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Abstract
Optimal transport (OT) measures distances be-
tween distributions in a way that depends on the
geometry of the sample space. In light of recent
advances in computational OT, OT distances are
widely used as loss functions in machine learn-
ing. Despite their prevalence and advantages, OT
loss functions can be extremely sensitive to out-
liers. In fact, a single adversarially-picked outlier
can increase the standard W2-distance arbitrar-
ily. To address this issue, we propose an outlier-
robust formulation of OT. Our formulation is
convex but challenging to scale at a first glance.
Our main contribution is deriving an equivalent
formulation based on cost truncation that is easy
to incorporate into modern algorithms for com-
putational OT. We demonstrate the benefits of
our formulation in mean estimation problems un-
der the Huber contamination model in simula-
tions and outlier detection tasks on real data.

1. Introduction
Optimal transport (OT) is a fundamental problem in applied
mathematics. In its original form (Monge, 1781), the prob-
lem seeks the minimum-cost way to transport mass from a
probability distribution µ on X to another distribution ν on
X . In its original form, Monge’s problem proved hard to
study, and Kantorovich (1942) relaxed Monge’s formula-
tion of the optimal transport problem to

OT(µ, ν) , min
Π∈F(µ,ν)

E(X1,X2)∼Π

[
c(X1, X2)

]
, (1.1)

where F(µ, ν) is the set of couplings between µ and ν
(probability distributions on X × X whose marginals are
µ and ν) and c is a cost function. In this paper, we assume
c(x, y) ≥ 0 and c(x, x) = 0. Compared to other com-
mon measure of distance between probability distributions
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(e.g.d-divergences), optimal transport uniquely depends on
the geometry of the sample space (through the cost func-
tion).

Recent advancements in optimization for optimal transport
(Cuturi, 2013; Solomon et al., 2015; Genevay et al., 2016;
Seguy et al., 2018) enable its broad adaptation in machine
learning applications where geometry of the data is impor-
tant; see (Peyré & Cuturi, 2018) for a survey. Optimal
transport has found applications in natural language pro-
cessing (Kusner et al., 2015; Huang et al., 2016; Alvarez-
Melis & Jaakkola, 2018; Yurochkin et al., 2019), gen-
erative modeling (Arjovsky et al., 2017), clustering (Ho
et al., 2017), domain adaptation (Courty et al., 2014; 2017),
large-scale Bayesian modeling (Srivastava et al., 2018),
anomaly detection (Tong et al., 2020), and many other do-
mains.

Many applications use OT as a loss in an optimization prob-
lem of the form:

θ ∈ arg minθ∈Θ OT(µn, νθ), (1.2)

where {νθ}θ∈Θ is a collection of parametric models and
µn is the empirical distribution of the samples. Such esti-
mators are called minimum Kantorovich estimators (MKE)
(Bassetti et al., 2006). They are popular alternatives to
likelihood-based estimators, especially in generative mod-
eling. For example, when OT(·, ·) is the Wasserstein-1
distance and νθ is a generator parameterized by a neural
network with weights θ, equation 1.2 corresponds to the
Wasserstein GAN (Arjovsky et al., 2017).

One drawback of optimal transport is its sensitivity to out-
liers. Because all the mass in µ must be transported to ν,
a small fraction of outliers can have an outsized impact.
For statistics and machine learning applications in which
the data is corrupted or noisy, this is a major issue. For
example, the poor performance of Wasserstein GANs in
the presence of outliers was noted in the recent works on
outlier-robust generative learning with f -divergence GANs
(Chao et al., 2018; Wu et al., 2020). The problem of outlier-
robustness in MKE has not been studied except in two re-
cent works proposing changes to the OT formulation that
are challenging to handle computationally (Staerman et al.,
2020; Balaji et al., 2020). Our goal is to derive an outlier-
robust OT formulation compatible with existing efficient
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computational OT methods (Peyré & Cuturi, 2018).

In this paper, we propose a modification of OT to address
its sensitivity to outliers. Our formulation can be used as a
loss in equation 1.2, so that it is robust to a small fraction
of outliers in the data. For simplicity, we consider the ε-
contamination model (Huber & Ronchetti, 2009). Let νθ0
be a member of a parametric family {νθ : θ ∈ Θ} and let

µ = (1− ε)νθ0 + εν̃,

where µ is the data-generating distribution, ε > 0 is the
fraction of outliers, and ν̃ is the distribution of the outliers.
Although the fraction of outliers is capped at ε, the value of
the outliers can be arbitrary, so their effect on the optimal
transport problem can be arbitrarily large. We modify the
problem so that it is more robust to such outliers, targeting
the downstream application of learning θ0 from (samples
from) µ in the ε-contamination model.

Our main contributions are as follows:

• We propose a robust OT formulation suitable for statisti-
cal estimation in the ε-contamination model using MKE.

• We show that our formulation is equivalent to the original
OT problem with a clipped transport cost. This connec-
tion enables us to leverage the voluminous literature on
computational optimal transport to develop efficient al-
gorithm to perform MKE robust to outliers.

• Our formulation enables a new application of optimal
transport: outlier detection in data.

2. Problem Formulation
2.1. Robust OT for MKE

To promote outlier-robustness in MKE, we need to allow
the corresponding OT problem to ignore outliers in the data
distribution µ. The ε-contamination model imposes a cap
on the fraction of outliers, so it is not hard to see that ‖µ−
νθ0‖ TV ≤ ε, where ‖ · ‖ TV is the total-variation norm
defined as ‖µ‖TV =

∫
1
2 |µ(dx)|. This suggests we solve a

TV-constrained/regularized version of equation 1.2:

min
θ∈Θ,µ̃

OT(µ̃, νθ)

subject to ‖µ− µ̃‖ TV ≤ ε; µ̃ ∈ P,
(2.1)

where P is the set of all probability measures. The con-
strained version, however, suffers from identification is-
sues. It cannot distinguish between “clean” distributions
within TV distance ε of νθ0 . To see this, fix θ ∈ Θ, and
note that the optimal value of equation 2.1 is zero when-
ever µ is within ε-TV distance of νθ. Thus equation 2.1
cannot distinguish between two parameter values θ1 and θ2

such that ‖νθ1 − νθ2‖TV ≤ ε. This makes it unsuitable as
a loss function for statistical estimation, because it cannot

lead to a consistent estimator. As an alternative, its regular-
ized counterpart does not suffer from this issue:

min
θ∈Θ

s:µ+s∈P

OT(µ+ s, νθ) + λ‖s‖ TV, (2.2)

where λ > 0 is a regularization parameter. Note that,
the constrained and Lagrangian formulations are equiva-
lent, but the equivalence depends on the two distributions in
the arguments of the Wasserstein distance. In other words,
as we vary the distributions (keeping ε fixed), the equiva-
lent λ will change. In our formulation, we are fixing λ and
varying the distributions, so the solution paths are different,
making the parameter identifiable. In the rest of this paper,
we work with the TV-regularized formulation equation 2.2.

The main idea of our formulation is to allow for modifica-
tions of µ, while penalizing their magnitude and ensuring
that the modified µ is still a probability measure. Below
we formulate this intuition in an optimization problem ti-
tled ROBOT (ROBust Optimal Transport):

Formulation 1:

min
π,s

∫∫
c(x, y) π(x, y) dx dy + λ‖s‖TV

subject to

∫
π(x, y) dy = µ(x) + s(x) ≥ 0∫
π(x, y) dy = ν(y)∫
s(dx) = 0.

(2.3)

where π is a density function on X × X . The first and the
last constraints ensure that µ+ s is a valid probability mea-
sure, while λ‖s‖TV penalizes the amount of modifications
in µ. We can identify exact locations of outliers in µ by
inspecting µ+ s, i.e. if µ(x) + s(x) = 0, then x got elimi-
nated and is an outlier. We will use this property to propose
an outlier detection method.

ROBOT, unlike classical OT, guarantees that an
adversarially-picked outliers cannot increase the (ro-
bust) transport distance arbitrarily. Let µ̃ = (1− ε)µ+ εµc,
i.e., µ̃ is µ contaminated with outliers from µc, and let ν be
an arbitrary measure; in MKE, µ̃ is the contaminated data
and ν is the model we learn. The adversary can arbitrarily
increase OT(µ̃, ν) by manipulating the outlier distribution
µc. For ROBOT, we have the following bound:

Theorem 2.1. Let µ̃ = (1− ε)µ+ εµc for some ε ∈ [0, 1).
Then,

ROBOT(µ̃, ν) ≤ min {OT(µ, ν) + λε‖µ− µc‖TV,

λ‖µ̃− ν‖TV,OT(µ̃, ν)} ,
(2.4)
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This bound has two key takeaways: since TV norm of
distributions is bounded by 1, the adversary can not in-
crease ROBOT(µ̃, ν) arbitrarily; in the absence of outliers,
ROBOT is bounded by classical OT. See Appendix B for
the proof.

Related work. We note a connection between equa-
tion 2.3 and unbalanced OT (UOT) (Chizat., 2017; Chizat
et al., 2018). UOT is typically formulated by replacing
the TV norm with KL(µ + s|µ) and adding an analogous
term for ν. Chizat et al. (2018) studied entropy regular-
ized UOT with various divergences penalizing marginal vi-
olations. Optimization problems similar to equation 2.3
have also been considered outside of ML (Piccoli & Rossi,
2014; Liero et al., 2018). Balaji et al. (2020) use UOT with
χ2-divergence penalty on marginal violations to achieve
outlier-robustness in generative modeling. Another rele-
vant variation of OT is partial OT (Figalli, 2010; Caffarelli
& McCann, 2010). It may also be considered for outlier-
robustness but has a drawback of forcing mass destruction
rather than adjusting marginals to ignore outliers when they
are present. Staerman et al. (2020) take a different path:
they replace the expectation in the Wasserstein-1 dual with
a median-of-means to promote robustness. It is unclear
what is the corresponding primal problem, making their
formulation hard to interpret as an optimal transport prob-
lem.

A major challenge with the aforementioned methods, in-
cluding our Formulation 1, is the large scale implemen-
tation of the optimization problem. Chizat et al. (2018)
propose a Sinkhorn-like algorithm for entropy regularized
UOT, but it is not amenable to stochastic optimization. Bal-
aji et al. (2020) propose a stochastic optimization algorithm
based on the UOT dual, but it requires two additional neural
networks (total of four including dual potentials) to param-
eterize modified marginal distributions (i.e., µ+s and anal-
ogous one for ν). Optimizing with a median-of-means in
the objective function (Staerman et al., 2020) is also chal-
lenging. The key contribution of our work is a formula-
tion equivalent to equation 2.3, which is easily compatible
with the large body of classical OT optimization techniques
(Cuturi, 2013; Solomon et al., 2015; Genevay et al., 2016;
Seguy et al., 2018).

More efficient equivalent formulation. At a first glance,
there are two issues with equation 2.3: it appears asymmet-
ric, and it is unclear if it can be optimized efficiently. Below
we present an equivalent formulation that is free of these is-
sues:
Formulation 2:

min
Π∈F+(Rd×Rd)

E(X,Y )∼Π [Cλ(X,Y )]

subject to X ∼ µ, Y ∼ ν .
(2.5)

where Cλ is the truncated cost function defined as
Cλ(x, y) = min {c(x, y), 2λ}. Looking at equation 2.5,
it is not apparent that it adds robustness to MKE, but it is
symmetric, easy to combine with entropic regularization by
simply truncating the cost, and benefits from stochastic op-
timization algorithms (Genevay et al., 2016; Seguy et al.,
2018).

This formulation also has a distant relation to the idea of
loss truncation for achieving robustness (Shen & Sanghavi,
2019). Pele & Werman (2009) consider the Earth Mover
Distance (discrete OT) with truncated cost to achieve com-
putational improvements; they also mentioned its potential
to promote robustness against outlier noise but did not ex-
plore this direction.

In Section 3, we establish an equivalence between the two
ROBOT formulations, equation 2.3 and equation 2.5. This
equivalence allows us to obtain an efficient algorithm based
on equation 2.5 for robust MKE. We also provide a simple
procedure for computing the optimal s in equation 2.3 from
the solution of equation 2.5, enabling a new OT applica-
tion: outlier detection. We verify the effectiveness of ro-
bust MKE and outlier detection in our experiments in Sec-
tion 4. Before presenting the equivalence proof, however,
we formulate the discrete analogs of the two ROBOT for-
mulations for their practical value.

2.2. Discrete ROBOT formulations

In practice, we typically encounter samples from distribu-
tions, rather then the distributions themselves. Sampling
is also built into stochastic optimization. In this subsec-
tion, we present the discrete versions of the ROBOT for-
mulations. The key detail is that, in equation 2.3, µ, ν
and s are all supported on Rd, while in the discrete case
the empirical measures µn ∈ ∆n−1 and νm ∈ ∆m−1

are supported on a set of points (∆r is the unit probabil-
ity simplex in Rr). As a result, to formulate a discrete
version of equation 2.3, we need to augment µn and νm
with each others’ supports. To be precise, let supp(µn) =
{X1, . . . , Xn} and supp(νm) = {Y1, . . . , Ym}. Define
C = {Z1, Z2, . . . , Zm+n} = {X1, . . . , Xn, Y1, . . . , Ym}.
Then discrete analog of equation 2.3 is

Formulation 1 (discrete):

min
Π,s

〈Caug,Π〉+ λ [‖s1‖1 + ‖t1‖1]

subject to Π1m+n =

[
µn + s1

t1

]
, Π>1m+n =

[
0
νm

]
Π � 0, 1>m+ns = 0,

(2.6)

where Caug ∈ R(m+n)×(m+n) is the augmented cost func-
tion Caug,i,j = c(Zi, Zj) (c is the ground cost, e.g.,
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squared Euclidean distance), s = (s1, t1) and 1r is the
vector all ones in Rr. The TV norm got replaced with its
discrete analog, the L1 norm. Similarly to its continuous
counterpart, the optimization problem is harder than typi-
cal OT due to additional constraint optimization variable s
and increased cost matrix size.

The discrete analog of equation 2.5 is straightforward:

Formulation 2 (discrete):

min
Π∈Rn×m

〈Cλ,Π〉

subject to Π1n = µn, Π>1m = νm, Π � 0,
(2.7)

where Cλ,i,j = min{c(Xi, Yj), 2λ}. As in the continuous
case, it is easy to adapt modern (regularized) OT solvers
without any computational overhead, and formulations of
equation 2.6 and equation 2.7 are equivalent. It is also pos-
sible to recover s of equation 2.6 from the solution of equa-
tion 2.7 to perform outlier detection.

Two-sided formulation. So far we have assumed that
one of the input distributions does not have outliers, which
is the setting of MKE, where the clean distribution corre-
sponds to the model we learn. In some applications, both
distributions may be corrupted. To address this case, we
provide an equivalent two-sided formulation, analogous to
UOT with TV norm:

Formulation 3 (two-sided):

min
Π,s1,s2

〈Caug,Π〉+ λ [‖s1‖1 + ‖t1‖1 + ‖s2‖1 + ‖t2‖1]

subject to Π1m+n =

[
µn + s1

t1

]
Π>1m+n =

[
s2

νm + t2

]
Π � 0, 1>m+ns1 = 0, 1>m+ns2 = 0

(2.8)

where s1 = (s>1 , t
>
1 )> and s2 = (s>2 , t

>
2 )>.

3. Equivalence of the ROBOT formulations
In this section, we present our main theorem, which
demonstrates the equivalence between two formulations of
the robust optimal transport:

Theorem 3.1. For any two measures µ and ν,
ROBOT(µ, ν) has same value for both the formulations,
i.e., Formulation 1 is equivalent to Formulation 2 for the
discrete case. Additionally, if the (non-truncated) cost
function c(·, ·) is a metric, then the equivalence of the two
formulations also holds for the continuous case. Moreover,
we can recover optimal coupling of one formulation from
the other.

Below we sketch the proof of this theorem and highlight
some important techniques used in the proof. We focus
on the discrete case as it is more intuitive and has con-
crete practical implications in our experiments. A com-
plete proof can be found in Appendix A. Please also see
Appendix A.2 for the proof of equivalence between For-
mulations 1, 2 and 3 in the discrete case.

3.1. Proof sketch

In the remainder of this section, we consider the discrete
case, i.e., equation 2.6 for Formulation 1 (F1) and equa-
tion 2.7 for Formulation 2 (F2). Suppose Π∗2 is an opti-
mal solution of F2. Then we construct a feasible solution
Π∗1, s

∗
1 = (s∗1, t

∗
1) of F1 based on Π∗2 with the same value

of the objective function as F2 and claim that (Π∗1, s
∗
1) is

an optimal solution. We prove the claim by contradiction:
if (Π∗1, s

∗
1) is not optimal, then there exists another pair

(Π̃1, s̃1) which is optimal for F1 with strictly less objective
value. We then construct another feasible solution Π∗2,new
of Formulation 2 which has the same objective value as of
(Π̃1, s̃1) for F1. This implies Π∗2,new has strictly less ob-
jective value for F2 than Π∗2, which is a contradiction.

The two main steps of this proof are (1) constructing a fea-
sible solution of F1 starting from a feasible solution of F2
and (2) showing that the solution constructed is indeed op-
timal for F1. Hence step (1) gives a recipe to construct
an optimal solution of F1 starting from an optimal solution
of F2. We elaborate the first point in the next subsection,
which has practical implications for outlier detection. The
other point is more technical; interested readers may go
through the proof in Appendix A.1.

Algorithm 1 Generating optimal solution of F1 from F2

1: Start with Π∗2 ∈ Rn×m, an optimal solution of Formu-
lation 2.

2: Create an augmented matrix Π ∈ Rm+n×m+n with all
0. Divide Π into four blocks:

Π =


Π11︸︷︷︸
n×n

Π12︸︷︷︸
n×m

Π21︸︷︷︸
m×n

Π22︸︷︷︸
m×m


3: Set Π12 ← Π∗2 and collect all the indices I = {(i, j) :
Ci,j > 2λ}.

4: Set Π12(i, j)← 0 for (i, j) ∈ I.
5: Set Π22(j, j) ←

∑n
i=1 Π∗2(i, j)1(i,j)∈I for all 1 ≤

j ≤ m and set Π∗1 ← Π.
6: Set s∗1(i) = −

∑m
j=1 Π∗2(i, j)1(i,j)∈I for all 1 ≤ i ≤

n.
7: Set t∗1(j) = Π22(j, j) for all 1 ≤ j ≤ m.
8: return Π∗1, s

∗
1, t
∗
1.
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3.2. Going from Formulation 2 to Formulation 1

Let Π∗2 (respectively Π∗1) be an optimal solution of F2
(respectively F1). Recall that Π∗1 has dimension (m +
n) × (m + n). From the column sum constraint in F1,
we need to take the first n columns of Π∗1 to be exactly
0, whereas the last m columns must sum up to νm. For
any matrix A, we denote by A[(a : b) × (c : d)] the
submatrix consisting of rows from a to b and columns
from c to d. Our main idea is to put a modified version
of Π∗2 in Π∗1[(1 : n) × (n + 1 : m + n)] and make
Π∗1[(n + 1 : m + n) × (n + 1 : m + n)] diagonal. First
we describe how to modify Π∗2. Observe that, if for some
(i, j) Ci,j > 2λ, we expectXi ∈ supp(µn) to be an outlier
resulting in high transportation cost, which is why we trun-
cate the cost in F2. Therefore, to get an optimal solution of
F1, we make the corresponding value of optimal plan 0 and
dump the mass into the corresponding slack variable t∗1 in
the diagonal of the bottom right submatrix. This changes
the row sum, which is taken care of by s∗1. But, as we are
not moving this mass outside the corresponding column,
the column sum of Π∗1[(1 : (m+n)) : ((n+1) : (m+n))]
remains same as column sum of Π∗2, which is νn. We sum-
marize this procedure in Algorithm 1.

Figure 1: Constructing optimal solution of Formulation 1 from
optimal solution of Formulation 2.

Example. In Figure 1, we provide an example to visual-
ize the construction. On the left, we have Π∗2, an optimal
solution of Formulation 2. The blue triangles denote the
positions where the corresponding cost value is ≤ 2λ, and
light-green squares denote the positions where the corre-
sponding value of the cost matrix is > 2λ. To construct
an optimal solution Π∗1 of Formulation 1 from this Π∗2, we
first create an augmented matrix of size 6× 6. We keep all
the entries of the left 6 × 3 sub-matrix as 0 (in this picture
blank elements indicate 0). On the right submatrix, we put
Π∗2 into the top-right block, but remove the masses from
light-green squares, i.e. where cost value is > 2λ, and put
it in the diagonal entries of the bottom right block as shown
in Figure 1. This mass contributes to the slack variables s1

and t1, and this augmented matrix along with s1, t1 give us
an optimal solution of Formulation 1.

3.3. Outlier detection with ROBOT

Our construction algorithm has practical consequences
for outlier detection. Suppose we have two datasets, a
clean dataset νm (i.e., has no outliers) and an outlier-
contaminated dataset µn. We can detect the outliers in µn
without directly solving costly Formulation 1 by following
Algorithm 2. In this algorithm, λ is a regularization param-
eter that can be chosen via cross-validation or heuristically
(see Section 4.2 for an example). In Section 4.2, we use
this algorithm to perform outlier detection on image data.

Outlier detection with entropic regularization. Algo-
rithm 1 allows us to recover solution of Formulation 1,
which ultimately is used for outlier detection in Algorithm
2, by solving the simpler truncated cost Formulation 2
problem in equation 2.7. Similarly to the regular OT, it
can be solved exactly with a linear program solver—Pele
& Werman (2009) propose a faster exact solution based on
min-cost-flow solvers benefiting from the cost truncation—
or approximately using entropic regularization techniques,
e.g. Sinkhorn algorithm (Cuturi, 2013). In the following
lemma, we show that Algorithm 1 recovers a meaningful
approximate solution of Formulation 1 from an approx-
imate solution of Formulation 2 obtained with entropy-
regularized OT solvers.

Lemma 3.2. Let Π∗2,α be a solution of the entropy regular-
ized version of equation 2.7:

arg min
Π∈Rn×m

〈Cλ,Π〉+ αH(Π)

subject to Π1n = µn, Π>1m = νm, Π � 0,
(3.1)

and let
(
Π∗1,α, s

∗
1,α

)
be the corresponding approximate so-

lution of Formulation 1 recovered from Π∗2,α by Algorithm
1. Then

‖Π∗1,α −Π∗1‖F + ‖s∗1,α − s∗1‖2 → 0

as α→ 0, where (Π∗1, s
∗
1) is the exact solution of Formula-

tion 1 in equation 2.6.

When the solution of equation 2.7 is non-unique, then the
solution of equation 3.1 converges to the solution of equa-
tion 2.7 with maximum entropy (see Proposition 4.1 of
Peyré & Cuturi (2018)) and consequently recovers the cor-
responding maximum entropy solution (Π∗1, s

∗
1) of equa-

tion 2.6 by Algorithm 1 in the limit. Please find the proof
in Appendix C.

4. Empirical studies
To evaluate effectiveness of ROBOT, we consider the task
of robust mean estimation under the Huber contamination
model. The data is generated from (1 − ε)N (η0, Id) +
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Algorithm 2 Outlier detection in contaminated data

1: Start with µn (contaminted data) and νm (clean data).
2: Solve Formulation 2 and obtain Π∗2 using a suitable

value of λ.
3: Use Algorithm 1 to obtain Π∗1, s

∗
1, t
∗
1 from Π∗2.

4: Find I, the set of all the indices where µn + s∗1 = 0.
5: Return I as the indices of outliers in µn.

εN (η1, Id) and the goal is to estimate η0. Prior work has
advocated for using f -divergence GANs (Chao et al., 2018;
Wu et al., 2020) for this problem and pointed out ineffi-
ciencies of Wasserstein GAN in the presence of outliers.
We show that our robust OT formulation allows to estimate
the uncontaminated mean η0 comparably or better than a
variety of f -divergence GANs. We also use this simulated
setup to study sensitivity to the cost truncation hyperparam-
eter λ.

In our second experiment, we present a new application
of optimal transport enabled by ROBOT. Suppose we have
collected a curated dataset νm (i.e., we know that it has no
outliers)—such data collection is expensive, and we want
to benefit from it to automate subsequent data collection.
Let µn be a second dataset collected “in the wild,” i.e.,
it may or may not have outliers. We demonstrate how
ROBOT can be used to identify outliers in µn using the
curated dataset νm.

4.1. Robust mean estimation

Following Wu et al. (2020), we consider a simple genera-
tor of the form gθ(x) = x+ θ, x ∼ N (0, Id), d is the data
dimension. The basic idea of robust mean estimation with
GANs is to minimize various distributional divergences be-
tween samples from gθ and observed data simulated from
(1− ε)N (η0, Id) + εN (η1, Id). The goal is to estimate η0

with θ.

To efficiently implement ROBOT GAN, we use a stan-
dard min-max optimization approach: solve the inner max
(ROBOT) and use gradient descent for the outer min pa-
rameter. To solve ROBOT, it is straightforward to adopt
any of the prior stochastic regularized OT solvers: the only
modification is the truncation of the cost entries as in equa-
tion 2.7. We use the stochastic algorithm for semi-discrete
regularized OT (Genevay et al., 2016, Algorithm 2). We
summarize ROBOT GAN in Algorithm 3. Line 5 - Line 11
perform the inner optimization where we solve the entropy
regularized OT dual with truncated cost and Line 12 - Line
14 perform gradient update of θ.

For the f -divergence GANs (Nowozin et al., 2016), we
use the code of Wu et al. (2020) for GANs with Jensen-
Shannon (JS) loss, squared Hellinger (SH) loss, and Re-

verse Kullback-Leibler (RKL) loss. For the exact expres-
sions of these divergences, see Table 1 of Wu et al. (2020).
We report estimation error measured by the Euclidean dis-
tance between true uncontaminated mean η0 and estimated
mean θ for various contamination distributions in Table 1.
ROBOT GAN performs well across all considered contam-
ination distributions. As the difference between true mean
η0 and contamination mean η1 increases, the estimation
error of all methods tends to increase. However, when it
becomes easier to distinguish outliers from clean samples,
i.e., η1 = 2 · 15, performance of ROBOT noticeably im-
proves. We present an analogous study with data simulated
from a mixture of Cauchy distributions in Appendix F.

Algorithm 3 ROBOT GAN

1: Input: robustness regularizion λ, entropic regular-
ization α, data distribution µn ∈ ∆n−1, supp(µn) =
X = [X1, . . . , Xn], steps sizes τ and γ

2: Initialize: Initialize θ = θinit, set number of itera-
tions M and L, i = 0, v = ṽ = 0.

3: for j = 1, . . . ,M do
4: Generate z̃ ∼ N (0, Id) and set z = z̃ + θ.
5: Set the cost vector c ∈ Rn as c(k) =

min{c(Xk, z), 2λ} for k = 1, . . . , n.
6: for i = 1, . . . , L do
7: Set h ← ṽ−c

α and do the normalized exponential
transformation u← eh

〈1,eh〉 .
8: Calculate the gradient∇ṽ← µn − u.
9: Update ṽ ← ṽ + γ∇ṽ and v ← (1/(j + i))ṽ +

(j + i− 1/(j + i))v.
10: end for
11: Do the same transformation of v as in Step 7, i.e. set

h← v−c
α and set Π← eh

〈1,eh〉 .
12: Set Π(k) = 0 for k such that c(Xk, z) > 2λ for

k = 1, . . . , n.
13: Calculate gradient with respect to θ as ∇θ =

2
[
z
∑
k Π(k)−X>Π

]
14: Update θ ← θ − τ∇θ.
15: end for
16: Ouput: θ

We also compared to the Sinkhorn-based UOT algorithm
(Chizat et al., 2018) available in the Python Optimal Trans-
port (POT) library (Flamary & Courty, 2017); to obtain
a UOT GAN, we modified steps 5-12 of Algorithm 3 for
computing Π. Unsurprisingly, both ROBOT and UOT per-
form similarly: recall equivalence to Formulation 3, which
is similar to UOT with TV norm. The key insight of our
work is the equivalence to classical OT with truncated cost,
that greatly simplifies optimization and allows to use exist-
ing stochastic OT algorithms. In this experiment, the sam-
ple size n = 1000 is sufficiently small for the Sinkhorn-
based UOT POT implementation to be effective, but it
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Table 1: Robust mean estimation with GANs using different distribution divergences. True mean is η0 = 05; sample size n = 1000;
contamination proportion ε = 0.2. We report results over 30 experiment restarts.

Contamination JS Loss SH Loss RKL Loss ROBOT UOT

N (0.1 · 15, I5) 0.09 ± 0.03 0.11 ± 0.03 0.115 ± 0.03 0.1 ± 0.03 0.1 ± 0.04
N (0.5 · 15, I5) 0.23 ± 0.04 0.24 ± 0.05 0.24 ± 0.05 0.117 ± 0.03 0.2 ± 0.04
N (1 · 15, I5) 0.43 ± 0.05 0.43 ± 0.06 0.43 ± 0.06 0.261 ± 0.06 0.25 ± 0.05
N (2 · 15, I5) 0.67 ± 0.07 0.67 ± 0.08 0.67 ± 0.08 0.106 ± 0.03 0.1 ± 0.03
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Figure 2: Empirical study of the cost truncation hyperparameter λ sensitivity.

breaks in the experiment we present in Section 4.2. We
also tried the code of Balaji et al. (2020) based on CVXPY
(Diamond & Boyd, 2016), but it is too slow even for the
n = 1000 sample size. In Subsection 4.3 we present a
comparison to Balaji et al. (2020) on a smaller sample size.

Hyperparameter sensitivity study. In the previous ex-
periment, we set λ = 0.5. Now we demonstrate empir-
ically that there is a broad range of λ values performing
well. In Figure 2(a), we study sensitivity of λ under var-
ious contamination proportions ε holding η0 = 15 and
η1 = 5 · 15 fixed. Horizontal lines correspond to λ = ∞,
i.e., vanilla OT. The key observations are: there is a wide
range of λ efficient at all contamination proportions (note
the log10 x-axis scale), and ROBOT is always at least as
good as vanilla OT (even when there is no contamination
ε = 0). In Figure 2(b), we present a similar study vary-
ing the mean of the contamination distribution and holding
ε = 0.2 fixed. We see that as the contamination distribu-
tion gets closer to the true distribution, it becomes harder

to pick a good λ, but the performance is always at least as
good as the vanilla OT (horizontal lines).

4.2. Outlier detection for data collection

Our robust OT formulation equation 2.6 enables outlier
identification. Let νm be a clean dataset and µn poten-
tially contaminated with outliers. Recall that ROBOT al-
lows modification of one of the input distributions to elim-
inate potential outliers. We can identify outliers in µn as
follows: if µn(i) + s∗1(i) = 0, then Xi, the ith point in
µn, is an outlier. Instead of directly solving equation 2.6,
which may be inefficient, we use our equivalence results
and solve an easier optimization problem equation 2.7, fol-
lowed by recovering s to find outliers via Algorithm 2.
When using entropy-regularized approximate solutions to
detect outliers with Algorithm 2, in step 4, µn+ s∗1 will not
be exactly 0 for the outliers, so a small threshold should be
used instead. We modify step 4 to “Find I, the set of all
the indices where µn + s∗1 < 1/n2” when using entropy
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Table 2: Outlier detection on MNIST.

Methods Accuracy
One class SVM 0.496± 0.003
Local outlier factor 0.791± 0.001
Isolation forest 0.636± 0.010
Elliptical envelope 0.739± 0.002
Orthonormal Certificates 0.819± 0.008
ROBOT 0.859± 0.002
ROBOT-Sinkhorn 0.897± 0.004

regularization.

To test our outlier-identification methodology we follow
the experimental setup of Tagasovska & Lopez-Paz (2019).
Specifically, let νm be a clean dataset consisting of 10k
MNIST digits from 0 to 4 and µn be a dataset collected “in
the wild” consisting of (different) 8k MNIST digits from 0
to 4 and 2k outlier MNIST images of digits from 5 to 9. We
compute ROBOT(µn, νm) to identify outlier digit images
in µn. For each point in µn we obtain a prediction, outlier
or clean, which allows us to evaluate accuracy. Tagasovska
& Lopez-Paz (2019) use last-layer features of a neural net-
work pre-trained on the clean data νm—it is straightfor-
ward to combine ROBOT and other baselines we consider
with any feature extractor, but in this experiment we simply
use the raw data.

We compare to the Orthonormal Certificates (OC) method
of Tagasovska & Lopez-Paz (2019) and to a variety of stan-
dard outlier detection algorithms available in Scikit-learn
(Pedregosa et al., 2011): one class SVM (Schölkopf et al.,
1999), local outlier factor (Breunig et al., 2000), isolation
forest (Liu et al., 2008) and elliptical envelope (Rousseeuw
& Driessen, 1999). All baselines except one class SVM
and local outlier factor use clean data for training as does
our method.

Results of 30 experiment repetitions are summarized in Ta-
ble 2. ROBOT, i.e. Algorithm 2 where equation 2.7 is
solved exactly with a linear program solver, and ROBOT-
Sinkhorn, i.e. Algorithm 2 where equation 2.7 is solved
approximately using Sinkhorn (Cuturi, 2013), produce the
best results. In this experiment ROBOT-Sinkhorn outper-
forms ROBOT, but it is not necessarily to be expected in
general. We conclude that our method is effective in as-
sisting data collection once an initial set of clean data has
been acquired and is compatible with entropy-regularized
OT solvers ensuring scalability.

Elliptical envelope assumes that clean data is Gaussian,
while one class SVM, isolation forest and local outlier fac-
tor correspondingly attempt to fit SVM, random forest and
k-nearest neighbors classifiers to distinguish clean and out-
lier samples. All these baselines work best when the clean

Inliers detected as outliers︷ ︸︸ ︷ Outliers detected as inliers︷ ︸︸ ︷
digit count digit count

0 10 5 191
1 1 6 94
2 53 7 175
3 32 8 181
4 22 9 309

Figure 3: Insights into ROBOT-Sinkhorn performance: the top
left figure is a collection of random inlier digits miss-classified
as outliers; the top right picture represents random outlier digits
miss-classified as inliers and the table illustrates frequency distri-
bution of miss-classified images. The majority of the errors are
on digit 9, possibly due to its similarity to 4.

data is unimodal, which is not the case for the MNIST 0
to 4 digits considered in our experiment. The orthonormal
certificates method is rooted in PCA and assumes that clean
and outlier data live in different subspaces. This assump-
tion is reasonable for the MNIST data, but it might not hold
broadly in practice. We believe that empirical success of
our method is due to its optimal transport nature. OT is a
geometry-sensitive metric on distributions that can distin-
guish multi-modal distributions and distributions supported
on the same subspace. We provide additional insights into
the ROBOT performance in Figure 3. A theoretical inves-
tigation of ROBOT outlier-detection guarantees is an inter-
esting future work direction.

Hyperparameter selection. To select the cost trunca-
tion hyperparameter λ, we propose the following heuris-
tic: since we know that νm is clean, we can subsample
two datasets from it, compute vanilla OT to obtain trans-
portation plan Π and set λ to be half the maximum dis-
tance between matched elements, i.e. 2λ = maxi,j{Cij :
Πij > 0}, where C is the cost matrix for the two subsam-
pled datasets. This procedure is essentially estimating max-
imum distance between matched clean samples. To avoid
subsampling noise we use 99th percentile instead of the
maximum. Our experiments also revealed that increasing
λ increases the set of outliers progressively, i.e. if a sample
is detected as outlier for some value of λ, then it will be
detected as outlier for all higher values of λ. A rigorous
theoretical analysis for this observation is a potential future
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Table 4: Robust mean estimation for n = 200.

Method Estimation error Run-time
ROBOT-Sinkhorn 0.196± 0.1 35s± 0.6s
Balaji et al. (2020) 0.212± 0.074 7745s± 1670s

Table 5: Outlier detection for n = 1000.

Method Estimation error Run-time
ROBOT-Sinkhorn 0.86± 0.015 6± 2s
Balaji et al. (2020) 0.8± 0.0005 3343± 960s

work.

The Orthonormal Certificates method (Tagasovska &
Lopez-Paz, 2019) also requires setting a threshold. It com-
putes the null-space of the clean train data and uses the
norm of the projection into that space as a score to distin-
guish outliers. Similarly to ROBOT, and as the authors do
in their code, we use 99th percentile of those scores com-
puted on the clean train data as the threshold. For other
baselines, we use the default hyperparameters.

4.3. Comparison with Balaji et al. (2020)

We conduct additional experiments comparing to the re-
cent robust optimal transport method of Balaji et al. (2020).
Their method relies on CVXPY and does not scale to the
sample sizes considered in our previous experiments. We
compare on smaller data sizes.

Robust mean estimation. We set n = 200 samples with
contamination distribution mean equal to 2 and true mean
equal to 0 (same configuration as in the last row in Table 1).
The runtime and the estimation error is reported in Table 4.

Outlier detection experiment. In this experiment, we con-
sider the size of the entire dataset (inliers + outliers) to be
n = 1000 (with 800 inliers and 200 outliers). The results
(accruacy and run-time) are provided in Table 5.

The method of Balaji et al. (2020) is significantly slower
as expected. Comparing the performance, we think that
ROBOT performs better because it is based on TV norm,
while the method of Balaji et al. (2020) uses a chi-squared
constraints on the marginal perturbations. A TV constraint
on the marginal perturbations is more closely related to
the ε-contamination model for outlier detection, suggest-
ing that a TV-based constraint/regularizer could be a better
choice for the outlier detection applications. We also note
that in the outlier detection experiment, using chi-square
divergence results in a non-sparse solution and requires
tuning a threshold parameter to perform outlier detection,
in addition to the chi-square distance hyperparameter. We
tuned those parameters, but were not able to achieve signif-
icant performance improvements for the method of Balaji

et al. (2020).

5. Summary and discussion
We propose and study ROBOT, a robust formulation of op-
timal transport. Although the problem is seemingly asym-
metric and challenging to optimize, there is an equivalent
formulation based on cost truncation that is symmetric and
compatible with modern stochastic optimization methods
for OT.

ROBOT closely resembles unbalanced optimal transport
(UOT). In our formulation, we added a TV regularizer to
the vanilla optimal transport problem. This is motivated
by the ε-contamination model. In UOT, the TV regularizer
is typically replaced with a KL divergence. Other choices
of the regularizer may lead to new properties and applica-
tions. Studying equivalent, simpler formulations of UOT
with different divergences may be a fruitful future work di-
rection.

From the practical perspective, in our experiments we ob-
served no degradation of ROBOT GAN in comparison to
OT GAN, even when there were no outliers. It is possi-
ble that replacing OT with ROBOT may be beneficial for
various machine learning applications of OT. Data encoun-
tered in practice may not be explicitly contaminated with
outliers, but it often has errors and other deficiencies, sug-
gesting that a “no-harm” robustness is desirable.
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