hex mesh. In our
pipeline, mesh refinement is incorporated seamlessly in a final stage.
We further allow customization of the surface layout as well as
exploration of competing quality metrics.

Interactive All-Hex Meshing via Cuboid Decomposition + 256:3

3 SYSTEM OVERVIEW

Our system inputs a tetrahedral mesh and, with user guidance,
generates a hexahedral mesh whose surface matches that of the
input. If the input is only a triangular surface mesh, we run [Hu
et al. 2020] to tetrahedralize its volume as preprocessing. All input
meshes are centered and rescaled to fit within a unit bounding box.
Like past PolyCube-based methods, we limit the class of generated
hex meshes to those with the topology of a voxelized PolyCube hex
mesh; in particular, all singularities are on the surface (except for a
layer of global padding). Fig. 2 illustrates our pipeline.

Our system employs several user-in-the-loop stages that give
the user fine-grained control over the pipeline. After deforming
the input mesh into a near-PolyCube shape whose faces are almost
axis-aligned (Section 3.1, Fig. 2(b)), the system generates a PolyCube
composed of a collection of cuboids whose union approximates the
deformed shape in a semi-automatic fashion (Section 3.2, Fig. 2(c)).
The PolyCube is then voxelized to a hex mesh, which the user can
further modify (Section 3.3, Fig. 2(d)). Lastly, the voxelized PolyCube
is mapped to the input mesh so that the mapped surface agrees with
the input mesh surface (Section 3.4, Fig. 2(e)).

Please refer to the supplemental video for a demo of our system.

3.1 Deformation stage

In the first stage of the pipeline, an input tetrahedral mesh is de-
formed into a near-PolyCube shape (see the second column of Fig. 2).
While the deformed shape is not a (strict) PolyCube (its face normals
can deviate from the main axis directions), this deformation makes
it easier to approximate the shape using cuboids in the following
stage by, e.g., aligning it with the coordinate axes and reducing the
numbers of corners and creases.

To achieve the goals above, a low-distortion deformation map
is computed that encourages normals to be aligned with the main
axis directions (Section 4.1). The user has the option to control the
deformation by changing cubeness and smoothness parameters that
control how PolyCube-like and smooth they want the surface to
be. In addition, they can modify the parameters before resuming
the deformation process. A typical use case is to start with a low
cubeness value so the shape is globally axis-aligned and then grad-
ually increase the cubeness parameter to deform the shape closer
to a PolyCube with few corners (Fig. 3).

3.2 Decomposition stage

In this second stage, the user guides the creation of a PolyCube
represented as a collection of axis-aligned cuboids whose union ap-
proximates the near-PolyCube from the previous stage. The quality
of the generated PolyCube is determined by how closely it approx-
imates the deformed shape and its complexity, as more complex
PolyCubes (e.g., with more corners) lead to more surface singulari-
ties in the resulting hex mesh.

The user progressively builds the PolyCube by adding and modi-
fying constituent cuboids using a combination of manual editing
and automatic adjustment via our continuous PolyCube optimiza-
tion (Section 4.2). This process continues until the PolyCube reaches
a satisfactory level of complexity and fidelity to the near-PolyCube

ACM Trans. Graph., Vol. 40, No. 6, Article 256. Publication date: December 2021.

256:4 « Lingxiao Li, Paul Zhang, Dmitriy Smirnov, S. Mazdak Abulnaga, and Justin Solomon

(a) Input tet mesh (b) Deformed tet mesh

(c) Decomposed PolyCube

(d) Discretized PolyCube

(e) Output hex mesh

Fig. 2. Overview of our interactive hex meshing pipeline. (b)-(e) correspond to the output of the four stages of the pipeline. The output hex mesh (e) is sliced

open, with yellow indicating interior quad faces for visualization.

(c) Ramping up to

(d) Directly using

(a) Input mesh (b) Low cubeness

high cubeness high cubeness
Fig. 3. User-guided deformation. Starting with an input mesh (a), first using
a low cubeness value (= 0.3) orients the coarse features such as the bunny
ears to be axis-aligned (b). Then, increasing the cubeness value (= 3.0)
deforms the shape closer to a PolyCube by creating sharp edges (c). In
contrast, directly using a high cubeness value creates unnecessary stairs on
the ears of the bunny (d).

shape deformed from the input. At any point, the user can perform
one of the following operations (see also Fig. 4):

Add A new cuboid is placed in the scene according to one of two
automatic heuristics: a distance-based heuristic places a cuboid
at an uncovered point of the deformed mesh that is furthest
away from any existing cuboid, while a volume-based heuristic
places a cuboid of largest volume that is inside the deformed
mesh and outside any existing cuboid (see Fig. 5 for comparison).

Edit The user can resize or reposition any existing cuboid using
mouse-based controls. The user can also toggle sticky mode in
which translational motion automatically snaps to align faces
of the selected cuboid to that of nearby cuboids (Fig. 6(e)). Ad-
ditionally, a cuboid can be removed or duplicated, and cuboid
parameters can be fine-tuned through input fields.

Subtract The system can suggest a large cubic region that is over-
covered by the current set of cuboids, i.e., a region that is outside
the deformed mesh but contained in the union of cuboids (in
Fig. 4(d)(g)). After optional user edits to the region, it is sub-
tracted from any intersecting cuboid by splitting each cuboid
into up to six non-disjoint cuboids. This is useful for recovering
small topological features from over-covered regions like holes.

Reoptimize When cuboids are roughly in the right place, the user
can choose to automatically optimize the parameters of all
cuboids to best approximate the deformed mesh (Section 4.2).
A cuboid can be locked to prevent it from being optimized (e.g.,
grey cuboids in Fig. 2(c)) if the user is satisfied with it.

ACM Trans. Graph., Vol. 40, No. 6, Article 256. Publication date: December 2021.

[|
| |

| 7
\

=
() Input (b) Deformed (c) Optimized (d) Suggested
single cuboid Subtract region
@
| =y
() After Subtract (f) Add and (g) Subtract (h) Final
Reoptimize again PolyCube

Fig. 4. An example of constructing the PolyCube in the decomposition stage
using the cup model. A front view and a top-down view are shown for each
entry. The surface of the deformed mesh is shown in translucent pink. (c)
A single cuboid covers the hole of the cup after Reoptimize. (d) The user
sees a green editable region suggested by the system indicating that this
region can be subtracted out. (e) The PolyCube after performing Subtract.
(f) The user can then proceed to add new cuboids and Reoptimize, which
may over-cover the cup handle. (g) Another Subtract can be performed to
recover the handle to get (h). Further Edit operations can be done to reduce
the number of corners. Alternatively, the user can avoid using Subtract for
this model by either directly editing the cuboids or using volume-based Add
to put a cuboid on each wall of the deformed cup.

The implementation of each heuristic is detailed in Appendix A.1.
We found two successful strategies requiring minimal user inter-
vention: (1) alternate between Add with the distance-based heuristic
and Reoptimize, or (2) apply Add repeatedly with the volume-based
heuristic to cover significant regions, Reoptimize, and then make

Fig. 5. Comparison of two cuboid adding heuristics. The surface of the
deformed mesh is shown in translucent pink. No user editing is involved
in this example. In each row, the number of PolyCubes increases from left
to right. In the top row we show the deformed buste model followed by
progressively generated PolyCubes after alternating distance-based Add
and Reoptimize with 1, 3, 6, 11 cuboids, respectively. The first three columns
of the bottom row are PolyCubes after performing volume-based Add 2, 4,
6 times. While avoiding over-coverage, volume-based Add cannot capture
small details such as braids, so we resort back to distance-based Add and
Reoptimize, as shown in the last two columns.

fine adjustment to small regions. See Fig. 5 for a comparison of these
strategies.

Allowing user interaction rather than fully automating this stage
offers two distinct advantages. First, for a fixed number of cuboids,
the optimization from Section 4.2 can get stuck in local minima; it
is often easy for the user to modify the configuration to suggest a
better optimum (Fig. 6 (b)(c)). Second, there can be different config-
urations of cuboids that yield similar approximation error, yet one
may be preferred over the others depending on the user’s applica-
tion. For example, it is often desirable to sacrifice a small amount of
approximation error for a simpler PolyCube structure, e.g., one with
fewer stairs, even for a fixed number of cuboids (Fig. 6 (d)). Thanks
to our choice of representation, editing the PolyCube structure is
intuitive and transparent by editing individual cuboids.

3.3 Discretization stage

In this stage, the PolyCube made in the previous stage is voxelized
into a hex mesh. To accomplish this, we first snap all cuboid corners
to a regular grid of a user-specified edge length. Then, the user can
edit the voxelized PolyCube by adding or removing voxels, either
one at at time or by editing an entire layer. Once the user is satisfied,
a layer of global padding is added in the same way as in [Gregson
etal. 2011].

User interaction is helpful in two ways. First, snapping PolyCube
corners to integers may erase small topological features [Protais
et al. 2020] that the user can easily identify and fix. Second, the user

Interactive All-Hex Meshing via Cuboid Decomposition « 256:5

(a) Deformed mesh (b) Reoptimize stuck (c) Carving out the body

(d) Extra stairs (e) Edit to extend cuboid (f) Final PolyCube

Fig. 6. An example where user interaction is helpful. From a deformed bob
model (a), the optimization gets stuck in a local minimum (b). To resolve this,
the user can remove the center cuboid (marked with red cross) and then add
a new one near the tail (c). The optimization finds a configuration (d) that
minimizes the approximation error but has unnecessary stairs. The user
can remove the stairs by snapping the surrounding cuboids’ faces together
using sticky mode (e) to get the final PolyCube (f).

© @

Fig. 7. Fixing topological problems and removing unnecessary stairs. (a)
Deformed mesh. (b) PolyCube after the decomposition stage (grey indicates
fixed cuboids). (c) Direct discretization by snapping PolyCube corners to
an integer grid may result in disconnected regions (shown in orange boxes)
even if the cuboids are not disconnected. There can also be unnecessary
stairs (shown in blue boxes). (d) By adding and removing individual voxels
or layers of voxels, the user can fix the topological problems and remove
unnecessary stairs.

has one more opportunity to simplify the PolyCube structure, e.g.,
by removing unnecessary stairs. See Fig. 7 for an example.

ACM Trans. Graph., Vol. 40, No. 6, Article 256. Publication date: December 2021.

256:6 « Lingxiao Li, Paul Zhang, Dmitriy Smirnov, S. Mazdak Abulnaga, and Justin Solomon

(a) PolyCube hex mesh (b) Pullback (c) Optimized

Fig. 8. Demonstration of the hexahedralization stage using the gargoyle
model. (a) PolyCube hex mesh from the discretization stage. (b) Visualiza-
tion of the front and the back of the initialized hex mesh obtained from
our inversion-free pullback (scaled Jacobians: Jpnin = 0.014, Jayg = 0.781;
Hausdorff distance: dmax = 46.292). (c) Optimized version of (b) with a large
details parameter while improving worst hex element quality (Jiin = 0.253,
Javg = 0.771, diax = 19.095). Notice how the details around the wings and
the ears are recovered during optimization.

3.4 Hexahedralization stage

In the final stage, the PolyCube hex mesh from the previous stage is
deformed to obtain the output hex mesh. The deformation matches
the surface of the PolyCube hex mesh with the input surface while
retaining hex element quality.

The system initializes the output hex mesh by pulling back the
PolyCube hex mesh in an inversion-free manner (Section 4.3, Fig. 8(a)).
Next, the user guides the system to optimize the hex mesh while
aligning its surface to that of the input mesh. The user has control
over a range of quality parameters, divided into surface and hex
element quality metrics. For surface metrics, the user can control the
smoothness of the surface, the closeness of the surface to the input,
and the level of detail of the surface (Fig. 9). For hex element quality
metrics, the user can choose how much they want the elements
to be angle-preserving or volume-preserving, or they can supply
an application-dependent custom metric (Fig. 10). We choose the
scaled Jacobian as the custom metric, but other types can be easily
incorporated (Section 4.4). The user may also choose to optimize
over the worst elements or over the average. These controllable
parameters are summarized in Table 1. Similar to Section 3.1, the
user can change the parameters before continuing the optimization
of the mesh (Fig. 8(c)).

As these metrics compete with each other, we leave it to the user
to explore the trade-off landscape (e.g., Figs. 16 and 17). To guide
user exploration, a hex quality metric (scaled Jacobian by default)
of the current hex mesh and the Hausdorff distance to the input
mesh surface are displayed in a window to help the user choose the
desired trade-off. Additionally, the input mesh surface is shown as
a translucent shell as a visual aid (Fig. 9).

To enable fine-grained control over the surface, we provide a tool
for the user to mark and reposition surface vertices as landmarks,
which are then fixed during the optimization. This is helpful for
guiding the optimization, e.g., by preventing points from getting
projected onto the wrong side of the surface (Fig. 11).

The user has the additional option of choosing how the surface
vertices are parameterized during optimization using one of three
modes: free—surface vertices are free to move off the input surface,
constrained—surface vertices are constrained to move only along

ACM Trans. Graph., Vol. 40, No. 6, Article 256. Publication date: December 2021.

(a) Projection (b) Details (c) Both

Fig. 9. Comparison of surface metrics in the hexahedralization stage on
the Chinese lion model. (a) Setting a large projection parameter and a small
details parameter makes the surface vertices of the resultant hex mesh stay
on the input surface, but fine details are not recovered (dmax = 22.263, davg =
1.297). (b) Finer details, such as the lion’s nose, are better recovered using
a large details parameter, but there is over-coverage at the front leg due
to a small projection parameter (dmax = 44.952, davg = 0.861). (c) When
using large parameters for both projection and details, our resulting surface
approximates the input surface the best (dmax = 9.342, davg = 1.297).

(b) Scaled Jacobian

(a) Volume preservation (c) Input mesh

Fig. 10. Trade-off between volume preservation (authalic parameter) and
scaled Jacobian (custom parameter). (a) Result when using a high authalic
parameter for hex-meshing the camel model. The tail and toes are bloated
compared to the input to preserve the volume of each hex element. (b) Result
when using a low authalic parameter but with a high custom parameter
to improve the scaled Jacobian. The shin part of the camel has more cubic
hexes with varying volume, which are preferred by the scaled Jacobian. (c)
Input tet mesh for comparison.

the input surface, and fixed—surface vertices are fixed during the
optimization. See the corresponding mathematical formulation in
Section 4.4. The free mode is useful for most situations since it can
effectively alleviate or prevent foldovers, while constrained and fixed
modes are good for final refinement.

For visualization, we provide the user with tools to filter away hex
elements, including a slicing plane and a quality threshold, similar to
Hexalab [Bracci et al. 2019]. For instance, the user can easily identify
where the bad hex elements are using the quality threshold filter
to fix them using landmark tools or by going back to the previous
stage to make topological changes to the voxelized PolyCube.

4 OPTIMIZATION

In this section, we present our mathematical formulation of the opti-
mization problems faced in the pipeline stages above. We use Adam

Fig. 11. Fine-grained surface control using landmarks. (a) Optimized ar-
madillo model has fingers intersecting. (b) Input tet mesh for reference. It
suggests we should shift the fingers in the red box the right to align them
with the input. (c)-(d) We put a landmark on the rightmost finger and then
move it to the right. (e) Reoptimization then moves the rightmost finger
into roughly the correct position in order to reduce distortion. (f)-(g) We
repeat the process with the other finger. (h) Finally we clear the landmarks
and reoptimize again.

Table 1. User-controlled parameters during the hexahedralization stage.
The symbol column corresponds to the mathematical notation used in the
energy terms from Section 4.4.

parameter description symbol
smoothness smoothness of result surface Map
projection | closeness of result surface to input | Amu_o
details level of recovered surface details Ao—m
conformal angle-preserving level Aangle
authalic volume-preserving level Avol
custom custom mesh quality metric Acustom

[Kingma and Ba 2014] as the optimizer for all problems described
in this section to achieve interactive speed.

Notation. We denote a tetrahedral mesh as M = (V,T) where
V and T are the sets of vertices (represented as elements in R?)
and tetrahedra (represented as 4-tuples of indices), respectively. We
use dM to denote the boundary triangular mesh induced by M as
dM := (dV, F) where dV and F are the surface vertices restricted
from V and surface faces, respectively. We use similar notations for
hexahedral meshes. For instance, M = (V, H) represents a hex mesh
with a vertex set V and a hex set H, and oM := (9V, Q) denotes its
surface quadrilateral mesh with vertices dV and quads Q.

We use vol(V,t) to denote the volume of tetrahedron t € T
computed using the corresponding vertices in V, and we write
vol(M) := Y ;e vol(V, t). Similarly, we define area(V, f) to be the
area of the face f € F and area(dM) := X rcr area(V, f). We call
vectors (£1,0,0), (0,£1,0), (0,0, £1) the major axis directions.

An R3-valued piecewise-linear map f on a tetrahedral mesh M =
(V,T) is determined uniquely by f(V), its values on the vertices
V. Hence, we parameterize such maps using the mapped vertex
positions, and, with slight abuse of notation, we use f to denote

Interactive All-Hex Meshing via Cuboid Decomposition « 256:7

both the map on the mesh domain and the discrete map on vertices.
We denote the (constant) Jacobian of f in a tetrahedron ¢t € T as
J:(f), which is a linear function of f(V)|;, the 4 mapped vertex
positions of ¢.

4.1 Deformation to a near-PolyCube

In the deformation stage (Section 3.1), the input shape is deformed
into a near-PolyCube shape to guide the placement of cuboids in
the decomposition stage (Section 3.2). The deformation map is later
used in the hexahedralization stage (Section 3.4) to initialize the
PolyCube hex mesh. Hence, we want the deformation map to be of
low distortion and inversion-free while encouraging axis-alignment.

Let My = (Vo, Tp) denote the input tetrahedral mesh. We look
for a low-distortion piecewise-linear deformation fy : Vo — R3
that maps the input mesh My to the PolyCube-like deformed shape
My = (Vg Ty), with Vy := f3(Vp) and T; = Tp. For t € Ty, let
Ji = J(fy) denote the Jacobian of f; restricted to the tetrahedron
t. To obtain f;, we minimize a deformation energy defined as E :=
Eiso + Ealign, Where Ejg, is the distortion energy defined in Eq. (1)
and Eyjign is the axis-alignment energy defined in Eq. (3). We take
the identity map as the initial fy.

Distortion energy. We want a smooth distortion energy that en-
courages angle and volume preservation of the deformation map. As
our initial f; is inversion-free, we also want our distortion energy
to blow up when inversion happens. We choose the regularized
distortion energy introduced by Garanzha et al. [2021]:

b Z vol(Vg, t) 3 tr JT Jy . det? J; +1
BT L Vol (M) | (R (det)3 T Re(det) |
1
where Aangle; Avol are constants and Re : R — R is a regularizer
that forces the energy to blow up when det J; is close to zero or
negative:

x + Vx2 + €2
Re(x) := — (2
The first term in the summand of Eq. (1) favors angle-preserving
maps, while the second term favors volume-preserving maps. We
find Aangle = Avol = 1.0 and € = 1073 sufficient in most cases, but

we let the user change them if needed.

Alignment energy. We add an alignment energy for the surface
vertices dVy; to encourage deformation into an axis-aligned near-
PolyCube. This energy has two terms, one favoring cubeness and
the other favoring a smooth transition of normals on nearby faces,
similar to the one used by Fang et al. [2016]:

Ealign = Acube Ecube + Asmooth Esmooths ®3)
where
area(Vo, f) _
Eepe = on0ol) g5), @
£t area(dMy)
area(Vp, f;) +area(Vo, fj) | . 2
Esmooth = Z “nﬁ —Agl . (5)
fufeoR, 3area(dMy) Jl2

fi.f; adjacent

ACM Trans. Graph., Vol. 40, No. 6, Article 256. Publication date: December 2021.

256:8 « Lingxiao Li, Paul Zhang, Dmitriy Smirnov, S. Mazdak Abulnaga, and Justin Solomon

Here we use iy to denote the unit normal obtained by normalizing
(v1 — o) X (v2 — vg), where vg, v1,v2 are deformed vertex positions
of the face f. We choose a smooth cubeness function

®(n) = n,zcni, + nzyng +n2n

from Fu et al. [2016] to penalize deviation of normals from the major
axis directions. We found this energy better at globally orienting the
shape (see Fig. 3 (b)) and more stable during optimization compared
to the £;-norm from Huang et al. [2014]. To prevent collapsing to
a point, we use the original vertex positions to calculate the area
weights.

4.2 Continuous PolyCube optimization

In the decomposition stage (Section 3.2), the user guides the con-
struction of a PolyCube using cuboids whose union approximates
the deformed near-PolyCube shape M. Such construction is facili-
tated by the a continuous PolyCube optimization scheme described
below that automatically adjusts existing cuboids’ parameters.

Our formulation is inspired by the distance-field-based approach
by Smirnov et al. [2020], where the discrepancy between two shapes
is measured by comparing their distance fields. For an arbitrary set
S c R3, the signed distance field of S is defined to be

ds(x) := (1)< inf |lx - yl,.
yes

In particular, ds(x) > 0if x ¢ S, and dg(x) < 0if x € S. For an
axis-aligned cuboid C with center ¢ € R* and side lengths h € R3,
its signed distance field is given by

d¢(p) = [Imax(d, 0) ||z + min(max(dx, dy, dz),0),

where d = (|px — cxl, |py — cyl, [pz — cz|) — h [Smirnov et al. 2020].

With slight abuse of notation, we use M to denote the deformed
shape as a subset of R3, so that d My denotes its signed distance
field. Let P = Ule C; denote a PolyCube consisting of k cuboids
C1, ..., Ck. Defining the signed distance field of # in terms of the
signed distance fields of C;’s is difficult. In the case x ¢ %, however,
dp is given by a straightforward expression:

dop(x) = 1Tii£k dg,(x) Vx ¢ P.

Define 677) (x) := mini.‘=1 dg, (x). We have ip (x) < dp(x), but the
gap can be arbitrary large (Fig. 12(a)). Even though dp # dp, we
have {x : Jp (x) <0} = {x : dp(x) < 0}, so they represent the
same interior shape.

Let A c R3 be a finite set of points that we call anchors on which
we compare d 5(, and dp. We design our energy to be a combination
of two terms: E := A4 E; + A_E_, where E, and E_ are defined by
Eq. (6) and Eq. (7) respectively.

Discrepancy energy E... For p € R3\ My, we want cuboids to
avoid covering p, i.e., dc,(p) > 0 for every i. But if this is the case,
then Jp (p) = dp(p), so we can compare dp(p) with dpq,(p) by
using Jp (p) in place of dp (p). Thus we define

Ey=) (de(p)—Jp(p))

peA\My

2

(6)

ACM Trans. Graph., Vol. 40, No. 6, Article 256. Publication date: December 2021.

(@) (b)

Fig. 12. (a) An illustration showing that the gap between ;l; and dp can
be arbitrarily large. Consider the PolyCube comprised of the two green
cuboids. For the point p, ;l;(p) =0, but dp(p) = —|lg— pll < 0.(b) An
example showing that the discrepancy energy E, alone may create gaps.
In this scenario, the light blue indicates Mg, and the PolyCube consists of
two green cuboids. The distance from p to Mg and to P is the same, so
(dmy (p) - d~¢> (p))? = 0, and p could be a local optimum of E; (Eq. (6)).
This explains why E_ is needed to close the gaps.

(a) Deformed mesh

() A =1,A_=0

D

©A=0A =1 @A =014 =1
Fig. 13. Comparison of PolyCube optimization parameters A4, A_. (a) De-
formed mesh of dilo. (b) If we use only discrepancy energy (Eq. (6)), then
small gaps are created in the circled regions. (c) If we use only gap-closing
energy (Eq. (6)), then gaps from (b) are not be created, but the PolyCube is
too coarse and has undesired intersections (red circle). (d) With the right
parameters, we can close the gaps without making the PolyCube too coarse.

Gap-closing energy E_. For p € M, we want p to be contained
in at least one cuboid, i.e., dp (p) < 0. Therefore, we let

B Y 1z 0 (@))

PEANMy

to help close the gaps caused by using only E; (Fig. 12(b)).

In our experiments, we choose anchors to be a combination of a
uniform grid and perturbed points from the surface of My, though
the user can modify the anchors if desired. In practice, we found that
it is good to start with A = A_ = 1.0 to prevent over-coverage in the
beginning and reduce A; while increasing A_ before reoptimizing to
close the gaps. Hence we let the user adjust the parameters A4, A—
(see Fig. 13). An alternative to fix the gaps is through manually
editing and locking the cuboids (Section 3.2).

4.3 Inversion-free pullback of PolyCube

In the beginning of the hexahedralization stage (Section 3.4), we
want to find a volumetric map that deforms the PolyCube hex mesh
from the discretization stage (Section 3.3) back into the input mesh
geometry. We start with a two-step initialization to an inversion-
free map from the PolyCube hex mesh to the input volume. The idea
is to use the deformation map from the deformation stage as a guide
to pull back the PolyCube hex mesh gradually, while incorporating
a barrier function to prevent foldovers.

In the first step, we deform the PolyCube mesh into the near-
PolyCube mesh from the deformation stage to account for the dis-
crepancy introduced in discretization (Fig. 14(d)). In the second
step, we deform back to the input mesh using barycentric pullback
as a guide (Fig. 14(f)). We do not change the mesh connectivity
throughout.

Let M, := (Vp, Hp) denote the hexahedral mesh of the voxelized
PolyCube from the discretization stage, whose hex elements are
regular cubes with the same length on all sides.

4.3.1 Deforming to M. In the first step, we look for a map fy :
Vp — R3 that sends My to My := (Vgr, Hp) so that IMy is close
to dMy. Let T, denote the collection of tetrahedra formed by putting
one tetrahedron on each of the 8 corners of every hex in Hy. For
t € Tp, like in Section 4.1, we use J; := J; (fg) to denote the Jacobian
of f on tetrahedron t. Note that there are cases where det J; > 0
for all 8 tetrahedra in a hex but the induced trilinear mapping is not
locally injective [Zhang 2005]. We have not observed such cases in
our experiments, but, if necessary, we can augment Ty to include
the 32 tetrahedra defined in [Zhang 2005] for each hex to make the
induced trilinear map inversion-free everywhere.

We initialize fy to be the identity map and optimize f by min-
imizing E = Epey-iso + Eprox + Elap, Where each energy term is
described below.

Distortion energy. Since we want to prevent foldovers, we use a
barrier-like distortion energy similar to Eq. (1) but with uniform
weights, due to the fact that volumes of all hexes in Hy (and by
extension all tets in Tj) are the same:

AN det? J; + 1
Aan e Avo . 8
2, |fans (Re(det J)2? "' Re(det 1) ®

teT,

Epex-iso =

Proximity energy. We introduce a term that measures the bi-
directional distance between oM and dMy:

Eprox = A¢r~dEBqr~d + Ad—a Eq—ar»)
with
Eg—ai= Y. llo-proj(e,aMa)l3, (10)
veEVy
Eyoa = / o — proj (v, oM |[2do. (11)
oMy

where proj(v, 9M) denotes the projected point of v onto the surface
dM. We choose uniform weights in Eq. (10) because the quad surface
before and after applying fy should consist of quads with similar
areas. To evaluate Eq. (11) during each gradient step, we use a

Interactive All-Hex Meshing via Cuboid Decomposition + 256:9

uniformly sampled batch of |0V | points on dM; before computing
the gradient.

Smoothness energy. We finally add a Laplacian-smoothing energy
that helps maintain a smooth surface during the deformation:

2

1
Elap = Alap Z U — m Z uyl , (12)

veVy ueN(v) ||y

where N (v) denotes the 1-ring neighborhood of v on 9V .
In this step, we set all weights A« to be 1 and e = 107%. Fig. 14(d)
shows an example of this step.

4.3.2 Deforming back to My. Now we have a hex mesh My =
(V. Hp) that is close to the near-PolyCube mesh M. In this step,
we look for a map fm, : V) — R3 that extends f from Section 4.3.1
to obtain My, = (Vin, Hp) with Vi, := fin(V)p), so that its sur-
face My, approximates the input surface M. For v € R3, let
pull(v) € My denote the result of projecting v to the closest tetra-
hedron in My and then pull back to My via f; : Mo — M, from
Section 4.1 using barycentric coordinates. If My is exactly My,
then (pull(Vy), Hp) gives an inversion-free hex mesh of the input
mesh. However, this is often not the case, and naively using projec-
tion and then pulling back can result in foldovers or points being
projected onto the wrong side of the surface (Fig. 14 (e)).

Instead, we use pull(V) only as a guide and deform M to grad-
ually reduce the distance between V;,, and pull(Vy) while avoiding
inversion. We find f;, by initializing it to be f;; and then minimizing
E := Ehex-iso + Epullback + Elap, Where Epey.iso and Ej,p, are the same
as Eq. (8) and Eq. (12) respectively, except the variables are now Vj,.
The new energy term Ejy|ipack is defined as

2
Epquack = A-pullback Z llo - Puu(ud’)nz, (13)
veV,y,

where vy is position of the vertex in V with the same index as v.
We find Apuiiback = 1 sufficient. The result of this step is shown in
Fig. 14(f).

4.4 Constrained mesh quality optimization

After initializing an inversion-free hex mesh that approximates the
input domain (Section 4.3), the user can further improve the mesh
quality in various ways.

To achieve this, we take f;;, from Section 4.3.2 and further optimize
it. In contrast to past hex-mesh quality improvement work [Fu et al.
2015; Livesu et al. 2015], where it is typically assumed that the
surface vertices are either fixed or do not move around substantially,
in our case the surface vertices 9V}, can move significantly during
optimization to support more aggressive improvement strategies
(e.g., Fig. 11). To constrain the surface vertices dV;;, to move along
the input surface dMy, we use the bi-directional proximity energy
Eprox from Eq. (9) but with 9M in place of 9IMy and with variables
Vi instead of Vy:

Eprox = Am—0Em—0 + A0->mEo-m, (14)

ACM Trans. Graph., Vol. 40, No. 6, Article 256. Publication date: December 2021.

256:10 « Lingxiao Li, Paul Zhang, Dmitriy Smirnov, S. Mazdak Abulnaga, and Justin Solomon

by M, = (Vp’ Hp) (© (PUH(VP)’HP)

-

(d) Mg = (Vgr, Hp)

(@ (pull(Ver), Hp) () Mim = (Vim. Hp)

Fig. 14. Comparison of pullback strategies. (a) Deformed mesh of Thai statue.
(b) Generated PolyCube with distinctly colored charts. (c) Directly projecting
and pulling back results in many inverted hexes as well as large distortion.
(d) Result of the first step of our inversion-free pullback (Section 4.3.1). (e) If
we project and pull back directly after first step, we can still obtain inverted
hexes (Jmin = —0.883). (f) Result of the second step of our inversion-free
pullback (Section 4.3.2) with no inverted hexes (Jyin = 0.048 before optimize
mesh quality using Section 4.4).

where
Em-o:=), llo—proj(e,aMo)ll5, (15)
vedV,,
Eoom = / lo — proj(o, M) |[2do. (16)
3M0

We further include the distortion energy Epey-iso from Eq. (8) and
the smoothness energy Ej,, from Eq. (12), similar to Section 4.3.2.

We also allow the user to add in a custom energy Ecystom that
favors user-specific mesh quality. For instance, if the user wants the
resulting mesh to have a high scaled Jacobian (Fig. 10(b)), then we
set

Ecustom = —Acustom Z det Jy, (17)
teTy,

where J; is obtained from J; by normalizing each column. Any
smooth metric that can be computed using vertex positions can be
accommodated this way.

We let the user control the weights Ajap, Am—0, 20-m, Aangles Avols
Acustom, Which correspond to the interpretable parameters smooth-
ness, projection, details, conformal, authalic, custom, respectively
from Table 1.

ACM Trans. Graph., Vol. 40, No. 6, Article 256. Publication date: December 2021.

Our final energy is E := Epex-iso + Eprox + Elap + Ecustom- One
option we provide is to allow the user to optimize for the worst
hex element quality instead of the average one. This is inspired
by the AMIPS energy from Fu et al. [2015], but instead of directly
exponentiating the summands, we use the following log-sum-exp
modification of Eq. (8) to improve numerical stability:

Avol(detz Jt + 1)
R3et(det J;)

/Iangle tr]tT]t
Ehex-1se =10 ex
hex-lse g tezl}) p (Rget(det]t))2/3
(18)
We find that when M, has no inverted hex, using Epey.-1se in place of
Ehex-iso can effectively improve the worst hex element. We provide
similar options for the custom loss, for instance, if the user wants
to improve the minimum scaled Jacobian (Eq. (17)).
The three modes of parameterizing surface vertices dV;,, described
in Section 3.4 correspond to the following:

Free. This is the default option where surface vertices are free
to move in R® while relying on Eprox (Eq. (14)) to make them stay
close to oM.

Constrained. In this mode, we force 9V, to be on dM, during
the optimization. For each v € dV};,, we create a latent variable
z € R3, so that v := proj(z, aMy). Let Z denote the set of all latent
variables. Then, we use proj(z, 9IMy) € My in place of vertex v
when calculating the total energy, and we update z by differentiating
through the projection operator during each gradient step. A caveat
is that there are regions where dproj(z, dMy)/9dz vanishes, such as
when z is above a ridge formed by two neighboring faces. To prevent
gradient-based optimization from getting stuck in these situations,
we use instead the constant non-zero gradient of dproj(z, IMo)/dz
as if the closest triangle extends to a plane. We also modify Eq. (15)
to

> llz = proj(z, oMo) I3 (19)
z€Z
so that the wandering latent variables will stay close to the input
surface. Comparing to alternatives like projected gradient descent,
this parameterization makes it seamless to use momentum-based
optimizers (Section 5).

Fixed. In this mode the positions of dV;, are fixed during the
optimization. This is useful when the user is happy with the surface
but wants to further improve the interior mesh quality.

5 IMPLEMENTATION DETAILS

We implement our interactive system in C++ with Vulkan and GUI
library ImGui.! Most of the optimization is powered by the C++
frontend of PyTorch [Paszke et al. 2019] and runs on the GPU for
interactive speed. We utilize CPU-level parallelism to accelerate
intensive computations like ray tracing for in-scene mouse control
and hex element filtering. We use Adam [Kingma and Ba 2014] as
our optimizer with a default learning rate of 1073 in the deformation
stage and 10™* in the hexahedralization stage, and f; = ff2 = 0.9,
although the user can change these parameters as well as the number
of gradient steps if needed. We implement custom CUDA functions

!https://github.com/ocornut/imgui

(a) Input

(b) PolyCube (c) Pullback and mesh quality optimization

Fig. 15. Robustness of our inversion-free pullback and mesh quality opti-
mization. The three columns in (c) show the result after the pullback followed
by two more steps of mesh quality optimization. For the homer model (top
row), we intentionally use an extremely crude PolyCube consisting of a sin-
gle cuboid. The hexahedralization stage is capable of recovering a hex mesh
that is similar to the input (except it fails to recover the highly non-convex
gap between the legs). For the chair model (bottom row), the PolyCube has
isolated cuboids that are disconnected from the rest (circled red). As a result,
the generated hex mesh also has isolated components and may result in
intersection. Note this is not the intended usage of the pipeline—the user
should fix the connectivity during either the decomposition stage or the
discretization stage. For both models, no inverted hex occurs throughout
the process.

to enable fast signed distance fields computation and point-to-mesh
projection with back-propagation support to make optimization of
terms like Eq. (14) possible on meshes with about 10> hexes. See
Appendix A.2 for more details.

For rendering, we use multi-sampled anti-aliasing and screen-
space ambient occlusion in a deferred pipeline to strike a balance
between visual clarity and efficiency, as we are also heavily utilizing
the GPU for optimization. All figures in the paper are generated
directly by our rendering pipeline.

Our system can run comfortably on mid-range NVIDIA graph-
ics cards, such as the GTX 1080 and RTX 2060. The implementa-
tion of our system is available at https://github.com/lingxiaoli94/
interactive-hex-meshing.

6 RESULTS

Inversion-free pullback stress test. We test the robustness of our
hexahedralization stage (Section 3.4) when the voxelized PolyCube
from the previous stage is too coarse or has topological deficiencies
(Fig. 15). In both cases, our method is capable of pulling back the
voxelized PolyCube in an inversion-free manner.

Trade-off exploration. Our mesh quality optimization component
of the hexahedralization stage allows the user to explore and choose
their preferred trade-off. In Fig. 16, we demonstrate the exploration
of the trade-off between angle preservation and scaled Jacobian
values by simply changing the relative weights before optimizing.

Interactive All-Hex Meshing via Cuboid Decomposition « 256:11

In Fig. 17, we show the exploration of the trade-off between hex
element quality and approximation level of the input surface. Since
trade-off exploration is incorporated seamlessly within the system,
the user can easily try out any combination of the parameters from
Table 1, change the surface parameterization mode, or put land-
marks to alter surface vertex positions manually (Fig. 11) before
reoptimization.

Challenging models. Existing deformation-based PolyCube hex
meshing methods rely heavily on the deformation and may fail
when correct stairs cannot be created [Sokolov and Ray 2015]. In
comparison, the continuous PolyCube optimization in our method
always results in a valid PolyCube and resolves stairs correctly most
of the time, while allowing user intervention if needed. We test
our method on some challenging examples from Sokolov and Ray
[2015], and our pipeline reliably generates good hex meshes with
limited user interaction (Fig. 18).

Larger class of PolyCubes. Compared to previous PolyCube-based
methods [Fu et al. 2016; Livesu et al. 2013] where the heuristic repairs
limit the PolyCube structure to have exactly three adjacent charts
on every corner, our pipeline allows PolyCubes to have corners
adjacent to more than three charts (Fig. 19).

Comparison. We test our pipeline on a number of models and
quantitatively compare the obtained results with recent hex meshing
methods [Fang et al. 2016; Fu et al. 2016; Guo et al. 2020; Livesu
et al. 2020; Takayama 2019; Yu et al. 2014]. The statistics and timings
are shown in Table 2. For all models tested except for joint and
sculpt, we obtain better minimum scaled Jacobian while having
competing numbers in other metrics. The reported runtime for our
method is the recorded total time for an expert user for each model.
The detailed timings for each stage vary across different models;
empirically the decomposition and discretization stages take the
most time.

User Study. Our system offers an interactive user-in-the-loop
experience for producing hex meshes. Unlike previous algorithms,
a key advantage of our method is the ability for the user to make
an intuitive choice at each juncture, all of which contribute to the
output. To evaluate this aspect of our work, we conduct a user study.
Each participant accessed a build of our software preinstalled on a
remote server. They were first asked to complete a detailed tutorial,
which outlined the process of obtaining a hex mesh using our tool
(taking the spot model as an example). Users were also provided
with a video walk-through of the steps described in the tutorial.

Upon finishing the tutorial, users were asked to select one or
more additional meshes (from the publicly available models of Fu
et al. [2016]) to experiment with and produce a hex mesh using
our software. Finally, they completed a survey about their prior
experience with 3D modeling, their overall experience with our tool,
and their experience with each mesh that they chose.

A total of 21 participants took part in the user study, with a self-
reported average score of 2.2 for familiarity with 3D modeling tools
and 2.0 familiarity with hex meshing (both on a 1-5 scale). The users
spent an average of 20.1 minutes on each mesh that they worked
with after the tutorial. On average, 81% of the users were satisfied
with the hex meshes that they obtained. In particular, 18 out of the 21

ACM Trans. Graph., Vol. 40, No. 6, Article 256. Publication date: December 2021.

https://github.com/lingxiaoli94/interactive-hex-meshing
https://github.com/lingxiaoli94/interactive-hex-meshing

256:12

Lingxiao Li, Paul Zhang, Dmitriy Smirnov, S. Mazdak Abulnaga, and Justin Solomon

Table 2. Comparison of hex mesh quality between our results and other recent methods. We report the amount of time spent in minutes (explained later), the
number of vertices and hexes of the generated hex meshes, the minimum and average scaled Jacobian Jnin, Javg, and the maximum and mean Hausdorff
distance dmax, davg (scaled by the diagonal length of the bounding box of the input mesh). Both diax and dayg are computed from the point-to-mesh distances
of 50k uniformly sampled points from the considered mesh surfaces. The results of Fang et al. [2016]; Fu et al. [2016]; Guo et al. [2020]; Livesu et al. [2020];
Takayama [2019]; Yu et al. [2014] are obtained from their papers and www.hexalab.net [Bracci et al. 2019]. The unavailable entries are marked as ‘-’. For Fu
et al. [2016], the reported time is only for the PolyCube construction step and does not include the final hex meshing step. The reported time of our method is
the recorded amount of time for an expert user to generate the corresponding hex mesh. Since the results for different methods are generated on different
machines, the reported runtimes are not directly comparable, and we include them only for the sake of completeness. When optimizing for hex quality in our
method, the expert prioritizes improving the worst scaled Jacobian values (large Acystom) and minimizing the Hausdorff distance (large A,,—0, Ao—m)-

Model Time (m) # vert/# hex Jmin/Javg dmax/davg(X10_3)
Armadillo [Fu et al. 2016] > 0.46 87303/78376 0.265/0.909 + 0.080 4.59/-
Armadillo [Gao et al. 2019] 320.97 72728/60340 0.159/0.779 £ 0.023 4.9/-
Armadillo (Ours) 21 21836/24709 0.569/0.928 + 0.071 2.806/0.238
Bimba [Fu et al. 2016] > 0.40 73104/67039 0.361/0.935 £ 0.068 3.69/-
Bimba [Gao et al. 2019] 168.90 63679/55035 0.056/0.792 + 0.026 4.9/-
Bimba [Livesu et al. 2020] - 1973/1560 0.408/0.881 + 0.026 -/-
Bimba (Ours) 8 26191/28920 0.542/0.952 + 0.056 4.590/0.160
Bunny [Yu et al. 2014] 14.7 47549/42543 -0.948/0.900 + 0.177 18.8/-
Bunny [Fu et al. 2016] > 0.46 65603/59841 0.422/0.942 + 0.062 4.28/-
Bunny [Takayama 2019] - 3724/2832 -0.771/0.749 + 0.242 -/-
Bunny (Ours) 6 17230/19145 0.601/0.944 + 0.060 3.280/0.276
Buste [Fu et al. 2016] > 0.51 86595/79294 0.439/0.943 + 0.057 3.24/-
Buste (Ours) 8 22973/25514 0.620/0.949 + 0.055 3.432/0.218
Dancing children [Fu et al. 2016] > 0.27 36353/30691 0.251/0.878 + 0.099 5.11/-
Dancing children (Ours) 21 26718/30770 0.502/0.907 + 0.074 16.718/0.172
Dilo [Gao et al. 2019] 89.61 100110/84977 0.100/0.791 + 0.022 4.2/-
Dilo (Ours) 15 32622/36500 0.551/0.949 + 0.067 6.611/0.100
Dragon [Fang et al. 2016] 125.93 127360/114178 0.162/0.919 + 0.084 12.6/0.278
Dragon [Fu et al. 2016] > 0.76 118610/106244 0.265/0.862 + 0.106 16.1/-
Dragon (Ours) 19 35845/40421 0.391/0.927 £ 0.073 13.438/0.154
Fandisk [Takayama 2019] - 2404/1774 0.217/0.905 + 0.114 -/~
Fandisk [Guo et al. 2020] 5.69 45156/39858 0.242/0.959 + 0.020 4.151/0.044
Fandisk (Ours) 7 32488/35841 0.500/0.942 + 0.077 3.993/0.056
Hanger [Gao et al. 2019] 25.60 33002/26918 0.155/0.828 + 0.028 2.3/-
Hanger [Takayama 2019] - 2229/1382 0.333/0.944 + 0.094 -/-
Hanger [Guo et al. 2020] 8.76 9411/7080 0.412/0.881 £ 0.118 -/-
Hanger (Ours) 10 8798/10500 0.559/0.870 + 0.108 3.154/0.111
Joint [Fang et al. 2016] 5.10 5181/3785 0.778/0.984 + 0.032 8.08/0.254
Joint [Livesu et al. 2020] - 751/456 0.798 /0.949 + 0.045 -/-
Joint [Takayama 2019] - 2711/2010 0.249 /0.927 + 0.118 -/-
Joint [Guo et al. 2020] 3.33 39658/33565 0.683/0.980 + 0.032 -/-
Joint (Ours) 8 37227/41768 0.735/0.976 + 0.049 3.995/0.120
Kitten [Fang et al. 2016] 2.30 14459/11941 0.435/0.922 + 0.077 12.10/0.652
Kitten [Livesu et al. 2020] - 2126/1728 -0.002/0.744 + 0.204 -/-
Kitten (Ours) 8 11531/12929 0.648/0.943 + 0.059 4.604/0.251
Lock [Guo et al. 2020] 6.33 7634/5224 0.052 /0.887 + 0.122 -/-
Lock (Ours) 11 35502/40645 0.545/0.899 + 0.093 1.996/0.060
Rocker arm [Yu et al. 2014] 16.6 10078/7874 -0.506/0.869 + 0.210 7.08/-
Rocker arm [Fang et al. 2016] 61.85 20680/17594 0.464/0.936 + 0.071 8.06/0.421
Rocker arm [Fu et al. 2016] > 0.15 27174/23421 0.477/0.924 £+ 0.074 5.27/-
Rocker arm [Takayama 2019] - 2651/1858 -0.189/0.805 + 0.200 -/-
Rocker arm (Ours) 14 40929/45789 0.689/0.940 + 0.055 3.696/0.163
Sculpt [Livesu et al. 2020] - 327/168 0.806/0.918 + 0.044 -/-
Sculpt [Guo et al. 2020] 4.35 25562/21695 0.528/0.949 + 0.044 1.927/0.108
Sculpt (Ours) 13 18995/21488 0.614/0.917 £ 0.075 6.321/0.202

ACM Trans. Graph., Vol. 40, No. 6, Article 256. Publication date:

December 2021.

www.hexalab.net

Interactive All-Hex Meshing via Cuboid Decomposition « 256:13

Jonin 0-403, Javg : 0.878 + 0.119 Jonin : 0-479, Javg : 0.888 + 0.108 Jonin : 0-531, Javg : 0.899 0.096 Jomin © 0566, Javg : 0.911 0.084 Jmin : 0617, Javg : 0.925 % 0.070

Vi

in 0.557, Vavg : 1.417 £ 0.324 Vinin © 0476, Vayg : 1.411 + 0.366 Vinin © 0367, Vavg : 1.404 £ 0.416 Vinin © 023, Vavg : 1.399 £ 0.471 Vinin © 0.018, Vayg : 1.388 + 0.555

Jimin © 0532, Javg : 0.853 +0.113 Jimin + 0557, Javg : 0.871 0.100 Jrmin © 0-610, Javg : 0.893 +0.084

Jmin : 0484, Javg : 0.823 + 0.135 Jmin : 0-505, Javg : 0.838 + 0.125

Vinin ¢ 0.040, Vavg : 5.170 & 2.372

Vinin ¢ 1.580, Vavg : 5.286 % 1.740 Vinin ¢ 0.963, Vavg : 5.227 % 2.011

Vinin : 2:477, Vavg : 5.395 £ 1.358 Vinin : 2.063, Vavg : 5.340 £ 1.526

() (Aangle9ACuSt0m) =(0.25,0.75) (e (Aangle’ACustom) =(0.0,1.0)

(a) (/.{anglechustom) =(1.0,0.0) (b) (Aangle-lcuslom) =(0.75,0.25) (0 (Aanglex/lcustom) =(0.5,0.5)
Fig. 16. Trade-off between angle preservation (large conformal parameter Aangle) and scaled Jacobian values (large custom parameter Acustom With the scaled
Jacobian energy). For each hex mesh we show the minimum scaled Jacobian Jyin, the average scaled Jacobian Jayg, the minimum (unscaled) Jacobian Viyin, and
the average (unscaled) Jacobian V,yg. The standard deviation across hexes is shown after the + sign. Both Viyin and Vg are multiplied by 10°. The bottom
image of each row shows the hex elements with scaled Jacobian less than 0.8. Yellow indicates an interior quad. As we gradually decrease the Ange and
increase Acustom, We see that Jimin and Javg increase while Vi decreases, and the standard deviation of the (unscaled) Jacobian grows, indicating the hex mesh
has more unevenly sized elements. The user can conduct such trade-off exploration interactively to decide whether they want more volume preservation or
better scaled Jacobian values. To produce each mesh, we start from the same initialized inversion-free hex mesh and use default weights for all parameters
except for Aangle and Acustom- We then run the optimization for 1000 steps. We use Eq. (18) to improve the worst element for both the distortion and the custom

energy.

Jmin 0606, Javg : 0.945 + 0.063

dmax : 41.814, davg : 9.978

Jmin : 0.557, Javg : 0.918 + 0.067

dmax : 16.857, davg : 1.461

Jmin : 0.519, Javg : 0.905 + 0.074

dmax : 13369, davg : 0.669

Jimin 0.492, Javg : 0.896 + 0.082

dmax : 13.577, davg : 0.322

Jmin : 0417, Javg : 0.890 0.089

dmax : 13.677, davg : 0.202

S

(©) Am—o = Ao = 1.0 (d) Ao = Aomm = 4.0 (€) Am—o = Ao = 16.0

(a) Am_,() = /10—>m =0.0 (b) /1m—>0 = AO—»m =0.25
Fig. 17. Trade-off between hex element quality and the approximation level of the input surface (controlled by the projection parameter A,,,—,¢ and the details
parameter Ag_ ;). We add a blue translucent shell of the input mesh surface to visualize the discrepancy. For each hex mesh we show the minimum scaled
Jacobian Jnin, the average scaled Jacobian Joyg, the symmetric Hausdorff distance dmax, and the average Hausdorff distance dpin (computed similarly to the
ones in Table 2). The standard deviation across hex elements is shown after the + sign. As we increase A,,,.0 and Ao ,, the average Hausdorff distance
becomes smaller but at the cost of worst hex quality (i.e., reduced Jmin and Javg). The experiment setup is the same as that of Fig. 16, except the parameters
being changed are A0 and Ao p,.

that “[the tool] allowed a lot of manual changes but the default
parameters worked well which was great as an inexperienced user,”
and “the tool provides a good balance of personal customization (i.e.,
what parts to capture/focus on) and computer-assisted optimization
(no need to worry too much about placement and sizing of the cubes

participants agreed that they were able to to make fine-grained ad-
justments to their final mesh, and 13 out of 21 preferred their meshes
compared to hex meshes obtained from automatic algorithms (on
https://www.hexalab.net). Users “appreciated the speed and the in-
terpretability of [the] optimizers and hyperparameters” and were
“particularly impressed with the final hex mesh.” Participants wrote

ACM Trans. Graph., Vol. 40, No. 6, Article 256. Publication date: December 2021.

https://www.hexalab.net

256:14 « Lingxiao Li, Paul Zhang, Dmitriy Smirnov, S. Mazdak Abulnaga, and Justin Solomon

i
| 1
\ <

(a) Input and deformed mesh (b) Cuboids (d) Result

(c) PolyCube

Fig. 18. Challenging cases for deformation-based PolyCube methods and
frame-field-based hexahedral meshing. In the first three rows the deforma-
tion fails to produce the needed stairs, even with a large cubeness value.
Frame-field-based hexahedral meshing approaches invariably produce un-
meshable singularities on the mesh in the fourth row [Viertel et al. 2016].
Our method of distance-field-based PolyCube optimization successfully
meshes each case. A small amount of user interaction (less than 5 minutes
total) is needed for the models in the middle two rows. Ramp (top row):
47224 hexes, Jmin = 0.392, Javg = 0.942, diax = 3.350. Ex14 (second row):
48756 hexes, Jmin = 0.472, Javg = 0.896, dmax = 5.465. Ex16 (third row): 9256
hexes, Jmin = 0.478, Javg = 0.872, dimax = 7.244. Notch7 (last row): 68704
hexes, Jnin = 0.579, Javg = 0.957, dnax = 3.861.

Fig. 19. An example where the PolyCube has corners incident to 6 charts
(left), and the resulting hex mesh (right).

[...])” This highlights the fact that our method enables low-level
control without adding superfluous complexity.

Fig. 20 shows some hex meshes that were produced during the
user study.

7 CONCLUSION AND FUTURE WORK

The task of converting a tetrahedral mesh to a hex mesh is a highly
under-constrained problem, and many trade-offs must be consid-
ered to produce a satisfactory result. Different applications and

ACM Trans. Graph., Vol. 40, No. 6, Article 256. Publication date: December 2021.

Fig. 20. A sampling of hex meshes produced by novice users as part of our
user study.

aesthetics motivate different choices for the placement and num-
ber of singularities, articulation or smoothing of sharp features,
simplicity versus fidelity, and so on. Rather than proposing a one-
size-fits-all algorithm like many previous works, we instead design
a comprehensive interactive system, consisting of several stages. At
each stage, the user can intervene, making the design choices that
influence the final output. While our system has a shallow learn-
ing curve for the non-expert user due to robust default parameter
choices, as demonstrated by our user study, it also allows extremely
fine-grained control, yielding high-quality meshes that achieve or
exceed state-of-the-art quantitative metrics.

Our system generates high-quality hex meshes on all the test
models. Below we discuss some exciting directions to further extend
our pipeline in future work.

Interior singularity support. Like other PolyCube-based methods,
the singularities on the hex meshes produced by our system are
restricted to the surface (except for a layer of global padding). Allow-
ing interior singularities could improve mesh quality (e.g., results
of sculpt from Livesu et al. [2020] and Guo et al. [2020] in Table 2).
One strategy would be to augment our pipeline by employing the
selective padding of Cherchi et al. [2019] instead of global padding
or by injecting interior singularities by cutting PolyCube edges open
[Guo et al. 2020]. Alternatively, we could follow Fang et al. [2016] by
breaking all tunnel loops of the input shape and adding additional
constraints during optimization to glue back the input.

Invariance to orientation. Although our user-guided deformation
(Fig. 3) can orient coarse features of the input, the deformation still
largely depends on the initial orientation of the shape. For instance,
for the dragon model, an ideal deformation map would straighten the
body instead of creating unnecessary zig-zag patterns. A potential
solution is to use a frame field to guide the deformation, like in
[Fang et al. 2016].

Sharp feature preservation. For certain classes of input shapes,
it may be desirable to preserve sharp features explicitly. One way

to achieve this would be to integrate feature-aware PolyCube gen-
eration from Guo et al. [2020] by allowing the user to draw fea-
ture curves on the input surface, which would then get mapped to
PolyCube edges. Then, during the hexahedralization stage, we can
include another energy term that favors pairs of orthogonal faces
that meet on a feature curve, such as Eq. (5) from Guo et al. [2020].

Topological consistency. We rely on the user to make sure the
topology is correct, allowing them to repair issues during the de-
composition stage (Fig. 6) or the discretization stage (Fig. 7). While
directly incorporating topological priors into gradient-based opti-
mization is a challenging open problem, we could detect incorrect
topology and interactively alert the user to ease the process.

Concavities and tunnels. For highly complex models with concav-
ities and tunnels, it could be strenuous to manually place cuboids in
the decomposition stage while avoiding all the empty regions. One
promising future direction is to allow users to construct a PolyCube
for the complement of the shape and then to cut out this complement
from the primal PolyCube. Our distance-field-based formulation
is particularly suitable for this approach. For instance, the signed
distance field of the complement can be obtained by reversing signs,
and getting the signed distance field of the subtracted PolyCube
is similarly straightforward. Orthogonally, we can extend the dis-
cretization stage to allow users to make interior edits by introducing
ways to hide layers of voxels.

Additional UI features. The feedback gathered during our user
study could be incorporated to further enhance the user experience.
Several users commented that the PolyCube optimization may create
gaps (Fig. 12(b)) or unnecessary stairs (Fig. 6(d)) despite already
being at a local minimum. We could add a postprocessing step after
the decomposition stage to glue nearby cuboids together and remove
superfluous stairs, e.g., using the erasing-and-filling operators from
Yang et al. [2019].

The experience of navigating between the various stages of our
pipeline could be improved by propagating visual cues across the
stages. For instance, if the user notices a region that needs changing
(such as an undesired singularity or topological issue) in the final
stage of the pipeline only after visualizing the generated hex mesh, it
may be hard to locate the corresponding region in the decomposition
or discretization stage. Visualizing correspondences between the
final hex mesh and the voxelized PolyCube would simplify this
workflow.

Some users reported difficulties avoiding inversions when plac-
ing landmarks. One way to avoid inversions caused by arbitrarily
placing and fixing surface vertices would be to to encode the new
positions as a soft constraint and use an energy term similar to
Eq. (13) to gradually deform the mesh so that it satisfies the new
positional constraints.

ACKNOWLEDGMENTS

The MIT Geometric Data Processing group acknowledges the gen-
erous support of Army Research Office grant W911NF2010168, of
Air Force Office of Scientific Research award FA9550-19-1-031, of
National Science Foundation grants IIS-1838071 and CHS-1955697,
from the CSAIL Systems that Learn program, from the MIT-IBM

Interactive All-Hex Meshing via Cuboid Decomposition « 256:15

Watson Al Laboratory, from the Toyota-CSAIL Joint Research Cen-
ter, from a gift from Adobe Systems, from an MIT.nano Immersion
Lab/NCSOFT Gaming Program seed grant, and from the Skoltech-MIT
Next Generation Program. We would also like to thank Zoya Bylin-
skii for valuable advice on designing and conducting the user study.

REFERENCES

David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer quadrangulation.
ACM Transactions On Graphics (TOG) 28, 3 (2009), 1-10.

Matteo Bracci, Marco Tarini, Nico Pietroni, Marco Livesu, and Paolo Cignoni. 2019.
HexaLab. net: An online viewer for hexahedral meshes. Computer-Aided Design 110
(2019), 24-36.

Marcel Campen and Leif Kobbelt. 2014. Dual strip weaving: Interactive design of quad
layouts using elastica strips. ACM Transactions on Graphics (TOG) 33, 6 (2014), 1-10.

Gianmarco Cherchi, Pierre Alliez, Riccardo Scateni, Max Lyon, and David Bommes. 2019.
Selective padding for polycube-based hexahedral meshing. In Computer graphics
forum, Vol. 38. Wiley Online Library, 580-591.

Etienne Corman and Keenan Crane. 2019. Symmetric moving frames. ACM Transactions
on Graphics (TOG) 38, 4 (2019), 1-16.

Hans-Christian Ebke, Patrick Schmidt, Marcel Campen, and Leif Kobbelt. 2016. Interac-
tively controlled quad remeshing of high resolution 3D models. ACM Transactions
on Graphics (TOG) 35, 6 (2016), 1-13.

David Eppstein and Elena Mumford. 2010. Steinitz theorems for orthogonal polyhedra.
In Proceedings of the twenty-sixth annual symposium on Computational geometry.
429-438.

Xianzhong Fang, Weiwei Xu, Hujun Bao, and Jin Huang. 2016. All-hex meshing using
closed-form induced polycube. ACM Transactions on Graphics (TOG) 35, 4 (2016),
1-9.

Xiao-Ming Fu, Chong-Yang Bai, and Yang Liu. 2016. Efficient volumetric polycube-map
construction. In Computer Graphics Forum, Vol. 35. Wiley Online Library, 97-106.

Xiao-Ming Fu, Yang Liu, and Baining Guo. 2015. Computing locally injective mappings
by advanced MIPS. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1-12.

Xifeng Gao, Zhigang Deng, and Guoning Chen. 2015. Hexahedral mesh re-
parameterization from aligned base-complex. ACM Transactions on Graphics (TOG)
34, 4 (2015), 1-10.

Xifeng Gao, Hanxiao Shen, and Daniele Panozzo. 2019. Feature Preserving Octree-Based
Hexahedral Meshing. In Computer Graphics Forum, Vol. 38. Wiley Online Library,
135-149.

Vladimir Garanzha, Igor Kaporin, Liudmila Kudryavtseva, Francois Protais, Nicolas
Ray, and Dmitry Sokolov. 2021. Foldover-Free Maps in 50 Lines of Code. ACM Trans.
Graph. 40, 4, Article 102 (July 2021), 16 pages. https://doi.org/10.1145/3450626.
3459847

James Gregson, Alla Sheffer, and Eugene Zhang. 2011. All-hex mesh generation via
volumetric polycube deformation. In Computer graphics forum, Vol. 30. Wiley Online
Library, 1407-1416.

Hao-Xiang Guo, Xiaohan Liu, Dong-Ming Yan, and Yang Liu. 2020. Cut-enhanced
PolyCube-maps for feature-aware all-hex meshing. ACM Transactions on Graphics
(TOG) 39, 4 (2020), 106-1.

Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo. 2020. Fast
tetrahedral meshing in the wild. ACM Transactions on Graphics (TOG) 39, 4 (2020),
117-1.

Jin Huang, Tengfei Jiang, Zeyun Shi, Yiying Tong, Hujun Bao, and Mathieu Desbrun.
2014. 11-based construction of polycube maps from complex shapes. ACM Transac-
tions on Graphics (TOG) 33, 3 (2014), 1-11.

Jin Huang, Yiying Tong, Hongyu Wei, and Hujun Bao. 2011. Boundary aligned smooth
3D cross-frame field. ACM transactions on graphics (TOG) 30, 6 (2011), 1-8.

Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Instant
field-aligned meshes. ACM Trans. Graph. 34, 6 (2015), 189-1.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

Juncong Lin, Xiaogang Jin, Zhengwen Fan, and Charlie CL Wang. 2008. Automatic
polycube-maps. In International Conference on Geometric Modeling and Processing.
Springer, 3-16.

Heng Liu, Paul Zhang, Edward Chien, Justin Solomon, and David Bommes. 2018.
Singularity-constrained octahedral fields for hexahedral meshing. ACM Trans.
Graph. 37, 4 (2018), 93-1.

Lei Liu, Yongjie Zhang, Yang Liu, and Wenping Wang. 2015. Feature-preserving T-mesh
construction using skeleton-based polycubes. Computer-Aided Design 58 (2015),
162-172.

Marco Livesu, Nico Pietroni, Enrico Puppo, Alla Sheffer, and Paolo Cignoni. 2020.
LoopyCuts: Practical Feature-Preserving Block Decomposition for Strongly Hex-
Dominant Meshing. ACM Trans. Graph. 39, 4, Article 121 (July 2020), 17 pages.
https://doi.org/10.1145/3386569.3392472

ACM Trans. Graph., Vol. 40, No. 6, Article 256. Publication date: December 2021.

https://doi.org/10.1145/3450626.3459847
https://doi.org/10.1145/3450626.3459847
https://doi.org/10.1145/3386569.3392472

256:16 « Lingxiao Li, Paul Zhang, Dmitriy Smirnov, S. Mazdak Abulnaga, and Justin Solomon

Marco Livesu, Alla Sheffer, Nicholas Vining, and Marco Tarini. 2015. Practical hex-mesh
optimization via edge-cone rectification. ACM Transactions on Graphics (TOG) 34, 4
(2015), 1-11.

Marco Livesu, Nicholas Vining, Alla Sheffer, James Gregson, and Riccardo Scateni. 2013.
PolyCut: monotone graph-cuts for PolyCube base-complex construction. ACM
Transactions on Graphics (TOG) 32, 6 (2013), 1-12.

Zoé Marschner, David Palmer, Paul Zhang, and Justin Solomon. 2020. Hexahedral Mesh
Repair via Sum-of-Squares Relaxation. In Computer Graphics Forum, Vol. 39. Wiley
Online Library, 133-147.

Matthias Nieser, Ulrich Reitebuch, and Konrad Polthier. 2011. Cubecover—
parameterization of 3d volumes. In Computer graphics forum, Vol. 30. Wiley Online
Library, 1397-1406.

David Palmer, David Bommes, and Justin Solomon. 2020. Algebraic Representations for
Volumetric Frame Fields. ACM Trans. Graph. 39, 2, Article 16 (April 2020), 17 pages.
https://doi.org/10.1145/3366786

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates,
Inc., 8024-8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-
high-performance-deep-learning-library.pdf

Francois Protais, Maxence Reberol, Nicolas Ray, Etienne Corman, Franck Ledoux, and
Dmitry Sokolov. 2020. Robust Quantization for Polycube Maps. (2020).

Roshan Quadros. 2021. The CUBIT Geometry and Meshing Toolkit. https://cubit.sandia.
gov/.

Nicolas Ray, Dmitry Sokolov, and Bruno Lévy. 2016. Practical 3D frame field generation.
ACM Transactions on Graphics (TOG) 35, 6 (2016), 1-9.

Jason F Shepherd and Chris R Johnson. 2008. Hexahedral mesh generation constraints.
Engineering with Computers 24, 3 (2008), 195-213.

Dmitriy Smirnov, Matthew Fisher, Vladimir G Kim, Richard Zhang, and Justin Solomon.
2020. Deep parametric shape predictions using distance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 561-570.

Dmitry Sokolov and Nicolas Ray. 2015. Fixing normal constraints for generation of
polycubes. Research Report. LORIA. https://hal.inria.fr/hal-01211408

Justin Solomon, Amir Vaxman, and David Bommes. 2017. Boundary element octahedral
fields in volumes. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1.

Kenshi Takayama. 2019. Dual sheet meshing: An interactive approach to robust hexa-
hedralization. In Computer Graphics Forum, Vol. 38. Wiley Online Library, 37-48.

Marco Tarini, Kai Hormann, Paolo Cignoni, and Claudio Montani. 2004. Polycube-maps.
ACM transactions on graphics (TOG) 23, 3 (2004), 853-860.

Shubham Tulsiani, Hao Su, Leonidas] Guibas, Alexei A Efros, and Jitendra Malik. 2017.
Learning shape abstractions by assembling volumetric primitives. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 2635-2643.

Ryan Viertel, Matthew L Staten, and Franck Ledoux. 2016. Analysis of Non-Meshable
Automatically Generated Frame Fields. Technical Report. Sandia National Lab.(SNL-
NM), Albuquerque, NM (United States).

Yang Yang, Xiao-Ming Fu, and Ligang Liu. 2019. Computing Surface PolyCube-Maps
by Constrained Voxelization. In Computer Graphics Forum, Vol. 38. Wiley Online
Library, 299-309.

Wuyi Yu, Kang Zhang, Shenghua Wan, and Xin Li. 2014. Optimizing polycube domain
construction for hexahedral remeshing. Computer-Aided Design 46 (2014), 58-68.

Shangyou Zhang. 2005. Subtetrahedral test for the positive Jacobian of hexahedral
elements. preprint (2005).

Hui Zhao, Xuan Li, Wencheng Wang, Xiaoling Wang, Shaodong Wang, Na Lei, and
Xiangfeng Gu. 2019. Polycube Shape Space. In Computer Graphics Forum, Vol. 38.
Wiley Online Library, 311-322.

A MORE IMPLEMENTATION DETAILS
A.1 Heuristics in Section 3.2

For the two heuristics in the Add operation of Section 3.2, we create
a 32 X 32 X 32 uniform grid over the shape and then compute the
signed distances of all grid points to both the PolyCube and the
deformed mesh. For the distance-based heuristic, we can then detect
an uncovered point of the deformed mesh that is furthest away from
the PolyCube. For the volume-based heuristic, to find the largest
cuboid inside the deformed mesh and outside the PolyCube, we
extend the algorithm for finding the largest rectangle in a histogram

ACM Trans. Graph., Vol. 40, No. 6, Article 256. Publication date: December 2021.

to 3D with time complexity O(n*) with n = 32, similar to Yang et al.
[2019]. For the Subtract operation, the implementation is similar.

A.2 Custom CUDA functions

We implement the following CUDA functions to enable our pipeline
to run at interactive speed. Each functions takes (P, M) as the input,
where P is a list of query points and M is a representation of a
triangular or tetrahedral mesh, and returns a quantity for each
query point. In our case, P can contain tens of thousands of points,
and M can have up to 10° cells. In our CUDA code, we use a thread
block of dimension 128 for each query point and evenly divide the
mesh triangles or tetrahedrons among the 128 threads to process
the query point in a thread block. The results from all threads are
collected using parallel reduction.

Below are details of the implementations for each CUDA device
function for a pair of point and triangle/tetrahedron.

Point-triangle projection. Let p € R3 be the point we want to
project onto a triangle with vertices vg, v1,02 € R3. Denote e1 =
v1 — g and ey = vy — vg. Consider first projecting p onto the plane
spanned by v, v1,v2. This can be done by solving the following
least-squares problem:

d(p, (o)) = min_llp= (04 wier +woe)lF. (20)

1>

The closed-form solution is given by, for i = 1,2,

(p—vo) - (e,- - (ez—z—fz)fzz—:)
wi = llea— |l e
l llej]|2 — Leeien)?

llez—s II?

Let wg = 1—w; —wga. Note (wo, wi, wp) is the barycentric coordinate
of p in this triangle. If w; > 0 for i € {0, 1, 2}, then the projection
of p lands inside the triangle. Otherwise, we project p onto line
segment (po, p1), (p1, p2), (P2, po) and choose the projection with
the smallest distance.

When backpropagating through the proximity energy in Eq. (9),
we need to compute the gradient of the projected point g with
respect to both p and v, v1, v2:

o If w; > 0fori € {0,1,2}, ie., qlands inside the triangle, then we

O 2 d /i
ai; = Zi:o %(vi)k, where k € {x,y,z},
dw;

and each 5! is a constant deduced from Eq. (21) that can be

have q = Z%:o Wjvj, SO

precomputed for each triangle ahead of time. The case for when
q is outside the triangle can be handled similarly.

o To compute the gradient of g with respect to v;’s, direct calculation
from Eq. (21) can be cumbersome. This is only needed for Eq. (11),
so we just need to differentiate d := d(p, {v;}) from Eq. (20) with
respect to the v;’s. By the Envelope Theorem, we have g—i =

wi(q — p) for each i.

Point-tetrahedron projection. To compute the pullback energy
from Eq. (13), we need to project a point onto the input tetrahedral
mesh. Consider projecting a point p to a single tetrahedron with
vertices {v; ?:0, Similar to Eq. (20), we can find the barycentric co-
ordinates of the projection by solving a least-squares problem but
with three variables rather than two:

d(p,{vi}) = min _|Ip— (vo +wier + waez + wies) 2. (22)
wy, wp, w3 ER

https://doi.org/10.1145/3366786
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://cubit.sandia.gov/
https://cubit.sandia.gov/
https://hal.inria.fr/hal-01211408

Taking the derivative and setting it equal to zero gives a linear sys-
tem of the form Aw = b, where A is invertible and does not depend
on p. We can precompute the inverse of A for each tetrahedron. If
any w; < 0, then we project p onto the four triangular faces of the
tetrahedron in the same way as in the last paragraph. We do not
need gradient information for point-tetrahedron projection.

Interactive All-Hex Meshing via Cuboid Decomposition « 256:17

Point-in-mesh inclusion test. To compute the signed distance field
of the deformed tet mesh in Eq. (6), in addition to computing point-
triangle projection, we need to determine the sign for each query
point, i.e., whether it is inside the mesh or not. Our implementation
relies on the fact that we know the volume mesh on which we want
to test: we check if the query point is inside any tetrahedron, which
can be done by checking if the point is on the correct side of each
face of the tetrahedron. We found this approach robust even with
single-precision floating-point computation.

ACM Trans. Graph., Vol. 40, No. 6, Article 256. Publication date: December 2021.

	Abstract
	1 Introduction
	2 Related Works
	3 System Overview
	3.1 Deformation stage
	3.2 Decomposition stage
	3.3 Discretization stage
	3.4 Hexahedralization stage

	4 Optimization
	4.1 Deformation to a near-PolyCube
	4.2 Continuous PolyCube optimization
	4.3 Inversion-free pullback of PolyCube
	4.4 Constrained mesh quality optimization

	5 Implementation Details
	6 Results
	7 Conclusion and Future Work
	Acknowledgments
	References
	A More implementation details
	A.1 Heuristics in stage:decomposition
	A.2 Custom CUDA functions

