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Abstract: Traditional hypothesis-margin researches focus on obtaining large margins and feature1

selection. In this work, we show that the robustness of margins is also critical and can be measured2

using entropy. In addition, our approach provides clear mathematical formulations and explanations3

to uncover feature interactions, which is often lack in large hypothesis-margin based approaches. We4

design an algorithm, termed IMMIGRATE, for training the weights associated with the interaction5

terms. IMMIGRATE simultaneously utilizes both local and global information and can be used as a6

base learner in Boosting. We evaluate IMMIGRATE in a wide range of tasks, in which it demonstrates7

exceptional robustness and achieves the state-of-the-art results with high interpretability.8

Keywords: hypothesis-margin; feature selection; entropy; IMMIGRATE9

1. Introduction10

Feature selection is one of the most fundamental problems in machine learning and pattern11

recognition [1]. The Relief algorithm by Kira and Rendell [2] is one of the most successful feature12

selection algorithms. It can be interpreted as an online learning algorithm that solves a convex13

optimization problem with a hypothesis-margin-based cost function. Instead of deploying exhaustive14

or heuristic combinatorial searches, Relief decomposes a complex, global and nonlinear classification15

task into a simple and local one. Following the large hypothesis-margin principle for classification,16

Relief calculates the weights of features, which can be used for feature selection. The hypothesis-margin17

of an instance x with respect to (w.r.t.) a set of samples P is later formerly defined in Gilad-Bachrach18

et al. [3] as 1
2 (‖~x−NM(~x)‖ − ‖~x−NH(~x)‖), where NH(~x) and NM(~x) denote the nearest samples19

to ~x in P with the same and different labels, respectively. The large hypothesis-margin principle has20

motivated several successful extensions of the Relief algorithm. For example, ReliefF [4] uses multiple21

nearest neighbors. Simba [3] recalculates the nearest neighbors every time the feature weights are22

updated. Yang et al. [5] consider global information to improve Simba. I-RELIEF [6] identifies the23

nearest hits and misses in a probabilistic manner, which forms a variation of hypothesis-margin. LFE24

[7] extends Relief from feature selection to feature extraction using local information. IM4E is proposed25

by Bei and Hong [8] to balance margin-quantity maximization and margin-quality maximization. Both26

approaches in Sun and Wu [7], Bei and Hong [8] use a variation of hypothesis-margin proposed in Sun27

and Li [6].28

The Relief-based algorithms indirectly consider feature interactions by normalizing the feature29

weights [9], which, however, cannot directly reflect the natural effects of associations and hence results30

in poor interpretability on the effects of feature interactions. For example, Relief and many of its31

extensions cannot tell whether a high weight of a certain feature is caused by its linear effect or its32
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interaction with other features [9]. Similarly, these methods cannot clearly reveal the influence of33

interaction terms on classification. In particular, the degree of such influence cannot be measured.34

To this end, we propose the Iterative Max-MIn entropy marGin-maximization with inteRAction35

TErms algorithm (IMMIGRATE, henceforth). IMMIGRATE directly measures the influence of feature36

interactions and delivers the following novelties. First, when defining our hypothesis-margin, we37

introduce a new trainable quadratic-Manhattan measurement to capture interaction terms, which38

interprets interaction importance directly. Second, we take advantage of the margin stability by39

measuring the underlying entropy based on the distributions of instances. Third, we derive an40

iterative optimization algorithm to efficiently minimize the cost function. Fourth, we design a novel41

classification method that utilizes the learned quadratic-Manhattan measurement to predict the class42

of a new instance. Fifth, we design a more powerful approach (i.e., Boosted IMMIGRATE) by using43

IMMIGRATE as the base learner of Boosting [10]. Sixth, to make IMMIGRATE efficient for analyzing44

high-dimensional datasets, we take advantage of IM4E [8] to provide an effective initialization.45

The rest of the paper is organized as follows. Section 2 explains the foundation of the Relief46

algorithm. The IMMIGRATE algorithm is explained in Section 3. Section 4 summarizes and discusses47

the experiments on different datasets. Experimental results show that our approach achieves the48

state-of-the-art results. Boosted IMMIGRATE outperforms other Boosting classifiers significantly. The49

computation time of IMMIGRATE is comparable to other popular feature selection methods that50

consider interaction terms. The paper is concluded and discussed in Section 5 including comparisons51

with related works.52

2. Review: the Relief Algorithm53

We first explain a few notations used in the rest of the paper: ~xi as the i-th instance in the training
set P ; yi as the class label of ~xi; N as the size of P ; A as the number of features(i.e. attributes); ~w as the
feature weight vector; and |~xi| as a vector where absolute value operation is element-wise. Relief [2]
iteratively calculates the feature weights in ~w (Algorithm 1). The higher a feature weight is, the more
relevant the corresponding feature is. After the calculation of feature weights, a threshold is chosen to
select relevant features. Relief can be viewed as a convex optimization problem that minimizes the
cost function:

C =
M

∑
n=1

(
~w T∣∣~xn −NH(~xn)

∣∣− ~w T∣∣~xn −NM(~xn)
∣∣),

subject to : ~w ≥ 0, ‖~w‖2
2 = 1,

(2.1)

where M(� N) is a user defined number of randomly chosen training samples, NH(~x) is the nearest54

"hit" (from the same class) of ~x; NM(~x) is the nearest "miss" (from a different class) of ~x; and ~w T
∣∣~xn −55

NH(~xn)
∣∣ is the weighted Manhattan distance. Denote ~u = ∑M

n=1
(∣∣~xn −NH(~xn)

∣∣− ∣∣~xn −NM(~xn)
∣∣).56

Minimizing the cost function of Relief 2.1 can be solved using the Lagrange multiplier method and the57

Karush-Kuhn-Tucker conditions [11] to get a close form solution: ~w = (−~u)+/‖(−~u)+‖2, where (~a)+58

truncates the negative elements to 0. This solution to the original Relief algorithm is important for59

understanding the Relief-based algorithms.60
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Algorithm 1 The Original Relief Algorithm
N: the number of training instances.
A: the number of features(i.e. attributes).
M: the number of randomly chosen training samples to update feature weight ~w.
Input: a training dataset {zn = (~xn, yn)}n=1,··· ,N .
Initialization: Initialize all feature weights to 0: ~w = 0.

for i = 1 to M do
Randomly select an instance ~xi and find its NH(~xi) and NM(~xi).
Update the feature weights by ~w = ~w− (~xi −NH(~xi))

2/M + (~xi −NM(~xi))
2/M,

where the square operation is element-wise.
Return: ~w.

3. IMMIGRATE Algorithm61

IMMIGRATE stands for Iterative Max-MIn entropy marGin-maximization with inteRAction62

TErms algorithm (IMMIGRATE, henceforth). Without loss of generality, we establish the IMMIGRATE63

algorithm in a general binary classification setting. This formulation can be easily extended to64

handle multiple class classification problems. Our implementation of IMMIGRATE is applicable to65

multiple classification tasks. Let the whole data set be P = {zn|zn = (~xn, yn),~xn ∈ RA, yn = ±1}N
n=1;66

the hit index set of ~xn be Hn = {j|zj ∈ P , yj = yn & j 6= n}, and the miss index set of ~xn be67

Mn = {j|zj ∈ P , yj 6= yn}.68

3.1. Hypothesis-Margin69

Given a distance d(~xi,~xj) between two instances ~xi and ~xj, a hypothesis-margin [3] is defined as
ρn,h,m = d(~xn,~xm)− d(~xn,~xh), where ~xh, h ∈ Hn and ~xm, m ∈ Mn represent the nearest hit and nearest
miss for instance ~xn, respectively. We adopt the probabilistic hypothesis-margin defined by Sun and Li
[6] as

ρn = ∑
m∈Mn

βn,md(~xn,~xm)− ∑
h∈Hn

αn,hd(~xn,~xh), (3.2)

where αn,h ≥ 0, βn,m ≥ 0, ∑h∈Hn αn,h = 1, ∑m∈Mn βn,m = 1, for ∀ n ∈ {1, · · · , N}. As in the above70

design, the hidden random variable αn,h represents the probability that ~xh is the nearest hit of instance71

~xn, while βn,m indicates the probability that ~xm is the nearest miss of instance ~xn.72

3.2. Entropy to Measure Hypothesis-Margin Stability73

Here, we consider how the distributions of the hits and misses contribute to the stability of the74

hypothesis-margin(hypothesis-margin quality). That is to say, how the distributions of instances with75

the same or different labels w.r.t. target instance can get more stable margins.76

The probabilities {αn,h} and {βn,m} in Eq. 3.2 represent the distributions of hits and misses.77

The stability of an instance ~xn’s hypothesis-margin can be defined using its hit probabilities {αn,h}78

and miss probabilities {βn,m}. Let’s check the hit entropy and miss entropy, which are defined as79

Ehit(~xn) = −∑h∈Hn αn,h log αn,h and Emiss(~xn) = −∑m∈Mn βn,m log βn,m, respectively. The following80

two scenarios help to explain the intuition of using the hit entropy and miss entropy. Scenario81

A(stability): all neighbors are distributed evenly around the target instance; scenario B(instability):82

the neighbor distribution is highly uneven. An extreme example for scenario B is that one instance is83

quite close to the target and the rest are quite far away from the target. An easy experiment to test84

the stability of the distributions of hits and misses is to discard one instance from the system and to85

check the change degree of hypothesis-margin. In scenario A, if the true nearest hit is discarded, the86

margin changes slightly since there are many other hits evenly distributed around target. However,87

in scenario B, the disappearance of the true nearest miss can increase the margin significantly. In88
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details, the disappearance of the true nearest miss makes the other misses have larger probabilities to89

be the nearest miss({βn,m}), which results in the increase of margin in Eq. 3.2. However, if scenario B90

works for hits, the margin will decrease accordingly when the true nearest hit disappears. Similarly, if91

scenario A works for misses, the even distribution will not contribute to the margin. In conclusion,92

hits prefer scenario A(stability) and misses scenario B(instability).93

Since scenario A and B are corresponding to hit and low entropies, respectively, the margin can94

benefit from a large hit entropy Ehit (e.g., scenario A) and a low miss entropy Emiss (e.g., scenario B).95

We can set up a framework to maximize the hit entropy and minimize the miss entropy, which is96

equivalent to make the hypothesis-margin in Eq. 3.2 the most stable. We call the level of stability of97

hypothesis-margin as hypothesis-margin quality. And Bei and Hong [8] use the term max-min entropy98

principle to describe the process that we maximize the hit entropy and minimize the loss entropy to99

maximize the hypothesis-margin quality. Actually, the process of maximizing stable hypothesis-margin100

is an extension of the large hypothesis-margin principle.101

3.3. Quadratic-Manhattan Measurement102

We extend the margin in Eq. 3.2 by using a new quadratic-Manhattan measurement defined in103

Eq. 3.3:104

q(~xi,~xj) =
∣∣~xi −~xj

∣∣ TW
∣∣~xi −~xj

∣∣, (3.3)

where W is a non-negative symmetric matrix (element-wise non-negative) and its Frobenius norm105

‖W‖F = 1. The quadratic-Manhattan measurement is a natural extension of the weight vector. The106

off-diagonal elements in W capture the feature interactions and the diagonal elements in W capture107

the features. Here, we explain the motivation why quadratic-Manhattan measurement can capture108

the influence of interactions. For example, wa,b(a 6= b), the element in the a-th row and b-th column109

of W, reflects the influence of the interactions between two features a and b. In details, according110

to the extension of quadratic form, wa,b(a 6= b) is the coefficient for the combination of the a-th and111

b-th elements in vector
∣∣~xi − ~xj

∣∣. The quadratic-Manhattan measurement is a natural extension of112

the weighted Manhanttan distance in Eq. 2.1. In Relief-based algorithms, the motivation of weighted113

Manhattan distance Eq. 2.1 can be equivalently captured by the feature weight update equation in114

Algorithm 1. Similarly, wa,b can be updated using the combination of the a-th and b-th features based115

on a randomly given instance, which is a straightforward way to understand the process of capturing116

interactions.117

We define our new hypothesis-margin using the quadratic-Manhattan measurement as

∑
m∈Mn

βn,mq(~xn,~xm)− ∑
h∈Hn

αn,hq(~xn,~xh). (3.4)

3.4. IMMIGRATE118

We design the following cost function Eq. 3.5 to maximize our new hypothesis-margin (quantity)119

and the hypothesis-margin quality simultaneously:120

C =
N

∑
n=1

(
∑

h∈Hn

αn,h
∣∣~xn −~xh

∣∣ TW
∣∣~xn −~xh

∣∣− ∑
m∈Mn

βn,m
∣∣~xn −~xm

∣∣ TW
∣∣~xn −~xm

∣∣)

+ σ
N

∑
n=1

[Emiss(zn)− Ehit(zn)],

subject to : W ≥ 0, WT = W, ‖W‖2
F = 1,

∀n, ∑
h∈Hn

αn,h = 1, ∑
m∈Mn

βn,m = 1, and αn,h ≥ 0, βn,m ≥ 0,

(3.5)
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where Emiss(zn) = −∑m∈Mn βn,m log βn,m, Ehit(zn) = −∑h∈Hn αn,h log αn,h, and σ is a hyperparameter121

that can be tuned via internal cross-validation.122

We also design the following optimization procedure containing two iterative steps to find W that123

minimizes the cost function. The framework starts from a randomly initialized W and stops when the124

change of cost function is less than a preset limit or the iteration number reaches a preset threshold. In125

practice, we find that it typically takes ten times to stop and obtain good results. And based on our126

experiments, the different initialization of W will not influence the results of the iterative optimization.127

Our iterative optimization strategy is efficient to achieve reasonably good results. The computation128

time of IMMIGRATE is comparable to other interaction related methods such as SODA [12], hierNet129

[13].130

The visualization of optimization procedure is in Figure. 1, where ∆C is the change of cost function131

Eq. 3.5 in one iteration and ε is a pre-set limit.132

Figure 1. Flow chart of IMMIGRATE

Step 1: The optimization of cost function Eq. 3.5 starts from a randomly initialized W (satisfying133

W ≥ 0, WT = W and ‖W‖2
F = 1). Then the following two steps are iterated to minimize the cost134

function. Step 2: Fix W, update {αn,h} and {βn,m}. Step 3: Fix {αn,h} and {βn,m}, update W.135

3.4.1. Fix W, Update {αn,h} and {βn,m}136

Fixing W and setting ∂C
∂αn,h

= 0 and ∂C
∂βn,m

= 0, we can obtain the closed-form updates of αn,h and137

βn,m as138

αn,h =
exp(−q(~xn,~xh)/σ)

∑h∈Hn exp(−q(~xn,~xh)/σ)
,

βn,m =
exp(−q(~xn,~xm)/σ)

∑k∈Mn exp(−q(~xn,~xk)/σ)
.

(3.6)

The Hessian matrix of C w.r.t. probability pair (αn,h, βn,m) is:

∂2C
∂(αn,h, βn,m)

=

(
σ/αn,h ∂2C/∂βn,mαn,h

∂2C/∂βn,mαn,h −σ/βn,m

)
. (3.7)

Since αn,h, βn,m > 0, the determinant of the Hessian matrix is negative, where a saddle point139

is found in (αn,h, βn,m) space. Therefore, the cost function C achieves its local minimum and local140

maximum w.r.t. αn,h and βn,m, respectively.141

3.4.2. Fix {αn,h} and {βn,m}, Update W142

Fixing αn,h and βn,m, the minimization w.r.t. W is convex. In Eq. 3.5, W satisfies W ≥ 0, WT =143

W, ‖W‖2
F = 1. In our iterative optimization strategy, we impose W to be a distance metric for144

computation. Then, a closed-form solution to W can be derived (see Eq. 3.9).145

Theorem 3.1. With {αn,h} and {βn,m} fixed, the cost function Eq. 3.5 has a closed-form solution to updating
W.

Σ =
N

∑
n=1

Σn,H − Σn,M, Σ ψi = µi ψi, (3.8)
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where Σn,H = ∑h∈Hn αn,h
∣∣~xn −~xh

∣∣∣∣~xn −~xh
∣∣ T , Σn,M = ∑m∈Mn βn,m

∣∣~xn −~xm
∣∣∣∣~xn −~xm

∣∣ T , and ‖ψi‖2
2 = 1,

µ1 ≤ µ2 ≤ · · · ≤ µA. ψi’s and µi’s are the eigenvectors and eigenvalues of Σ separately.

W = Φ ΦT , (3.9)

where Φ = (
√

η1ψ1,
√

η2ψ2, · · · ,
√

ηAψA),
√

ηi =

√
(−µi)+/

√
∑A

i=1((−µi)+)2.146

Proof. Since W is a distance metric matrix, it is symmetric and positive-semidefinite. Eigenvalue
decomposition of W is

W = PΛP T = PΛ1/2Λ1/2P T ,

= [
√

λ1 p1, · · · ,
√

λA pA][
√

λ1 p1, · · · ,
√

λA pA]
T ,

(3.10)

where P is an orthogonal matrix. Thus,
〈

pi, pj
〉
= 0.147

Let Φ = [φ1, · · · , φA] = [
√

λ1 p1, · · · ,
√

λA pA], where
〈
φi, φj

〉
= 0 and λ1 ≥ λ2 ≥ · · · ≥ λA.148

The constraint ‖W‖2
F = 1 can be simplified since W can be decomposed to be some orthogonal

vectors,
‖W‖2

F = ∑
i,j

w2
i,j = ∑

i
(φ T

i φi)
2 = 1. (3.11)

Let us rearrange the Eq. 3.5:

∑
h∈Hn

αn,h
∣∣~xn −~xh

∣∣ TW
∣∣~xn −~xh

∣∣tr(W ∑
h∈Hn

αn,h
∣∣~xn −~xh

∣∣∣∣~xn −~xh
∣∣ T

),

tr(WΣn,H) = tr(Σn,H

A

∑
i=1

φiφ
T
i ) =

A

∑
i=1

φ T
i Σn,H φi.

(3.12)

Then, Eq. 3.5 can be simplified as follows:

C =
A

∑
i=1

φ T
i Σ φi,

subject to : ‖W‖2
F = ∑

i
(φ T

i φi)
2 = 1,

〈
φi, φj

〉
= 0,

(3.13)

where Σ = ∑N
n=1 Σn,H − Σn,M and Σn,H = ∑h∈Hn αn,h

∣∣~xn −~xh
∣∣∣∣~xn −~xh

∣∣ T , Σn,M = ∑m∈Mn βn,m
∣∣~xn −149

~xm
∣∣∣∣~xn −~xm

∣∣ T .150

The orthogonal condition will be ignored when we derive the closed-form solution because this151

condition has already been satisfied at the last step.152

The Lagrangian of Eq. 3.13 is easy to obtain:

L =
A

∑
i=1

φ T
i Σ φi + λ(

A

∑
i=1

(φ T
i φi)

2 − 1). (3.14)

And derive L with respect to φi:

∂L/∂φi = 2Σφi + 4λφ T
i φiφi = 0. (3.15)

Denote φi/‖φi‖2 := ψi. From Eq. 3.15,

Σ ψi = µi ψi, (3.16)

where µi = −2λ‖φi‖2
2. ψi and µi are the eigenvector and eigenvalue of Σ, separately.153
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Let φi =
√

ηiψi, ηi ≥ 0. Thus, C = ∑A
i=1
√

ηiψ
T
i Σ
√

ηiψi = ∑A
i=1 ηiµiψ

T
i ψi = ∑A

i=1 ηiµi, and154

‖W‖2
F = ∑i(

√
ηiψ

T
i
√

ηiψi)
2 = ∑i(ηi)

2 = 1.155

Then, Eq. 3.13 can be simplified to be

C =
A

∑
i=1

ηiµi, subject to :
A

∑
i=1

(ηi)
2 = 1, ηi ≥ 0. (3.17)

It is excited to notice Eq. 3.17 is exactly the same as the original Relief Algorithm (Algorithm 1):

~η = (−~µ)+/‖(−~µ)+‖2, (3.18)

where (~a)+ = [max(a1, 0), max(a2, 0), · · · , max(aI , 0)], and φi =
√

ηiψi.156

Using Φ = [φ1, · · · , φA] = [
√

λ1 p1, · · · ,
√

λA pA],

W = ΦΦT . (3.19)

The orthogonal condition is achieved, because ‖W‖2
F = ∑i(φ

T
i φi)

2 = 1.157

In addition, since W = ΦΦT , updated W is also a distance metric.158

Algorithm 2 IMMIGRATE Algorithm
Input: a training dataset {zn = (~xn, yn)}n=1,··· ,N .

Initialization: Let t = 0, randomly initialize W(0) satisfying W(0) ≥ 0, WT = W, ‖W(0)‖2
F = 1.

repeat
Calculate {α(t+1)

n,h }, {β(t+1)
n,m } with Eq. 3.6.

Calculate W(t+1) with Theorem 3.1, Eq. 3.9.
t = t+1.

until the change of C in Eq. 3.5 is small enough or the iteration indicator t reaches a preset limit.

Output: W(t).

3.4.3. Weight Pruning159

The previous Relief-based algorithms offer options to remove weights lower than a preset160

threshold. IMMIGRATE offers a similar option to prune small weights: set small elements in W161

to 0. By default, we use a threshold to prune small weights to 0, where W should be normalized w.r.t.162

Frobenius norm after the pruning.163

3.4.4. Predict New Samples164

We design a new prediction method using the learned weight matrix W:

ŷ′ = arg min
c ∑

yn=c
αc

n(~x
′)q(~x ′,~xn),

αc
n(~x

′) =
exp
(
− q(~x ′,~xn)/σ

)
∑yk=c exp

(
− q(~x ′,~xk)/σ

) ,
(3.20)

where z′ = (~x ′, y ′) is a new instance, c denotes the class and ŷ′ is the predicted label. This prediction165

method assigns a new instance to a class that maximizes its hypothesis-margin using the learned166

weight matrix W, which makes it more reasonable than the k-NN method used in the traditional167

Relief-based algorithms.168
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3.5. IMMIGRATE in Ensemble Learning169

Boosting [10,14,15] has been widely used to create ensemble learners that produce the170

state-of-the-art results in many tasks. Boosting combines a set of relatively weak base learners to create171

a much stronger learner. To use IMMIGRATE as the base classifier in the AdaBoost algorithm [14],172

we modify the cost function Eq. 3.5 to include sample weights and use the modified version in the173

boosting iterations. We name the algorithm BIM, standing for Boosted IMMIGRATE (Refer to Eq. 3.21174

and Algorithm 3 for the details of BIM. BIM schedules the adjustment of the hyperparameter σ in175

its boosting iterations. It starts with letting σ be a predefined σmax and gradually decreases σmax by176

(σmin/σmax)1/T in each interaction until reaching σmin, where T is a predefined maximum number of177

boosting iterations.178

C =
N

∑
n=1

D(~xn)

(
∑

h∈Hn

αn,h
∣∣~xn −~xh

∣∣ TW
∣∣~xn −~xh

∣∣− ∑
m∈Mn

βn,m
∣∣~xn −~xm

∣∣ TW
∣∣~xn −~xm

∣∣)

+ σ
N

∑
n=1

D(~xn)[Emiss(zn)− Ehit(zn)],

subject to : W ≥ 0, WT = W, ‖W‖2
F = 1,

∀n, ∑
h∈Hn

αn,h = 1, ∑
m∈Mn

βn,m = 1, and αn,h ≥ 0, βn,m ≥ 0,

(3.21)

where Emiss(zn) = −∑m∈Mn βn,m log βn,m, Ehit(zn) = −∑h∈Hn αn,h log αn,h, ∑N
n=1 D(~xn) = 1, and179

D(~xn) ≥ 0, ∀ n180

Algorithm 3 BIM Algorithm
T: the number of classifiers for BIM.
Input : a training dataset {zn = (~xn, yn)}n=1,··· ,N .
Initialization : for each ~xn, set D1(~xn) = 1/N.

for t := 1 to T do
Limit max number of iteration of IMMIGRATE less than preset.
Train weak IMMIGRATE classifier ht(x) using a chosen σt and weights Dt(x) by Eq. 3.21.
Compute the error rate εt as εt = ∑N

i=1 Dt(xi)I[yi 6= ht(xi)].
if εt ≥ 1/2 or εt = 0 then

Discard ht, T = T − 1 and continue .
Set αt = 0.5× log[(1− εt)/εt].
Update D(xi): For each xi,

Dt+1(xi) = Dt(xi) exp(αt I[yi 6= ht(xi)]).
Normalize Dt+1(xi), so that ∑N

i=1 Dt+1(xi) = 1.
Output: h f inal(x) = arg maxy∈{0,1} ∑t:ht(x)=y αt.

3.6. IMMIGRATE for High-Dimensional Data Space181

When applied to high-dimensional data, IMMIGRATE can incur a high computational cost182

because it considers the interactions between every feature pair. To reduce the computational cost, we183

first use IM4E [8] to learn a feature weight vector, which is used to initialize the diagonal elements184

of W in the proposed quadratic-Manhattan measurement. We also use the learned feature weight185

vector to choose the features with weights above a preset limit. In the rest computation, we only model186

the interactions between those chosen features. The remaining features are empirically decided187

and can be adjusted accordingly to the need of a specific application. We term this procedure188

IM4E-IMMIGRATE, which is a sub-optimal solution but effective and efficient. It can also be boosted189

(Boosted IM4E-IMMIGRATE) to be stronger.190
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4. Experiments191

In our experiments, all continuous features are normalized with mean zero and unit192

variance. And cross-validation is used here to compare the performances of various approaches.193

We have implemented IMMIGRATE in R and MATLAB. The R package is available at194

https://CRAN.R-project.org/package=Immigrate, and the MATLAB version is available at195

https://github.com/RuzhangZhao/Immigrate-MATLAB- is also available. Both IMMIGRATE and196

BIM can be accelerated by parallel computing as their computations are matrix-based.197

4.1. Synthetic Dataset198

We first test the robustness of the IMMIGRATE algorithm using a synthesized dataset where199

we have two interacting features following Gaussian distributions in a binary classification setting.200

The simulated dataset contains 100 samples from one class governed by a Gaussian distribution with201

mean (4, 2)T and variance

(
1 0.5

0.5 1

)
and another 100 samples from the other class governed by a202

Gaussian distribution with mean (6, 0)T and the same variance. In addition, we add noise following203

a Gaussian distribution with mean (8,−2)T and variance

(
8 4
4 8

)
to the fist class, and add noises204

following a Gaussian distribution with mean (2, 4)T and the same variance to the second class. Fig. 2205

shows a scatter plot of the synthesized dataset containing 10% samples from the noise distributions.206

The slope of the orange dotted line in Fig. 2 is 1, which separates data with different labels.207

The noises are included to disturb the detection of the interaction term. The noise level starts from208

5%, and gradually increases by 5% to 50%. As the baseline, we apply logistic regression and see that209

the t-test p-values of the interaction coefficients increase from 3× 10−11, 7× 10−5, to 0.7 when the noise210

levels increase from 0, 10%, to 50%. Local Feature Extraction (LFE, Sun and Wu [7]) is a Relief-based211

algorithm which considers interaction terms indirectly, though the interaction information is only used212

for feature extraction. We run IMMIGRATE and LFE on the synthesized datasets and compare the213

weights of the interaction term between features 1 and 2 in Fig. 3, which shows IMMIGRATE is more214

robust than LFE.215
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Figure 2. The synthetic dataset with 10%
noise.
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Figure 3. IMMIGRATE (IGT) is more robust
than LFE.
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Figure 4. Results of paired t-test on gene expression datasets (top subplot) and UCI datasets (bottom
subplot). The top plot shows how well (i.e., "Win" (red bars), "Tie" (green bars), and "Lose" (blue bars))
our Boosted IM4E-IMMIGRATE performs compared with other approaches. In the bottom plot, the
results of methods labeled in black are the comparisons with our IMMIGRATE, and the results of
methods (ABD, RF, and XGB) labeled in blue are the comparisons with our BIM.

4.2. Real Datasets216

We compare IMMIGRATE with several existing popular methods using real datasets from the UCI217

database. The following existing algorithms are used in the comparison: Support Vector Machine [16]218

with Sigmoid Kernel (SV1), Support Vector Machine with Radial basis function Kernel (SV2), LASSO219

(LAS) [17], Decision Tree (DT) [15], Naive Bayes Classifier (NBC) [18], Radial basis function Network220

(RBF) [19], 1-Nearest Neighbor (1NN) [20], 3-Nearest Neighbor (3NN), Large Margin Nearest Neighbor221

(LMN) [21], Relief (REL) [2], ReliefF (RFF) [4,22], Simba (SIM) [3], and Linear Discriminant Analysis222

(LDA) [23]. In addition, several methods designed for detecting interaction terms are included: LFE [7],223

Stepwise conditional likelihood variable selection for Discriminant Analysis (SOD) [12], and hierNet224

(HIN) [13]. We also include three most widely used and competitive ensemble learners: Adaptive225

Boosting (ADB) [14,15], Random Forest (RF) [24], and XgBoost (XGB) [25]. We use the following226

abbreviations when presenting the results: IM4 for IM4E, IGT for IMMIGRATE, and B4G for the227

boosted IM4E-IMMIGRATE.228

Whenever possible, we use the settings of the above methods reported in their original papers:229

LMNN uses 3-NN classifier; Relief and Simba use Euclidean distance and 1-NN classifier; ReliefF230

uses Manhattan distance and k-NN classifier (k=1,3,5 is decided by internal cross-validation); in231

SODA, gam (=0,0.5,1) is determined by internal cross-validation and logistic regression is used for232

prediction. The IM4E algorithm owns two hyperparameters λ and σ. We fix λ = 1 as it has no actual233

contribution and tune σ as suggested by Bei and Hong [8]. Hence, the IMMIGRATE algorithm only234

has one hyperparameter σ. When tuning σ, we gradually decrease σ from σ0 = 4 by half each time235

until it is not larger than 0.2. The preset limit for weight pruning is 1/A, where A is the number236

of features. Also, the preset iteration number is chosen to be 10. For each dataset, σ and whether237

weight pruning is applied are determined by the best internal cross-validation results. For BIM, we238

use σmax = 4, σmin = 0.2, and the maximal number of boosting iterations T is 100. The preset threshold239

in IM4E-IMMIGRATE is 2/A.240
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We repeat ten-fold cross-validation ten times for each algorithm on each dataset, i.e., 100 trials241

are carried out. When comparing two algorithms (i.e., A vs B), we calculate the paired Student’s242

t-test using the results of 100 trials. First, the null hypothesis is there is no difference between the243

performances of A and those of B. When the p-value is larger than the significant level cutoff 0.05, we244

say A "Tie" B, which means there is no significant difference between their performances. When the245

p-value is smaller than the significant level cutoff 0.05, the second null hypothesis is the performances246

of B are no worse than those of A. When the new p-value is smaller than the significant level cutoff 0.05,247

we say A "Win" B which means A on average performs better than B on this dataset (i.e., A performs248

significantly better than B), and vice versa.249

4.2.1. Gene Expression Datasets250

Gene expression datasets typically have thousands of features. We use the following five gene251

expression datasets for feature selections: GLI [26], Colon [27](COL), Myeloma (ELO) [28], Breast (BRE)252

[29], Prostate (PRO) [30]. All datasets have more than 10,000 features. Refer to Table A1 in Appendix A253

for details of all datasets.254

We perform ten-fold cross-validation ten times, i.e., 100 trials in total. The results are summarized255

in Table 1. The last row "(W,T,L)" indicates the number of times that the Boosted IM4E-IMMIGRATE256

(B4G) W,T,L (win,tie,loss) compared with each algorithm by the paired Student’s t-test with the257

significance level of α = 0.05. The comparison results are also summarized in Figure 4 (top plot) for258

easy comparison. Although our B4G is not always the best, it outperforms other methods in most cases.259

In particular, when IM4E-IMMIGRATE (EGT) is compared with other methods, it also outperforms in260

most cases.261

Table 1. Summarizes the accuracies on five high-dimensional gene expression datasets.

Data SV1 SV2 LAS DT NBC 1NN 3NN SOD RF XGB IM4 EGT B4G
GLI 85.1 86.0 85.2 83.8 83.0 88.7 87.7 88.7 87.6 86.3 87.5 89.1 89.9
COL 73.7 82.0 80.6 69.2 71.1 72.1 77.9 78.1 82.6 79.5 84.3 78.6 82.5
ELO 72.9 90.2 74.6 77.3 76.3 85.6 91.3 86.9 79.2 77.9 88.9 88.6 88.4
BRE 76.0 88.7 91.4 76.4 69.4 83.0 73.6 82.6 86.3 87.3 88.1 90.2 91.5
PRO 71.3 69.9 87.9 86.4 68.0 83.2 82.7 83.2 91.8 90.5 88.0 89.5 89.7

W,T,L1 5,0,0 4,0,1 4,1,0 5,0,0 5,0,0 5,0,0 4,0,1 5,0,0 3,1,1 4,0,1 3,1,1 -,-,- -,-,-
1 The last row shows the number of times Boosted IM4E-IMMIGRATE(B4G) W,T,L (win,tie,loss)

compared with each algorithm by paired t-test
** Ten-fold cross-validation is performed for ten times, namely 100 trials are carried out for each

dataset. The average accuracies are reported on the corresponding datasets in Table 1,2,3.
Here, with 100 trials and two algorithms A and B, paired Student’s t-test is carried out between
the results of these two algorithms. Under the significance level of α = 0.05, algorithm A
is significantly better than (i.e. win) another algorithm B on a dataset if the p-value of the
paired Student’s t-test with corresponding null hypothesis is less than α = 0.05. (The rule also
applies to experiments on UCI datasets) .

4.2.2. UCI Datasets262

We also carry out an extensive comparison using many UCI datasets [31]: BCW, CRY, CUS, ECO,263

GLA, HMS, IMM, ION, LYM, MON, PAR, PID, SMR, STA, URB, USE and WIN. Refer to Appendix A264

Table A1 for the full names and links for those datasets. If a dataset has more than two classes, we use265

two classes with the largest sample size. In addition, we use three large-scale datasets: CRO∗, ELE∗,266

WAV∗.267

We perform ten-fold cross-validation ten times. Tables 2 for IMMIGRATE and Table 3 for BIM268

show the average accuracies on the corresponding datasets. In Table 2, the last row "(W,T,L)" indicates269

the number of times IMMIGRATE (IGT) and BIM W,T,L (win,tie,loss) when compared with each270

algorithm separately by using the paired Student’s t-test with the significance level of α = 0.05. The271
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comparison results are also summarized in Figure 4 (bottom subplot), where the first 17 items (black)272

indicate the results for IMMIGRATE while the last three items (blue) indicate the results for BIM.273

Although IMMIGRATE or BIM is not always the best, they outperform other methods significantly274

in one-to-one comparisons in terms of cross-validation results. Figure 4 (bottom subplot, black part)275

and Table 2 show that IMMIGRATE achieves the state-of-the-art performance as the base classifier while276

Figure 4 (bottom subplot, blue part) and Table 3 show BIM achieves the state-of-the-art performance as277

the boosted version. To visualize the feature selection results of our approaches, we plot the feature278

weight heat maps of four datasets (GLA, LYM, SMR and STA) in Appendix B Figure A5.279

Table 2. Summarizes the accuracies on UCI datasets.

Data SV1 SV2 LAS DT NBC RBF 1NN 3NN LMN REL RFF SIM LFE LDA SOD hIN IM4 IGT
BCW 61.4 66.6 71.4 70.5 62.4 56.9 68.2 72.2 69.5 66.4 67.1 67.7 67.1 73.9 65.2 71.8 66.4 74.5
CRY 72.9 90.6 87.4 85.3 84.4 89.7 89.1 85.4 87.8 73.8 77.2 79.7 86.0 88.6 86.0 87.9 86.2 89.8
CUS 86.5 88.9 89.6 89.6 89.5 86.8 86.5 88.7 88.8 82.1 84.7 84.3 86.4 90.3 90.8 90.3 87.5 90.1
ECO 92.9 96.9 98.6 98.6 97.8 94.6 96.0 97.8 97.8 89.0 90.7 91.2 93.1 99.0 97.9 98.7 97.5 98.2
GLA 64.2 76.7 72.3 79.4 69.5 73.0 81.1 78.1 79.4 64.1 63.5 67.1 81.2 72.0 75.3 75.0 78.0 87.5
HMS 63.8 64.5 67.7 72.5 67.2 66.8 66.0 69.3 71.2 65.3 66.0 65.7 64.9 69.0 67.4 69.4 66.6 69.2
IMM 74.3 70.6 74.4 84.1 77.9 67.3 69.4 77.9 76.7 69.9 71.8 69.0 75.0 75.2 72.3 70.2 80.7 83.8
ION 80.5 93.5 83.6 87.4 89.4 79.9 86.7 84.1 84.5 85.8 86.2 84.2 91.0 83.3 90.3 92.6 88.3 92.9
LYM 83.6 81.5 85.2 75.2 83.6 71.1 77.2 82.8 86.6 64.9 71.0 70.4 79.6 85.2 79.3 84.8 83.3 87.2
MON 74.4 91.7 75.0 86.4 74.0 68.2 75.1 84.4 84.9 61.4 61.8 65.0 64.8 74.4 91.9 97.2 75.6 99.5
PAR 72.7 72.5 77.1 84.8 74.1 71.5 94.6 91.4 91.8 87.3 90.3 84.6 94.0 85.6 88.2 89.5 83.2 93.8
PID 65.6 73.1 74.7 74.3 71.2 70.3 70.3 73.5 74.0 64.8 68.0 67.0 67.8 74.5 75.7 74.1 72.1 74.7
SMR 73.5 83.9 73.6 72.3 70.3 67.1 86.9 84.7 86.1 69.5 78.3 81.0 84.3 73.1 70.5 83.0 76.4 86.5
STA 69.8 71.6 70.8 68.9 71.0 69.5 67.8 70.8 71.3 59.7 64.0 63.0 66.7 71.3 71.8 69.2 70.8 75.9
URB 85.2 87.9 88.1 82.6 85.8 75.3 87.2 87.5 87.9 81.9 83.2 73.0 87.9 73.0 87.9 88.3 87.4 89.9
USE 95.7 95.2 97.2 93.2 90.6 84.9 90.5 91.5 92.0 54.5 63.7 69.5 85.8 96.9 96.2 96.5 94.1 96.4
WIN 98.3 99.3 98.6 93.1 97.3 97.2 96.4 96.6 96.5 87.2 95.0 95.0 93.8 99.7 92.9 98.9 98.2 99.0
CRO∗ 75.4 97.5 89.9 91.0 88.8 75.4 98.4 98.5 98.6 98.5 98.7 95.1 98.6 89.1 95.2 95.5 81.9 98.2
ELE∗ 72.3 95.7 79.9 80.0 82.5 70.8 81.1 83.9 89.7 64.6 75.4 76.2 79.8 79.9 93.7 93.6 83.2 93.7
WAV∗ 90.0 91.9 92.2 86.2 91.4 84.0 86.5 88.3 88.8 77.6 80.0 83.6 84.7 91.8 92.0 92.1 91.1 92.4
W,T,L1 20,0,0 16,2,2 15,4,1 16,3,1 19,1,0 20,0,0 17,2,1 18,2,0 16,3,1 19,1,0 19,1,0 19,1,0 18,2,0 15,4,1 13,4,3 12,7,1 19,0,1 -,-,-

1 The last row (W,T,L) shows the number of times that IMMIGRATE (IGT) wins/ties/losses an existing algorithm
according to the paired t-test on the cross-validation results.
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Table 3. Summarizes the accuracies on UCI datasets.

Data ADB RF XGB BIM
BCW 78.2 78.6 78.6 78.3
CRY 90.4 92.9 89.9 91.5
CUS 90.8 91.1 91.4 91.0
ECO 98.0 98.9 98.2 98.6
GLA 85.0 87.0 87.9 86.8
HMS 65.8 72.1 70.0 72.0
IMM 77.2 84.2 81.7 86.1
ION 92.1 93.5 92.5 93.1
LYM 84.8 87.0 87.4 88.1
MON 98.4 95.8 99.1 99.7
PAR 90.5 91.0 91.9 93.2
PID 73.5 76.0 75.1 76.2
SMR 81.4 82.8 83.3 86.6
STA 69.0 71.3 69.5 74.1
URB 87.9 88.6 88.8 91.4
USE 96.0 95.3 94.9 96.1
WIN 97.5 99.1 98.2 99.1
CRO∗ 97.3 97.4 98.5 98.6
ELE∗ 91.1 92.3 95.2 94.1
WAV∗ 89.5 91.2 90.8 93.3
W,T,L1 17,3,0 11,8,1 14,4,2 -,-,-

1 The last row (W,T,L) shows
the number of times that
the Boosted IMMIGRATE
(BIM) wins/ties/losses
an existing algorithm
according to the
paired t-test on the
cross-validation results.

5. Related Works280

In many recent researches, Relief-based algorithms and feature selection with interaction terms281

have been well explored. Some methods are reviewed here to show the connection and differences with282

our approach. The hypothesis-margin definition in Eq. 3.2 adopted in this work is also used in previous283

studies, such as Bei and Hong [8]. However, Bei and Hong [8] do not consider the interactions between284

features. Our work provides a measurable way to show the influence of each feature interaction.285

Sun and Wu [7] propose local feature extraction (LFE) method which learns linear combination of286

features for feature extraction. LFE explores the information of feature interaction terms indirectly,287

which is partly our aim. However, LFE does not consider global information or margin stability, which288

results in significant differences in the cost function and the optimization procedures.289

Our quadratic-Manhattan measurement Eq. 3.3 is related to the Mahalanobis metric used in290

previous works on metric learning, such as Large Margin Nearest Neighbor (LMNN) [21]. Weinberger291

and Saul [21] use semi-definite programming for learning distance metric in LMNN. LMNN and our292

approach are both based on K-Nearest Neighbor. A major difference is that our quadratic-Manhattan293

measurement has matrix W be a non-negative symmetric matrix (element-wise non-negative) and294

its Frobenius norm ‖W‖F = 1. While in metric learning, metric learning imposes the matrix to295

be symmetric semi-positive definite. Actually, non-negative requirement provides IMMIGRATE296

high intepretability, where items in matrix serve as interaction importance. Quadratic-Manhattan297

measurement serves well in the classification task and offers a great explanation about how features,298

in particular, feature interaction terms, contribute to the classification results.299
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6. Conclusion & Discussion300

In this paper, a novel feature selection algorithm IMMIGRATE is proposed for detecting301

and weighting interaction terms. We also develop its extended versions, such as, Boosted302

IMMIGRATE (BIM) and IM4E-IMMIGRATE. A new quadratic-Manhattan measurement is proposed303

to extend the hypothesis-margin. IMMIGRATE and its variants follow the principle of maximizing304

stable hypothesis-margin. An iterative optimization framework is designed for implementing the305

IMMIGRATE algorithm and the closed-form update of parameters is derived in Theorem 3.1. Extensive306

experiments show that IMMIGRATE outperforms existing methods and improves the state-of-the-art.307

BIM outperforms other boosting-based approaches. Its robustness is clearly demonstrated on308

synthetic dataset where we know the ground truth. In conclusion, compared with other Relief-based309

algorithms, IMMIGRATE mainly has the following advantages: (1) both local and global information310

are considered; (2) interaction terms are used; (3) robust and less prone to noise; (4) easily boosted. The311

computation time of IMMIGRATE variants is comparable to other methods able to detect interaction312

terms.313

There are several directions for improving IMMIGRATE. First, in section 3.4.3, small weights314

are removed to obtain sparse solutions. We can explore using l0 or l1 to cut insignificant weights.315

Second, to further improve the computational efficiency of IMMIGRATE for large-scale datasets, we316

can improve training by using well selected prototypes [32]. Third, IMMIGRATE only considers317

pair-wise interactions between features. Interactions among multiple features can play important roles318

in real applications. Our work provides a basis for developing new algorithms to detect multi-feature319

interactions. For example, people can use tensor form to consider weights for multi-feature interactions.320

Fourth, although our iterative optimization procedure is efficient, it achieves sub-optimal solutions. In321

particular, procedure 3.4.1 and 3.4.2 are both sub-optimal. It remains an open challenge to develop322

better optimization algorithms. Finally, the selection of an appropriate σ currently relies on internal323

cross-validation. A better strategy may be developed by rigorously investigating the theoretical324

contributions of σ.325
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The following abbreviations are used in this manuscript:336

337

NH Nearest Hit
NM Nearest Miss
IM4E Iterative Margin-Maximization under Max-Min Entropy algorithm
IMMIGRATE Iterative Max-MIn entropy marGin-maximization with inteRAction TErms algorithm

338
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Appendix A Summarizes the information of Real Datasets339

Table A1. Summarizes the information of UCI datasets and gene expression datasets.

Data No.F1 No.I2 Full Name
BCW 9 116 Breast Cancer Wisconsin (Prognostic)
CRY 6 90 Cryotherapy
CUS 7 440 Wholesale customers
ECO 5 220 Ecoli
GLA 9 146 Glass Identification
HMS 3 306 Haberman’s Survival
IMM 7 90 Immunotherapy
ION 32 351 Ionosphere
LYM 16 142 Lymphograph
MON 6 432 MONK’s Problems
PAR 22 194 Parkinsons
PID 8 768 Pima-Indians-Diabetes
SMR 60 208 Connectionist Bench (Sonar, Mines vs. Rocks)
STA 12 256 Statlog (Heart)
URB 147 238 Urban Land Cover
USE 5 251 User Knowledge Modeling
WIN 13 130 Wine
CRO∗ 28 9003 Crowdsourced Mapping
ELE∗ 12 10000 Electrical Grid Stability Simulated
WAV∗ 21 3304 Waveform Database Generator

GLI 22283 85 Gliomas Strongly Predicts Survival[26]
COL 2000 62 Tumor and Normal Colon Tissues[27]
ELO 12625 173 Myeloma[28]
BRE 24481 78 Breast Cancer[29]
PRO 12600 136 Clinical Prostate Cancer Behavior[30]
1 No.F: Number of Features.
2 No.I: Number of Instances.
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Figure: Heat Maps of Feature Weights Learned by IMMIGRATE.
The color bar shows the value of corresponding colors.
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