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ABSTRACT

Transitional inference is an empiricism concept, rooted and practiced in clinical medicine since ancient
Greece. Knowledge and experiences gained from treating one entity (e.g., a disease or a group of patients)
are applied to treat a related but distinctively different one (e.g., a similar disease or a new patient). This
notion of “transition to the similar” renders individualized treatments an operational meaning, yet its
theoretical foundation defies the familiar inductive inference framework. The uniqueness of entities is the
result of potentially an infinite number of attributes (hence p = o0), which entails zero direct training
sample size (i.e., n = 0) because genuine guinea pigs do not exist. However, the literature on wavelets and
on sieve methods for nonparametric estimation suggests a principled approximation theory for transitional
inference via a multi-resolution (MR) perspective, where we use the resolution level to index the degree of
approximation to ultimate individuality. MR inference seeks a primary resolution indexing an indirect train-
ing sample, which provides enough matched attributes to increase the relevance of the results to the target
individuals and yet still accumulate sufficient indirect sample sizes for robust estimation. Theoretically, MR
inference relies on an infinite-term ANOVA-type decomposition, providing an alternative way to model
sparsity via the decay rate of the resolution bias as a function of the primary resolution level. Unexpectedly,
this decomposition reveals a world without variance when the outcome is a deterministic function of
potentially infinitely many predictors. In this deterministic world, the optimal resolution prefers over-fitting
in the traditional sense when the resolution bias decays sufficiently rapidly. Furthermore, there can be many
“descents” in the prediction error curve, when the contributions of predictors are inhomogeneous and the
ordering of their importance does not align with the order of their inclusion in prediction. These findings
may hint at a deterministic approximation theory for understanding the apparently over-fitting resistant
phenomenon of some over-saturated models in machine learning.
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1. Motivation and Resolution
1.1. Individualized Predictions and Transitional Inference

Predicting an individual’s outcome, such as for personalized
medicine, is an alluring proposition. Who would not want to
know how a treatment would work for me before such treatment
even begins? But in order to test the effectiveness of a treatment,
we will need some guinea pigs. But who can approximate me?
Someone with my genetic profiles, age, diet, exercise habit, and
medical history? But how detailed should the medical history
be? What about family medical history? And how extended
should my “family” be?

The arrival of Big Data permits us to look into such questions
at deeper levels than before, but it does not make our job
easier in any fundamental way. Finding a proxy population to
approximate an individual is inherently an ill-defined problem
from a mathematical perspective, since each of us is defined by
an essentially infinite number of attributes, denoted by p = oco.
The implied uniqueness of “me” then renders n = 0, that is, there
will never be any genuine guinea pig for me. Epistemologically,
this need of “transition to the similar” has been pondered by
philosophers from Galen to Hume (see, e.g., Hankinson 1987,

1995). For example, Galen, a physician and philosopher in the
Roman Empire, wrote (see Hankinson 1987):

In cases in which there is no history, or in which there is
none of sufficient similarity, there is not much hope. And the
same thing is true in the case of transference of one remedy
from one ailment to another similar to it: one has a greater or
smaller basis for expectation of success in proportion to the
increase or decrease in similarity of the ailment, whether or
not history is involved. And the same goes for the transfer-
ence from one part of the body to another part: expectation
of success varies in direct proportion to the similarity.

Galen’s framing is essentially a statistical one, with a nice
blend of Bayesian (the reliance on history) and frequentist
(the emphasis on proportions regardless of history), albeit long
before any of these qualifying terms was invented. Perhapsitisa
surprise then that, to the best of our knowledge, there is no sta-
tistical theory for this kind of transitional inference (Hankinson
1995). We surmise that this absence is largely due to the fact that
transitional inference goes outside of our traditional inductive
framework since it is not about inferring a population from
samples of individuals, but rather about predicting individuals’
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outcomes by learning from a proxy population. The notion of
similarity, central to transitional inference, is also a challenging
one to metricize in general.

However, the concept of multi-resolution (MR) analysis in
engineering and applied mathematics, such as wavelets (see
Daubechies 1992; Meyer 1993), turns out to be rather useful for
establishing such a theoretical framework. For wavelets, varia-
tions in data are first decomposed according to their resolution
levels. For image data, the resolution level is the pixel resolution
as we ordinarily define, and the concept of multi-resolution can
be easily visualized by the common practice of zooming in and
out when taking pictures. Zooming too much or too little both
would result in losing seeing the big picture, figuratively and
literally. Our central task is then to identify a suitable primary
resolution to separate signals (i.e., lower-resolution wavelet coef-
ficients) from noise (i.e., higher resolution wavelet coeflicients);
see Donoho et al. (1995) and especially Johnstone (2011) for a
survey. The choice of primary resolution thus determines the
unit of our inference, that is, the degree of individualization.
The search for the primary resolution is generally a quest for an
age-old bias-variance tradeoff: estimating more precisely a less
relevant individual assessment versus estimating less precisely a
more relevant one.

Because the MR framework permits the resolution level to
be potentially infinite, it can also be viewed as the predictive
counterpart of the estimation method of sieves for dealing with
infinite-dimension models. In order to reveal as early as possible
what this framework can offer, we follow a reviewer’s suggestion
to defer a literature review and comparison with the standard
large-p-small-n framework to the end of our article.

1.2. A Fundamental Resolution Decomposition

To set up our MR framework, we consider an outcome variable Y
sharing the same probability space (€2, F, P) as an information
filtration {F,,r = 0,1,...,}, where F,_1 C F, and r indexes
our resolution level. Here F( corresponds to a population of
interest (e.g., those who are infected by a certain virus) from
where target individuals come, and Foo = U2 F, permits
us to define (unique) individuality. For example, F; is the o-
field generated by covariates {Xo, X1, . .., X}, and hence deter-
mining the primary resolution is the same as determining how
many covariates should be used for predicting Y for a given
information filtration (see Section 2.5 for the issue of ordering
the covariates). Let E(-) and V(-) denote mean and variance,
respectively. Denote yu, = E[Y|F,] and crrz = V[Y|F;] for
all rs, including r = 0 and r = oo (and assume these are
well defined). Then by repeatedly applying the iterative law
VIYIF] = E[V(Y|F)IF] + VIE(Y[F)|F], wheres > 1,
we have the usual ANOVA decomposition (Meng 2014),

oo
of = Elo%|F1+ ) El(uin1 — w)?| 7], foranyr = 0.

i=r
(1)
Decomposition (1) reminds us that the usual dichotomy
between variance, as a measure of random variations, and bias,
as a measure of systematic differences, is an artificial one, except
possibly at the infinite resolution level. That is, the variance
at any particular resolution level is merely the accumulation

of all the (squared consecutive) systematic differences, that is,
biases, at higher resolution levels, plus 0.2 , the intrinsic variance.
Conceptually o2 cannot be ascertained from any empirical
data, because we can never be sure whether the residual variance
from whatever model we fit is due to o/ or to a limitation of our
always finite amount of data. It therefore seems inconsequential
to set 0.2, = 0 since we can never prove it false. This proposition
should be particularly acceptable to those who believe that the
world is ultimately deterministic once all its operating mecha-
nisms are measured and understood (see, e.g., Peat 2002).
However, as we shall reveal in this article, whether or not to
set 02, to zero has profound implications on the bias-variance
tradeoff phenomenon. To the best of our knowledge, the statis-
tical literature has not investigated this phenomenon for chaotic
dynamic systems (e.g., Devaney 2018), since when o2 = 0,
the setup here enters the realm of deterministic but potentially
chaotic systems. The corresponding findings therefore may be
counter-intuitive (initially) to statisticians, but they might pro-
vide a bridge to the growing literature in machine learning that
casts doubts on the applicability of bias-variance tradeoft, espe-
cially the literature surrounding the phenomenon of “double
descent” (e.g., Belkin et al. 2019; Belkin, Hsu, and Xu 2019;
Hastie et al. 2019; Nakkiran et al. 2019), which we shall explain
and extend to “multiple descents” later in this article.
Regardless of how we treat 02, declaring that a resolution
level R is our primary resolution implies that all the information
conveyed by variations at resolution levels higher than R can
be effectively ignored when predicting Y. The MR formulation
therefore permits us to quantify the degree of individualization,
and to be explicit about the two contributing factors of our
overall prediction error: (I) the resolution bias due to choosing
a finite R; and (II) the estimation error at the given resolution
R. The MR framework therefore integrates the model selection
step (I) with the model estimation step (II), and hence it does
not need to treat the issue of selection post-hoc (e.g., Berk et al.
2013; Lee et al. 2016; Tibshirani et al. 2016). Furthermore, since
the filtration {F,,r = 0, 1, .. .} forms a cumulative “information
basis,” the choice of optimal R, for a given dataset with size
n is in the same spirit as finding a sparse representation in
wavelets, for which there is a large literature (see Poggio and
Girosi 1998; Donoho and Elad 2003), though here perhaps it is
more appropriate to term it as parsimonious representation.

1.3. Time-Honored Intuitions, and Timely New Insights?

Our findings confirm some time-honored intuitions and build
new ones. Specifically, in Section 2 we first decompose the total
prediction error into three components: the ultimate risk, the
resolution bias and the estimation error. We then provide an
overview and highlight on how the optimal resolution depends
on the decay rates of the resolution bias and the correspond-
ing estimation error under a particular ordering of covariates,
respectively, in the stochastic world (i.e., 02, > 0) and deter-
ministic world (i.e., ago = 0). Section 2 concludes with some
theoretical insights on the issue of ordering the covariates.
Sections 3 and 4 then establish our general results with
an infinite number of continuous and categorical predictors,
and illustrates them with linear regression and tree regression,



respectively. In particular, in Sections 3.3 and 4.3, we report
some intriguing findings when 02, = 0, respectively, for these
two regression models. In this world without variance, the opti-
mal resolution may rightly prefer the direction of over-fitting
in the traditional sense; indeed the optimal resolution level can
even approach infinity. But this preference does not violate the
time-honored bias-variance tradeoff principle because, without
variance, the optimal tradeoff may have to put all its eggs in the
basket of bias.

We also find that the predictive error curve can exhibit
double descents or even arbitrarily many descents without ever
entering the over-parameterized realm. These findings might
provide a new angle to investigate very flexible and saturated
models, such as deep learning networks, to understand their
seemingly magical ability to resist over-fitting. That is, with a
huge amount of data, it is conceivable that an exceedingly rich
and flexible deterministic model class can learn to practically
exhaust all patterns detectable with reasonable chances in reality
(which can be far fewer than in theory). In such cases, we
would not need 02, > 0 to absorb the imperfection of the
model, effectively rendering it a deterministic system, a system
that prefers “over-fitting” in the traditional sense. This is also
explored empirically in Section 3.5, where we summarize a sim-
ulation study with linear models that investigates the practicality
of the MR approach that employs cross validation and other
methods for selecting the primary resolution in practice. The
details of the study, as well as all the technical proofs in our
article, are deferred to the Appendices in the online supplemen-
tary materials. Section 5 completes our exploration by making
connections to relevant literature and discussing further work.

2. A Multi-Resolution Framework
2.1. Prediction With Potentially Infinitely Many Predictors

To start, let © be a member of a target population, which can
be as small as a single individual, and Y(®) be a univariate
response from ©, which can be discrete (e.g., a treatment success
indicator) or continuous (e.g., the change of the cholesterol
level due to a treatment). Typically the investigators have some
prior knowledge about which set of the individuals attributes
play more critical roles in determining Y. But, philosophically
and practically, no one can be certain about what constitutes
the complete set of relevant predictors. Statistically, we can
model such a situation by requiring the distribution of Y (®) to
depend on potentially infinitely many attributes of ©, denoted
by X0 (©) {X0(©), X1(0), X2(O), . ..}. In reality we can
never observe infinitely many covariates, but the arrival of the
digital age has created many situations where we have far more
predictors than the sample size. Our job is to seek a small subset
of the predictors of the outcome with accuracy that makes our
prediction useful.

We use fq, to denote the joint probability mass/density func-
tion of the response and covariates for the target individual
©. To learn about fo, especially the dependence of Y(©®) on

OQ(G)) we need to collect a training set 7, = {(yi,Xico) :
i = 1,2,...,n}, which are (assumed to be) independent and
identically distributed (iid) samples from a training (proxy)
population. Clearly the phrase “training” implies that we need
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some assumptions to link 7, to the target population. The ideal
assumption of course is that f; equals the joint probability
mass/density function f of (Y,Xq) for the training popula-
tion. Whereas all attempts should be made to mimic the target
population when we form the training population, it is wise
to permit our framework sufficient flexibility to admit cases
where f may differ from f but in an approximately known way.
Mathematically, this flexibility can be handled by introducing a
weight function

_fo¥, Xoo)
F(Y, Xo0)

fO(Y|Xoo)f®(Xoo)

)
f(VXoo) fXoo)

Normally it is almost inevitable to assume f@(Y|Xoo) ~
f(Y|Xoo) that is, the (stochastic) relationships between the
outcome and the predictors for the target population and the
training population must be approximately the same, because
otherwise our selection of the training sample is a very poor
one. Consequently, (2) implies wo (Y, X)) ~ fo (XOO)/f(Xoo)
which is easier to estimate since it merely involves adjusting the
marginal distribution of the X0, known as a “covariate shift”
in the literature (see, e.g., Bickel, Briickner, and Scheffer 2007;
Sugiyama and Kawanabe 2012). However, when © is indeed a
single individual or beyond the support of the training popu-
lation, the weight wo (Y, X« ) is not defined without lowering
the resolution level for evaluation; see Meng (2021). We leave
the choice of weights for a future study, as our focus in this
article is on the choice of optimal resolutions with given weight
functions.

To avoid confusion, we use Eg and E to denote the expec-
tations over the target and the training populations, respec-
tively. To evaluate the prediction performance of a prediction
function y(Xoo) we can adopt a loss function £(y, ), which is
problem-dependent. Clearly, we can minimize the expected loss
Eol[L(Y, y(Xoo))] via minimizing E[EQ(Y y(XOO))] where
Lo(Y, y(Xoo)) L(Y, y(Xoo))w@(Y Xoo) the subscript ©
indicates its dependence on the utility of prediction and the
target population of interest. With this setup, we proceed as
follows. At each resolution r, we restrict our prediction to a
family of functions {g(x,;0,)}, where X, = (xo,...,x,). For
notational simplicity, we suppress the explicit dependence of
g(-) on r, but rather use the inputs X, and 8, to emphasize such
dependence implicitly. Note that 8, denotes a generic parameter
whose dimension can vary with r. For example, dim(6,) = (Hz'z)
if g(%,; 0,) is a linear function of covariates up to resolution r and
of all their quadratic terms and pairwise interactions. Generally,
we will choose g(-) such that the family of prediction functions
becomes richer as resolution increases. That is, for any r < 7/,
any prediction function g(x,;6,) at resolution r, viewed as a
function of X/, belongs to the family of prediction functions
at resolution r’. At each resolution r, the optimal prediction
is then g(x;07), with 07 = argminy E[Lo(Y,g(X;360,))].
A wusual estimator for 6} is obtained by minimizing the
empirical risk: @r = argming, Y i Lo (i, g(%ir;0,)). Hence,
once we choose the primary resolution R, we predict Y by
g(}R;é r) for an individual with covariate x,o, and estimate
the prediction error E[L (Y, g(f( RS ] r))] by the empirical risk
n I3 Loy g(Xirs 0r)), or by cross-validation.
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2.2. A Trio Decomposition of the Prediction Error

To better understand the prediction error at a resolution R,
we decompose E[Lq (Y, g(i(R; 9R))] into three parts: the ulti-
mate risk, the resolution bias at resolution R, and the esti-
mation error at resolution R. The ultimate risk is 1> =
E[Lo(Y, g(f(m; 07%.))1, which depends on the families of func-
tions used for prediction. Specifically, it has two sources, one
due to model misspecification and the other due to the intrinsic
variation at the infinite resolution, i.e., f (Y|5(oo). That is, the
intrinsic variance 6020 = V(Y|Xoo) can be positive (or even
infinity) in a stochastic world. The resolution bias at resolution

R then s

oo
AR = Y {ElLo(Y.g&1507 )] — ElLo(Y.gR:0:)]}
r=R+1
When the family of prediction functions becomes richer as
resolution increases, A(R) is nonincreasing in R and approaches
zero as R — oo, that is, limp,o0 A(R) = 0. Finally, the
estimation error at resolution R,

e(R,Tp) = E[Lo(Y,g(Xr;0r))] — E[Lo (Y, g(Xr; 05))],

is nonnegative by the optimality of #%. From the above, the
prediction error at resolution R using training set 7, can be
decomposed as

ElLo(Y,gXp;0r)] =2 +AR) + (R, To).  (3)

As we shall show shortly, theoretically, we can gain good insight
by considering the averaged version of this decomposition, that
is,

By [EILo (Y, gKrsbp)]| = 7+ AR + (R, (4)

where, with slight abuse of notation, e(R,n) = E,[e(R, T,)],
and E, denotes the expectation over all training sets of
size n.

It is worthy noting that Equation (3) is an extension of the
ANOVA decomposition (1) in expectation, with Equation (1)
being a special case with Lo (y,7) = (y — ) and g(X70%) =
E(Y|3(r) for r > 1, that is, the prediction functions are correctly
specified. Under this special case, the ultimate risk 72 reduces to
E(02,). We remark that in general 7> > E(02), with equality
holds when we correctly specified the prediction functions.
Because 02, > 0, a zero 72 then must imply 62 = 0 (almost
surely), that is, a deterministic world without variance. Here,
as in Equation (1), orz = V[Y|X;] and u, = E[Y|X;] =
2(X5;07), which is estimated by 2, = g(X7; 9,). The resolution
bias at resolution R reduces to Y 2 [E(c7) — E(o2, )] =
Y B — wr)?, and the estimation error to E(fig — ur)?.
Consequently, Equation (3) reduces to

o
E(o3) + E(iir — ur)* = E(02) + Y E(tr1 — )’
r=R

+E(iir — 1r)% (5)

which is equivalent to Equation (1) by further averaging over F;
(i.e., the conditioning in Equation (1)).

Because in Equations (3) and (4) the ultimate risk is not
affected by the resolution (under the assumption that the func-
tion form is the same at the infinite resolution), for any training
set T, the optimal primary resolution that minimizes the pre-
diction error in Equation (3) is

RT, opt = arg min E[Lo (Y, g(Xp; )]

= argrrgn [AR) + e(R, Tp)] .

Similarly, the optimal primary resolution that minimizes the
prediction error in (4) is

Ryopt = arg mRin E, [IE[EO (Y,g()_i'R; 9R))]]

= arg Irhin [AR) + &(R,n)].

Studying R7; opt OF Ryopt for a particular training set 7, or a
particular size n is generally difficult. We therefore resort to the
usual asymptotic strategy. That is, as n goes to infinity, we seek
a sequence {R,}>°; such that A(R,) + (R, Tp) or A(R,) +
€(Ry, n) converges to zero (in probability) as fast as possible. We
will adopt the notation a, =< b, if two sequences {a,} and {b,}

satisty a, = O(by) and b, = O(a,), and similarly, a, 5 ?)n
O]p(l;n) and
b, = Op(ay), using the usual definition of Op. We also use the
notation a, 2> by, for b, = O(ay).

if random sequences {a,} and {I;n} satisty a, =

2.3. Optimal Resolution and Learning Rate in the
Stochastic World

Intuitively, there must be a tradeoff in determining the optimal
R,,. To control the resolution bias A(R,), we desire large R,
because of the monotonically decreasing nature of A(R). For
A(Ry,), we will consider four scenarios, representing four differ-
ent levels of sparsity. However, to control the estimation error,
we want small R, to reduce the number of model parameters
to be estimated. When the intrinsic variance 02, > 0, under
some regularity conditions (e.g., our estimation methods are
efficient), we have the usual €(R,,n) < dim(fr,)/n asymp-
totics. Hence we need dim(fr,) = o(n) to ensure &(Ry,,n)
converges to zero as n — 00.

Table 1 provides a high-level preview of the general asymp-
totic results under the above setting, with four (common)
choices of the decay rate for A(r). What do these asymptotic
results tell us? First, the hard-thresholding cases correspond
to the classical parametric setting, with a fixed number (rp) of
predictors. Hence, as long as our resolution level R, exceeds
ro (arbitrarily often), we will reach the classical n~! error
rate, excluding the ultimate risk (which includes the intrinsic
variation).

Second, the rate-optimal resolution R,—and hence the min-
imal prediction error—depends critically on both the decay rate
A(r) and estimation error &(r, n). When &(r, n) grows polyno-
mially with the resolution level (e.g., the continuous covari-
ates cases), we can still practically achieve the n~! rate when
A(r) decays exponentially, because the price we pay is merely
a log®(n) term. However, if £(r,n) grows exponentially (e.g.,
with discrete covariates), then although R, is still practically of
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Table 1. Rate-optimal R, and minimal error L, = A(Rp) + €(Rn, n) in a stochastic world. All cp’s are of O(1) but satisfy different constraints as specified in Theorem 2

(Section 3.2) and Theorem 4 (Section 4.2).

Hard Thresholding

A(r)
e(r,n)

Exponential Decay

Polynomial Decay Logarithmic Decay

Yr<ro) e 5 (£>0) r=¢ (£>0) log=5 (1) (£>0)
jal i = 1/(E+a) cun'/®
Polynomial in r Rh<ch>n cplogn cpn/ Gt Iog;é/"‘(n)
®/n (a > 0) Lp=1/n log® (n)/n n—&/(E+e) [log(m)]~%
Exponential in r Rn=<ch>rg % cnlog(n) cnlog(n)
o /n(a > 1) Lp < 1/n n—&/(E+loga) flog(m1~% [log log(n)]~%

Table 2. Rate-optimal R, and minimal error L, = PEj in a deterministic world. All ¢p’s are of O(1) but satisfy different constraints as specified in Theorem 3 (Section 3.3),

Theorems 5 and 6 (Section 4.3).

Hard Thresholding

A(r)
Model

Exponential Decay

Polynomial Decay Logarithmic Decay

Tr<rp) & ¢ log= ()
Linear n—3>Ry>rn Rh=n—cn chn cnnk,k € (0,1]
regression Lp = Lp < ne=é&n n—§ [Iog(n)]_g
2 cnlog(n), & > log(M)
Regression tree Rn>nry =cplog(n), & =log(M) ¢y log(n) ¢y log(n)
=c¢plog(n), & < log(M)
with predictors
<n T, & > log(M)

Xis areiid

N _ —ro\n
Uniform{1,...,M} Ln = (1 = M™70)

<nTlog(n), & =log(M)
n—E/logM),

[log(m1~¢ [log log(m)1~¢

§ < log(M)

Note: like in Table 1, £ > 0. In some cases, the forms of rate-optimal R, are only sufficient but not necessary for achieving the optimal rate.

log(n) type, the parametric error rate n ! is no longer achievable
even if A(r) decays exponentially. Instead, we can achieve only a
nonparametric like error rate in the form of n~8/E+loge) which
reduces to n~! only if the decay rate parameter & for A(r) goes
to infinity.

Third, when A(r) decays polynomially, R, takes on differ-
ent rate forms depending on how the estimation error varies
with the resolution level r, that is, (A) polynomial in n for
polynomial estimation error versus (B) log(n) for exponen-
tial estimation error. More importantly, the difference in the
corresponding minimal prediction errors tells us that in case
(A), the individualized prediction and learning rate is slow but
still practical. However, case (B) belongs to the situation where
the individualized learning rate is too slow to be useful. The
same is true once the decay rate is logarithmic because then
the prediction error rate is no better than that of case (B);
see the last column of Table 1. Therefore, among the eight
scenarios in Table 1, only the first five (counting first top to bot-
tom then left to right) of these permit practical individualized
learning.

Here we give a side note on the asymptotic expression in
Table 1. First, a more rigorous expression for the polynomial
estimation error is £(r, n) < max{r®, 1}/n. We simply use r*/n
not only for descriptive convenience, but also since r > 1 is
required for achieving rate optimal prediction when A(0) > 0.
Second, the decay rates for resolution biases, for example, r—¢
and log~* (r), may be well-defined only for  larger than a certain
value. Whenever such a quantity is not prescribed, we can view
it as a finite positive constant. Again, this complication has
little relevance for our asymptotic theory for the rate-optimal
resolution, which must go to infinity as n — oo when A(r) > 0
for any finite r.

2.4. Optimal Resolution and Learning Rate in the
Deterministic World

The case with 62, = 0 or more precisely zero ultimate risk,
however, behaves rather differently, and will be studied in Sec-
tions 3.3 and 4.3 for two popular models. We restrict to specific
models because we have not been able to obtain general results
parallel to those in Table 1. But even with these specific results,
we already see asymptotic behaviors, as revealed in Table 2, that
are quite different from those in Table 1. The trivial ones are
for hard thresholding, where for the linear model, as long as
sample sizes are large enough to solve the linear system, we will
have zero error. Similarly, for the regression tree case, where the
only possible error is when no exact match of the target case
exists with respect to the ro important predictors in the training
sample of size n. The probability of this occurring is exactly
(1 — M~70)" under our model assumption that all predictors
Xj’s are independently and identically distributed as uniform
on {1,2,..., M}, a mathematically convenient assumption that
permits us to obtain analytical results.

The more interesting cases are when A(r) decays exponen-
tially, which permits the optimal R, to be infinity; for example,
for the regression tree model, when the resolution bias decays
exponentially with & > log(M), choosing R, = oo can lead
to prediction error no worse than order n~!. That is, we are
not worried about over-fitting because the benefit from exact
matching outweighs the imprecision in solving, say, the linear
system. This phenomenon does not occur when we restrict
ourselves to statistical models with a finite number of predictors,
which would force us to adopt an error term to capture the
unexplained residual variations in the outcome variable. With
an infinite number of predictors, there is at least a theoretical
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possibility that collectively they can explain all the variations
in the outcome variable. There is no free lunch, however, as
this full-explanatory power requires that the predictive model is
specified correctly. Nevertheless, the discovery of this phenom-
ena by permitting models with an infinite number of predictors
should remind us of the value of exploring this line of thinking,
as it might lead to alternative insights into why certain highly
saturated black box models (e.g., deep learning networks) can
have a seemingly over-fitting resistant nature. We shall explore
this line of thinking in Section 3.4, where we show how easily
we can go beyond the intriguing “double-descent” phenomenon
(e.g., Belkin etal. 2019; Hastie et al. 2019; Nakkiran et al. 2019) in
the deterministic world with infinitely many predictors, without
even having to actually enter the realm of over-fitting.

2.5. TheImpact of Ordering

So far we have assumed that the order of the covariates is pre-
determined. In reality, the investigators may have some “low
resolution” knowledge of the importance of groups of the covari-
ates (e.g., age and gender are typically among the predictors
to be included in predicting health outcome). However, they
often do not possess the refined knowledge to specify the exact
order of the covariates in terms of their predictive power (if they
did, the problem would be much easier). Mathematically, when
the resolution levels change, we can change all the covariates
included in the model. But to utilize our partial knowledge,
however imprecise, we wish to investigate the dependence of
prediction error on the order of the covariates, and in particular
the degree of mis-ordering that can fundamentally alter the
prediction error rate. That is, how much misspecification of
the order can we tolerate before it really matters? Assume that
the family of prediction functions becomes richer as resolution
increases, and they are invariant to the ordering of the covari-
ates, that is, for any r and any permutation 7 of {0,1,2,...,1},
the families of functions {g(x,;0,)} and {g(X;(r);0,)} are the
same, where Xz (r) = (Xz(0), Xz(1) - - - » Xz(r))- Consequently, the
ultimate risk 72 = E[L(Y, g(im;ﬂzo))] is invariant to the
ordering of covariates. This is most clearly seen under squared
loss and correctly specified conditional mean function, where
12 = E(02), as discussed prior to arriving at Equation (5).
Below we will focus on the resolution bias and estimation error.

We begin by considering a specific ordering of the covariates,
{Xo, X1, X3, . . .}, identified with its resolution bias A(-), estima-
tion error &(+, ), and rate-optimal resolution R,,. Let A’, ¢’ and
R;, be their counterparts under a new ordering {X;, X/, ...}.
Generally, the estimation errors £ (r,,, #) and &' (r,,, n) under both
orderings (ie.,r, = R, or R)) are of the same order after some
proper scaling of “unit noise,” because they involve estimation
for the same number of parameters. In the following discussion,
we assume &(r, 1) /[A(ry) + 12] =< &' (rp,n)/[A (1) + T2,
which reduces to &(r,, n) =< &' (rn, n) when 2 > 0. As shown
later, this assumption is motivated by the linear regression and
tree regression models. Then, a sufficient condition for the new
order to achieve the optimal rate under the original ordering
is that A’(R,)) = O(A(R;)). This condition should be intuitive
because all it requires is that the new ordering does not delay
the inclusion of covariates which are considered important by
the original ordering.

Suppose now that every covariate matters, in the sense that
the resolution bias at any finite resolution is positive, regardless
of the ordering of covariates. From Section 2.3, for any ordering
of covariates, its optimal primary resolution must go to infinity
as n — oo; that is, we exclude the hard-thresholding case
(which is too ideal for the kind of individualized learning we
address in this article). To measure the difference between A(-)
and A’ (+), we introduce M, (A, A) to denote the minimum non-
negative integer such that the first 7 — M,(A, A’) + 1 covariates
in ordering A(-) is ranked among the first r + 1 positions
in ordering A’(-), that is, variables {Xo,...,X;_p (4"} are
included in {Xj,...,X}}. Note that M,(A,A’) < r because
we can assume X; = Xo since they both denote the constant
term. It is asymmetric in A and A’, and the farther M,(A,A")
is away from zero, the more different A and A’ will be. That
is, M,(A, A’) is the number of mistakes we make in choosing
the first » + 1 covariates with respect to the original ordering
A(-). The following theorem tells us how many mistakes are
acceptable, asymptotically.

Theorem 1. Assume that (a) the family of prediction func-
tions becomes richer as resolution increases, and is invariant
to the permutation of the covariates at each resolution; (b)
the estimation error rate is invariant to the ordering: &(ry, n)/
[A(ry) + 2] =< € (rpn)/[A (1) + 2] Then a sufficient
condition for A’(R,) = O(A(R,)) under each decay scenario
(as underlined and where £ > 0) is given below.

(i) Exponential Decay: A(r) =< e 8
limsup,_, o, M,(A,A") < Constant.

(ii) Polynomial Decay: A(r) =< r~% :
limsup,_, o M(A,A")/r < 1.

(iii) Logarithmic Decay: A(r) x< log7é (r):
M, (A, A) = r — rt/% with a, = O(1).

The qualitative message of Theorem 1 is rather intuitive. The
fewer of the important predictors that exist, the surer we need
to include them in our prediction model. Although we still need
to obtain the necessary conditions, the quantitative messages
here can be taken as theoretical guidelines. With exponential
decay, the number of forgivable mistakes is very limited, and it
cannot be permitted to grow with the resolution level. Under
polynomial decay, which still includes the practically learn-able
case when the estimation error is also polynomial in resolution
r, we can permit the number of mistakes to increase linearly with
r (but of course less rapidly than the growth rate of r).

This learn-able case is perhaps the practically most important
scenario, since polynomial decay and polynomial estimation
error are the kind of cases that we hope to encounter in practice.
Exponential decay is likely too much for which to hope in many
practical situations, and logarithmic decay is hopeless in terms
of individualized learning, as seen in Tables 1 and 2. The result
in Theorem 1 with logarithmic decay indicates that we can be
almost entirely wrong in our ordering but still maintain the
optimal rate. This seemingly too-good-to-be-true result indeed
is a negative one, because it is made possible by the fact that there
is really not much information in the predictors, so whatever
orders one uses will not improve the situation.



3. Prediction With Infinitely Many Continuous
Predictors

3.1. Normal Linear Models With Infinitely Many
Continuous Covariates

Consider the simple linear regression model with infinitely
many covariates, which we assume to hold for both the target
and training populations:

o0
Y=BXotn=)_BXo+n, n~N©O02), nlXs,
r=0
where Xy = 1, {Xj,Xp,...} are jointly normally distributed.

(6)

Clearly, for V(Y) < oo, always the case in practice, there will
be restrictions on B,’s. Here we choose the loss function to be
Lo,y = L»)) = (y — 7)?, and the prediction function
at resolution r to be linear in the first r + 1 covariates, that is,
§(x0,) =0 %,.

Under this setting, the optimal prediction function is
g(x,,07) = E(Yli(r — %,). The estimator @, for the true
07 using empirical risk minimization is the least-squares esti-
mator based on the first r + 1 covariates in the training set
Tn. Thus, our prediction for a unit with covariates xo, using

primary resolution r is g(?cr,é,) = éjfcr Now we investigate
the prediction error at a specific resolution r and in particular
its decomposition as in Section 2.2. First, because we consider
square loss and specify the prediction function perfectly, the
ultimate risk t2 = ago = V(Y|5(oo) = 03. Note here because
of the additivity of the error term 7 in (6), ago is a constant. In
general, T2 and 02, are different. In the following we will use
72 = 0 to indicate the world without variance.

Second, define 6,3 = V(Y|)_fk_1) - V(Y|5(k) as the variance
of the response explained by the kth covariates in excess to
that by the previous ones. Then A(r) = Y po ., 8]%. Third, the

N > oT. A
estimation error is &(r, T,) = (0, — 0°)TE(X,X, )(0, — 67),
and its expectation over all training sets of size n is (see the
Appendices)

_ A(r) + 12

£ = By e To) = (” —2

n

E— +r>. (7)

Consequently, the average prediction error in Equation (4) at
resolution r is

E, {ELY - g(%,.0)1'}

=7+ Y S E [ —0DTERX,)@ - 6))]
k=r+1
_ [7:2 +A(r)] . w

nn—r—2) ®

The prediction error under linear models is also reported
in Hastie et al. (2019), where the authors studied ridgeless
regression in the growing-p-&-n setting, with p / n assumed to
converge to a limit y. Like most articles in the large-p-small-
n literature, they assumed the residual variance, in our notation
A(p)+12, is free of p. Under such an assumption, we see from (8)
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(after replacing r by p), that for any value of 72 > 0, the predic-
tion error always explodes when y = p/napproaches 1, yielding
the turning point for the “double-descent” phenomenon that we
will discuss in Section 3.4.

However, under our MR framework, it is clear that as the
number of predictors increases, the variance unexplained, that
is, the residual variance will decrease in general. Hence, it makes
little statistical sense to assume A(r) will stay as a constant
as r changes - if this were the case, what would be the point
of including more predictors? By explicitly considering the
behavior of the unexplained variance as number of predictors
increases, the prediction error can have very different charac-
teristics under different scenarios. In particular, it is quite clear
from Equation (8) that when > = 0, the prediction error
may not explode when r / n approaches one, because A(r) is
approaching zero as well, creating a limit of the form 0/0, whose
value will depend on the rate at which A(r) approaches zero. We
will investigate this issue shortly in Section 3.3 when 72 = 0,
where we reveal the phenomenon for the optimal resolution R to
be as close to n as possible, traditionally considered impossible
because it is in the region of (nearly) over-fitting.

3.2. General Results Motivated and Illlustrated by Linear
Regression

Under the linear model (6), when the intrinsic variance is pos-
itive, that is, 72 > 0, we can show that for any sequence of
resolution levels {r,}, a necessary condition for &(r,, n) = o(1)
islim,,_, o 7,/n = 0. Moreover, under this condition, &(r,, n) =<
rn/n; see the Appendices for a proof. More generally, we expect
that e(ry,,n) =< dim(@,)/n holds for continuous predictors
under regularity conditions.

In general cases with continuous covariates, typically
dim(@,) < r* for some o > 0. The following theorem considers
an assumption involving e(r,n) =< dim(@,)/n =< r*/n. That
is, the linear model motivates us to consider this assumption
of polynomial estimation error rate in resolution, but the result
below is not restricted to the linear model. All proofs are given
in the Appendices.

Theorem 2. Let R, be a rate-optimal resolution, and L, =
A(Ry)+£(Ry, n) be the corresponding minimal prediction error
(after removing the ultimate risk). Then we have the following
asymptotic results under each condition on the decay rate of
A(r) (as underlined), but all assume polynomial estimation error,
that is, e(r,n) < r*/n, where « > 0. (As in Theorem 1, all

£>0)

(i) Hard Thresholding: A(r) = 0forr > rg,and A(r) > 0

forr <ry. Then R, x 1 with the constraint that
-1

liminf, ,oo Ry, > rg;and L, < n
(ii) Exponential Decay: A(r) < ¢ €. Then R, = a, log(n)
1 and n! =% log™*(n) = O(1);

with a,, satisfying a, =<
and L, < n~!log® (n).

(iii) Polynomial Decay: A(r) =< r~§. Then R, = n'/@+8); and
L, = n§/@t)
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(iv) Logarithmic Decay: A(r) < log_é (r). Then R, =

ani/e log—f/a(n) with a, satisfying a, = O(1) and
lim inf,,_ o0 log(a,)/ log(n) > —a~';and L, < log™* (n).

This result provides precise descriptions of various restric-
tions on the deterministic sequence c,, in the first row of Table 1,
although their details are mostly secondary to the theoretical
and practical insights discussed in Section 2.3. Moreover, The-
orem 2, as well as the later theorems, relies only on the rates
of A(r) and &(r,n), and thus can be applied to general sieves
with the same rates of A(r) and &(r, n). We remark that in the
derivations above we can replace the expected error e(r, n) by
&(r, Tn), which depends on the actual training set, as in Equation
(3). That is, we can seek resolution levels {r,} such that A(r,) +
&(rn, Tn) converges to zero in probability in the fastest way. The

results remain the same if we replace “<” by «Z» Indeed, for the
linear model (6) with positive 72 we show in the Appendices
that (a) for any resolution {r,}, r,/n = o(1) is necessary for
the actual estimation error &(r, 7,;) to be op(1), and (b) when

rm/n = oQ), e(r,Ty) g rn/n. Therefore, Theorem 2 applies

>

P
witho = 1 and “x” replaced by “<”.

3.3. Specific Results for Linear Regression Without
Variance

When 72 = 0, however, we are entering a rather different
world. Under model (6) with zero a,%(: 72), the response Y is
(almost surely) a deterministic function of the countably many
covariates. This is not merely a philosophical contemplation,
but a mathematical reality. Indeed, any random variable can be
obtained deterministically from a set of uniform variables on the
unit interval, and any such uniform variable admits the binary
expansion Y o0, 27'U;, where {U;, i > 1} are iid Bernoulli(1/2);
see Zhang (2019) for an investigation of using this deterministic
expansion to study statistical independence.

Of course, empirically it is impossible to test whether 72 = 0.
Hence, one would expect or at least hope that it is inconsequen-
tial for practical purposes to set T2 = 0 or not, as alluded to in
Meng (2014). Therefore we were surprised initially when we saw
the critical dependence of our asymptotic results on whether
72 = 0 or not. When 72 = 0, the asymptotic error &(r,n) is
no longer dominated by the usual 7 / n order, but by A(r) itself,
as discussed previously. Specifically, contrasting with the case
where 72 > 0, r/n = o(1) is no longer a necessary requirement
for e(r, n) to converge to zero, because A(r) can drive the error
to zero even if r/n — 1, as seen in Equation (8). This fact leads
to different results from Theorem 2, as summarized below. We
emphasize that the following theorem, although focuses on the
linear model, also holds for cases where the estimation error
following the same rate as that in (8).

Theorem 3. Under model (6) with 72 = 0 and L2 loss, the rate-
optimal resolution R, and the corresponding minimal predic-
tionerror L, = A(R,,)+¢(R,, n) have the following forms under
each condition on the decay rate of A(r), where all § > 0.

(i) Hard Thresholding: A(r) = 0forr > rg,and A(r) > 0
for r < ry. The optimal resolution is any R, such that

liminf, ,ooc R, > rpand R, < n—3;and L, = O for
sufficiently large n.

(ii) Exponential Decay: A(r) =< e ¢".R, = n—0(1) withR, <
n—3;and L, =< ne 5",

(iii) Polynomial Decay: A(r) =< r~¢. R, = a,n with a, satisfy-

inga, < landlimsupa, < l;and L, < ns.
(iv) Logarithmic Decay: A(r) < log_"E (r). Optimal resolution
is any R, such that

log R,
logn

limsup R,/n < 1, liminf > 0;and L, < log_g (n).

The most unexpected finding here is that, unlike the case
with 72 > 0 where no optimal R, approaches over-fitting,
that is, having R, close to n, all four cases here permit or even
require R, to be the same order as n. When A(r) has a hard
threshold or decays exponentially, we can even allow R, =
n — 3, almost the largest resolution level by which we can fit
an ordinary least squares given sample size n (recall we have
r + 1 unknown parameters at resolution 7). When A(r) decays
polynomially or logarithmically, we can choose R, = «¢n
for some constant ¢ € (0, 1). That is, the usual concerns with
over-fitting disappear. Another unexpected finding is that the
logarithmic case permits R, < kfork € (0,1), which is smaller
than the polynomial case, against our intuition that slower decay
should require a larger number of covariates. However, this
does not contradict Theorem 2, which applies only to cases
with 72 > 0.

These unexpected theoretical results compel us to think
harder about our intuitions built from the results in Section 3.2,
which are consequences from the principle of bias-variance
tradeoff. Does the principle fail here, as some declared about
the “double-descent” phenomena in machine learning, which
apparently can also prefer over-fitted models (e.g., Belkin et al.
2019; Hastie et al. 2019; Nakkiran et al. 2019)? Whereas more
research is needed to understand the deterministic regime as
identified by Theorem 3, our current understanding is that
the bias-variance tradeoft is sound and well. In a world with
zero variance, the optimal tradeoff should place all its bets
on the bias term. In a deterministic world, the more mathe-
matical constraints imposed for solving a set of equations, the
smaller is the set of potential solutions. Without any variance,
any specific individual case is a hard mathematical constraint
for reconstructing the deterministic relationship between the
outcome and the predictors. It is not surprising therefore—
retrospectively—that the mathematics is instructing us to use
as higher resolution as possible, except for saving some degrees
of freedom to take care of the “pseudo-variance” caused by A(r),
when it does not decay sufficiently rapidly.

Attempting to understand this preference for over-fitting by
the deterministic setup, we realize that the “double-descent”
phenomenon may not be due to over-fitting as currently
depicted, or at least it can also occur within the “under-fitting”
region. In the current literature, “double descents” refers to the
phenomenon that as p increases, the prediction error or risk
first decreases due to the bias reduction, and then increases due
to the inflated variance. However, as p exceeds (effective) data
size, the prediction error decreases again, that is, it exhibits a
double-descent phenomenon. Many researchers have tried to
understand this phenomenon, and most of the studies attribute
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Figure 1. Figures plotting the resolution bias in (9), as well as the corresponding prediction error with 72 = 0, against the resolution r.

it to over-parameterization and that the fitted model tends to
be the smoothest one interpolating all training samples; see, for
example, Belkin et al. (2019) and Hastie et al. (2019).

The section below demonstrates that double and indeed mul-
tiple descents can occur without over-parameterization. This
fact suggests that the issue of ordering covariates discussed in
Section 2.5 is an intrinsic one, and that the reasons for the
double-descent phenomena in machine learning might be more
nuanced than over-parameterization.

3.4. No Surprises: Double- and Multiple-Descent
Phenomenon

We first consider a setting which demonstrates a double-descent
phenomena within the under-fitting region. We assume that the
resolution bias has the following form:

r_l,
A(r) = lt+exp(r—7)
r

ifr<r,

)

1 .
1+exp(r—r)° ifr > L

where r < 7 are two positive integers, and the coefficient
{1 + exp(r — 7)}/r for r > r is chosen such that A(r) is a
continuous function of r. Figure 1(a) plots the resolution bias
against the resolution when r = 30 and 7 = 60. Figure 1(b)
shows the average prediction loss (8) when 72 = 0and # = 100,
which clearly demonstrates a “double-descent” phenomenon.
Comparing Figures 1a and b, we can see that the double-descent
pattern of the prediction error is driven by the varying impor-
tance of the added covariates. That is, when we add covariates
with little predictive power, we are essentially adding noise to
our prediction and hence increase the predictive error, until we
add more powerful covariates to (again) bring the error down.
With this insight, it is easy to demonstrate multiple-descent
phenomenon for as many descents as we want. For example, we
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I{r<r}- 4 1{r > 71}
14exp(r; —71) 1 . —
. le e ifr <7y,
ol{r < L’z} ol + o l{r > L’z}
A(r) = 1+exp(r,—72) 1 P _
) : 122 " TFep—) ifr] <r<r,,
alfr <rs}-r '+ lir>rs}
1+exp(r;—73) 1 . _
. £33  Trepe=R) ifr, <r <73,
(10)
wherer, <7 <r, <7 <r; <73 < ... and ¢ are

chosen such that A(r) is a continuous function of r. Figure 2(a)
plots the resolution bias A(r) against the resolution r when
r = rp + 30 = 60k for k > 1. From Figure 2(a), we can
see that, as r increases, the resolution bias keeps repeating the
pattern in Figure 1(a), that is, the importance of added covari-
ates keeps fluctuating. Figure 2(b) plots the logarithm of the
average prediction error in Equation (8) against the resolution
when the sample size n = 300 and the intrinsic error 7> = 0.
Clearly, Figure 2(b) exhibits a multiple-descent phenomenon.
However, in contrast to Figure 1(b), the prediction error does
not die down in the end. This is because the resolution bias
in Figure 1(a) decays exponentially, while that in Figure 2(a)
interweaves between exponential and polynomial decays, not
covered by our theorems.

From the above discussion, it is not difficult to see that
double- or multiple-descent phenomena are driven by the vary-
ing decay of resolution bias and inflation of the estimation
error. Depending on which of these two terms is dominating,
the prediction error can either decrease or increase, and can
thus exhibit multiple-descent patterns. A reviewer points out
that the multiple-descent phenomenon can also occur when
most of the covariates are irrelevant and the relevant ones



10 X. LI AND X.-L. MENG

0.04

0.03

resolution bias
0.02

0.01

0.00

150 200 250 300

r

50 100

(a) Resolution bias

log(prediction error)

150 200 250
r

300

(b) Prediction error

Figure 2. Figures plotting the resolution bias in (10), as well as the corresponding prediction error (with 72 = 0), against the resolution r.

appear sporadically. Such phenomena are also not restricted to
regression settings. For example, in the midst of revising this
article, we learned about Liang, Rakhlin, and Zhai (2020), which
demonstrated multiple-descent phenomena in kernel machines
and neural networks.

We remark that, for any monotonically decreasing func-
tion A(r), we can construct a linear model with A(r) as its
decay rate, so all the examples above are realizable. Let X
1, {X1,X5,X5,...} be iid standard normal random variables,
and n ~ N(0, U,?). Define By to be any constant, and 8, =

A(r — 1) — A(r),forany r > 1. Then the corresponding linear
model (6) has the desired resolution bias A(r). We will use this
construction in the following simulation study.

3.5. Finite Sample Performance—Preliminary Findings

Whereas theoretical results are extremely useful for providing
deep understanding and revealing new insights, we must be
mindful that they may or may not match the empirical findings
with finite samples. As a first step toward a comprehensive
(and very challenging) study of our MR framework with finite
samples, we conducted a simulation study using the normal
linear model in Section 3.1. The simplicity of this model allows
us to compute the optimal resolution and minimal prediction
error exactly for any given n(>3), which can then be used as
benchmarks to investigate the performance of various estima-
tors for the optimal resolution. However, the model is still suffi-
ciently rich and realistic to both confirm some of the asymptotic
findings, including the resistance to over-fitting in the absence
of intrinsic variation, and to reveal complications with finite
samples that are not captured by the asymptotic results.

Due to space limitations, we report only findings on three
ways of estimating prediction error curves in finite samples as
functions of the resolution r, which then can be minimized
for estimating optimal resolution. The three methods are based
on cross validation (CV), an unbiased estimator (UE), and an

information criteria (IC); see Appendix A9 for details and all
other findings. Figure 3 plots the logarithm of averages of the
three estimators over 500 Monte Carlo replications against the
resolution level r, under different choices of the decay rate A(r)
and intrinsic variance 72, all with n = 50.

We see that UE worked well by being unbiased, CV per-
formed well except when venturing into the over-fitting region,
and IC failed badly other than when r is small. The only excep-
tion is when there is no bias-variance tradeoff, as depicted in
plot (d), where the optimal resolution reaches the sample size,
in which case the gross over-fitting tendency of IC brings benefit
instead of damage. All six curve shapes are consistent with the
theoretical findings in Theorem 2 (for 2 > 0) and in Theorem 3
(for t2 = 0).

4. Predictions With Infinitely Many Categorical
Predictors

4.1. Regression Tree Models With Infinitely Many
Categorical Covariates

We now introduce regression tree models with infinitely many
categorical covariates, and then use them to illustrate some
general results on rate optimal resolution and prediction. Specif-
ically, we assume both target and training populations satisfy
X1, Xs,...areiidwithP(X; = k) =M fork=1,2,..., M,

V(Y) < oo, (11)
and the dependence of Y on {X;,X>,...} is arbitrary, where
M > 2. Thatis, (11) is a regression tree in which each covariate
increases the depth of the tree by one, and hence it is a tree of
(potentially) infinite depth. The loss function is again the square
loss: Lo (3, 7) = L(1,7) = (y—)?, and the prediction function
at resolution r is fully saturated, that is, it can have different
values for different covariates up to resolution r,

Yo 1G =)0,

a,e{1,2,...,.M}r+1

g(}h or) =
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Figure 3. The performance of three strategies CV, UE and IC for estimating prediction error when n = 50 and, respectively, with 2 = 0.5 (top row) and 72 = 0 (bottom
row) . The x-axis denotes resolution level r, and the y-axis denotes the logarithm of the true and estimated average prediction error over 500 simulated training sets. The
resolution biases follow the decay rates of e~", r~1 and {log(r)} ", respectively, for the three scenarios in (a)—(f).

where the summation is essentially over M" terms because E[V(Y|Xxo)], (i) the resolution bias is
Xo = 1, dim(#,) = M’ and 0,(a,) denotes the coordinate

. . - o0
corresponding to covariate value a,. B - -
Given a training set 7y, for each resolution r, we use n(x,) Alr) = Z {E[V(lek—l)] - E[V(Y|Xk)]} >
to denote the number of units with covariate value x,. When k=r+1
n(x,) > 0, minimizing the empirical risk will lead to taking the and (iii) the estimation error is (7)) = E[B,(X,) —

sample average of the outcome of these n(x,) individuals. The
matter is more complicated when n(x,) = 0. Here we adopt the
“highest-resolution imputation” That is, for each individual of
interest, we find training samples that have the same covariates
up to a resolution that is as large as possible but is truncated at  &(r,n) = [A(r) + 72] -E, |:
1, and then use their average response as a prediction for this

IE(Y|5(,)]2. The expectation of ¢ (r, T,,) over the training sets has
three terms, as indicated and simplified below

1(n(1,) > 0)
n(1,)

individual. Note that this estimator is unique conditioning on r—1 1(n(1p) > 0, (1) =0)
the given order of the predictors. Consequently, our estimator + Z Ak + 17| - Ey |: e :|
for the parameter 0, has the following form: =0 n(Lk)
r—1
L [m T Yo G >0 + Y AR A0 -y [101(00 > 0, (i) =0)]
0,.(x,) = n(xk) lelk_xk Y;, ifn(xx) > 0and n(xgy1) =0, —o
for0 <k<r. Al —1
N
(12) g, [ AEADTT NS Ly~ A
IK/\V k=0

This estimator is always well-defined, because n(xg) = n > 0.
Under model (11), we can derive that (i) the ultimate risk is 7> = -E, []l(n(lk) > 0,n(Igy1) = 0], (13)
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where n(ik) denotes the number of training samples with
covariate value x;; = ik, KC is the maximum integer k such that
n(ik) > 0, and K A r = min{/C, r}. Note that here n(ik) ~
Binomial(n, M) and n(ik+1)|n(ik) ~ Binomial(n(ik),M_l)
for any k > 0. We stress that it is the assumption that all x;’s
are uniformly distributed that permits us to replace n(x;) by
n(1x), which greatly simplifies the derivation; see Appendix A5
for deriving error decomposition under model (11).

4.2. General Results Inspired and lllustrated by Regression
Tree

Under Equation (11), when 2 > 0, we can show that for
any sequence {ry,}, a necessary condition for &(r,,n) = o(1) is
that lim,,—, oo M™ /n — 0. Moreover, under this condition, the
convergence rate of (r,n) is M" /n, that is, e(r,n) < M"/n <
dim(@,)/n. Again, these intuitive results require some rather
technical proofs, given in the Appendices.

This inspires us to consider more general cases with cate-
gorical covariates in which dim(f,) =< «” for some o > 1;
for example, « = 2 if the covariates are all binary, and the
prediction function g(x,,0,) can have different values for each
of the 2" possible values of x,. This contrasts with the previous
case featuring continuous covariates in which the dimension
of parameters increases polynomially with the resolution. The
following theorem is the counterpart of Theorem 2 under the
exponential estimation error.

Theorem 4. Same notation and setup as in Theorem 2, except
that we now assume exponential estimation error: e(r,n) =
a’/n, for some o > 1. As in Theorem 2, all & > 0.

(i) Hard Thresholding: A(r) = 0forr > rg,and A(r) > 0
forr <ry. Then R, x 1 with the constraint that
liminf,— oo Ry > 19, and L, < n~ L.

(ii) Exponential Decay: A(r) =< ¢, Then

R, = [log(n) + log(a,)1[log(x) + 17! with a, <1
and L, = n—&/0og@+6),

(iii) Polynomial Decay: A(r) =< r—¢.Then R, = a, log(n) with

a, satisfying a, = 1 and n®1°8@~1]og5 (1) = O(1); and
L, < logfg (n).

Logarithmic Decay: A(r) < log_‘§ (r).

Then R, = a, log(n) with a,, satisfying

[log log(n)]é
nl—an log(er)

(iv)

liminfM > —1, and

= 0(1);
n—oo loglog(n) W

and L, =< [loglog(n)]_é.

4.3. Specific Results for Deterministic Regression Tree

Similar to Section 3.3, we consider the case in which the ultimate
risk 72 = 0, and we will see again below how this leads to
rather different asymptotic behavior. But unlike Section 3.3,
even when we restrict ourselves to the regression tree model, the
exact asymptotic rate for the estimation error is still difficult to
obtain other than when A(r) has a hard-thresholding decay. We
therefore adopt a two-step strategy. We first establish an upper

bound of the estimation error, yielding a corresponding upper
bound for the prediction error, which can then be optimized
to obtain the minimal upper-bound rate. We then prove that
these minimal upper-bound rates are also the maximal lower-
bound rates, except for a couple of cases where our proof fails,
and hence whether the upper-bound rates are optimal or sharp
is still an open problem.

Specifically, as proved in the appendices, the estimation error
can be bounded by

;
e(r,n) < % ZMkA(r) =e(r,n).
" k=0

Furthermore, €(r, n) under varying decay rates for A(r) has the
following form:

nl, if A(r) has a hard threshold or
A(r) < e 5" with & > log(M),
grn)=<{ if A(r) < 5" with £ = log(M),

A(r)MTV, if A(r) < e 5" with & < log(M),

A(r) < r 8 orA(r) < log_f (r).
(14)

From (14), compared to &(r,n) =< M'/n when T2 > 0, we
can see that the rate of the estimation error depends also on
the resolution bias and converges to zero more quickly; this
is similar to the discussion in Section 3.3 under the linear
model. Moreover, M"/n = o(1l) is no longer necessary for
e(r,n) = o(1). In particular and somehow surprisingly, when
the resolution bias decays exponentially with rates faster than
or equal to M~’, the estimation error behaves like the usual
parameter setting as in Theorem 2 with a fixed number of (or
r) unknown parameters at resolution 7, even the model at each
resolution r allows potentially M" unknown parameters.

The following theorem summarizes sufficient conditions for
the prediction error to achieve certain (upper-bound) rates
under varying decay rate of the resolution bias.

Theorem 5. Under the model (11) with 72 = 0 and L? loss, let
L, = AR,) + ¢(R,,n) < A(R,) + €(R,,n) = L,. The rate-
optimal resolution R, or R,, and the corresponding optimal L,,
orL,, respectively, have the following forms under each A(r),
where & > 0.

(i) Hard Thresholding: A(r) = 0forr > rg,and A(r) > 0
for r < rg. Then R, satisfies that lim inf,, .~ R, > ro; and
L, =< (1 —MT")"

(ii) Exponential Decay: A(r) < e ¢".

(a) I_fg > log(M), then R, satisfies ne=sRn — O(1); and
L, =<n"L. .

(b) If ¢ = log(M), then R, = a, log(n) with a, satisfying
a, =< 1and B
pl—an l"g(M)/log(n) = O(1); andL, < n~! log(n).

(c) If¢ < log(M), then R, = a, log(n) with a,, satisfying
nnlogM)=1 — 1. and T, = n—6/logM)

(iii) Polynomial Decay: A(r) =< r—¢.Then R, = ay, log(n) with

ay satisfying a,, =< 1 and n® logM)~1 — O(1); and L, =
log_S (n).



(iv) Logarithmic Decay: A(r) < log_g ).

Then R, = a, log(n) with a,, satisfying

lim inf M

and n™198M~1 — O(1);
n—>oo loglog(n)

> —1,

and L, < [loglog(n)]’g.

Next we prove that the optimal rates for the upper bounds of
prediction errors are also precisely the optimal rates for the true
prediction errors, except for the exponential decay case with
& > log(M), where we can only conjecture but not prove that
the results also hold. The following theorem summarizes our
results, where for completeness, we include the hard threshold-
ing case, even though Theorem 5 is exact in that case. Specifi-
cally, we say I,, is an asymptotic lower bound for the prediction
error A(r) + e(r,n) and denote it as A(r) + e(r,n) 2= I, if
I, = O(A(ry) + €(ry, n)), for any sequence {r,}.

Theorem 6. Under model (11) with 72 = 0 and L? loss, an
asymptotic lower bound for €(r, n)+A(r) has the following form
under each condition on A(r), where & > 0.

(i) Hard Thresholding: A(r) = 0 forr > rp,and A(r) > 0
forr < rg. Then A(r) + e(r,n) = (1 — M~0)",
(if) Exponential Decay: A(r) =< e, Then A(r) + e(r,n) >

n—&/logM)

(iii) Polynomial Decay: A(r) < r~5. Then A(r) + e(r,n) >
logfé (n).

(iv) Logarithmic Decay: A(r) < log_g (r). Then A(r) +

e(r,n) 2 [loglog(n)]_f.

Comparing Theorems 5 and 6, we see the upper and lower
bounds on L,, match except when A(r) < e 5" and & > log(M).
Also comparing both theorems to Theorem 4 with 72 > 0, it
is not surprising that the prediction error can achieve the same
rate as that in Theorem 4 with polynomial or logarithmic rates.
This is because the estimation error when 72 = 0 converges to
zero more quickly than when 72 > 0, as shown in Equation
(14). However, in Theorem 5 with polynomial or logarithmic
rates, we allow R, = log(n)/log(M), and thus the number of
unknown parameters M®" can be the same order as the sample
size n. When the resolution bias A(r) decays exponentially,
the prediction error is able to achieve faster rate than that in
Theorem 4.

More importantly, when the resolution bias A(r) has a hard
threshold or decays exponentially more quickly than M™", then
the prediction error can achieve the usual rate n~!, and the
resolution R, is allowed to even be infinity. In particular, with
infinite resolution, for each individual of interest, we are essen-
tially trying to find the training samples that are closest to this
individual (in terms of exactly the same covariates up to a certain
resolution), and use the average response from these training
samples as our prediction. This is similar to the discussion in
Section 3.3, where the usual bias-variance tradeoft now puts all
its considerations on the bias term in the deterministic world.

Finally, we remark on the construction of model (11) with
specific resolution bias A(r) and ultimate risk 72. Let By be any
constant, and B = M/v/M — 1 - J/A(k — 1) — A(k) for k > 1.
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Define Y = > 72 Bl 1(Xx = 1) — M1+ n, where X1, X, . ..
are iid uniform on {1,2, ..., M}, n has mean zero and variance
2, and X4, and 7 are independent. Then the corresponding
model (11) has the desired resolution bias and ultimate risk.

5. From the Past to Future

5.1. Alogical Consequence of the Large-p-small-n
Framework

We appreciate the value of permitting p to vary with » as a
mathematical strategy for approximations, because it can capture
the magnitude of p in relation to n toward determining which
approximation terms can or cannot be ignored. But the same
cannot be said about the statistical understanding of the behavior
of the resulting model in real applications. As discussed in
Section 3 and further argued below, this is not merely a logical or
philosophical issue, but an issue of revealing correctly the actual
behavior of our prediction models in practice.

Specifically, for most practical problems, the underlying gen-
erative models, however the way nature adopts or we concep-
tualize them, precede our data collection effort. We therefore
can permit our data collection process to be influenced by the
generative model, but not vice versa. Nature does not alter its
behavior in anticipation of the sample size we may choose.
Consequently, when we assume p > 7 and permit n — oo,
it forces the logical conclusion that p = 00, if p indexes a feature
of nature’s generative model.

One may argue that p in the large-p-small-n asymptotics
should not be conceptualized as an index of nature’s behavior,
but only as a human’s approximation, like our primary resolu-
tion R,,. However, in the large-p-small-n framework, it is often
assumed that the amount of total variation in the outcome that
can be explained by p predictors is a constant when we increase
n and hence p because p grows with n (e.g., Belkin et al. 2019;
Hastie et al. 2019). But if p is meant to represent the number of
predictors we humans use for predicting an outcome, then this
assumption of fixed explainability defeats the purpose of using
more predictors to improve the explainability of the predictors.
When our mathematical formulation prohibits improvements,
the resulting theoretical results may mislead us when they
are used for building our intuitions, even though they may
provide useful mathematical approximations for computational
purposes.

As an illustration, let 51.2 = E[(u; — pi—1)?], which measures
the incremental contribution of the information in JF; in excess
to that in F;_; for explaining the variability in Y (over the
population as defined by ). Taking r = 0 in (1), we have

V(Y|Fo) = of = EloZ,]1+ > _ 67, (15)

i=1

This implies that, as i increases, §; must be vanishingly small
when V(Y| Fp) < 00, atrivial condition for virtually all real-life
problems. This implies that the value of p in the current large-
p-small-n regime cannot possibly be a sensible index of model
complexity to be used in linear fashion, because increasing,
say, from p = 2 to p = 4 could be far more consequential than
moving from p = 22 to 24. Yet it has been a common practice
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in the current literature of machine learning or statistics to
plot prediction errors against p. It is therefore refreshing to see
some recent work for studying and plotting the error against
more meaningful indexes, such as a spectral decay in Liang and
Rakhlin (2019).

More broadly, the predictability of any set of covariates
depends on at least (I) how any of them influence the outcome
in the absence of other predictors and (II) how they are related
to each other. Neither of the two can be adequately captured in
general by merely their size. In this article we therefore adopt
the direct measure of the decay rate in prediction error as we
increase the resolution level (e.g., employing more predictors).
As demonstrated in Theorems 2-6, this resolution decay rate
plays a critical role in determining the optimal resolution, as well
as in revealing further some problematic aspects of the current
large-p-small-n framework.

5.2. Applications to Personalized Treatment

This work was initiated by the need for establishing a statistically
principled and scientifically sound theory of personalized treat-
ments (Meng 2014). Therefore, we provide a very brief review of
two types of methods in the literature. The first type focuses on
modeling the potential outcome of each patient given his or her
covariates under each treatment arm, and it uses the resulting
predictions to identify optimal treatment regimes; see Murphy
(2003), Robins (2004), Zhao, Kosorok, and Zeng (2009), and
Kiinzel et al. (2019). The second type focuses on a posited class
of treatment regimes and tries to find the one that maximizes
the overall outcome for all units; see Zhao et al. (2012), Laber
and Zhao (2015), and Kosorok and Laber (2019).

Our results provide useful theoretical guidance and insight
to both types of applications, because they are applicable to
different populations of interest or target individuals, as cap-
tured by Fp and Fo, respectively. For either approach, the key
feature of our framework is the complete avoidance of imposing
a relationship between p and n, and hence it is suitable for
investigating an arbitrarily large number of covariates. Indeed,
as we have seen in Sections 3 and 4, the MR framework can
handle predictions with potentially infinitely many covariates.

5.3. The Method of Sieves for infinite-dimension
Estimation

The method of sieves (Grenander 1981) deals with infinite-
dimension estimation problems, by restricting the parameter
estimation to a subset of the parameter space whose dimension
grows with the sample size at some judiciously chosen rates (e.g.,
Geman and Hwang 1982; Shen and Wong 1994; Shen 1997;
Johnstone 2011). The sequence of the subsets is then called a
sieve, which can be viewed as a counterpart to MR’s information
filtration indexed by the resolution level r.

Whereas wavelets and sieve methods share similar mathe-
matical constructs, our focus differs from the classical literature
on sieves in several ways. First, we focus on prediction instead
of parameter estimation. Second, for non/semiparametric esti-
mation, the sieves for certain functional classes are well-
understood. Under the MR framework, the resolution bias due
to a sieve is generally more complicated, and the order of the
covariates or equivalently the choice of sieve plays an important

role in prediction error, as shown in Theorem 1. Third, we
try to understand both sufficient and necessary conditions for
asymptotically optimal prediction (as in Theorems 2-6), where
the literature on sieves typically focus on upper bounds for the
estimation convergence rate.

5.4. Much More Work is Needed

A most needed theoretical insight is on deciding a reasonable
ordering in practice, going beyond the results in Section 2.5. We
do not expect any kind of “automated choice” results, in theory
or in practice, because of the no-free lunch principle. Since it is
impossible to have a direct learning population, judgements and
assumptions are inevitable. However, it is possible to obtain rel-
atively general results for some specified (and practically mean-
ingful) problems. Moreover, one may borrow ideas from regu-
larization methods in the large-p-small-n framework, which can
explore all possible choices of the subsets of the covariates (e.g.,
2P in Lasso) without any pre-ordering. How to do so effectively
within the MR framework is a challenging problem given p
potentially is co, although the observed number of covariates
is always finite in practice.

Asmentioned earlier, we were intrigued by the world without
variance. We wonder, without ever being able to determine
which world we are in, how could we be allowed to see its
consequences? The answer seems to lie in the fact that 0.2, = 0is
a necessary but not sufficient condition for the no bias-variance
tradeoff phenomenon. As seen in the bottom row of Figure 3,
this phenomenon did not occur when A(r) decays too slowly,
for example, polynomially or logarithmically. Note that we can
always artificially create infinitely many covariates by certain
series expansions of the basic covariates. The observation in
the world without variance should motivate us to investigate
the performance of nonparametric sieve regression when the
response is indeed a deterministic function of the covariates.
This observation also suggests the possibility for a black-box
procedure to resist (empirically verifiable) over-fitting, when the
number of patterns detectable with sufficient frequencies is far
fewer than theoretically possible. In such cases, exhaustive learn-
ing is practically possible with sufficiently large training samples,
hence there is no need for “intrinsic variance” to capture model
imperfection, avoiding the creation of a petri dish for over-
fitting. This possibility suggests a systematic investigation of
the deterministic MR framework for complex machine learning
models to see if it indeed provides an alternative explanation of
the over-fitting resistant nature of these models.
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