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1  |  INTRODUC TION

Phylogenetic placement of query samples on an existing phylogeny 
is increasingly used in diverse downstream applications such as mi-
crobiome profiling (Asnicar et al., 2020; Darling et al., 2014; Janssen 
et al., 2018; Matsen, 2014; Matsen & Evans, 2013; Nguyen et al., 
2014; Thompson et al., 2017), genome skimming (Bohmann et al., 
2020) and epidemic tracking (Libin et al., 2017; Turakhia et al., 2020). 
The main attraction of placing new sequences onto an existing 

phylogeny is computational expediency: the running time of phylo-
genetic placement is a fraction of the time needed for de novo recon-
struction and can grow linearly with the number of query samples 
assuming they are placed independently. To take advantage of this 
potential, many methods have been developed using a wide range of 
algorithmic techniques (e.g. Balaban & Mirarab, 2020; Barbera et al., 
2019; Brown & Truszkowski, 2013; Jiang et al., 2021; Linard et al., 
2019; Matsen et al., 2010; Mirarab et al., 2011; Rabiee & Mirarab, 
2018; Stark et al., 2010; Zheng et al., 2018).
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Abstract
Phylogenetic placement of query samples on an existing phylogeny is increasingly used 
in molecular ecology, including sample identification and microbiome environmental 
sampling. As the size of available reference trees used in these analyses continues to 
grow, there is a growing need for methods that place sequences on ultra-large trees 
with high accuracy. Distance-based placement methods have recently emerged as a 
path to provide such scalability while allowing flexibility to analyse both assembled 
and unassembled environmental samples. In this study, we introduce a distance-based 
phylogenetic placement method, APPLES-2, that is more accurate and scalable than 
existing distance-based methods and even some of the leading maximum-likelihood 
methods. This scalability is owed to a divide-and-conquer technique that limits dis-
tance calculation and phylogenetic placement to parts of the tree most relevant to 
each query. The increased scalability and accuracy enables us to study the effective-
ness of APPLES-2 for placing microbial genomes on a data set of 10,575 microbial 
species using subsets of 381 marker genes. APPLES-2 has very high accuracy in this 
setting, placing 97% of query genomes within three branches of the optimal position 
in the species tree using 50 marker genes. Our proof-of-concept results show that 
APPLES-2 can quickly place metagenomic scaffolds on ultra-large backbone trees 
with high accuracy as long as a scaffold includes tens of marker genes. These results 
pave the path for a more scalable and widespread use of distance-based placement in 
various areas of molecular ecology.
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A major attraction of phylogenetic placement is that it enables 
the placement of sequences on very large trees. In applications of 
placement for microbiome analyses, sequences obtained from am-
plicon sequencing or metagenomic samples are placed into a ref-
erence phylogeny composed of known organisms. Depending on 
the datatype and pipeline, we may decide to place reads directly 
(Mirarab et al., 2011; Nguyen et al., 2014) or may place marker genes 
obtained from metagenome-assembled genomes (MAGs) (Asnicar 
et al., 2020). Large 16S databases have existed for more than a de-
cade (DeSantis et al., 2006; Quast et al., 2012), and genome-wide 
references trees with ten thousand species and more have been de-
veloped recently (e.g. Parks et al., 2020; Zhu et al., 2019). Moreover, 
close to a million microbial genomes are available in the RefSeq and 
GenBank databases. Although there is much redundancy among as-
sembled genomes, we can expect that even larger and more diverse 
reference trees will be available in the near future. The development 
of bigger reference sets has a strong motivation: the density of ref-
erence set has been known to play a crucial role in the accuracy of 
downstream analyses (McDonald et al., 2015; Nayfach et al., 2019; 
Pasolli et al., 2019). Thus, if downstream methods can handle them, 
we should ideally use these dense reference data sets.

Despite their promise, two types of challenges emerge when ref-
erence data sets increase in size: scalability and accuracy. The issue 
of scalability is well understood: placement methods may not be 
able to place on ultra-large reference trees with reasonable running 
time, and equally important, with reasonable amounts of memory. 
Moreover, handling ultra-large reference trees can be subject to nu-
merical issues. Less appreciated is the observation that as the data 
set size increases, the accuracy of the algorithms may reduce and 
updated strategies may be needed. Thus, for placement methods to 
reach their full potential and take advantage of the available ultra-
large reference trees, both scalability and accuracy of existing meth-
ods need to improve.

One recent advance in phylogenetic placement on ultra-large 
reference trees is the development of distance-based placement 
method, implemented in a method called APPLES (Balaban et al., 
2020). Distance-based placement relies on computing distances 
between the query and references and finding the placement most 
congruent with these distances. In extensive simulation studies, 
Balaban et al. (2020) found APPLES to come very close in accuracy 
to a leading maximum-likelihood method, pplacer (Matsen et al., 
2010), but, unlike ML methods, was able to scale to trees with up 
to 200,000 taxa. Moreover, APPLES is more useful for studying 
ecological data because it allows assembly-free and alignment-free 
placement of genome skims. Despite the relatively high accuracy 
and scalability of APPLES, it has room for improvement. Its mem-
ory usage and speed both grow linearly with the size of the data 
set, which can start to become slow for references with many hun-
dreds of thousands of species. A bigger challenge is that comput-
ing distances across very diverse species found in ultra-large trees 
can lead to low accuracy, an issue that APPLES only tried to address 
using weighted distances. A more direct algorithm that accounts for 
very diverse sequences in the backbone has the potential to further 

improve accuracy. Moreover, APPLES lacked several features that 
help usability (including handling of amino acids and building pre-
computed reference packages). Finally, APPLES has not been tested 
in the context of microbiome analyses with large backbone trees 
where it has much potential.

In this study, we introduce APPLES-2, a method that, compared 
with APPLES, improves both accuracy and scalability by adding a 
divide-and-conquer mechanism and several other features. We test 
APPLES-2 on both simulated and empirical data sets representative 
of microbiome analyses. We show that it can place scaffolds from 
a metagenomic sample onto a large reference tree of more than 
10,000 species given individual marker genes found in the assem-
bled scaffolds.

2  |  MATERIAL S AND METHODS

2.1  |  APPLES-2 algorithm

2.1.1  |  Background

Balaban et al. (2020) introduced a least squares phylogenetic place-
ment (LSPP) framework and a method called APPLES for distance-
based placement. In this framework, the input to APPLES is a 
reference (a.k.a backbone) phylogenetic tree T with n leaves and a 
vector of distances �qi between a query taxon q and every taxon i 
on T. Although machine learning-based methods show substantial 
promise (Jiang et al., 2021), typically, input distances are obtained by 
calculating sequence distances between query and backbone taxa 
followed by a phylogenetic correction using a statistically consistent 
method under a model such as Jukes–Cantor (JC69) (Jukes & Cantor, 
1969). APPLES introduced a dynamic programming algorithm to 
find a placement of q that minimizes weighted least squares error 
∑n

i=1
wqi

�
�qi−dqi(T)

�2 where dqi (T) represents the path distance from 
q to backbone taxon i on T. APPLES, by default, sets wqi = �−2

qi
 follow-

ing the Fitch and Margoliash (1967) (FM) weighting.

2.1.2  |  Divide-and-conquer placement algorithm

The most consequential change in APPLES-2 is that it adopts a 
divide-and-conquer approach to improve both accuracy and scal-
ability using two inter-related techniques. There is strong evidence 
in distance-based phylogenetics literature that correction for high 
variance occurring in the estimation of long distances can result 
in dramatic improvements in accuracy (Desper & Gascuel, 2002; 
Felsenstein, 2003; Whitfield, 2008). For example, the DCM family 
of methods that result in fast converging methods (Erdos et al., 1999; 
Huson et al., 1999; Huson et al., 1999) mostly rely on dividing taxa 
into smaller subsets with lower distances. To take advantage of this 
insight, we enable APPLES-2 to use distances that are either smaller 
than a threshold df or among the lowest b distances. Ignoring dis-
tances larger than the df threshold also gives us an opportunity to 
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avoid computing all n distances so that the running time could grow 
sublinearly with the size of the reference tree. To do so, we divide 
the backbone tree T into subsets that are somewhat larger than df in 
diameter (maximum pairwise path distance between any two leaves), 
choose one representative from each subset and compute distances 
of the query only to these representatives. Then, we compute all 
distances in the cluster with the least distance to our query taxon.

More formally, without loss of generality, we assume that for a 
certain query taxa q, �q1 ≤ �q2 ≤ �q3 ≤ …�qn holds. The first parame-
ter we introduce is df ∈ ℝ

≥0, which sets wqi = 0 (i.e. ignore backbone 
taxon i) when �qi ≥ df for a query taxon q. In addition, we introduce 
a second parameter b ∈ ℕ

≥0, which forces to retain the standard 
weighting (i.e. wqi = �−2

qi
) for backbone taxa 1 ≤ i ≤ b, regardless 

of �qi. Consequently, the new LSPP objective function becomes 
∑b

i=1
wqi

�
�qi−dqi(T)

�2
+

∑n

i=b+1
1
�
df − �qi

�
wqi

�
�qi−dqi(T)

�2 where 
1(x) is the unit step function: 1(x) = 0 for x < 0 and 1(x) = 1 for x ≥ 0. 
We discuss default values below.

To avoid computing all distances, during preprocessing of the 
reference set, we cluster the backbone alignment and tree T using 
the linear-time TreeCluster algorithm (Balaban et al., 2019) to find 
the minimum number of clusters such that the maximum pairwise 
distance in each cluster is no more than 1.2 × df. The threshold 1.2 is 
chosen empirically, and APPLES-2 is robust to this choice (see Figure 
S1). Then, we select a representative sequence per partition by com-
puting consensus sequence among all sequences belonging to the 
partition. Let P1,P2,…,Pk denote partitions of leaves of T, and C( j) 
denote centroid sequence of partition Pj. Without loss of general-
ity, we assume that �qC(1) ≤ �qC(3) ≤ �qC(3) ≤ …�qC(k). The distance be-
tween q and backbone taxa i ∈ Pj is computed only if either �qC(j) ≤ df 
or 

∑j−1

i=1
��Pi

�� < b holds. The time complexity of distance calculation 
per query is in the order of O (max (b,m) L) where L is alignment 
length, and m is number of backbone taxa whose distance to the 
query is less than or equal to df.

Since in APPLES-2 a subset of distances are calculated, we have 
redesigned its dynamic programming algorithm so that it automati-
cally works on the backbone tree induced to the taxa for which dis-
tances are computed. The updated dynamic programming algorithm 
scales with the number of edges in the induced tree, which can be as 
low as O (max (b,m)) (if the chosen leaves are a connected subtree) 
and as high as 0(n) (when chosen leaves span all of a caterpillar tree).

2.1.3  |  New features in APPLES-2 Software

Protein distances
Several tools (Lefort et al., 2015; Rice et al., 2000; Sonnhammer & 
Hollich, 2005; Womble, 2000) offer distance calculation from pro-
tein sequences using analytical (Jukes & Cantor, 1969; Kimura, 1983; 
Sonnhammer & Hollich, 2005) and maximum-likelihood (ML) (Le & 
Gascuel, 2008; Whelan & Goldman, 2001) models. In order to pro-
vide support for protein alignments, we implement the Scoredist al-
gorithm, which has achieved better accuracy than other analytical 
models in previous tests (Sonnhammer & Hollich, 2005). Scoredist 

computes pairwise distances according to the BLOSUM62 (Henikoff 
& Henikoff, 1992) matrix, normalizes the distances with respect to 
expected distance and minimum possible distance, applies a loga-
rithmic correction and scales distances using empirically derived 
coefficients. Like JC69 distances, in APPLES-2, Scoredist distance 
calculation is powered by NumPy (Harris et al., 2020) vectorized op-
erations and is extremely fast.

BME weighting
APPLES implemented three weighting schemes FM (Fitch & 
Margoliash, 1967), BE (Beyer et al., 1974) and OLS (Cavalli-Sforza & 
Edwards, 1967). Balaban et al. (2020) demonstrated that FM weigh-
ing given by wqi = �−2

qi
 results in the best placement accuracy among 

these methods. However, it did not implement balanced minimum 
evolution (BME) weighting (Desper & Gascuel, 2004), which has 
been among the most promising methods. APPLES-2 implements 
BME, which corresponds to setting wqi = 2−(1+pqi) where pqi is the top-
ological distance between q and a backbone taxa i. Note that BME 
weights are much more challenging to incorporate into the dynamic 
programming because a BME weight is not simply a function of cal-
culated distances but is rather a function of the placement on the 
tree. Thus, unlike the previous weighting schemes, the BME weight 
changes as we examine different placements. Overcoming this hur-
dle required implementing a more complex dynamic programming.

Database features
We allow precomputation of a database (called APPLES database) 
that consists of a backbone alignment and tree, including centroid 
sequences and leaf clustering, which can be stored and distributed. 
The database can be reused for the analysis of different query data 
sets. Moreover, when a backbone alignment is provided, APPLES-2 
can re-estimate branch lengths of the input tree using FastTree-2 
(Price et al., 2010) under the JC69 model to match the model used 
for estimating distances.

2.2  |  Experiments

2.2.1  |  Data sets

RNASim data set
We reuse the RNASim-VS simulated RNA data set from Balaban 
et al. (2020), which consists of subsets of a simulated RNASim data 
set (Guo et al., 2009), but we change the query selection strategy. 
We begin with randomly selecting 200 queries with various nov-
elty levels; to control novelty, 10 taxa are randomly selected from 
each of 20 bins determined by dividing the terminal branch length 
of the phylogeny on 200,000 taxa into 20 quantiles. The remain-
ing 199,800 taxa are designated as backbone. Then, we create data 
sets with size (n): 100,000, 50,000, 10,000, 5000, 1000 and 500 
by successive random subsampling. The procedure is replicated 5 
times, and query taxa are identical within a replicate across different 
size data sets. Each replicate contains a 1596-site multiple-sequence 
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alignment of a single gene and the true tree. 200 queries are placed 
on the backbone independently for each replicate. We also adopted 
the RNASim-QS data set from Balaban et al. (2020) that is also based 
on the RNASim data set (Guo et al., 2009); this data set comprises 
five replicates with varying numbers of queries, ranging from 1 to 
49,152 with backbones of size n = 500. In both RNASim data sets, 
backbone tree topology and maximum-likelihood branch lengths are 
estimated from true MSA using FastTree-2 (Price et al., 2010) ac-
cording to GTR+modelΓ. In all cases, branch length is re-estimated 
using FastTree-2 (Price et al., 2010) to be consistent with FM units.

Web of life (WOL) data set
Zhu et al. (2019) built a species tree of 10,575 prokaryotic genomes 
from 381 marker genes using ASTRAL (Zhang et al., 2018). We first 
determine a set of marker genes according to several selection strat-
egies, which will be discussed later. We remove sites that contain 
gaps in 95% or more of the sequences in the protein MSA using 
TrimAl (Capella-Gutierrez et al., 2009). The trimming is only to speed 
up analyses and has no positive impact on accuracy; in fact, it very 
slightly decreases accuracy (see Figure S2). Then, we create three 
concatenated alignments: the amino acid alignment, a nucleotide 
alignment with all three codon positions (C123) and another with 
third codon position removed (C12). Unless it is stated otherwise, we 
use the C12 nucleotide MSA in our analyses.

We analyse the WoL data set in four ways (Table 1). In WoL-
main, three data sets of size (n) 9000, 3000 and 1000 with 10 rep-
licates are created by successively subsampling the protein MSA 
of the selected marker genes at random. From the remaining 1575 
species, 1000 are randomly subsampled from the protein MSA of 
the selected marker genes and designated as query. For all data set 
sizes, we use the ASTRAL tree available from the original publication 
induced to backbone species as the backbone tree. However, we 
let APPLES-2 recompute its branch lengths using FastTree-2 (Price 
et al., 2010) in the minimum evolution branch length unit. We deter-
mine a marker gene set by controlling for two parameters: the num-
ber of genes (k) and a selection strategy. Two selection strategies are 
random (among all 381) and best, which means top k marker genes 
with the lowest quartet distance (Sand et al., 2013) to the species 
tree are selected. In WoL-main, we choose k = 50 coupled with the 
best strategy (which results in lowest, median and highest quartet 

distance to be 0.058, 0.125 and 0.17, respectively). Concatenated 
MSA using the default marker gene set contains 71,798 nucleotide 
sites. In WoL-random (Table 1), we create 1000-species backbone 
alignments by selecting k ∈ {10, 25, 50, 381} coupled with the best 
and random strategies. Additionally, marker gene set selection is 
replicated five times for the random strategy. In the previous two 
data sets, the backbone was inferred with queries included, which 
were then removed, because repeating the complex backbone infer-
ence pipeline for all analyses was not doable. However, we did add 
a smaller analysis that avoids this information leakage. In WoL-de 
novo, we reuse a single replicate under data set sizes 1000 and 3000 
from WoL-main and fully reproduce WoL pipeline (Zhu et al., 2019) 
to obtain de novo MSA and species tree instead of removing queries 
from the full tree. All query genes are then independently aligned to 
de novo MSA of the 50 backbone marker genes using UPP (Nguyen 
et al., 2015).

Data set of simulated genome assemblies and scaffolds
In WoL-metagenomic data set, we utilize a protocol for generating 
simulated genome sequencing data, which begins with randomly 
selecting 200 test genomes from the WoL data set (10  genomes 
are randomly selected from each of 20  genome bins of equal ge-
nome count with the bins determined by ascending terminal branch 
length). Next, we run InSilicoSeq (Gourlé et al., 2019) v1.5.1 (using 
NovaSeq settings) to simulate 3 M 150 bp paired-end reads per ge-
nome. For assembly, first we run PEAR (Zhang et al., 2014) v0.9.11 
to merge read pairs, then run SPAdes (Bankevich et al., 2012) v3.14.1 
with a k-mer size cascade of 21, 33, 55, 77 and 99 to assemble them 
into scaffolds. We then run Prodigal (Hyatt et al., 2010) v2.6.3 to 
identify open reading frames (ORFs) from the scaffolds, and finally 
run PhyloPhlAn (Segata et al., 2013) commit 2c0e61a to identify the 
same 381 marker genes.

Selected test genomes are removed from the backbone set, 
which leaves us with 10,375 species in the backbone. All the genes 
were then independently aligned to the backbone marker genes 
using UPP (Nguyen et al., 2015), and markers from the same assem-
bly or scaffold were concatenated. We try to place the samples on 
the backbone using either 1) the assembly (i.e. which can be frag-
mented and can include errors, compared with the genome from 
which it is simulated) or 2) individual scaffolds (small portions of the 

TA B L E  1  WoL-based data sets. best marker selection strategy indicates choosing the marker genes whose gene tree has the lowest 
topological discordance with the species tree. An alignment or backbone tree is induced when it is taken from a larger data set (e.g. full data 
set). C12: nucleotide alignment with first and second codon positions. C123: nucleotide alignment with all codon positions. AA: amino acid 
alignment

Data set name Backbone size
Number of 
markers

Marker 
strategy

Backbone tree 
and MSA

Query 
alignment Replicates Character

WoL-main 1000, 3000, 9000 50 Best Induced Induced 10 C12, C123, AA

WoL-random 1000 10, 25, 50, 381 Best, random Induced Induced 5* C12

WoL-de novo 1000, 3000 50 Best De novo UPP 1 C12

WoL-
metagenomic

10375 381 All Induced UPP 1 C12

Note: *In WoL-random data set, only random selection of marker genes is replicated 5 times.
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genome). We only include scaffolds that are ≥10 kbp in our analyses. 
Note that here, instead of testing on microbial communities, we use 
an in silico approach and simply generate reads from individual mi-
crobial genomes and assemble them separately. We leave it to future 
work to simulate mixed metagenomic reads and evaluate accuracy 
under such scenarios.

Biological TD-metagenomic data set
We use the metagenome-assembled genomes (MAGs) from a 
study by Zhu et al. (2018), which identified novel pathogenic 
profiles from the faecal samples of 22  traveller's diarrhoea (TD) 
patients and seven healthy traveller (HT) controls. The data set 
consists of 320 manually curated MAGs (bins) and 6653 scaffolds 
that are 50kb or longer. The 381 marker genes in the data set are 
identified using the same protocol as the WoL study. We use the 
species tree in WoL study as the backbone tree and align the se-
quences from traveller's diarrhoea data set to the WoL data set 
using UPP independently for each marker gene. We then concat-
enate the 381 marker genes from the same bins or scaffolds and 
use them for placement. We also study the case where we filter 
out the scaffolds with less than or equal to 10, 20, 30 or 40 marker 
genes, which reduce the number to 4522, 1608, 668 and 320 scaf-
folds, respectively.

2.2.2  |  Methods compared

For APPLES-2, we explored various options for df and b in an ex-
periment performed on the WoL-main data set (Figure S3). As a 
result, we set df =  0.2 and b =  25 by default and keep these val-
ues fixed across all of our other experiments. For RNASim-VS and 
WoL-main data set, in addition to APPLES, we compare APPLES-2 
with two ML methods, pplacer (Matsen et al., 2010) and EPA-ng 
(Barbera et al., 2019). We run pplacer (v1.1.alpha19-0-g807f6f3) and 
EPA-ng (v0.3.8) in their default mode using GTR+modelΓ and use 
their best hit (ML placement). Unlike the procedure used by Balaban 
et al. (2020), we do not perform branch length re-estimation on 
backbone tree using RAxML-8 (Stamatakis, 2014). Instead, we input 
inferred FastTree-2 tree and model parameters without modifica-
tion to EPA-NG and pplacer (more on this point in the discussions). 
We compare to EPA-ng in analyses that concerned scalability (e.g. 
RNASim-QS).

2.2.3  |  Evaluation criteria

In RNASim analyses, we use the known true tree as the gold stand-
ard, whereas on the empirical data, we use the ASTRAL tree on the 
full set of species as the gold standard with an exception of WoL-de 
novo data set in which the ASTRAL tree is computed de novo for 
each data set size. In all WoL data sets except WoL-de novo, we 
measure the accuracy of a placement using the number of edges 
between the position on the gold-standard tree and the inferred 

placement (i.e. node distance (Linard et al., 2020)). In the simulated 
RNASim data set, because true tree is known and we place on the 
estimated tree and not the true tree, we need to update the met-
ric of the error: We use delta error, which measures the increase in 
the number of false-negative bipartitions after placement compared 
with before placement (Mirarab et al., 2011). We use delta error in 
WoL-de novo data set as well, treating the published phylogeny on 
the full set as the true tree.

3  |  RESULTS

3.1  |  Single-gene placement

We start with leave-one-out experiments on an existing single-gene 
simulated RNASim data set where all methods face model misspeci-
fication. Despite the model misspecification, APPLES-2 is able to 
find the best placement of query sequences with up to 91% accu-
racy (placement on the correct branch) when the backbone size is 
n = 200,000 (Figure 1a, Table 2). APPLES-2 has a lower mean delta 
error (−0.08 edges on average) and higher accuracy (+2.5% on aver-
age) compared with APPLES for all cases except for n ≤ 5000, where 
they are essentially tied in accuracy, but APPLES has a slightly higher 
mean delta error. Across all cases, pplacer is the most accurate 
method. In particular, pplacer has 10% better accuracy and 0.13 less 
mean delta error than APPLES-2 for n = 500. However, the differ-
ence in accuracy and mean error gradually decrease as n increases 
and diminish to only 2% and 0.04, respectively, for n =  200,000. 
Compared with the other ML method, EPA-NG, APPLES-2 either 
matches (for n ≤ 5000) or improves the accuracy (up to 3%) on in-
stances where EPA-NG manages to complete (n ≤ 100,000). Thus, 
APPLES-2  matches or improves the accuracy of one ML method 
(EPA-ng) and is slightly below the accuracy of the other (pplacer).

Placement accuracy of APPLES-2 is 17% higher on largest tree 
than the smallest tree. To examine the reason, we first observe that 
the novelty of the test set (defined as terminal branch length in the 
true tree) decreases as the backbone size increases (Figure 1d). To 
test the impact of novelty on error, we measure the mean error for 
each decile of novelty for all backbone sizes after larger trees are 
pruned so that backbone trees are identical to those of the smallest 
tree. This pruning ensures that errors are always computed with re-
spect to trees of the same size and are therefore comparable. Two 
patterns stand out. First, increasing novelty does increase the error, 
especially for smaller backbone sizes (Figure 1e). Thus, the error with 
larger backbone trees is reduced simply because fewer novel que-
ries (Figure 1d). More interestingly, it appears that at higher levels 
of novelty, the error is reduced with larger backbones even after the 
novelty level is controlled. Thus, the results show improved accuracy 
with the increased taxon sampling even when the novelty of the test 
set does not change. We note that larger backbone trees include 
fewer long branches in the backbone and that processes such as 
long branch attraction need at least two close long branches (e.g. 
one in the backbone and one for the query) to impact results.
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Our benchmarking indicates that the running time of 
APPLES-2  grows empirically as O

(
n0.45

)
 (Figure 1b); this sublin-

ear running time growth with the backbone size is consistent with 
our theoretical expectations. APPLES-2 is the fastest method on 

backbones with 5,000 or more taxa, offering up to 24× speed-up 
on average compared with APPLES on a tree with 200,000 taxa. 
EPA-NG is faster than pplacer and APPLES but slower than 
APPLES-2 (with running time that grows superlinearly). On the 

F I G U R E  1  Results on RNASim-VS. Placement accuracy (a), running time (b) and peak memory usage (c) per a single placement with 
taxon sampling ranging from 500 to 200,000. (b,c) Lines are fitted in the log–log scale, and their slope (indicated on the figure) empirically 
estimates the polynomial degree of the asymptotic growth. Lines are fitted to ≥10,000 points because the earlier values are small and 
irrelevant to asymptotic behaviour. All calculations are on 36-core, 2.6GHz Intel Xeon CPUs (Sandy Bridge) with 128GB of memory, with 
each query placed independently and given 1 CPU core and the entire memory. Missing results (EPA-NG on tree size 200,000) indicate that 
the tool fails to run or complete in 48h. (d) Queries are grouped into deciles based on their novelty with respect to backbone set of species, 
defined as the terminal branch length of the query in the gold-standard tree, induced to backbone and query species. (e) Mean placement 
error of APPLES-2 across increasing level of query novelty for all three backbone sizes.
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TA B L E  2  Percentage of correct placements (shown as %) and the average placement error (Δe) on the RNASim-VS with various backbone 
size (n). % and Δe are averaged over 1000 placements (except for n = 200,000, which is over 200 placements). n.p indicates tool failed to run 
in 48h

n = 500 n = 1,000 n = 5,000 n = 10,000 n  = 100,000 n  = 200,000

% �e % �e % �e % �e % �e % �e

APPLES-2 74 0.31 75 0.33 77 0.34 83 0.24 88 0.14 91 0.11

APPLES 75 0.36 77 0.34 77 0.36 79 0.34 83 0.28 85 0.22

EPA-ng 75 0.29 75 0.28 77 0.24 80 0.21 87 0.14 n.p n.p

pplacer 84 0.18 84 0.18 86 0.14 87 0.14 93 0.07 93 0.07
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100,000 taxon data set, EPA-NG and pplacer take 7.3 × and 77 
× longer than APPLES-2 on average, respectively. APPLES-2 and 
APPLES consistently use less memory than ML tools (Figure 1c) and 
are the only tools with sublinear memory complexity (empirically 
close to O

(
n0.8

)
 for APPLES-2). On the largest backbone tree with 

200,000 taxa, APPLES-2 requires only 1.2GB of memory compared 
with 81GB needed by pplacer. EPA-NG uses 192 × more memory 
than APPLES-2 on the largest backbone tree with 100,000 taxa 
where both tools successfully run.

We also evaluated the impact of the number of queries on 
the running time (Figure 2), comparing APPLES, APPLES-2 and 
EPA-NG, all run in the parallel mode. On backbones with 500 taxa, 
all three methods finish placement of up to 1,536 queries in less 
than 4 seconds given 28 CPU cores with no clear trend in running 
time. EPA-NG is able to place 49152 queries in 10 seconds on av-
erage, 5.8 times faster than the second best method APPLES-2, 
which takes 57 seconds and is 6.5 times faster than APPLES. The 
comparison between EPA-NG and APPLES-2, the fastest two of 
the three methods, on backbone trees with 1000 and 5000 taxa 
shows that EPA-NG is 6 and 3.4 faster than APPLES-2, respec-
tively, on the largest query set. While both methods complete in 
less than 36 seconds, APPLES-2 is faster than EPA-NG when the 
number of queries is less than or equal to 1536 for a tree with 
5000 taxa. Running times of EPA-NG, which is designed specifi-
cally for very large numbers of query sequences, can surprisingly 
decrease when given more queries. For any backbone size, APPLES 
and APPLES-2  start to scale linearly with respect to the number 
of queries after placing 6144 queries; surprisingly, EPA-NG grows 
at a sublinear rate, likely indicating that it requires more queries 
to display its asymptotic behaviour. To summarize, while APPLES-2 
is faster than EPA-NG given hundreds of queries, EPA-NG scales 
better as the number of queries increases.

3.2  |  Multi-gene web of life (WoL) data set

We next test the utility of distance-based phylogenetic placement 
on a real WoL biological data set (Zhu et al., 2019) marker genes 
and 10575 microbial taxa. When we concatenate the best 50 marker 
genes, APPLES-2 achieves outstanding accuracy, placing query 
sequences with 75% accuracy and 0.50 edges of error on average 
on backbones with 1000 taxa (Figure 3a). A striking 97% of the 
queries are placed within three or fewer branches away from the 
optimal branch (in a tree with a diameter of 58.3 branches on aver-
age). Note that here we are using 50/381 marker genes and a much 
simpler methodology compared with the original study. In compari-
son, APPLES achieves 60% accuracy with 1.1 average error on the 
same data set. As in the single-gene RNASim data set, pplacer is the 
most accurate method with 80% accuracy for n = 100. EPA-NG has 
slightly lower accuracy (−1%) and mean error (−0.06) than APPLES-2. 
As the size of the reference increases from 1000 to 3000 and 9000, 
APPLES-2 and APPLES are only methods that run successfully due to 
large memory requirements of ML-based methods (more on perfor-
mance below). APPLES-2 is able to maintain high accuracy, placing 
within three branches of the optimal placement in 97% and 96% of 
cases, respectively, for backbones of sizes 3000 (avg. diameter: 77.2 
edges on average) and 9000 (avg. diameter: 105.5 edges). Increasing 
the backbone size also amplifies the gap between APPLES and 
APPLES-2, going from a difference of 0.57 edges of error on average 
for n = 1000 to 0.81 and 1.11 for n = 3000 and n = 9000.

APPLES-2 places queries with 0.1 higher error on average for 
n = 9000 compared with n = 1000; however, it should be noted 
that the largest tree has 9 times more branches than the smallest 
one. Therefore, one branch of error in the smallest tree indicates a 
larger degree of misplacement. In order to establish a fair compar-
ison between trees with different numbers of backbone species, 

F I G U R E  2  Scalability with respect to the number of queries. We show wall clock running time with respect to increased numbers of 
queries placing on a tree with 500 taxa in one execution of the tool given 28 CPU cores and 28 threads on an Intel Xeon E5 CPU with 64 GB 
of memory. Lines are fitted to x ≥ 6144 points because the earlier values are small and irrelevant to asymptotic behaviour
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after placement (i.e. before measuring the error), we prune trees 
with n = 3000 and n = 9000 to include only those present in the 
smallest tree with n  =  1000. The comparisons on pruned trees 
show that the placement accuracy for APPLES-2 becomes 90% and 

95% on backbone trees with 3000 and 9000 taxa, respectively, 
which are much higher than 75% on backbone trees with 1000 taxa 
(Figure 3a). These increases in accuracy show that the accuracy of 
APPLES-2, does, in fact, improve with better taxon sampling.

F I G U R E  3  (a) Empirical cumulative distribution function (CDF) of placement error on backbones ranging from 1000 to 9000 taxa. Results 
are based on 10000 query placement for each backbone size. Pruned delta error is calculated after pruning the placement tree to species 
in the n = 1000 tree and queries. Vertical lines show mean error. The x-axis is displayed in square root scale and is cut at 20 edges. (b) 
Placement accuracy versus alignment type. C12: only the first two codon positions are retained in the alignment; C123: all three positions 
used. (c) Impact of marker gene selection on placement accuracy. We control for number of genes selected and gene selection strategy: 
choosing randomly versus genes with lowest discordance with species tree (best). (d,e) Running time (solid lines and solid points) and 
memory (dotted lines, hollow points) performance with respect to backbone tree size (d) and number of marker genes in the backbone tree 
(e). Lines are fitted in the log–log scale, and their slope empirically estimates the polynomial degree of the asymptotic growth. Each run has 
32 cores and 56GB memory in a shared node with 2.25 GHz AMD EPYC 7742 processor with each query placed independently and given 1 
CPU core and the entire allocated memory. Missing results indicate that the tool fails to run or complete in 48h. (f,g) Novelty (defined as in 
Figure 1) of queries and mean placement error of APPLES-2 for all backbone sizes
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The reasons behind improved accuracy with better taxon sam-
pling parallel the simulated data. Again, we observe reduced novelty 
in the query set (Figure 3f) as backbone size increases. The impact of 
novelty on error is not uniform. When the query is extremely similar 
to multiple backbone species, correct placement is difficult. Thus, 
initially, the error slightly decreases as novelty increases. However, 
after reaching a sweet spot, the error increases dramatically as nov-
elty increases. The better accuracy with larger trees therefore is a 
function of having fewer very novel queries. Controlling for the nov-
elty of query, in the first seven deciles, we see a negative correlation 
between the error and backbone size (Figure 3g).

In WoL-main data set, backbone and query alignment and back-
bone tree are directly induced from full WoL data set, which may 
potentially ‘leak’ information about query location since query se-
quences were present in the full data set during MSA and tree in-
ference. We test this scenario on WoL-de novo data set where two 
MSAs and trees with n = 1000 and n = 3000 are de novo-inferred 
using the identical methodology described in the original publica-
tion (Zhu et al., 2019). In addition, query sequences are aligned to 
backbone MSA using UPP (Nguyen et al., 2015) to prevent leakage 
of information through alignment. We find a slight absolute reduc-
tion (−5%) in placement accuracy of APPLES-2 on de novo back-
bones with 3000 taxa compared with induced backbone (Figure S4). 
However, the percentage of queries placed with no more than three 
edges of error is 98% for both de novo and induced backbone trees. 
The mean delta error experiences very slight changes between de 
novo and induced backbone trees.

APPLES-2 is the fastest method in WoL-main data set, managing 
to place a query in 1.1 second on average on the smallest backbone 
tree using a single CPU core (Figure 3d). For comparison, APPLES, 
EPA-NG and pplacer take 1.86, 2.18 and 49.47 seconds per query, 
respectively, on the same data set. APPLES and APPLES-2 achieve 
the best memory efficiency by using 250Mb of memory, whereas 
EPA-NG and pplacer use 48.6 and 18.6 GB of memory on the same 
instances. As backbone size increases to n = 3000 and n = 9000, 
APPLES and APPLES-2 become the only methods that complete the 
benchmark given a 56GB memory machine as ML-based methods 
terminate due to insufficient memory. Our benchmark indicates that 
running time and memory use of APPLES-2 grow sublinearly, achiev-
ing empirical time and memory complexity of O

(
n0.5

)
 and O

(
n0.6

)
, 

respectively.
Next, testing the impact of data type used for placement, we 

observe that removing the third codon position from nucleotide 
alignments improves placement accuracy substantially for both ver-
sions of APPLES (Figure 3b). Interestingly, APPLES-2  seems to be 
more robust to inclusion of third codon position as the increase in 
the average error is 0.26 and 2.44 for APPLES-2 and APPLES, re-
spectively. The third codon position often poses a stronger violation 
of stationarity assumption than the first and second codon positions 
(Jeffroy et al., 2006; Phillips et al., 2004) and saturates faster, espe-
cially among very divergent taxa. Recall that APPLES-2 ignores dis-
tances among very divergent sequences, which is consistent with its 
higher robustness to the third codon position. Note that the original 

study (Zhu et al., 2019) that built our gold standard in these analyses 
inferred gene trees using amino acid data. We do not observe a sub-
stantial error difference between using nucleotide (first two codon 
positions) and amino acid sequences (Figure 3b) for APPLES-2. 
Although APPLES-2  has a 3% higher accuracy on the former data 
type, the number of queries with at most three edges of error is 96% 
on both data types. We remind the reader that amino acid distances 
are computed under the Scoredist algorithm, which is different from 
the models used in the original study to infer the reference tree (Zhu 
et al., 2019).

Next, we test the impact of varying the number of marker genes 
and the type of genes used (randomly chosen or the best genes) on 
WoL-random data set (Figure 3c). While using all the marker genes 
has the highest accuracy (mean edge error: 0.52; placement accu-
racy: 73%), using as few as 50 of the best genes (i.e. those with gene 
trees with the lowest quartet distance to the species tree) comes 
very close. With 50 genes, APPLES-2 places 958 out of 1000 queries 
(96% rate) within three branches away from the optimal branch; in 
contrast, using all genes, 972 queries are within three branches (97% 
rate). Using the best 50  genes results in 0.63 average delta error, 
which is 0.11 more than using all genes in the data set. However, 
reducing the number of the best genes to 25 and 10 increases error 
to 0.79 and 1.28 edges, respectively. Our benchmark indicates that 
runtime and memory use of APPLES-2 empirically grow near linearly 
with number of marker genes and number of sites in the backbone 
alignment (Figure 3e). When all 50  marker genes used, placement 
of a query takes 1.5 seconds, whereas using all 381 marker genes, 
placement takes 10 times longer on the backbone with 1000 taxa. 
Thus, the best 50 genes are the sweet spot in terms of accuracy 
among levels we test considering computational requirements.

There is a large difference between selecting genes randomly 
and using the best genes (Figure 3c). A random selection of 10 genes 
results in lower accuracy (within 3 edges from the optimal branch 
only 74% of the time) and a high average edge error of 3.29, whereas 
the best 10 genes result in 1.28 edges of error on average. 25 ran-
domly selected genes provide acceptable placement accuracy where 
87% of queries are placed within 3 edges from the optimal location 
(error: 1.8 edges on average); yet, the best 25 genes continue to be 
better (error: 0.79 edges on average). With 50 genes, the error is 0.80 
less when using the best genes compared with randomly selected 
genes. The mean placement error using random genes decreases as 
the number of genes increases, culminating in 0.53 edges when all 
genes are selected (Figure S5). Overall, the difference between the 
random and best genes is wider when few genes are available and 
diminishes as more genes are added.

3.3  |  Placement of assemblies and scaffolds

While our previous analyses showed that APPLES-2 has outstand-
ing accuracy using the best or random subsets of marker genes 
sampled across microbial genomes, we often do not have entire 
genomes. Instead, we have MAGs and scaffolds from which MAGs 
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are generated. We next test APPLES-2 in a simulation that gener-
ated scaffolds and assemblies, similar to MAGs, by assembling reads 
simulated from a subset of 200 genomes in the WoL data set. Our 
simulated assemblies included 105 to 365 marker genes (Figure S6a). 
With these numbers of markers, APPLES-2 achieves 67% accuracy 
and places 195 of 200 simulated assemblies with an error no larger 
than three edges (Figure 4b). The error is never more than 6 edges. 
The placement error has a weak but statistically significant anticor-
relation with the number of marker genes available in the assem-
bly (p = 0.002 according to Pearson's correlation; � = − 0.216; see 
Figure S7).

Our assembly procedure produces 3318 unique scaffolds 
of ≥10  kbp (Figure S6b), among which 665  has more than fifteen 
marker genes and 290 has more than 30 marker genes. The place-
ment error is clearly a function of the number of genes in each scaf-
fold (Figure 4a). Scaffolds with less than 15 genes not only have high 
error on average (8.51 edges), but also have high variance (with 53% 
of such scaffolds leading to error up to three edges). Once scaffolds 
start to have more than approximately 20 genes, the error becomes 
consistently low (Figure 4a). The placement accuracy for scaffolds 
that contains 30 to 40 genes is 35%, and 83% can be placed with 
an error no more than 3 edges (Figure 4b). As the number of genes 
in the scaffold increases, the accuracy also increases; on average, 
placement error for scaffolds with 50 or more genes is only 1.19 
edges, 92% are within three edges of the optimal placement, and the 
maximum error observed is 12 edges.

Both multiple-sequence alignment using UPP and the phyloge-
netic placement step using APPLES-2 used in the scaffold placement 
workflow are fast. Running UPP to align all 3318 scaffolds for each 

gene to the backbone alignment takes 89 seconds on average (low-
est 18 and highest 388 seconds) using 6 CPU cores. APPLES-2 takes 
2.77 seconds per query scaffold on the backbone tree with nearly 
10000 species using 28 CPU cores.

3.4  |  Placement of real MAGs and scaffolds onto 
WoL tree

Next, we study the Zhu et al. (2018) metagenomic data set com-
posed of gut microbiomes of 22 patients with traveller's diarrhoea 
(TD) and 7 healthy traveller (HT) controls. For each subject, we ob-
tain six placement profiles by placing MAGs and scaffolds with five 
marker occupancy thresholds. We compare two profiles by comput-
ing weighted UniFrac distance (Lozupone & Knight, 2005). We ob-
serve a statistically significant difference between intra-group (HT 
and HT, TD and TD) and inter-group (TD and HD) distances with 
MAGs (p-value 0.01 using standard PERMANOVA test) (Figure 5a). 
Using all scaffolds (not including MAGs), intra- and inter-group dis-
tances between the samples cannot be distinguished with statistical 
significance (p = 0.099). However, F-statistic increases after filtering 
out scaffolds with less than or equal to 10 marker genes. Increasing 
the scaffold filtering threshold to 40 results in a decrease in the F-
statistic (Figure 5a), indicating that a large proportion of the signal 
in the data is lost due to overfiltering. Using placement, we can also 
visualize MAG- and scaffold-informed community structures of all 
samples using a principal co-ordinates analysis (PCoA) (Figure 5b). 
MAG-informed community structures provide better delineation of 
communities dominated by Escherichia coli compared to scaffolds 

F I G U R E  4  Results on WoL-metagenomic data set. (a) The relationship between number of marker genes in a scaffold and the error. Dots 
show mean, black error bars show standard error, and light blue error bars show the central 80% range. The x-axis is binned non-linearly. 
(b) Placement error CDF for simulated metagenomic assemblies and scaffolds. Each bin indicates the number of genes in the scaffold or 
assembly. We show the number of queries in each bin next to its curve. The backbone has the diameter (the largest pairwise distance) of 106 
edges.
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F I G U R E  5  Results on the real TD-metagenomic data set. (a) Distribution of UniFrac distances among pairs of samples within HT or 
TD group and across the groups, using MAGs and scaffolds with more than 0, 10 or 40 marker genes present. F-statistic and p-values are 
calculated using the PERMANOVA test. (b) The PCoA visualization of microbiome profiles of samples using MAGs and scaffolds with more 
than 10 marker genes, highlighting samples known to be dominated by Escherichia coli
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F I G U R E  6  Detecting erroneous placements. Results are based on 18879 queries in WoL-random data set. (a) The relationship between 
optimized MLSE objective function (Q) and the error. Dots show mean, thick error bars show standard error, and light error bars show the 
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with at least 10 marker genes. Thus, our results show that placing 
MAGs using APPLES-2 enables inference about community struc-
ture of metagenomic samples, but the utility of scaffolds is less clear.

4  |  DISCUSSION

We presented APPLES-2: an improved distance-based phylogenetic 
placement tool for inserting new taxa on large phylogenetic trees. 
Inspired by DCM-like methods (Huson, Vawter, et al., 1999), our 
divide-and-conquer approach improved placement accuracy beyond 
its predecessor APPLES and made it comparable to or better than 
ML-based tool EPA-NG on single-gene data sets. Furthermore, we 
showed that APPLES-2 is even more scalable than APPLES, reducing 
running time and memory consumption, and can achieve high accu-
racy on diverse multigene data sets.

Some of the new features of APPLES-2 increase the usability and 
completeness of the tool but have a limited impact on accuracy and 
scalability. For example, we implemented BME weighting. However, 
despite the previous literature suggesting BME weighting is prefera-
ble to alternatives (Desper & Gascuel, 2004), we observed that BME 
is less accurate than the default FM weighting scheme for all data set 
sizes (Figure S8); the difference between FM and BME mean error is 
0.85 edges on average. Based on these results, we continued to use 
FM as the default weighting method everywhere but provide BME 
as a new option to the users. Similarly, using amino acid sequences 
did not show any improvements, but we enable it for cases when 
only amino acid data are available. Despite declining opportunities, 
future changes could seek to further improve the accuracy. For ex-
ample, at the expense of higher computational cost, one can select 
centroid sequences for partitions of the backbone MSA via ances-
tral state reconstruction instead of consensus—a technique used by 
Balaban et al. (2019) (also see ancestral k-mers (Linard et al., 2019)).

Previously, Balaban et al. (2020) reported that ML-based method 
pplacer failed to place queries on backbone trees with 5000 taxa or 
larger in RNASim-VS data set due to a numerical error (infinity like-
lihood values). We find that re-estimating backbone branch lengths 
and model parameters using RAxML-8 and inputting the RAxML 
info file to pplacer causes a bug in pplacer. We overcome this issue 
by creating a taxtastic package (https://github.com/fhcrc/​taxta​stic) 
using FastTree-2 tree and info file and using this package as the input. 
Note that creating taxtastic package from re-estimated RAxML-8 
tree and info file also produces the aforementioned error. As a result 
of discovery, we do not perform branch length re-estimation using 
RAxML-8 in any of our data sets.

While accuracy is typically high, on a minority of queries, results 
of APPLES-2 are far from the correct placement. A reasonable ques-
tion is whether these highly inaccurate instances can be identified 
by APPLES-2. While we leave a more elaborate exploration to fu-
ture work, we have identified several interesting patterns (Figure 6). 
First, we observe a correlation between APPLES-2's objective func-
tion value, the minimum least squares error (MLSE; denoted by 
Q) and placement error (Figure 6a). In addition, variance of error 

dramatically increases as Q increases. Even for the same level of Q, 
selecting marker genes strategically instead of randomly reduces 
the placement error. Therefore, Q itself does not seem sufficient 
to predict the degree of placement error. Note that high MLSE (e.g. 
Q ≥ 1) does not indicate that APPLES-2 fails to optimize its objective 
function—APPLES-2 solves the objective problem exactly (i.e. is not 
heuristic). High MLSE can result from sequence data and tree dis-
tances being very incompatible. This incompatibility may be due to 
several reasons such as lack of signal, model violation and horizontal 
gene transfer (HGT). Despite its reduced mean accuracy, APPLES-2 
can still find a good placement for many queries with Q  ≥  1: ap-
proximately 75% of such queries have at most 3 edges of error on 
the backbone consisting of random marker genes. Second, when a 
query is placed with zero distal and pendant edge length, the place-
ment error is significantly higher than otherwise (p < 5.5 × 10−13, 
two-sample Wilcoxon’s test). The average error is 11.74 when both 
pendant and distal edge lengths are zero (i.e. when query is placed 
on an internal node), whereas it is only 2.04 on average when pen-
dant edge length is larger than zero (Figure 6b). We have also no-
ticed that erroneous placements with zero pendant edge lengths 
are more prevalent in the query sequences with fewer genes. Out 
of 15 occurrences of this pattern, 13 are found in test cases with 
10 marker genes in the backbone. Thus, users of APPLES-2 should 
be sceptical of the placements with zero pendant and distal branch 
lengths and/or high MLSE error (which APPLES-2 outputs). A warn-
ing is produced by APPLES-2 when such placements are produced. 
In future work, these features can be used to develop a predictive 
value indicating possible errors in placement.

Our studies on microbial data showed that APPLES-2 can phy-
logenetically place and hence identify genome-wide shotgun data 
with promising accuracy after they are assembled. Using both sim-
ulated and real data sets, we showed that metagenomic assembled 
genomes (MAGs) can be placed on the species tree with great accu-
racy. Patterns are more intricate for scaffolds: on real data, scaffolds 
with very few (as few as one) or large number of marker genes (40) 
were insufficient to portray the community structure of the metag-
enomic sample. Filtering scaffolds with fewer than ten marker genes 
provided the optimal signal-to-noise ratio, despite being inferior to 
MAGs. On simulated microbial data, the accuracy tends to be low on 
small scaffolds with few genes but improve for scaffolds that have 
a moderately large number of marker genes. Besides their reduced 
numbers of genes, scaffolds present several challenges that may 
contribute to their lower accuracy: (i) in comparison with assemblies, 
scaffolds in a metagenomic sample are more prone to assembly er-
rors and chimeras; (ii) genes located on the same syntenic block have 
similar gene trees, which can introduce a bias in the placement. Thus, 
factors such as HGT may have a bigger impact on scaffolds; and (iii) 
even when a scaffold has many genes, it may not include the best 
marker genes, that is those genes with maximum signal and concor-
dance to the species tree.

Our results clearly showed that the choice of genes matters. 
While a random selection of 25  marker genes was adequate for 
placing queries in most cases, a targeted gene selection strategy 

https://github.com/fhcrc/taxtastic
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outperformed random selection (e.g. p = 6.6 × 10−13 for 25 marker 
genes, two-sample Wilcoxon’s test). The results indicate that certain 
marker genes serve better at predicting location of a query species 
in the backbone tree. This observation leads to two related ques-
tions. Given fully assembled genomes, should we use all or a sub-
sample of available genes? Our data support the idea that using a 
subset of genes has very similar accuracy to using all available genes. 
However, a more fruitful approach may be weighting genes (or even 
sites within genes) differently to further improve accuracy. Such a 
goal seems amenable to machine-learning approaches that can learn 
optimal weights.

The second question is how to handle scaffolds from metag-
enomic assemblies, which include only a handful of genes. There 
are always more scaffolds with few genes than those with many 
genes. Thus, requiring a large number of genes would reduce the 
number of scaffolds placed, which has the potential to reduce the 
accuracy of downstream analyses. Our results indicate scaffolds 
with a modest number of genes (e.g. with 30 or more) are enough 
to place them phylogenetically. But the vast majority of scaffolds 
have fewer than 15 marker genes, and some of these can be placed 
accurately. We leave it to future work to design a more principled 
framework for deciding which scaffolds can be placed accurately 
and which cannot. We also leave to the future work to answer 
a more challenging question: For downstream applications, is it 
better to place a few scaffolds that have many genes (or perhaps 
binned contigs) with high confidence or is it better to place all or 
most scaffolds with lower confidence hoping that noise will be 
overcome by the large number of placements? Answering these 
questions requires careful experimental procedures that are out-
side the scope of the present study.

While in this study we focused on applications of APPLES-2 to 
microbiome data, our earlier work has demonstrated the utility of 
distance-based placement for assembly-free and alignment-free 
identification of genome skims (Balaban et al., 2020). While refer-
ence sets available for genome skimming are not currently large 
enough to challenge APPLES in terms of scalability, the divide-and-
conquer step in APPLES-2 may lead to increase accuracy. Essentially, 
the divide-and-conquer mechanism will allow building reference da-
tabases that include genome skims from very diverse set of organ-
isms (e.g. all insects) without reducing accuracy due to high levels of 
divergence. We leave the exploration of such applications and the 
choice of the best thresholds for genome skimming to future work.

Finally, in this study, we focused on single-query placement and 
observed that given multiple marker genes, APPLES-2 can insert a 
new genome into backbone tree with high accuracy. These results 
open up an exciting opportunity. By spending less computational 
budget than de novo phylogenetics, successive insertion of genomes 
can enable expanding the existing large microbial phylogenies (e.g. 
Zhu et al., 2019) to contain hundreds of thousands of sequences. 
Future work should explore the best pipelines for achieving this goal.
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