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Abstract: Traditional hypothesis-margin researches focus on obtaining large margins and feature
selection. In this work, we show that the robustness of margins is also critical and can be measured
using entropy. In addition, our approach provides clear mathematical formulations and explanations
to uncover feature interactions, which is often lack in large hypothesis-margin based approaches. We
design an algorithm, termed IMMIGRATE, for training the weights associated with the interaction
terms. IMMIGRATE simultaneously utilizes both local and global information and can be used as a
base learner in Boosting. We evaluate IMMIGRATE in a wide range of tasks, in which it demonstrates
exceptional robustness and achieves the state-of-the-art results with high interpretability.

Keywords: hypothesis-margin; feature selection; entropy; IMMIGRATE

1. Introduction

Feature selection is one of the most fundamental problems in machine learning and pattern
recognition [1]. The Relief algorithm by Kira and Rendell [2] is one of the most successful feature
selection algorithms. It can be interpreted as an online learning algorithm that solves a convex
optimization problem with a hypothesis-margin-based cost function. Instead of deploying exhaustive
or heuristic combinatorial searches, Relief decomposes a complex, global and nonlinear classification
task into a simple and local one. Following the large hypothesis-margin principle for classification,
Relief calculates the weights of features, which can be used for feature selection. The hypothesis-margin
of an instance x with respect to (w.r.t.) a set of samples P is later formerly defined in Gilad-Bachrach
etal. [3] as 3(||¥ — NM(¥)| — ||¥ — NH(X)||), where NH(¥) and NM(¥) denote the nearest samples
to ¥ in P with the same and different labels, respectively. The large hypothesis-margin principle has
motivated several successful extensions of the Relief algorithm. For example, ReliefF [4] uses multiple
nearest neighbors. Simba [3] recalculates the nearest neighbors every time the feature weights are
updated. Yang et al. [5] consider global information to improve Simba. I-RELIEF [6] identifies the
nearest hits and misses in a probabilistic manner, which forms a variation of hypothesis-margin. LFE
[7] extends Relief from feature selection to feature extraction using local information. IM4E is proposed
by Bei and Hong [8] to balance margin-quantity maximization and margin-quality maximization. Both
approaches in Sun and Wu [7], Bei and Hong [8] use a variation of hypothesis-margin proposed in Sun
and Li [6].

The Relief-based algorithms indirectly consider feature interactions by normalizing the feature
weights [9], which, however, cannot directly reflect the natural effects of associations and hence results
in poor interpretability on the effects of feature interactions. For example, Relief and many of its
extensions cannot tell whether a high weight of a certain feature is caused by its linear effect or its
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interaction with other features [9]. Similarly, these methods cannot clearly reveal the influence of
interaction terms on classification. In particular, the degree of such influence cannot be measured.

To this end, we propose the Iterative Max-MIn entropy marGin-maximization with inteRAction
TErms algorithm (IMMIGRATE, henceforth). IMMIGRATE directly measures the influence of feature
interactions and delivers the following novelties. First, when defining our hypothesis-margin, we
introduce a new trainable quadratic-Manhattan measurement to capture interaction terms, which
interprets interaction importance directly. Second, we take advantage of the margin stability by
measuring the underlying entropy based on the distributions of instances. Third, we derive an
iterative optimization algorithm to efficiently minimize the cost function. Fourth, we design a novel
classification method that utilizes the learned quadratic-Manhattan measurement to predict the class
of a new instance. Fifth, we design a more powerful approach (i.e., Boosted IMMIGRATE) by using
IMMIGRATE as the base learner of Boosting [10]. Sixth, to make IMMIGRATE efficient for analyzing
high-dimensional datasets, we take advantage of IM4E [8] to provide an effective initialization.

The rest of the paper is organized as follows. Section 2 explains the foundation of the Relief
algorithm. The IMMIGRATE algorithm is explained in Section 3. Section 4 summarizes and discusses
the experiments on different datasets. Experimental results show that our approach achieves the
state-of-the-art results. Boosted IMMIGRATE outperforms other Boosting classifiers significantly. The
computation time of IMMIGRATE is comparable to other popular feature selection methods that
consider interaction terms. The paper is concluded and discussed in Section 5 including comparisons
with related works.

2. Review: the Relief Algorithm

We first explain a few notations used in the rest of the paper: X; as the i-th instance in the training
set P; y; as the class label of X;; N as the size of P; A as the number of features(i.e. attributes); @ as the
feature weight vector; and |X;| as a vector where absolute value operation is element-wise. Relief [2]
iteratively calculates the feature weights in @ (Algorithm 1). The higher a feature weight is, the more
relevant the corresponding feature is. After the calculation of feature weights, a threshold is chosen to
select relevant features. Relief can be viewed as a convex optimization problem that minimizes the
cost function:

C=Y (@"|% —NH(Z,)| —@T|% — NM(%,)|),

1 (2.1)

subject to : @ > 0, ||@||3 = 1,

=

n

where M (< N) is a user defined number of randomly chosen training samples, NH(X) is the nearest
"hit" (from the same class) of X; NM(X) is the nearest "miss" (from a different class) of X; and @ T|5c'n —
NH(%,)| is the weighted Manhattan distance. Denote il = Y_» | (|¥, — NH(¥,)| — |¥: — NM(%,)|).
Minimizing the cost function of Relief 2.1 can be solved using the Lagrange multiplier method and the
Karush-Kuhn-Tucker conditions [11] to get a close form solution: @ = (—i)™" /|| (—i)"||2, where (@)"
truncates the negative elements to 0. This solution to the original Relief algorithm is important for
understanding the Relief-based algorithms.
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Algorithm 1 The Original Relief Algorithm
N: the number of training instances.

A: the number of features(i.e. attributes).

M: the number of randomly chosen training samples to update feature weight .
Input: a training dataset {z, = (¥, Yn) }n=1,.. N-

Initialization: Initialize all feature weights to 0: @ = 0.

fori=1to M do
Randomly select an instance ¥; and find its NH(X;) and NM(X;).
Update the feature weights by @ = @ — (X; — NH(¥;))?/M + (% — NM(¥;))%/ M,
where the square operation is element-wise.
Return: @.

3. IMMIGRATE Algorithm

IMMIGRATE stands for Iterative Max-MIn entropy marGin-maximization with inteRAction
TErms algorithm (IMMIGRATE, henceforth). Without loss of generality, we establish the IMMIGRATE
algorithm in a general binary classification setting. This formulation can be easily extended to
handle multiple class classification problems. Our implementation of IMMIGRATE is applicable to
multiple classification tasks. Let the whole data setbe P = {z,|zy = (¥, ¥n), Xn € ]RA,yn :I:l}n v
the hit index set of X, be H, = {j|z]- € Py = ynkj # n}, and the miss index set of ¥, be
My = {jlzj € P,yj # yn}-

3.1. Hypothesis-Margin

Given a distance d(X;, X;) between two instances X; and ¥;, a hypothesis-margin [3] is defined as
Pnhm = A(Xn, X)) — d(Xy, X)), where X, h € H, and Xy, m € M, represent the nearest hit and nearest
miss for instance X,,, respectively. We adopt the probabilistic hypothesis-margin defined by Sun and Li
[6] as

On = Z ﬁn,md(fn/ Xm) — Z D‘n,hd(fn/ Xp), (3.2)

meMy, heHy
where &, > 0, Bum > 0, Dyen, %ni = L Limem, Bnm = 1, for Vn € {1,---,N}. Asin the above

design, the hidden random variable «,, , represents the probability that ¥), is the nearest hit of instance
Xy, while B, , indicates the probability that ¥, is the nearest miss of instance ¥;,.

3.2. Entropy to Measure Hypothesis-Margin Stability

Here, we consider how the distributions of the hits and misses contribute to the stability of the
hypothesis-margin(hypothesis-margin quality). That is to say, how the distributions of instances with
the same or different labels w.r.t. target instance can get more stable margins.

The probabilities {a,,;} and {B,n} in Eq. 3.2 represent the distributions of hits and misses.
The stability of an instance ¥,’s hypothesis-margin can be defined using its hit probabilities {«,, , }
and miss probabilities {B,,n}. Let’s check the hit entropy and miss entropy, which are defined as
Epit(¥n) = — Lnen, dnplogay,  and Epss (Xn) = — Lne m,, Buym 108 Bum, respectively. The following
two scenarios help to explain the intuition of using the hit entropy and miss entropy. Scenario
A(stability): all neighbors are distributed evenly around the target instance; scenario B(instability):
the neighbor distribution is highly uneven. An extreme example for scenario B is that one instance is
quite close to the target and the rest are quite far away from the target. An easy experiment to test
the stability of the distributions of hits and misses is to discard one instance from the system and to
check the change degree of hypothesis-margin. In scenario A, if the true nearest hit is discarded, the
margin changes slightly since there are many other hits evenly distributed around target. However,
in scenario B, the disappearance of the true nearest miss can increase the margin significantly. In
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details, the disappearance of the true nearest miss makes the other misses have larger probabilities to
be the nearest miss({ 8,,m }), which results in the increase of margin in Eq. 3.2. However, if scenario B
works for hits, the margin will decrease accordingly when the true nearest hit disappears. Similarly, if
scenario A works for misses, the even distribution will not contribute to the margin. In conclusion,
hits prefer scenario A(stability) and misses scenario B(instability).

Since scenario A and B are corresponding to hit and low entropies, respectively, the margin can
benefit from a large hit entropy Ej;; (e.g., scenario A) and a low miss entropy E,;ss (€.g., scenario B).
We can set up a framework to maximize the hit entropy and minimize the miss entropy, which is
equivalent to make the hypothesis-margin in Eq. 3.2 the most stable. We call the level of stability of
hypothesis-margin as hypothesis-margin quality. And Bei and Hong [8] use the term max-min entropy
principle to describe the process that we maximize the hit entropy and minimize the loss entropy to
maximize the hypothesis-margin quality. Actually, the process of maximizing stable hypothesis-margin
is an extension of the large hypothesis-margin principle.

3.3. Quadratic-Manhattan Measurement

We extend the margin in Eq. 3.2 by using a new quadratic-Manhattan measurement defined in
Eq.3.3:

=

q(fl,f]> = ]xl- — f]’ TW’fi — f]

, (3.3)

where W is a non-negative symmetric matrix (element-wise non-negative) and its Frobenius norm
|IW||r = 1. The quadratic-Manhattan measurement is a natural extension of the weight vector. The
off-diagonal elements in W capture the feature interactions and the diagonal elements in W capture
the features. Here, we explain the motivation why quadratic-Manhattan measurement can capture
the influence of interactions. For example, w, ,(a # b), the element in the a-th row and b-th column
of W, reflects the influence of the interactions between two features a and b. In details, according
to the extension of quadratic form, w, ,(a # b) is the coefficient for the combination of the a-th and
b-th elements in vector |¥; — 56]'|. The quadratic-Manhattan measurement is a natural extension of
the weighted Manhanttan distance in Eq. 2.1. In Relief-based algorithms, the motivation of weighted
Manhattan distance Eq. 2.1 can be equivalently captured by the feature weight update equation in
Algorithm 1. Similarly, w, , can be updated using the combination of the a-th and b-th features based
on a randomly given instance, which is a straightforward way to understand the process of capturing
interactions.

We define our new hypothesis-margin using the quadratic-Manhattan measurement as

Y Bum(Rn, Zm) — Y (X, Xy). (3.4)

meMy, heH,

3.4. IMMIGRATE

We design the following cost function Eq. 3.5 to maximize our new hypothesis-margin (quantity)
and the hypothesis-margin quality simultaneously:

N
C=) ( DI AR A 1A Y R ﬁn,m|fn—zm\Tw\f,,—fm|>
n=1 \NheH, meMy
N
+0o Z [Emmiss(zn) — Enit (zn)], (3.5)
n=1

subjectto: W >0, W =W, W[z =1,

Vn/ 2 Oén,h = 1, Z ﬁn,m = 1, and ‘X'rl,h Z 0, ’Bn’m 2 0,
heHty, meMy
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where Eiss(zn) = — Limem, Brnm 108 Brms Enit(2n) = — Lnen, &nnlogay, p, and o is a hyperparameter
that can be tuned via internal cross-validation.

We also design the following optimization procedure containing two iterative steps to find W that
minimizes the cost function. The framework starts from a randomly initialized W and stops when the
change of cost function is less than a preset limit or the iteration number reaches a preset threshold. In
practice, we find that it typically takes ten times to stop and obtain good results. And based on our
experiments, the different initialization of W will not influence the results of the iterative optimization.
Our iterative optimization strategy is efficient to achieve reasonably good results. The computation
time of IMMIGRATE is comparable to other interaction related methods such as SODA [12], hierNet
[13].

The visualization of optimization procedure is in Figure. 1, where AC is the change of cost function
Eq. 3.5 in one iteration and ¢ is a pre-set limit.

' Fix W, update || Fix{a, ,}.{f, .} \

I { an,h } > {ﬁn,m } Y, L update W
A - * N

' Initialize W

No T Yes
L jACI< ¢ = Output W

Figure 1. Flow chart of IMMIGRATE

Step 1: The optimization of cost function Eq. 3.5 starts from a randomly initialized W (satisfying
W > 0, W' = Wand |[W||2 = 1). Then the following two steps are iterated to minimize the cost
function. Step 2: Fix W, update {a,,,} and {B,}. Step 3: Fix {a, ,} and {B,m}, update W.

3.4.1. Fix W, Update {a,,,} and {B,m}

Fixing W and setting ai—ch =0and achm = 0, we can obtain the closed-form updates of «, , and
Bn,m as , /

exp(—q(Xu, %)/ 0)

" hew, xp(—q () /0)’ 656
Bum = exp(=q(Xn, Xm)/0) '
w Y keM, exp(—q(Xu, %) /o)
The Hessian matrix of C w.r.t. probability pair (a,, 5, Bn,m) is:
_?c ( o/t 0> C/ 0B mttn, ) (3.7)
(@, Pr,m) azc/aﬁn,mﬂén,h —0/Bum . .

Since &, j, Bnm > 0, the determinant of the Hessian matrix is negative, where a saddle point
is found in (&, j,, Bn,m) space. Therefore, the cost function C achieves its local minimum and local
maximum w.r.t. &, , and B, »,, respectively.

3.4.2. Fix {ay, 5, } and {Bn,m }, Update W

Fixing a,, j, and By, the minimization w.r.t. W is convex. In Eq. 3.5, W satisfies W > 0, wT =
W, [W||2 = 1. In our iterative optimization strategy, we impose W to be a distance metric for
computation. Then, a closed-form solution to W can be derived (see Eq. 3.9).

Theorem 3.1. With {a,, j,} and {B,m} fixed, the cost function Eq. 3.5 has a closed-form solution to updating
w.
N
=) Zuu—Zum L= i (3.8)

n=1



149

150

153

Version February 19, 2020 submitted to Entropy 6of 17

T
cand i3 =1,

S 2 (|= T = = ||=
whe]"e ZH,H = ZhGIHH Xn - xh‘ ‘xn 7 ZH,M = ZmEMn ﬁn,m ’xn - xm ’ }Xn
1 < pp <o < pa. i’s and py’s are the eigenvectors and eigenvalues of L separately.

W=2>ooT, (3.9)

where ® = (/11,22 /TAPA), /T = \/ D/ T (—ui) )2

Proof. Since W is a distance metric matrix, it is symmetric and positive-semidefinite. Eigenvalue
decomposition of W is

W = PAPT PA]/ZAl/ZPT

=M pL o VAapallVAM P A pal T,

where P is an orthogonal matrix. Thus, (p;, pj> =0

Let® = [¢1,- -, pa]l = [VAip1, -+ ,V/Aapal, where (¢, ¢j) =0and Ay > Ay > -+ > Ay
The constraint || W||% = 1 can be simplified since W can be decomposed to be some orthogonal

(3.10)

vectors,

HWHF—sz, 24>l ¢i)> = 1. (3.11)

Let us rearrange the Eq. 3.5:

Y | B — T| W E — B tr(W Y | F — Fa| [T — 3] ),

heH, heH,
N N (3.12)
w(WEy ) = r(Zup ), 9911 ) = L 0/ Zupr 9
i=1 i=1
Then, Eq. 3.5 can be simplified as follows:
S
C=) ¢ ¢
i (3.13)

subject to : |W||% = Z((ﬁiT(Pi)z =1,(¢i¢;) =0,

T .
s XM = YmeM, ,Bn,m|xn -

T — Ty |%

where & = ZnN:1 Yo —Zymand Xy g = Ypen,
S e =T
Xm||Xn — |

The orthogonal condition will be ignored when we derive the closed-form solution because this
condition has already been satisfied at the last step.

The Lagrangian of Eq. 3.13 is easy to obtain:

A A
L=Y ¢Z ¢+ A (Y (¢ 1) (3.14)
i=1

i=1

And derive L with respect to ¢;:
OL/dp; = 25¢; + 4Ad pip; = 0. (3.15)
Denote ¢;/ ||¢i||2 := ;. From Eq. 3.15,
=i i, (3.16)

where p; = —2A||¢;||3. ¥; and y; are the eigenvector and eigenvalue of ¥, separately.
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Let ¢ = /iy, i > 0. Thus, C = T VT E g = T i 9 = TiLy i, and
WlE = iV i) = Li(ni)* =1
Then, Eq. 3.13 can be simplified to be

A A
C =Y nip, subjectto: Y (1,)> =1,17; > 0. (3.17)

i=1 i=1
It is excited to notice Eq. 3.17 is exactly the same as the original Relief Algorithm (Algorithm 1):
7= 1D e (3.18)

where ()" = [max(a;,0), max(ay,0),--- ,max(ar,0)], and ¢; = /7.
USing D= [4)1/ e /¢A] = [\/)Tlpl/ Tty \/HPA]/

W= o’ (3.19)

The orthogonal condition is achieved, because |[W||2 = Y; (¢ ¢;)? = 1.
In addition, since W = ®®T, updated W is also a distance metric. [J

Algorithm 2 IMMIGRATE Algorithm
Input: a training dataset {z, = (¥, ¥n) }n=1,.. N-
Initialization: Let t = 0, randomly initialize W) satisfying W(®) >0, WT = w, |[W( 2 =1.
repeat
Calculate {aff;l)}, {ﬁ,(f;l)} with Eq. 3.6.
Calculate W+ with Theorem 3.1, Eq. 3.9.
t=t+1.

until the change of C in Eq. 3.5 is small enough or the iteration indicator ¢ reaches a preset limit.

Output: W),

3.4.3. Weight Pruning

The previous Relief-based algorithms offer options to remove weights lower than a preset
threshold. IMMIGRATE offers a similar option to prune small weights: set small elements in W
to 0. By default, we use a threshold to prune small weights to 0, where W should be normalized w.r.t.
Frobenius norm after the pruning.

3.4.4. Predict New Samples
We design a new prediction method using the learned weight matrix W:

7 = argmcin Z aS(2)q (%', %),
Yn=¢C

C(f/) = exp(_q(fll

Ly—cexp(—q(

(3.20)

Xn)/0)
¥50)/0)

where z/ = (¥/,y’) is a new instance, ¢ denotes the class and §/’ is the predicted label. This prediction
method assigns a new instance to a class that maximizes its hypothesis-margin using the learned
weight matrix W, which makes it more reasonable than the k-NN method used in the traditional
Relief-based algorithms.
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3.5. IMMIGRATE in Ensemble Learning

Boosting [10,14,15] has been widely used to create ensemble learners that produce the
state-of-the-art results in many tasks. Boosting combines a set of relatively weak base learners to create
a much stronger learner. To use IMMIGRATE as the base classifier in the AdaBoost algorithm [14],
we modify the cost function Eq. 3.5 to include sample weights and use the modified version in the
boosting iterations. We name the algorithm BIM, standing for Boosted IMMIGRATE (Refer to Eq. 3.21
and Algorithm 3 for the details of BIM. BIM schedules the adjustment of the hyperparameter ¢ in
its boosting iterations. It starts with letting o be a predefined 0,4,y and gradually decreases 0y,0x by
(Omin/ amax)l/ T in each interaction until reaching o,,;;,, where T is a predefined maximum number of
boosting iterations.

N
c- Zo(zn)( Y wonl%e - T W -5~ Y ﬁn,m\fnfm]TW]fnme
n=1 heH, meMy

N
+0 Y, D(%n)[Enmiss(2n) — Enit (zn)], (3.21)

n=1

subjectto: W >0, Wl =W, |[W|2% =1,

vn, Z Ay h = 1, Z ﬁn,m =1,and [ o7y >0, ,Bn,m >0,
heH, meMy

where Episs(zn) = — Lmem, Bnmlog Bum, Enit(zn) = — Lnen, &nnlogany, YN D(#) = 1, and
D(%,) >0, Vn

Algorithm 3 BIM Algorithm
T: the number of classifiers for BIM.

Input : a training dataset {z, = (¥, ¥n) }n=1.. N-
Initialization : for each ¥, set D1(X,) = 1/N.

fort:=1to T do
Limit max number of iteration of IMMIGRATE less than preset.
Train weak IMMIGRATE classifier /1;(x) using a chosen ¢y and weights D;(x) by Eq. 3.21.
Compute the error rate € as e; = YN | D¢(x) I[y; # he(x;)].
if ¢ >1/20re¢; =0 then

Discard h;, T = T — 1 and continue .
Set oy = 0.5 x log[(1 — €¢) /€t].

Update D(x;): For each x;,
Dy (xi) = Di(x;) exp(aeI[y; # he(x;)]).
Normalize D;,1(x;), so that Zf\il Diiq(x;) =1
Output: h i, (x) = argmaxye o1y Leoh, (x)—y Xt-

3.6. IMMIGRATE for High-Dimensional Data Space

When applied to high-dimensional data, IMMIGRATE can incur a high computational cost
because it considers the interactions between every feature pair. To reduce the computational cost, we
first use IM4E [8] to learn a feature weight vector, which is used to initialize the diagonal elements
of W in the proposed quadratic-Manhattan measurement. We also use the learned feature weight
vector to choose the features with weights above a preset limit. In the rest computation, we only model
the interactions between those chosen features. The remaining features are empirically decided
and can be adjusted accordingly to the need of a specific application. We term this procedure
IM4E-IMMIGRATE, which is a sub-optimal solution but effective and efficient. It can also be boosted
(Boosted IM4E-IMMIGRATE) to be stronger.
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4. Experiments

In our experiments, all continuous features are normalized with mean zero and unit
variance. And cross-validation is used here to compare the performances of various approaches.
We have implemented IMMIGRATE in R and MATLAB. The R package is available at
https://CRAN.R-project.org/package=Immigrate, and the MATLAB version is available at
https://github.com/RuzhangZhao/Immigrate-MATLAB- is also available. Both IMMIGRATE and
BIM can be accelerated by parallel computing as their computations are matrix-based.

4.1. Synthetic Dataset

We first test the robustness of the IMMIGRATE algorithm using a synthesized dataset where
we have two interacting features following Gaussian distributions in a binary classification setting.
The simulated dataset contains 100 samples from one class governed by a Gaussian distribution with

0.5
05 1

Gaussian distribution with mean (6,0)” and the same variance. In addition, we add noise following

mean (4,2)" and variance ( ) and another 100 samples from the other class governed by a

. L . . 8 4 . .
a Gaussian distribution with mean (8, —2)” and variance 48 to the fist class, and add noises

following a Gaussian distribution with mean (2,4)T and the same variance to the second class. Fig. 2
shows a scatter plot of the synthesized dataset containing 10% samples from the noise distributions.
The slope of the orange dotted line in Fig. 2 is 1, which separates data with different labels.

The noises are included to disturb the detection of the interaction term. The noise level starts from
5%, and gradually increases by 5% to 50%. As the baseline, we apply logistic regression and see that
the t-test p-values of the interaction coefficients increase from 3 x 10~11, 7 x 1075, to 0.7 when the noise
levels increase from 0, 10%, to 50%. Local Feature Extraction (LFE, Sun and Wu [7]) is a Relief-based
algorithm which considers interaction terms indirectly, though the interaction information is only used
for feature extraction. We run IMMIGRATE and LFE on the synthesized datasets and compare the
weights of the interaction term between features 1 and 2 in Fig. 3, which shows IMMIGRATE is more
robust than LFE.

6 0.5
o
Q o
- 0.4-
3 <
2 W
~ label £ 03- method
g g c! ®
3 o a 254 0 5 0 LFE
© =
Q0 £ 1 g 02- — IGT
8 o
] S
- 0.1
-6 0.0 o
0 5 10 0.1 0.2 0.3 0.4 0.5
feature1 noise
Figure 2. The synthetic dataset with 10% Figure 3. IMMIGRATE (IGT) is more robust

noise. than LFE.
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o

Figure 4. Results of paired t-test on gene expression datasets (top subplot) and UCI datasets (bottom
subplot). The top plot shows how well (i.e., "Win" (red bars), "Tie" (green bars), and "Lose" (blue bars))
our Boosted IM4E-IMMIGRATE performs compared with other approaches. In the bottom plot, the
results of methods labeled in black are the comparisons with our IMMIGRATE, and the results of
methods (ABD, RF, and XGB) labeled in blue are the comparisons with our BIM.

4.2. Real Datasets

We compare IMMIGRATE with several existing popular methods using real datasets from the UCI
database. The following existing algorithms are used in the comparison: Support Vector Machine [16]
with Sigmoid Kernel (SV1), Support Vector Machine with Radial basis function Kernel (5V2), LASSO
(LAS) [17], Decision Tree (DT) [15], Naive Bayes Classifier (NBC) [18], Radial basis function Network
(RBF) [19], 1-Nearest Neighbor (INN) [20], 3-Nearest Neighbor (3NN), Large Margin Nearest Neighbor
(LMN) [21], Relief (REL) [2], ReliefF (RFF) [4,22], Simba (SIM) [3], and Linear Discriminant Analysis
(LDA) [23]. In addition, several methods designed for detecting interaction terms are included: LFE [7],
Stepwise conditional likelihood variable selection for Discriminant Analysis (SOD) [12], and hierNet
(HIN) [13]. We also include three most widely used and competitive ensemble learners: Adaptive
Boosting (ADB) [14,15], Random Forest (RF) [24], and XgBoost (XGB) [25]. We use the following
abbreviations when presenting the results: IM4 for IM4E, IGT for IMMIGRATE, and B4G for the
boosted IM4E-IMMIGRATE.

Whenever possible, we use the settings of the above methods reported in their original papers:
LMNN uses 3-NN classifier; Relief and Simba use Euclidean distance and 1-NN classifier; ReliefF
uses Manhattan distance and k-NN classifier (k=1,3,5 is decided by internal cross-validation); in
SODA, gam (=0,0.5,1) is determined by internal cross-validation and logistic regression is used for
prediction. The IM4E algorithm owns two hyperparameters A and o. We fix A = 1 as it has no actual
contribution and tune ¢ as suggested by Bei and Hong [8]. Hence, the IMMIGRATE algorithm only
has one hyperparameter . When tuning o, we gradually decrease ¢ from ¢y = 4 by half each time
until it is not larger than 0.2. The preset limit for weight pruning is 1/A, where A is the number
of features. Also, the preset iteration number is chosen to be 10. For each dataset, o and whether
weight pruning is applied are determined by the best internal cross-validation results. For BIM, we
use Opax = 4, Opin = 0.2, and the maximal number of boosting iterations T is 100. The preset threshold
in IM4E-IMMIGRATE is 2/ A.



Version February 19, 2020 submitted to Entropy 11 0f 17

We repeat ten-fold cross-validation ten times for each algorithm on each dataset, i.e., 100 trials
are carried out. When comparing two algorithms (i.e., A vs B), we calculate the paired Student’s
t-test using the results of 100 trials. First, the null hypothesis is there is no difference between the
performances of A and those of B. When the p-value is larger than the significant level cutoff 0.05, we
say A "Tie" B, which means there is no significant difference between their performances. When the
p-value is smaller than the significant level cutoff 0.05, the second null hypothesis is the performances
of B are no worse than those of A. When the new p-value is smaller than the significant level cutoff 0.05,
we say A "Win" B which means A on average performs better than B on this dataset (i.e., A performs
significantly better than B), and vice versa.

4.2.1. Gene Expression Datasets

Gene expression datasets typically have thousands of features. We use the following five gene
expression datasets for feature selections: GLI [26], Colon [27](COL), Myeloma (ELO) [28], Breast (BRE)
[29], Prostate (PRO) [30]. All datasets have more than 10,000 features. Refer to Table A1 in Appendix A
for details of all datasets.

We perform ten-fold cross-validation ten times, i.e., 100 trials in total. The results are summarized
in Table 1. The last row "(W,T,L)" indicates the number of times that the Boosted IM4E-IMMIGRATE
(B4G) W, T.L (win,tieloss) compared with each algorithm by the paired Student’s t-test with the
significance level of « = 0.05. The comparison results are also summarized in Figure 4 (top plot) for
easy comparison. Although our B4G is not always the best, it outperforms other methods in most cases.
In particular, when IM4E-IMMIGRATE (EGT) is compared with other methods, it also outperforms in
most cases.

Table 1. Summarizes the accuracies on five high-dimensional gene expression datasets.

Data | SV1 Sv2 LAS DT NBC INN 3NN SOD RF XGB IM4 EGT B4G
GLI |851 860 852 838 830 887 877 887 876 863 875 89.1 899
COL | 737 820 806 692 711 721 779 781 826 795 843 786 825
ELO | 729 902 746 773 763 856 913 869 792 779 889 886 884
BRE | 76.0 887 914 764 694 830 736 826 863 873 881 902 915
PRO | 713 699 879 864 680 832 827 832 918 90.5 880 89.5 89.7
WTL'[500 40,1 410 500 500 500 401 500 311 401 311 --- ---

1 The last row shows the number of times Boosted IM4E-IMMIGRATE(B4G) W, T,L (win,tie loss)
compared with each algorithm by paired ¢-test

* Ten-fold cross-validation is performed for ten times, namely 100 trials are carried out for each
dataset. The average accuracies are reported on the corresponding datasets in Table 1,2,3.
Here, with 100 trials and two algorithms A and B, paired Student’s ¢-test is carried out between
the results of these two algorithms. Under the significance level of # = 0.05, algorithm A
is significantly better than (i.e. win) another algorithm B on a dataset if the p-value of the
paired Student’s ¢-test with corresponding null hypothesis is less than « = 0.05. (The rule also
applies to experiments on UCI datasets) .

4.2.2. UCI Datasets

We also carry out an extensive comparison using many UCI datasets [31]: BCW, CRY, CUS, ECO,
GLA, HMS, IMM, ION, LYM, MON, PAR, PID, SMR, STA, URB, USE and WIN. Refer to Appendix A
Table A1 for the full names and links for those datasets. If a dataset has more than two classes, we use
two classes with the largest sample size. In addition, we use three large-scale datasets: CRO*, ELE,
WAV*.

We perform ten-fold cross-validation ten times. Tables 2 for IMMIGRATE and Table 3 for BIM
show the average accuracies on the corresponding datasets. In Table 2, the last row "(W,T,L)" indicates
the number of times IMMIGRATE (IGT) and BIM W,T,L (win,tie loss) when compared with each
algorithm separately by using the paired Student’s t-test with the significance level of x = 0.05. The
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272 comparison results are also summarized in Figure 4 (bottom subplot), where the first 17 items (black)
273 indicate the results for IMMIGRATE while the last three items (blue) indicate the results for BIM.

274 Although IMMIGRATE or BIM is not always the best, they outperform other methods significantly
275 in one-to-one comparisons in terms of cross-validation results. Figure 4 (bottom subplot, black part)
276 and Table 2 show that IMMIGRATE achieves the state-of-the-art performance as the base classifier while
2z Figure 4 (bottom subplot, blue part) and Table 3 show BIM achieves the state-of-the-art performance as
zre  the boosted version. To visualize the feature selection results of our approaches, we plot the feature
270 weight heat maps of four datasets (GLA, LYM, SMR and STA) in Appendix B Figure A5.

Table 2. Summarizes the accuracies on UCI datasets.

Data | SV1 SV2 LAS DT NBC RBF INN 3NN LMN REL RFF SIM LFE LDA SOD hIN IM4 IGT

BCW | 614 66.6 714 705 624 569 682 722 695 664 671 677 671 739 652 718 66.4 745
CRY | 729 90.6 874 853 844 89.7 89.1 854 878 738 772 79.7 86.0 88.6 86.0 879 86.2 89.8
CUS | 865 889 89.6 89.6 895 86.8 865 887 888 821 847 843 864 903 90.8 903 875 90.1
ECO | 929 969 98.6 986 978 946 96.0 978 978 89.0 90.7 912 931 99.0 979 98.7 975 98.2
GLA | 642 767 723 794 695 73.0 811 781 794 641 635 671 812 720 753 750 78.0 875
HMS | 63.8 645 67.7 725 672 668 660 693 712 653 660 657 649 69.0 674 694 66.6 69.2
IMM | 743 706 744 841 779 673 694 779 767 699 718 69.0 75.0 752 723 702 80.7 83.8
ION | 80.5 935 836 874 894 799 86.7 841 845 858 86.2 842 91.0 833 903 926 883 929
LYM | 83.6 815 852 752 836 711 772 828 86.6 649 710 704 79.6 852 793 848 833 872
MON | 744 917 75.0 864 740 682 751 844 849 614 618 650 648 744 919 972 756 99.5
PAR | 727 725 771 848 741 715 946 914 918 873 903 846 940 85.6 882 895 832 93.8
PID | 656 731 747 743 712 703 703 735 740 648 680 670 678 745 757 741 721 747
SMR | 735 839 736 723 703 671 869 847 861 695 783 810 843 731 705 83.0 764 86.5
STA | 69.8 716 708 689 710 695 678 70.8 713 59.7 64.0 63.0 66.7 713 71.8 69.2 70.8 759
URB | 8.2 879 881 826 858 753 872 875 879 819 832 73.0 879 730 879 883 874 899
USE | 957 952 972 932 90.6 849 905 915 92.0 545 63.7 695 858 969 962 965 94.1 96.4
WIN | 983 993 986 931 973 972 964 96.6 965 872 95.0 950 93.8 99.7 929 989 982 99.0
CRO* | 754 975 899 91.0 888 754 984 985 986 985 987 951 986 89.1 952 955 819 982
ELE* | 723 957 799 80.0 825 70.8 81.1 839 89.7 646 754 762 798 799 937 93.6 832 937
WAV*| 90.0 919 922 862 914 84.0 865 883 888 776 80.0 83.6 847 91.8 920 921 91.1 924

VV/’T/I—l1 E/O/O &2/2 214/1 mlgll 211/0 &0/0 lell E/Z/0 &3/1 E/]-/O 2/110 H/]-/O E/Z/O E/4/1 &4/3 217/1 E/O/]- s

1 The last row (W,T,L) shows the number of times that IMMIGRATE (IGT) wins/ties/losses an existing algorithm
according to the paired t-test on the cross-validation results.
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Table 3. Summarizes the accuracies on UCI datasets.

Data |ADB RF XGB BIM
BCW | 782 78.6 78.6 783
CRY [ 904 929 899 915
CUS | 90.8 91.1 914 91.0
ECO | 98.0 989 982 98.6
GLA | 850 87.0 879 86.8
HMS | 65.8 72.1 70.0 72.0
IMM | 772 842 81.7 86.1
ION |92.1 935 925 93.1
LYM | 848 87.0 87.4 88.1
MON | 984 958 99.1 99.7
PAR | 905 91.0 919 93.2
PID | 735 760 75.1 762
SMR | 814 828 833 86.6
STA | 69.0 713 69.5 74.1
URB | 879 88.6 88.8 914
USE | 960 953 949 96.1
WIN | 975 99.1 982 99.1
CRO*|97.3 97.4 985 98.6
ELE* | 91.1 92.3 952 94.1
WAV*| 89.5 912 90.8 93.3
WT,LI[17,3,011,81144,2 ---

1 The last row (W,T,L) shows
the number of times that
the Boosted IMMIGRATE
(BIM)  wins/ties/losses
an existing algorithm
according to the
paired t-test on the
cross-validation results.

5. Related Works

In many recent researches, Relief-based algorithms and feature selection with interaction terms
have been well explored. Some methods are reviewed here to show the connection and differences with
our approach. The hypothesis-margin definition in Eq. 3.2 adopted in this work is also used in previous
studies, such as Bei and Hong [8]. However, Bei and Hong [8] do not consider the interactions between
features. Our work provides a measurable way to show the influence of each feature interaction.

Sun and Wu [7] propose local feature extraction (LFE) method which learns linear combination of
features for feature extraction. LFE explores the information of feature interaction terms indirectly,
which is partly our aim. However, LFE does not consider global information or margin stability, which
results in significant differences in the cost function and the optimization procedures.

Our quadratic-Manhattan measurement Eq. 3.3 is related to the Mahalanobis metric used in
previous works on metric learning, such as Large Margin Nearest Neighbor (LMNN) [21]. Weinberger
and Saul [21] use semi-definite programming for learning distance metric in LMNN. LMNN and our
approach are both based on K-Nearest Neighbor. A major difference is that our quadratic-Manhattan
measurement has matrix W be a non-negative symmetric matrix (element-wise non-negative) and
its Frobenius norm |[W||p = 1. While in metric learning, metric learning imposes the matrix to
be symmetric semi-positive definite. Actually, non-negative requirement provides IMMIGRATE
high intepretability, where items in matrix serve as interaction importance. Quadratic-Manhattan
measurement serves well in the classification task and offers a great explanation about how features,
in particular, feature interaction terms, contribute to the classification results.
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6. Conclusion & Discussion

In this paper, a novel feature selection algorithm IMMIGRATE is proposed for detecting
and weighting interaction terms. We also develop its extended versions, such as, Boosted
IMMIGRATE (BIM) and IM4E-IMMIGRATE. A new quadratic-Manhattan measurement is proposed
to extend the hypothesis-margin. IMMIGRATE and its variants follow the principle of maximizing
stable hypothesis-margin. An iterative optimization framework is designed for implementing the
IMMIGRATE algorithm and the closed-form update of parameters is derived in Theorem 3.1. Extensive
experiments show that IMMIGRATE outperforms existing methods and improves the state-of-the-art.
BIM outperforms other boosting-based approaches. Its robustness is clearly demonstrated on
synthetic dataset where we know the ground truth. In conclusion, compared with other Relief-based
algorithms, IMMIGRATE mainly has the following advantages: (1) both local and global information
are considered; (2) interaction terms are used; (3) robust and less prone to noise; (4) easily boosted. The
computation time of IMMIGRATE variants is comparable to other methods able to detect interaction
terms.

There are several directions for improving IMMIGRATE. First, in section 3.4.3, small weights
are removed to obtain sparse solutions. We can explore using [y or /; to cut insignificant weights.
Second, to further improve the computational efficiency of IMMIGRATE for large-scale datasets, we
can improve training by using well selected prototypes [32]. Third, IMMIGRATE only considers
pair-wise interactions between features. Interactions among multiple features can play important roles
in real applications. Our work provides a basis for developing new algorithms to detect multi-feature
interactions. For example, people can use tensor form to consider weights for multi-feature interactions.
Fourth, although our iterative optimization procedure is efficient, it achieves sub-optimal solutions. In
particular, procedure 3.4.1 and 3.4.2 are both sub-optimal. It remains an open challenge to develop
better optimization algorithms. Finally, the selection of an appropriate o currently relies on internal
cross-validation. A better strategy may be developed by rigorously investigating the theoretical
contributions of ¢.
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IMMIGRATE  Iterative Max-MIn entropy marGin-maximization with inteRAction TErms algorithm
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Appendix A Summarizes the information of Real Datasets

Table A1. Summarizes the information of UCI datasets and gene expression datasets.

Data |No.F! No.I2 Full Name
BCW 9 116 Breast Cancer Wisconsin (Prognostic)
CRY 6 90 Cryotherapy
CuUs 7 440 Wholesale customers
ECO 5 220 Ecoli
GLA 9 146 Glass Identification
HMS 3 306 Haberman'’s Survival
IMM | 7 90 Immunotherapy
ION | 32 351 Ionosphere
LYM | 16 142 Lymphograph
MON| 6 432 MONK’s Problems
PAR | 22 194 Parkinsons
PID 8 768 Pima-Indians-Diabetes
SMR | 60 208 |Connectionist Bench (Sonar, Mines vs. Rocks)
STA 12 256 Statlog (Heart)
URB | 147 238 Urban Land Cover
USE 5 251 User Knowledge Modeling
WIN | 13 130 Wine
CRO*| 28 9003 Crowdsourced Mapping
ELE* | 12 10000 Electrical Grid Stability Simulated
WAV*| 21 3304 Waveform Database Generator
GLI |22283 85 Gliomas Strongly Predicts Survival[26]
COL | 2000 62 Tumor and Normal Colon Tissues[27]
ELO |12625 173 Myeloma[28]
BRE |24481 78 Breast Cancer[29]
PRO |12600 136 Clinical Prostate Cancer Behavior[30]

1 No.F: Number of Features.
2 No.I: Number of Instances.
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Figure: Heat Maps of Feature Weights Learned by IMMIGRATE.
The color bar shows the value of corresponding colors.
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