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Abstract

Motivation: Species delimitation, the process of deciding how to group a set of organisms into units called species,
is one of the most challenging problems in computational evolutionary biology. While many methods exist for spe-
cies delimitation, most based on the coalescent theory, few are scalable to very large datasets, and methods that
scale tend to be not accurate. Species delimitation is closely related to species tree inference from discordant gene
trees, a problem that has enjoyed rapid advances in recent years.

Results: In this article, we build on the accuracy and scalability of recent quartet-based methods for species tree esti-
mation and propose a new method called SODA for species delimitation. SODA relies heavily on a recently devel-
oped method for testing zero branch length in species trees. In extensive simulations, we show that SODA can easily
scale to very large datasets while maintaining high accuracy.

Availability and implementation: The code and data presented here are available on https://github.com/maryamra
biee/SODA.

Contact: smirarab@ucsd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Evolution results in diversity across species and diversity within the
same species in ways that can make it difficult to distinguish species.
Definitions of what constitutes a species are varied (Coyne and Orr,
2004) and subject to debate. Nevertheless, many biological analyses
depend on our ability to define and detect species. Assigning groups
of organisms into units called species, a process called species de-
limitation, is thus necessary but remains challenging (Carstens et al.,
2013; Rannala and Yang, 2020). Among varied species concepts,
the most commonly used for Eukaryotes is the notion that individu-
als within a species should be able to mate and reproduce viable off-
springs.

A wide range of species delimitation methods exist. Traditional
methods simply relied on the mean divergence between sequences
(e.g. Hebert et al., 2004; Puillandre et al., 2012) or patterns of
phylogenetic branch length (Esselstyn et al., 2012; Fujisawa and
Barraclough, 2013; Zhang et al., 2013) in marker genes or concaten-
ation of several markers (e.g. Pons et al., 2006). Due to limitations
of marker genes (Hudson and Coyne, 2002), many approaches to
species delimitation have moved to using multi-locus data that allow
modeling coalescence within and across species (Knowles and
Carstens, 2007; O’Meara, 2010; Yang and Rannala, 2010), not to
mention more complex processes such as gene flow (e.g. Leaché

et al., 2019). Modeling coalescence allows methods to account for
the fact that across the genome, different loci can have different evo-
lutionary histories, both in topology and branch length (Maddison,
1997). Species delimitation is often studied using the Multi-species
Coalescent (MSC) model (Pamilo and Nei, 1988; Rannala and
Yang, 2003). In this model, individuals of the same species have no
structure within the species, and thus their alleles coalesce complete-
ly at random. Coalescence is allowed to happen deeper than the first
opportunity, producing gene tree discordance due to Incomplete
Lineage Sorting (ILS). In this context, given a set of sampled individ-
uals, delimitation essentially requires inferring gene trees, one per
locus, and detecting which delimitation is most consistent with pat-
terns of coalescence observed in the gene trees.

Existing methods for species delimitation under the MSC model
tend to suffer from one of two limitations. The most accurate meth-
ods are based on Bayesian MCMC and infer gene trees, (optionally)
species trees and species boundaries [e.g. BPP (Yang and Rannala,
2010, 2014), ABC (Camargo et al., 2012) and STACEY (Jones,
2017)]. Other Bayesian methods use biallelic sites (Leaché et al.,
2014), incorporate morphological data (Solı́s-Lemus et al., 2015),
or use structure (Huelsenbeck et al., 2011). These methods, how-
ever, are typically slow and cannot handle even moderate numbers
of samples (Fujisawa and Barraclough, 2013; Xu and Yang, 2016).
For example, Musher and Cracraft (2018) had to divide their
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dataset of 62 individuals into six subsets, and Oliveira et al. (2015)
used a subsample of 20 out of 137 to use BPP to avoid mixing prob-
lems that usually happen with large datasets; running BPP on a data-
set of 40 populations in our study needed 36 h of running time. The
second class of methods [e.g. SpedeSTEM (Ence and Carstens,
2011)] rely on a three-step approach: first, infer gene trees, then,
date gene trees so that they all become ultrametric (i.e. have a
unique root to tip distance), then, use ML calculation of alternative
delimitations under the MSC model to decide species boundaries.
These methods have been less accurate than Bayesian methods, and
their reliance on ultrametric trees makes them hard to use for data-
sets where rates of evolution change substantially across the tree
(Camargo et al., 2012). Yet other methods (e.g. O’Meara, 2010;
Zhang and Cui, 2010) rely only on input gene tree topologies, as we
do.

In this article, we introduce a new species delimitation approach
called SODA that builds on the success of our species tree inference
tool ASTRAL (Mirarab et al., 2014a; Mirarab and Warnow, 2015;
Zhang et al., 2018). A statistically consistent method, ASTRAL infers
a species tree from a collection of gene tree topologies (ignoring
branch lengths) based on the principle that the most frequent
unrooted topology for each quartet of species is expected to match
the species tree (Allman et al., 2011). Thanks to its accuracy and scal-
ability, ASTRAL has been widely adopted for species tree inference.
In a recent article that extended ASTRAL to multi-individual data,
we observed that if species boundaries are ignored, ASTRAL most
often recovers individuals of the same species as monophyletic
(Rabiee et al., 2019). This result suggests a species delimitation
method: Infer an ASTRAL tree with all individuals and use patterns
of quartet trees mapped onto that species tree to decide where coales-
cence is completely random and where it is not; these boundaries can
define species. By relying on quartet frequencies and the ASTRAL
machinery, SODA is able to handle very large datasets with short run-
ning times. We first describe SODA in detail and then evaluate its ac-
curacy and scalability in simulation and on empirical datasets.

2 Materials and methods

2.1 Coalescent-based topology-based delimitation
We take a two-step approach to species delimitation and assume
unrooted gene tree topologies are already inferred from sequence
data. Thus, we are given a set of unrooted gene trees G on individu-
als ‘ ¼ fl1 . . . lmg. Ignoring errors in estimated gene trees, we assume
these gene trees follow the MSC model. Optionally, we are given a
partition of ‘ into populations P ¼ fP1 . . .Ppg; when P is not given,
we define each individual as a singleton population. A partition of P
into S ¼ fS1 . . . Sng produces a mapping r : P ! f1 . . .ng and by ex-
tension q : ‘! f1 . . .ng where rðxÞ and qðyÞ give a species index for
x 2 P and y 2 ‘.

We say a partition is coalescent-consistent if for any set A � ‘
with at most one individual from each population and all individuals
mapped to the same species (8i;jli; lj 2 A : @xli; lj 2 Px;9yli; lj 2 Sy),
the distribution of G restricted to S is consistent with the neutral
Kingman (1982) coalescence process. Because Kingman’s process is
robust to subsampling, if a partition is coalescent-consistent, further
breaking each species into smaller species would remain coalescent-
consistent. Having two species that could be combined without vio-
lating the coalescent model is not justified under the MSC because
the model provides no support for the division. Thus, we formulate
coalescent-based species delimitation as the problem of finding a
coalescent-consistent partition that is not a refinement of any other
coalescent-consistent partitions. Our method seeks to solve this
problem within further restrictions stated below.

This formulation follows the MSC model (free coalescent of line-
ages within species but constrained coalescence across the species)
and shares its assumptions. The only population structure within the
species that is modeled is the given structure P, which is known apri-
ori. Thus, it assumes that individuals selected from different popula-
tions of the same species evolve according to the neutral Wright-
Fisher model, resulting in a distribution of gene trees within a

species that follows the Kingman (1982) coalescent process. This as-
sumption is most defensible when the populations within a species
do not further have strong differentiation. MSC also assumes line-
ages sampled from different species do not coalesce more recently
than their separation event (Supplementary Fig. S8); thus, it ignores
gene flow across species. While these assumptions can all be violated
on real data, they provide a useful model that allows fast delimita-
tion. We revisit these assumptions in the discussion session.

The branch lengths of gene trees can be modeled as a function of
two processes: coalescent of lineages and changes in the mutation
rate (Rannala and Yang, 2003). Simultaneously dealing with these
two processes is challenging, motivating methods such as
SpedeSTEM to take ultrametric (e.g. dated) gene trees as input and
forcing Bayesian methods such as BPP to assume parametric rate
models. In our work, we are after a fast delimitation method that
can be applied to inferred non-ultrametric gene trees directly. To
avoid complications of rate variations across lineages, we limit our-
selves to gene tree topologies. To do so, we rely on the distribution
of gene tree topologies under the MSC model, in particular for quar-
tets of species (Degnan and Salter, 2005).

Using gene tree topologies, however, has a limitation. Examining
the distribution of tree topologies requires at least three lineages.
Thus, two species, each with a single individual, and a single species
with two individuals cannot be distinguished by topology alone.
This forces us to assume that in the correct delimitation, each species
has more than one individual sampled (i.e. 8ijSij � 2).

2.2 SODA algorithm
A central concept in MSC is the ‘extended species tree,’ as defined
by Allman et al. (2011). Let T� be the true species tree on the leafset
S. The extended species tree T is a rooted tree labeled by ‘, built by
adding to each leaf of T� all individuals corresponding to that

Fig. 1. True extended species tree generates gene trees under the MSC model. From

unrooted gene tree topologies (inferred from sequence data), SODA first estimates a

guide tree using ASTRAL and then test the null hypothesis that each branch has

length zero, obtaining a P-value (middle left), which may result in FP or FN rejec-

tion or retention of the null (red P-value s). SODA then contracts branches where

the null is retained as long as contracting them does not contradict with the mono-

phyly of species defined by branches where the null hypothesis is rejected; thus, we

keep some branches with high P-value (e.g. those with P-value 0.4 and 0.5) in a way

that ensures the resulting tree can be an extended species tree (bottom left). The

inferred extended species tree can be cut at branches above the terminal branches to

define species. The result could include both false positives and false negative delimi-

tations. However, we note that some errors in hypothesis testing (e.g. P-value s 0.5

and 0.4) do not result in erroneous delimitation.
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species as a polytomy (Fig. 1); i.e. for leaf s 2 S of T, add a child for
every r 2 q�1ðsÞ � ‘. When populations are known apriori, we can
similarly define the extended species tree T as a rooted tree labeled
by P, built by adding to each leaf of T� all populations correspond-
ing to that species as a polytomy.

Our species delimitation method, which we name Species
bOundry Delimitation using Astral (SODA), is shown in Algorithm
1. Its inputs are a set of gene tree topologies and a significance level a,
described below. SODA first infers (or takes as input) a guide tree T.
The guide tree, a concept introduced by Yang and Rannala (2010), is
a phylogenetic tree with leaves set to known populations (i.e the most
divided possible delimitation). SODA assumes T is a resolution of the
true extended species tree T , meaning that it includes all branches of
the species tree and has arbitrary relationships between populations
of the same species. SODA then contracts some of the branches of T
as long as it cannot reject the null hypothesis that they have length
zero under the MSC model using a as the confidence level for statis-
tical tests; the contracted tree is an estimated extended species tree T̂ .
Finally, SODA cuts internal branches of the T̂ to cluster species
(Fig. 1). Below, we describe each step in more detail.Guide Tree:
SODA needs a (potentially unrooted) guide tree T on the leafset P. If
not provided by the user, we infer the guide tree by running
ASTRAL-III on G; note that using the multi-individual version of
ASTRAL (Rabiee et al., 2019), we can ensure that the tree generated
by ASTRAL is labeled by P, as opposed to the original individuals (if
different). We assume that T is a resolution of the extended species
tree; thus, the accuracy of this guide tree is important.

Polytomy Test: For each branch of T, we next test the null hy-
pothesis that it has zero length in coalescent units. If we cannot re-
ject this null hypothesis, the branch can be collapsed to obtain a
polytomy, helping us to obtain T̂ . We use a recent test proposed by
Sayyari and Mirarab (2018) that relies on a classic result: Under the
MSC model, across gene trees, the frequencies of the three resolu-
tions for each quartet around a given branch in the species tree are
equal if and only if that branch has length zero (Allman et al., 2011;
Pamilo and Nei, 1988). Moreover, gene trees are assumed independ-
ent. Thus, under the null hypothesis of a polytomy, the frequency of
quartet topologies around each branch should follow a multinomial
distribution with three categories, each with probability 1

3. Whether
observed frequencies of the three possible topologies for a quartet
follow an equiprobable multinomial distribution can be tested using

a Chi-Squared test, which is what the method of Sayyari and
Mirarab (2018) uses. To achieve scalability, this method treats
branches independently [based on the locality assumption of Sayyari
and Mirarab (2016)] and takes the average of quartet frequencies
for all quartets around each branch (which can be done easily in
Oðn2kÞ time). The test assumes the input gene tree set is an error-
free random sample generated by the MSC model from the true spe-
cies tree. It produces one P-value per internal branch.

Rooting T: We need to root T (if not rooted) such that each spe-
cies becomes monophyletic. We simply root T at the edge with the
minimum P-value. Note that our goal is not to find the correct root
because we do not need the correct rooting in the next steps. We
only need the tree to be rooted on any internal branch of the
extended species tree. The highest statistical confidence for having a
positive length is achieved by the branch with the lowest P-value;
thus, we can root here.

Infer extended species tree: To obtain T̂ , we contract some of
the branches of T where a zero-length null hypothesis cannot be
rejected at a user-specified level a. When the null hypothesis is
rejected for a branch e, we marked e as being part of T̂ (i.e. keep in
Alg. 1). Parameter a can be adjusted for controlling how aggressively
SODA divides species. Increasing a results in rejecting more null
hypotheses and hence, dividing individuals into more species. To en-
sure that we can get a valid extended species tree (with monophylet-
ic species), we need polytomies to form only above the terminal
branches. Thus, in addition, we mark the sister edge of e and all its
ancestor edges as belonging to T̂ .

Partitioning: Given T̂ , the partition is obtained by cutting the
remaining internal branches of T̂ . The partition produced would be
identical if we only cut internal branches that have at least one ter-
minal branch as a child.

The accuracy of the algorithm, in addition to assumptions made
by our problem formulation, depends on the accuracy of the statis-
tical test. We formalize this notion in three claims (proofs in
Supplementary Material).

Claim 1 Assuming (i) gene trees G are generated under the MSC
model on an extended species tree T , (ii) the guide tree T (e.g.
ASTRAL tree) is a resolution of T and (iii) the hypothesis testing
has no false positive (FP) or false negative (FN) errors, the SODA al-
gorithm returns the correct extended species tree (T̂ ¼T ).
Additionally, it will correctly delimitate species if all species are
sampled more than once.

This claim provides a reassuring result, but only under strong
assumptions, most notably, that the test is perfect. However, errors
in the test can lead to errors.

Claim 2 Given a guide tree T that resolves the tree T , SODA in-
correctly divides a species S into multiple species (i.e. a false negative
error) if and only if the zero-length hypothesis testing results in an
FP error for one of the branches under the clade defined by S on T.

Thus, FPs in the hypothesis test always result in the division of a
species; however, an FP does not always divide S into exactly two parts.
For example, if T has a caterpillar (a.k.a ladder-like) topology on S, an
FP on the branch above the cherry (i.e. a node with two leaf children)
leads to each remaining individual being marked as a species.

Claim 3 Given a guide tree T that resolves T , SODA incorrectly
combines individuals from two species S1 and S2 into one species (a
false positive error) under one of these two conditions. 1) S1 and S2
each have one sampled individuals and form a cherry. 2) The hy-
pothesis testing has an FN error for all branches of T below the
LCA of S1 and S2. This condition requires FN errors for two or
more branches if neither species is a singleton.

To combine two species incorrectly, we must fail to correctly mark
all branches below their LCA; else, one of the branches below the LCA
would be cut, which would prevent the FP. Thus, our approach is toler-
ant of some FN errors in the hypothesis test (e.g. P-value 0.4 in Fig. 1).

3 Experimental setup

3.1 Datasets
We used two simulated datasets, both generated using Simphy
(Mallo et al., 2016). One dataset is large and allows us to evaluate

Algorithm 1 - SODA Algorithm

function SODA(G, T,a)

if guide tree T is not given then

T  run ASTRAL on G
end if

for internal branch e of T do

pðeÞ  P-value of the null hypothesis that lengthðeÞ ¼ 0

end for

Root T on the arg minepðeÞ
CONTRACTTOEXTENDEDSPECIESTRE(T,a)

partition P by cutting all ‘keep’ internal edges of T

end function

function CONTRACTTOEXTENDEDSPECIESTREE(T,a)

for e 2 internal edges of T do

if pðeÞ � a then

Mark e, sister of e, and all ancestors of e as ‘keep’

end if

end for

for e 2 internal edges of T not marked ‘keep’ do

Contract e

end for

end function
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SODA on conditions where other methods cannot run, whereas the
other dataset is small and enables us to compare SODA to slower
Bayesian methods.

Large dataset: We reuse a 201-species ‘homogeneous’ dataset that we
have previously simulated (Rabiee et al., 2019) using SimPhy to generate
species trees based on the birth/death model and gene trees under the
MSC model. Each species includes five individuals except the singleton
outgroup (1001 in total). We have three model conditions (50 replicates
each) with medium, high, or very high levels of ILS, with maximum tree
height set to 2M, 1M and 0.5M generations, respectively. The mean
quartet score of true gene trees versus the species tree (i.e. the proportion
of quartet trees that are shared between the two trees) is 0.78, 0.62 and
0.50 for these model conditions (Supplementary Fig. S5). Note that a
quartet score of 1

3 indicates random trees, and even a value of 0.5 indi-
cates very high levels of ILS. The proportions of branches in the true
extended species tree missing from gene trees are 0.40, 0.57 and 0.77.
Each replicate has 1000 genes, which we down-sample randomly to 500,
200 and 100. To evolve nucleotide sequences down the gene trees, we
use INDELible (Fletcher and Yang, 2009) with the GTR þ C model of
sequence evolution with randomly sampled sequence lengths from a
LogNormal distribution (empirical mean ¼ 721). The gene trees are esti-
mated using FastTree (Price et al., 2010) from the alignments; estimated
gene trees are used throughout the experiments in this article. The aver-
age gene tree error, measured as normalized Robinson and Foulds (1981)
(RF) distance for the three model conditions is 0.25, 0.31 and 0.42 with
large variance (Supplementary Fig. S5).

Small dataset: We simulate a new dataset using SimPhy with 20
replicates, each only four species, ten individuals per species and
1000 genes per replicate (commands shown in Appendix 1). The
tree height is set to 200 000 generations, the population size is
drawn uniformly between 10 000 and 500 000 and species trees are
generated using the birth-only model with rate ¼ 0.00001. These
settings lead to a high level of ILS, capturing a scenario where spe-
cies delimitation is challenging. The quartet score of true gene trees
versus the true species tree is 0.76, and 65% of extended species tree
branches are on average missing from true gene trees. We deviate
from ultrametricity by drawing rate multipliers for species and genes
from Gamma distributions, with LogNormal priors on parameters
of Gamma (Supplementary Table S1). We simulate 1000 bp align-
ments on each gene tree using INDELible (Fletcher and Yang, 2009)
and estimate gene trees using FastTree based on the alignments
(Price et al., 2010). The average gene tree error (normalized RF be-
tween true and estimated gene trees) is 43%. Gene tree distance be-
tween pairs of individuals of the same species has a wide range in
our simulations, ranging between 10�5 and 10�2 mutations per site
in most cases (Supplementary Fig. S2).

Empirical dataset: We study three biological datasets. To show
applicability on large data, we use the dataset of Protea L. with re-
cent radiations (Mitchell et al., 2017), which has sampled multiple
individuals from 59 species of Protea and six outgroup species (a
total of 163 tips) and obtained 498 low-copy, orthologous nuclear
loci. Due to its size, this dataset is only analyzed using SODA. To be
able to compare to other methods, we use a smaller dataset of liz-
ards of the Australian wet tropics (AWT). Singhal et al. (2018) ana-
lyzed genetic data for individuals from three species groups (Carlia
rubrigularis, Lampropholis coggeri and Lampropholis robertsi) that
split into 13 putative lineages. In total, there are 25 individuals, and
3320 loci across all individuals are sequenced using an exome cap-
ture approach. Gene trees and the species tree are estimated using
STARBEAST2 v0.13.5 (Ogilvie et al., 2017), and delimitation
results using STACEY (Jones, 2017) and BPP are available from the
original study. We also study the human dataset analyzed by
Jackson et al. (2017) comprising sequences from 50 loci (415–960
bp long) for four widely sampled groups of humans defined geo-
graphically (as the original study states: these four groups are ethnic-
ally diverse and are not ‘populations’ in any biological sense). The
dataset includes ten samples from each of Africa, Europe and Asia,
and 12 samples from South and Central America. Analyzing the
human dataset, where we clearly know all individuals belong to one
species, enables us to test the propensity of the method to lead to
false positive delimitation.

3.2 Measures of accuracy
We evaluate accuracy using two measures.

ROC. Each pair of individuals is categorized depending on

whether they are correctly grouped together (TP), correctly not

grouped together (TN), incorrectly grouped together (FP) or in-

correctly not grouped together (FN). We then show recall ¼ TP/

(TPþFN) and FPR ¼ FP/(TNþFP) on a Receiver Operating

Characteristic (ROC) curve as we change the a setting of SODA.

Adjusted Rand Index is a similarity measure between two parti-

tions of a set, also based on pairwise comparisons. We report

ARI between the true species partition and the partition esti-

mated by each method. The Rand (1971) index is TPþTN
TPþTNþFPþFN.

The adjusted rand index (ARI) adjusts RI for the expected simi-

larity of pairs according to a generalized hypergeometric distribu-

tion that controls for the number of objects and classes (Hubert

and Arabie, 1985). ARI equals one only for the correct partition

and is close to zero for a random partition.

3.3 Methods compared
BPP. We compare SODA to the widely used Bayesian Phylogenetics
and Phylogeography (BPP) method. BPP uses MCMC for inferring
species boundaries directly from sequence alignments by sampling
gene trees and other model parameters (e.g. rates) under the MSC
model. We use BPP 4.1.4 and take advantage of its multi-thread ver-
sion to be able to run it with up to 1000 genes. Provided with all 40
individuals of the small dataset that we sampled as 40 separate pop-
ulations, BPP could not run to completion in 36 h, perhaps because
the set of possible delimitations was too large. To be able to test
BPP, we use two subsampled sets. First, we randomly sample 4 indi-
viduals per species and designate each as its own population, for a
total of 16 populations. In the second scenario, from each species,
we sample 7 individuals and randomly assigned them to 3 popula-
tions of sizes 2, 2 and, 3, comprising 12 populations in total. We use
a uniform prior across all possible partitions on the resulting sets of
populations. BPP calculates the posterior probability for each parti-
tion, and we use the delimitation with the highest posterior prob-
ability to measure the accuracy of the method.

We explore settings of BPP as follows. The total number of MCMC
iterations is set to 208000, with the first 8000 discarded as burnin. We
also run BPP with twice the number of iterations in one experiment
with 500 genes to ensure convergence is not an issue. For the required
species tree (similar to the guide tree for SODA), we run BPP in two
ways. By default, we provide BPP with the ASTRAL species tree (just
as we do for SODA). The guide trees are rooted to match the true spe-
cies tree. However, BPP is able to jointly infer species trees and species
delimitation based on sequence alignments; we also run BPP with this
co-estimation setting. This setting makes BPP 2� slower (even though
we only have four species), making it impractical for an extensive
study. The priors for the inverse gamma distribution parameters ða;bÞ,
were chosen to be (1.525,0.0001), (1.525,0.001) and (1.525,0.01) for
population size hs and twice the b for ss. The mean of the distribution
is set based on the true average of species pairwise distances in the gene
trees. An example of a control file used for running BPP is given in
Supplementary Figure S1 for the full set of parameters.

SpedeSTEM. Given a set of rooted ultrametric gene trees,
SpedeSTEM uses the STEM (Kubatko et al., 2009) algorithm to cal-
culate the maximum likelihood species tree considering possible spe-
cies tree and delimitation combinations and uses AIC to select
among the models. SpedeSTEMv0.9 software includes a pipeline for
inferring ultrametric rooted gene trees using paup* (Swofford,
2001). We used SpedeSTEMv0.9 to infer the rooted ultrametric in-
put gene trees, which we then fed to the SpedeSTEMv2 software as
input. We ran delimitation using theta values of 0.1 and 0.01, and a
sampling ratio of 1 (no subsampling). SpedeSTEMv2 also requires a
putative assignment of populations to species. For this, we tested
assigning all populations to the same putative species or assigning
all 12 populations to individual species. Results were similar, and
we report the latter strategy.
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SODA. We implemented SODA in python using Dendropy
(Sukumaran and Holder, 2010). We vary a between 0.005 and 0.5
but designate a ¼ 0:05 as default. We infer the guide tree using
ASTRAL-III on all 1000 genes. To study the impact of the guide
tree, we also create the true extended species tree and resolve its pol-
ytomies randomly and use this guide tree as input to SODA. For
tests with known populations, we inferred the guide tree using
ASTRAL-multi, mapping leaves of the same population to a ‘spe-
cies,’ assigning each population to a separate species.

4 Results

4.1 Large simulated dataset
On the large dataset with 1001 individuals, SODA takes no more
than 35 min (Supplementary Table S2) and is highly accurate
(Fig. 2). Given 1000 genes, default SODA (a ¼ 0:05) is able to re-
cover, on average, 183, 186 and 189 out of the 201 species entirely
correctly for the three model conditions in decreasing order of ILS
(Fig. 2a). The total number of species estimated by SODA ranges

Fig. 2. Accuracy of SODA on the large dataset. (a) We show the number of species that are completely correctly delimited (solid lines) and the total number of species found by

SODA (dashed lines). Results divided into three model conditions with very high ILS (0.5M), high ILS (1M) and moderate ILS (2M) as we change a (x-axis) and the number of

genes (colors). We clip a at 0.2 but show full results in Supplementary Figure S3. (b) ARI (y-axis) shows the accuracy of SODA. (c) ROC showing recall versus False Positive

Rate (FPR) for all model conditions and different choices of a (dot size). The default value shown as a square
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between 183 and 220 across all replicates with mean 208, which
slightly over-estimates the correct number. The number of detected
species increases as a increases; however, the number of correct spe-
cies does not always increase. Reducing the number of genes reduces
the number of correctly estimated species (down to 158 with 100
genes, very high ILS); however, it does not change the total number
of species dramatically (for default a).

Some of the mistakes made by SODA are related to the guide
tree. The ASTRAL tree failed to recover on average 5, 3 and 3 spe-
cies as a monophyletic clade in these three model conditions, and
these species could never be recovered correctly by SODA. On aver-
age, the estimated guide tree by ASTRAL (on 1000 genes) missed
4%, 3% and 2% of branches in the true extended species tree for
high, moderate and low levels of ILS. The estimated extended spe-
cies tree that SODA outputs has an RF distance of 6%, 5% and 4%
to the true extended species tree.

Examining pairs of individuals, we observe very high accuracy.
With a ¼ 0:05, the ARI ranged between 0.95 and 0.97 for our three
conditions given 1000 genes and between 0.87 and 0.92 when given
as few as 100 genes (Fig. 2b). Reducing a to 0.005 or increasing it to
0.1 can reduce or increase ARI slightly; however, increasing a be-
yond 0.1 can quickly lead to substantial reductions in ARI (Fig. 2b).
The best choice of a is always between 0.01 and 0.1, but 0.05 is
never far from optimal, motivating us to use it as default. Since our
simulated replicates are very heterogeneous in terms of gene tree es-
timation error, we can also examine the impact of mean gene tree
error on the accuracy of SODA. Except for an outlier replicate with
very high gene tree error and low ARI < 0.9, we do not detect a
strong correlation between gene tree error and accuracy
(Supplementary Fig. S6). However, the guide tree and the extended
species tree are impacted by increased gene tree error
(Supplementary Fig. S7). As the increased error does not impact de-
limitation, the increased error of the guide tree must be concentrated
on deep branches that do not impact delimitation.

The trade-off between precision and recall with different choices
of a can be examined using the ROC curve (Fig. 2c). With
a � 0:05, recall is always 96% or higher and is often close to 100%
with a � 0:01. The FPR, however, is strongly impacted by the num-
ber of genes. For example, with default a, FPR is never more than
0.03% with 1000 genes but increases to 0.98% with 100 genes.
Increasing a reduces FPR; however, for a > 0:1, we observe only
small gains in FPR but precipitous declines in the recall. Thus, as
observed earlier, a > 0:1 does not seem advisable. Beyond the de-
fault value, a choice of a ¼ 0:01 seems desirable if more FP combi-
nations can be tolerated. ROC curves also reveal interesting patterns
in terms of the impact of ILS on the accuracy of SODA. For a ¼
0:05 and a fixed number of genes, increasing ILS increases FPR
(combining species) but does not substantially impact recall. Finally,
using a random resolution of the true extended species tree as the
guide tree has only a small positive impact on the accuracy
(Supplementary Fig. S4).

4.2 Small simulated dataset
On the small dataset with four species and 16 populations, SODA
(default) has 98% recall with both 500 and 1000 genes (Fig. 3a).
Increasing the number of genes mostly reduces FPR, from 14% with
500 genes to 11% with 1000 genes. Changing a trades off FPR and
recall in expected ways; e.g. with a ¼ 0:02, recall is 100% but FPR
increases to 12% for 1000 genes and 17% for 500 genes.

Compared to SODA, BPP has a lower FPR, ranging between 4%
and 6% for 500 genes and 3% for 1000 genes. However, the recall
of BPP is not better than the default SODA and ranges between
92% and 96%, depending on the setting used. Just like SODA, an
increased number of genes improves the FPR of BPP but not its re-
call. Overall, SODA-default seems to err on the side of combining
individuals, while BPP tends to over-split species. Judging by the
ARI (Table 1), BPP has better accuracy overall; e.g. SODA-default
has an ARI of 0.78 on 500 genes, while ARI of BPP ranges between
0.85 and 0.89. Overall, the parameter choices for BPP do impact ac-
curacy but not in major ways. Doubling the number of iterations
has limited to no impact, and the two choices for the prior were

almost identical. A third setting resulted in lower FPR but also lower
recall (Fig. 3a). The only parameter that increases accuracy substan-
tially is species tree co-estimation, which improves recall by 3.5%
and reduces FPR by 0.2%.

The slightly higher accuracy of BPP comes at a steep price in run-
ning time (Fig. 3b). BPP takes between 400 and 1900 min on these
data, given four cores. In contrast, SODA never takes more than a
minute, and the gene tree estimation takes a few minutes (�5) for
this dataset. Deviating from our default setting further increases the
running time of BPP, with little impact on accuracy. For example,
doubling the number of iterations results in a 3� increase in running
time, and asking BPP to co-estimate the species tree results in a 2�
increase.

We next compare SODA to BPP and SpedeSTEM on the setting
where for each species, seven individuals divided into three popula-
tions known apriori are given (a total of 12 populations). In this set-
ting, the FP rate of SODA is 8% on average, showing that species
are sometimes combined together; in contrast, FN is 0, meaning that
over-splitting does not occur (Table 2). BPP outperforms SODA in
terms of FP (1–2%) but also occasionally over-splits (FN > 0).
Overall, according to ARI, BPP remains somewhat more accurate.
SpedeSTEM, in comparison, has much lower accuracy; in almost all
cases, it detects exactly two species (instead of four), leading to very
high FP rates and low ARI. We note that in the STEM species tree
inferred, the species are often non-monophyletic.

Fig. 3. Results on the small dataset. (a) ROC curves for SODA and BPP on the small

4-taxon dataset with 500 or 1000 genes (colors) averaged over all replicates. BPP

with 500 genes has several settings: three prior values for hs are p1 ¼
IG(1.525,0.0001), p2 ¼ IG(1.525,0.001) and p3 ¼ IG(1.525,0.01). A11 indicates

species tree co-estimation while A10 indicates using ASTRAL as the guide tree;

A10(p1)*2 indicates doubling the number of MCMC iterations. (b) The running

time of BPP with various settings. The blue horizontal line shows the running time

of SODA, including gene tree estimation. Both methods are run on Intel Xeon E5-

2680v3 processors; however, SODA uses one core while we ran BPP with 4 threads

and 4 cores

5628 M.Rabiee and S.Mirarab

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/24/5623/6130817 by guest on 20 D
ecem

ber 2021

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1010#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1010#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1010#supplementary-data


4.3 Empirical dataset
The ARI of SODA on the Protea dataset ranges from 0.61 to 0.66
with different values for a, given all 498 gene trees available
(Table 3). This dataset includes many singleton species (12 out of 59
ingroups and 5 out of 6 outgroup species) along with many non-
monophyletic clades; to test the accuracy of delimitation (as
opposed to species tree inference), we removed individuals that form
non-monophyletic clades (19 in total) and gained better delimitation
with ARI ranging from 0.72 to 0.78 on the pruned species tree.

SODA-default detects 89 species and is thus over-splitting some
species. Some of the split species seem to capture populations within
species. For example, Protea Acaulos is divided into two groups that
coincide with grouping based on the geographical locations of the
samples (provided by the original study); these geographical separa-
tions may reflect two sub-population of this species.

We also tested collapsing low bootstrap support branches in
gene trees to deal with the effects of high gene tree estimation error.
Collapsing very low support branches improved the results slightly
with the default a ¼ 0:05 (Table 3). The improvement is more clear
when we prune non-monophyletic species.

Human. SODA results support grouping all individuals into one
species, and all the P-values across the tree are above 0.34. Thus, on
this dataset, reassuringly, SODA avoids a false positive breakup to
multiple species. While the recovery of humans (a relatively recent
species) as one species may seem an easy case of species delimitation,
Jackson et al. (2017) showed that BPP supports a four-species model
with high posterior in all their ten replicate runs, regardless of the
prior used. The authors attributed this error to population structure

and used this as a motivation to introduce the PHRAPL method,
which unlike BPP, did unambiguously recover humans as a single
species.

Lizards. Statistical species delimitation using both BPP and
STACEY support a speciation event at every node of the guide tree
(regardless of priors chosen). SODA, similar to BPP and STACEY,
detects all lineages as separate species with P-value�0 for all
branches except one branch, which does not result in a false positive
(Supplementary Fig. S9). Singhal et al. (2018) report that the delimi-
tation into 13 groups does not match a clear morphological separ-
ation between species, making this a potential case of a cryptic
species. However, it should be noted that in the light of the results
from humans, a false positive delimitation by all methods cannot be
ruled out.

5 Discussion

We designed SODA, an ultra-fast and relatively accurate method for
species tree delimitation. SODA relies on frequencies of quartet top-
ologies to decide whether each branch in a guide tree inferred from
gene trees is likely to have strictly positive length, using results to
infer an extended species tree, which then defines species bounda-
ries. SODA focuses exclusively on the MSC-based species delimita-
tion, as applicable to Eukaryotes. It is not designed for defining viral
quasispecies (Domingo et al., 2012; Töpfer et al., 2014).

Our method, like many of the existing methods, is based on sev-
eral strong assumptions. Most importantly, it ignores the population
structure within species and does not consider gene flow. The pres-
ence of gene flow across species or population structure can lead to
over-splitting for other methods like BPP, as several recent studies
demonstrate (Carstens et al., 2013; Jackson et al., 2017; Leaché
et al., 2019; Sukumaran and Knowles, 2017). Our results on the
Protea dataset indicate that SODA can suffer from a similar blind-
spot. We did not directly test SODA under simulation conditions
with gene flow and population structure; the fact that we simulate
under MSC and test under MSC can describe why our errors tend to
be of over-splitting nature on simulated data. On the real Protea
dataset, species were split (often by geography), showing that SODA
can be sensitive to population structure within species. SODA, un-
like BPP, avoided breaking humans into multiple species; however,
it is hard to know whether this result is due to the presence of only
50 gene trees in this dataset or some level of robustness to popula-
tion structure. Note that SODA shares its sensitivity to structure and
gene flow with methods purely based on MSC. Thus, we suggest
that for datasets where high levels of gene flow after speciation is
probable, the results of SODA should be used as a guide to enable

Table 1. ARI on small datasets

SODA BPP

Genes 0.01 0.02 0.05 A10(p1) A10(p2) A10(p3) A10(p1)*2 A11(p1)

500 0.70 (0.24) 0.72 (0.25) 0.75 (0.26) 0.85 (0.20) 0.86 (0.16) 0.85 (0.19) 0.86 (0.19) 0.89 (0.15)

1000 0.78 (0.26) 0.79 (0.26) 0.80 (0.23) 0.90 (0.12) – – – –

Note: We show mean (standard deviation) across replicates. ARI of SODA has been measured with two thresholds (0.05 and 0.1).

Table 2. ARI on small datasets with individuals assigned to populations

SODA BPP SpedeSTEM

0.05 A10 A11 h ¼ 0:1 h ¼ 0:01

FP 0.08 (0.12) 0.01 (0.02) 0.02 (0.03) 0.65 (0.11) 0.78 (0.11)

FN 0 0.01 (0.03) 0.01 (0.02) 0.03 (0.01) 0.0 (0.0)

ARI 0.82 (0.22) 0.93 (0.12) 0.89 (0.13) 0.03 (0.11) 0.05 (0.12)

Note: Three populations per species were defined randomly with 3, 2 and 2 individuals per population. We show mean (standard deviation) across replicates.

A11 indicates species tree co-estimation while A10 indicates using ASTRAL as the guide tree.

Table 3. Delimitation accuracy measured using ARI for the Protea

dataset with cutoff thresholds 0.01, 0.02 and 0.05

Species Gene trees 0.01 0.02 0.05

All species Fully resolved 0.662 0.655 0.611

�5 BS contracted 0.653 0.654 0.637

�10 BS contracted 0.654 0.654 0.628

Monophyletic species Fully resolved 0.776 0.767 0.717

�5 BS contracted 0.736 0.775 0.765

�10 BS contracted 0.736 0.785 0.755

Note: ‘Monophyletic species’ means individuals of the species that make

them non-monophyletic in the ASTRAL tree are pruned (19 in total). We run

SODA on fully resolved gene trees and gene trees with branches with BS sup-

port below 5% or 10% collapsed.
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more time-consuming delimitation using methods that do consider
gene flow and are more robust to structure.

In addition to gene flow and population structure, several factors
need to be kept in mind when using SODA. Like other methods rely-
ing on input gene trees, the accuracy of SODA may depend on the
input gene trees (Olave et al., 2014). It is helpful that we only rely
on unrooted tree topologies, and thus, errors in branch length and
rooting do not affect SODA. Plotting accuracy of SODA versus
mean gene tree error across simulation conditions, we did not detect
a strong impact from gene tree error except for an outlier
(Supplementary Fig. S6). Nevertheless, errors in gene tree topologies
may bias SODA toward over-splitting because gene tree error tends
to increase observed discordance (Mirarab et al., 2014b; Patel,
2013). Moreover, the polytomy test used by SODA makes several
assumptions, including the independent treatment of branches.
These assumptions could, in theory, further impact the method in
the presence of many adjacent short branches. To make sure this is
not the case, our simulations used gene trees with high levels of error
(Supplementary Fig. S6) and included conditions with many adja-
cent short branches, and yet showed positive results. Nevertheless,
simulations are by nature limited, and thus, further work may reveal
other conditions where the method fails.

SODA also relies on a guide species tree. Luckily, given large
numbers of genes, the accuracy of species trees tend to be much
higher than gene trees, and Rabiee et al. (2019) showed that individ-
uals of the same species often group together in ASTRAL trees. In
our simulations, switching to true guide trees resulted in small
improvements in accuracy (Supplementary Fig. S4). Nevertheless, if
the guide tree includes substantial levels of error, SODA may suffer.
For example, on the Protea dataset, several individuals were placed
far from their presumed species. Assuming these individuals were
correctly identified, we have to conclude the ASTRAL tree had sev-
eral errors, a problem that SODA is not able to overcome. Finally,
SODA requires that the analysis includes at least two individuals
from each species, another factor that may limit its application to
practice. Due to these caveats, applying SODA has to be done with
care.

We were able to compare SODA against one of the most widely
used alternatives, BPP. Previous simulation studies (e.g. Camargo
et al., 2012; Jackson et al., 2017; Yang and Rannala, 2014; Zhang
et al., 2011) and empirical analyses (Hotaling et al., 2016; Klein
et al., 2016; Ruane et al., 2014) have established BPP as the most ac-
curate and preferred MSC-based delimitation method. We do not
expect other Bayesian methods to be substantially more accurate
than BPP (Camargo et al., 2012). And they are not much faster ei-
ther. For example, STACEY took seven days (Jones, 2017) on the
Giarla and Esselstyn (2015) dataset with 19 individuals from 9
shrew species and 500 genes; SODA, on the same data, finished in a
matter of seconds and produced identical results (Supplementary
Fig. S10). In the case of SpedeSTEM, it requires rooted ultrametric
gene trees, which cannot be inferred using the standard models of se-
quence evolution. Using SpedeSTEM should be combined with root-
ing and a rate model, which can make the analyses sensitive to
errors in those steps; moreover, SpedeSTEM has been less accurate
than BPP in previous analyses (Camargo et al., 2012). In our analy-
ses, SpedeSTEM was the least accurate method. Perhaps the lack of
accuracy is due to divergences from a strict molecular clock used in
our Simphy simulations, which perhaps the SpedeSTEMv0.9 default
pipeline could not overcome. STEM, used in SpedeSTEM, has been
shown to have low accuracy in computing the species tree (Leaché
and Rannala, 2011), especially given variations in mutational proc-
esses (Huang et al., 2010).

We were not able to use other methods that take gene trees as in-
put. For example, the algorithm of O’Meara (2010) infers species
delimitation either using the full gene tree likelihood calculation,
which is slow (Degnan and Salter, 2005) or using the MDC cost
(Maddison, 1997). However, this method (Brownie) does not seem
to currently have stable software support. Similarly, the method of
Zhang and Cui (2010) relies on a species tree and partially labeled
gene trees of individuals of several species; however, this method
does not have a publicly available implementation. Older methods

based on individual loci (e.g. GMYC by Pons et al., 2006) were not
relevant to our multi-locus datasets. Our attempts to run PHRAPL,
which focuses on gene flow, were unsuccessful because the method
did not finish after 48 h of running time.

The advantage of SODA over BPP, in our tests, was two-fold:
much better scalability and slightly better recall. BPP cannot handle
more than tens of populations, while SODA can easily handle 1000
populations (used in our large simulations). However, overall, BPP
was more accurate, especially when allowed to co-estimate the spe-
cies tree. The relative strengths of the two methods suggest a natural
way to combine them. We can first run SODA on the entire (large)
dataset to obtain an initial delimitation. The results of SODA can be
used to define populations and to divide the dataset into smaller sub-
sets for a more extensive BPP analysis. This divide-and-conquer ap-
proach is what many analyses use in practice (e.g. Musher and
Cracraft, 2018) using a manual curation; SODA can help automate
that process.
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