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Continuous-variable (CV) cluster states are a universal quantum computing platform that has exper-
imentally outscaled qubit platforms by orders of magnitude. Room-temperature implementation of CV
cluster states has been achieved with quantum optics by using multimode squeezed Gaussian states. It has
also been proven that fault tolerance thresholds for CV quantum computing can be reached at realistic
squeezing levels. In this paper, we show that standard approaches to design and characterize CV cluster
states can miss entanglement present in the system. Such hidden entanglement may be used to increase
the power of a quantum computer but it can also, if undetected, hinder the successful implementation of
a quantum algorithm. By a detailed analysis of the structure of Gaussian states, we derive an algorithm
that reveals hidden entanglement in an arbitrary Gaussian state and optimizes its use for one-way quantum

computing.
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I. INTRODUCTION

Continuous-variable (CV) quantum information [1-3]
has achieved groundbreaking scalability performance [4—
9] in the universal, measurement-based, one-way quantum
computing (QC) model [10]. The CVQC model uses Gaus-
sian (in terms of their Wigner function) cluster states as
mathematical substrates [11] together with required non-
Gaussian resources (such as photon counting measurement
or a cubic phase gate) to constitute a universal quantum
computation platform [10,12—15]. The idealized CVQC
model uses, in lieu of qubits, spectrally dense qumodes
such as the respective eigenstates {|s),}scr and {|s), }ser

of the amplitude-quadrature operator Q = (a + a’)/v/2
and phase-quadrature operator P = i(a" — a)/+/2 of the
quantized electromagnetic field, a being the photon annihi-
lation operator. These quadrature eigenstates are infinitely
squeezed states, which require infinite energy and are
therefore unphysical. Realistic CVQC uses qumodes in
squeezed Gaussian states, generated by SU(1,1) quadratic
Hamiltonians. Such states are arbitrarily good approxi-
mations to quadrature eigenstates and also allow a fault
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tolerance threshold for amounts of squeezing of 1020 dB
[16—18] that are experimentally reachable [19].

Such reasonably high fault-tolerant squeezing levels
may lead to the false impression that the analysis of the
corresponding states would be essentially equivalent to
their analysis in the infinite squeezing limit. This is incor-
rect. We show in this paper that the infinite squeezing limit
fails to capture a subtle but crucial property of Gaussian
states, which we call “hidden entanglement.” We show
that hidden entanglement can disrupt quantum computing
if unaccounted for in a CV cluster state. However, hidden
entanglement can always be detected and can sometimes
be corrected.

To frame the problem in the most general way, we use
the graphical calculus formalism developed by Menicucci
et al. [20], whose gist is that any pure multimode Gaussian
state can be described by a unique graph whose vertices
denote the qumodes and whose complex-weighted edges
denote the interactions between the qumodes sharing an
edge. In this formalism, the real parts of the edge weights
denote controlled-phase interactions, which are the CV
analogs of controlled-Z gates for qubits [21]. These real
edges therefore define the graph of a CV cluster state [11]
that is usable for measurement-based, universal quantum
computing [10,22,23].

It had been assumed that if Gaussian local unitaries
(GLUs [24]; which cannot change the entanglement of the
state) are applied to make the imaginary edge weights of
the graph vanishingly small (e.g., in the limit of infinite
squeezing), then a valid cluster state is obtained.
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FIG. 1. Venn diagram of all Gaussian states. The two subsets
are states that can (green) or cannot (red) be cast as a CV clus-
ter state. Some of the invalid graph states are detectable by our
sufficient criterion (blue subset). If applied to the whole set, our
analytic procedure to express a Gaussian state as a graph state
will succeed for the whole green subset.

In this paper, we show that the above procedure is
not unique: starting from a given Gaussian state, there
are different choices of GLUs that all give a vanish-
ingly small imaginary graph but do give real graphs that
have dramatically different entanglement, for example,
containing or not containing disconnected subgraphs (i.e.,
seemingly separable quantum states). If the vanishingly
small imaginary graph is ignored, this creates the para-
doxical and unacceptable situation of the same state being
GLU-equivalent both to separable states and to completely
inseparable states.

This paradox is resolved by realizing that the entangle-
ment that seems to disappear from the real graph under a
GLU becomes “hidden” by being transferred to the imagi-
nary graph. We must therefore ensure that the GLU leads to
an imaginary graph that has no edge between two different
qumodes.

We report two mathematical results: (i) we derive a
sufficient mathematical criterion to find Gaussian states
that have uncorrectable (i.e., “irreducible”) hidden entan-
glement, which means that not all their imaginary edges
can be transferred to real ones under any GLU and that
these states cannot be expressed as cluster states; (ii) we
derive an analytic algorithm to express a Gaussian state
into a valid CV cluster state (i.e., with null imaginary
edge weights). This algorithm is applicable to any Gaus-
sian state and succeeds for all valid CV cluster states. The
whole situation is summarized in Fig. 1.

These results enable us to answer the long-standing
question of whether every Gaussian state can be expressed
as a cluster state: the answer is negative.

This paper is structured as follows. In Sec. II, we pose
the problem of identifying Gaussian states that cannot be
expressed as valid cluster states. In Sec. III, we derive a

sufficient criterion, (i) above, to identify Gaussian states
that are not equivalent to cluster states. In Sec. IV, we
derive a general algorithm, (ii) above, for expressing a
Gaussian state as a valid cluster state. In the final section,
we summarize our conclusions and discuss their relevance
for quantum information science.

II. THE PROBLEM: ARE ALL GAUSSIAN STATES
VALID CV CLUSTER STATES?

A. Introduction to the CV cluster state formalism
1. Qubits

A cluster state |{p) [25] is a graph quantum state [26]
that contains all the entanglement ever needed for any
quantum algorithm [27] and that must be sparsely con-
nected to be useful for quantum computing [28-30]. In
the qubit paradigm, a graph state is composed of qubit
vertices in the |+) = (]0) + | 1))/+/2 state, linked by
controlled-Z gate edges. Quantum computation proceeds
from a cluster state solely by single-qubit measurements
and feedforward to graph neighbors. An N-qubit graph
state can be defined as a stabilizer state (i.e., a simultane-
ous eigenstate of the N generators of the stabilizer group
with eigenvalue 1). These generators are defined as

N
K =6 TT6EM)™ . j=12..N. ()
k=1

I(]th):le)a ] :152a"'na (2)
where the Vj; denote the elements of the adjacency matrix

V of the graph: V;=1 if there is an edge between qubits

J and k and V=0 otherwise. The operators ox(fz) are Pauli

operators acting on qubit j .

2. Qumodes

An ideal CV graph state |Wy) is constructed by
preparing each qumode vertex in a zero-phase eigen-
state = [|s),ds/~/2r and then applying con-
trolled phase dlsplacements as per the adjacency matrix
]_[] 1 €xp(iVxQ; Q) [10,11]. The generators of the stabi-
lizer group are of the form K; = éNi o e R, with N
denoting the nullifier operators [22]

N
=P — Z

k=1
[ Wy) =019y,

g

VikOr, J =12,...n, 3)

=

i=12...n, (4)

where V is now a weighted adjacency matrix, whose ele-
ments can have any real value. These ideal CV states are
infinitely squeezed and therefore unphysical.
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3. Finitely squeezed states

In the laboratory, one uses the closest approximations
to quadrature eigenstates, which are Gaussian phase-
quadrature-squeezed vacuum states

1 ,—2r 2 1 2r

|o,r>o</dqeze ‘ |q>o</dpeze ”1p), )

where 7 > 0 is the squeezing parameter and coincides with
the logarithmic gain of a parametric amplifier such as
an optical parametric oscillator below threshold. A valid
Gaussian approximation of an ideal graph state |Vy) of
adjacency matrix V must then fulfill the property

cov[P — VQ] _>—OO> 0, (6)

where cov[A] = (1/2) (Wyl{4;,4r} [¥y) is an ele-
ment of the covariance matrix of operator vector
A=(4,,...,4,)".

It was shown by Meniccuci et al. [20] that the effects of
finite squeezing can be fully taken into account by defin-
ing a complex graph Z = V + iU, where V is the weighted
symmetric adjacency matrix as before and U is a sym-
metric positive definite matrix that accounts for all finite
squeezing effects [31]. Any pure Gaussian state | W, ) [32]
can be written in the position representation as

(ql Wz) = Wz(q) = 7 V¥ (detU)/* exp (éqTZq> :
(7

the positive definiteness of U ensuring that the state is nor-
malizable. The complex matrix Z defines exact graph state
nullifiers

P—-2Q)[Vz)=0]|¥z). ®)

These nullifiers are non-Hermitian operators and therefore
not suited for measurement-based quantum computation.
Nonetheless, we can still use the nullifiers given by the
adjacency matrix V if we realize that the wave function of
Eq. (7) satisfies the relation

cov[P — VQ] = %U, 9)

and note that, as long as U — 0 or, equivalently, Tr[U] —
0 given that U is positive definite, we recover Eq. (6). It
has been proposed that having a vanishingly small U is
enough to claim that our Gaussian state approximates an
ideal graph state with adjacency matrix V and, hence, we
could think of U (or Tr[U]) as the error on approximating
an ideal CV graph state [20]. Note from Eqgs. (6) and (9)
that U = 0 is logically equivalent to the infinite squeezing
limit.

If Tr[U] is vanishingly small, we may be tempted to
completely disregard U and think of Z as the ideal graph
Z = V. This has been, until now, the main way to deal
with Gaussian graph states but, as we show next using the
covariance matrix, this definition alone may ignore strong
quantum correlations present in the system, which can lead
to large errors in the characterization of its entanglement,
as we show in Sec. IIB 1.

4. Covariance matrix

A Gaussian state is fully characterized by its covariance
matrix. The quadrature-ordered covariance matrix is

cov[Q, P]
cov[P, Q] ) (10)

1 /U!
(quad) _ 2
=3 <VU—1

y@ad) — coy[R] = < ol cov[P]

Ulv
U+ VU‘IV) ’ an

where R = (Q, P)”. Examination of the upper-left block in
Egs. (10) and (11) yields the formula

cov[Q] = %U‘l (12)

and a first observation: the off-diagonal entries of U~
may be large, describing strong quantum correlations that
could still appear vanishingly small in U and therefore be
missed. We must therefore supplement the Tr[U] — 0 cri-
terion [Eq. (9)] for finitely squeezed Gaussian states [20]
by also requiring that U~! be diagonal, which is logically
equivalent to U being diagonal [33]. This will ensure that
all the correlations of the system are encoded exclusively
in the adjacency matrix V.

Before addressing the diagonalization of U in detail, we
first give two concrete examples of hidden entanglement.

B. Examples of hidden entanglement
1. Two qumodes

We consider here the very simple case of two indepen-
dent single-mode squeezed states, of respective parameters
r1 and r,, interfering at a balanced beam splitter. Deriva-
tion details can be found in Appendix A. The resulting
graph is purely imaginary:

i(eihl i(efz"l

+eT22)50  i(e 21 +em2r2) 0

|B(0a7"177'2)>12 = e 0

(13)

Since all edges are exponentially decreasing with the
squeezing, a logical conclusion would be that the state is,
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for all intents and purposes, equivalent to the product state
obtained in the infinite squeezing limit, i.e.,

|B(0,T1,T2)>12 — . .

71,2700 (14)
This conclusion is incorrect. While state | B(0,7,7) ), is,
indeed, an exact product state (which was demonstrated
experimentally [34]), state | 5(0, 7,7, # 1) ), can, how-
ever, be strongly entangled. We now prove this.

An independent quantitative bipartite entanglement cri-
terion is the generalization of the Peres-Horodecki partial
transpose criterion [35,36] to continuous variables [37]
(see also Ref. [38]). Bipartite CV nonseparability is char-
acterized by the symplectic eigenvalues of the covariance
matrix X of the partially transposed density operator,
which is equivalent to a phase space reflection [37]: if the
original covariance matrix is ¥, then ¥ = AX A, where
A=diag(1,1,—1,1). Entanglement is present if at least
one of the symplectic eigenvalues of ¥ is less than 1/2,
their product being 1/4. These symplectic eigenvalues
are defined as the absolute values of the eigenvalues of
iZQ, with @ = (% %). The symplectic eigenvalues of
| B(0,71,72) )1, are

Ap=1etnmr), (15)
which shows that the state is a product state if and only
if 1 = r, but can be significantly entangled if the dif-
ference r; — r, is large. Let us take the case r| = 2r;
with », already large (e.g., 20- and 10-dB squeezing).
Then the amount of entanglement in | B(0,2.30, 1.65) ),
is equivalent to that present in a 10-dB-squeezed two-
mode squeezed state, even though all edges in Eq. (13) are
vanishing.

Thus, the null graph edges given by V clearly fail to
give the proper description here, even though Tr[U] — 0
in both cases. The key points are that the infinite squeez-
ing limit incorrectly symmetrizes the situation, giving the
wrong description for finite squeezing, and that the vanish-
ingly small, yet nonzero off-diagonal entries of U still yield
large <Q,—Qj) correlations from U~!, as per Eq. (11), which
are key to the discrepancy.

If we use single-mode symplectic transformations (i.e.,
GLUs) to diagonalize U, the entanglement cannot be
changed [37,39]. We therefore seek GLUs that transform
| B(O,r,r, # 1)), into a two-mode squeezed state of
equal entanglement: the result is (Appendix A)

[E(r-)) =81 (ry) S2 (rp) | B0, 71,72) )12 s (16)

where S(r) = exp[(r/2)(a'?> — a?)] is a phase squeezing
operator (for » > 0) and r+ = (r; £ ;) /2. Equation (16)
solves the conundrum: in finitely squeezed states, entan-
glement can be hidden by single-mode squeezing in non-
symmetric cases, where the squeezing is not evenly dis-
tributed between the modes. This situation is always absent

in the infinitely squeezed case, which is, by force, totally
symmetric.

After single-mode squeezing operations, Eq. (16), and
phase shifts carry out Z — Z/, we obtain [see Eq. (A18)]

Tr[U'] = 2sech(r, — ;) —> 4e” 1772, (17)
ry>rn>1

which can be compared with the value of Eq. (13), before
the single-mode squeezing operations,

Tr{U] = 2(e™2" 4+ e722) — 2722, (18)

ry>r>»>1

While both traces tend to zero in the infinite squeezing
limit, graph V' [Eq. (A19) with » = r_] reveals the entan-
glement of the state, whereas graph V [Egs. (13) and (14)]
does not.

Another important instance of quantum state distortion
invisible in the infinite squeezing limit is the generation
of a two-mode squeezed state from the interference of
orthogonal single-mode squeezed states,

|BGG,rn)=1E0), (19)

which is relevant to a multitude of CV quantum informa-
tion experiments, a few prominent examples of which are
given in Refs. [6-9,40,41]. If the states are not identically
squeezed, we get

|B(%’r1’r2)>:Sl(—l/'_)Sz(—l"_)|6(7"+)>, (20)

which features, on top of the desired two-mode squeezing
by 7, excess uncorrelated quantum noise on each qumode,
each being independently antisqueezed by 7_.

2. Six qumodes

We now turn to a highly multipartite example and show
that the two dramatically different graphs in Fig. 2 are
GLU-equivalent.

The top part of Fig. 2 represents the real part (adjacency
matrix V) of the six-mode graph Z = V + iU:

0O 0 ¢r 0 0 O
0O 0 ¢+ 0 0 O
t t 00 0 O
V=10 000 0 of 1)
0 0 0 0 0 ¢
0O 00 0 ¢ O
b0 0 0 0 0
0 ¢! 0 0 0 0
U= 0 0 ¢! —c 't A 0
10 0 —ct ' =+ o
0 0 P o=t ! 0
0 0 0 0 0 ¢!
(22)
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FIG. 2. Top: Cluster state graph given by matrix V in Eq. (21).
Note the three disconnected subgraphs. Bottom: Cluster state
graph given by matrix V’ in Eq. (29), obtained by diagonalizing
U’ by GLUs. The state is now one connected graph, all hidden
entanglement having been revealed.

where ¢ = tanh2r and ¢! = sech2r. This state clearly
verifies U — 0 for » — 00, because t — 1 and ¢~! — 0.
The top part of Fig. 2 shows three disconnected graphs, the
chain 1-3-2, the chain 5-6, and sole qumode 4. The top part
of Fig. 2, however, is incorrect: there are hidden quantum
correlations, or hidden entanglement, between modes 3, 4,
and 5, which are present in U and will disrupt quantum
computation over the cluster state. For example, a mea-
surement of isolated qumode 4 is not expected to affect
the rest of the graph since it is disconnected from it. Yet
it will. These hidden correlations can actually be quite
strong, even with Tr[U] — 0. We can see this from Eq.
(12). In this instance we have

c 0 O 0 0 0

0 ¢ O 0 0 0

4 _ |0 0 & sc? 0 0
v = 0 0 s c(*+s>) st 0o’ (23)

0 0 O sc? A0

0 0 O 0 0 ¢

where ¢ = cosh 2r and s = sinh 2r, which are very large.
The only way to suppress these spurious correlations is,

of course, to diagonalize U. This must be done with-
out changing the entanglement of the graph state (i.e.,
using only local symplectic, equivalently local linear uni-
tary, operations, i.e., GLUs). In this work, we identify
all situations where this is feasible and demonstrate a
GLU-diagonalization procedure that will succeed when-
ever possible. In that sense, given any Gaussian state, we
are now able to ascertain whether it is a valid cluster state
(i.e., with U diagonal and Tr[U] — 0) or not.

Let us go back to our six-mode example. A Gaussian
unitary {4 can be represented in the Heisenberg picture by
a symplectic matrix S such that

R =U'RU = SR. (24)

The symplectic symmetry requires that S fulfill SQS’ =
2, which is equivalent to preserving the canonical commu-
tation relations [R;, R] = [R;, R;] = Qj. Any GLU must
then have the form

"
&)=

U, (25)

.
Il
-

(26)

75}

I
D-
A

.
Il
-

so that

(g) u*(Qf)u S(Qf)]_l LN. @7
]

In our example, taking U to a diagonal from can be done

with single-mode squeezing GLUs:
Si=8=8"=Fs;' =85' =8 =(<'0), (28

where F = (1 B ) is a 7t /2 rotation in phase space (also

known as a Fourier transform). Under this transformation
the Z graph becomes Z' = V' + iU’, with [20]

00 ¢ 00 0
00 ¢ 00 0

e 0t 0 0

Vi=lo o+ 0 ¢ ol (29)
000 ¢ 0 ¢
0000 ¢ 0
30 0 0 0 0
0 ¢ 0 0 0 0

o 0 et 0 0 o

U=10o 0 0 ' 0 o G0)
0 0 0 0 ' 0
0 0 0 0 0 c3

Now that U’ is diagonal (still with Tr[U’] — 0), no hid-
den entanglement is present and the V' graph at the bottom
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of Fig. 2 shows the complete picture, which includes the
expected 3-4 and 4-5 entanglement edges.

As we mentioned earlier, the previous best practice for
calculating the closest graph V’ approximated by a given
Gaussian state, minimizing Tr[U] solely by local rotations
[20], does not suffice here. As we have shown in these two
examples, one must strive to make U diagonal by using all
possible GLUs, including squeezing and shearing.

Finally, it is important to realize that this procedure does
not always succeed: there are cases where hidden entangle-
ment is irreducible and cannot be transferred to V under
GLUs (i.e., where there exist no GLUs that can make U
diagonal). We now examine these cases.

I11. SUFFICIENT CRITERION FOR DETECTING
IRREDUCIBLE HIDDEN ENTANGLEMENT

In this section, we address the question of detecting
irreducible hidden entanglement (i.e., the Gaussian states
whose matrix U cannot be diagonalized by GLUs). Such
states consequently cannot be made GLU-equivalent to a
CV cluster state.

If U is diagonal, we can write, from Eq. (12),

cov[Q] = diag{A, A2, ..., An}, (31
where A; > 0,7 =1,2,...,N. This yields
2(0; Ox) = %8, (32)
({Q) Pi}) = 4 Vi (33)
2(PP) =17 8+ > Vida V. (34)

i

‘We now use the more convenient mode-ordered covariance

matrixa deﬁning X = (QlanQZ:PZa sy QN’PN)T:
o1 012 -+ Oy
021 022 -+ Oy
ymode) — cov[x] = | . o 1, 3%
O nl O ot O nn

where

ou=1 (1220 127

5 {P]an} <{PjaPk}>
_1((U—1>jk (U7'V), ) 36)
T2\ (VUThp w+vulyy, )’

which means that oj; is the covariance matrix of qumode
Jj and ojx = ak;j contains all correlations between
qumodes j and k. In this ordering, the direct-sum GLU of

Eq. (26) can be written in block-diagonal form:

0 .o
Sloca1: . . (37)
)

Under GLUSs, the covariance matrix blocks evolve as
ok > 0 = S;0,S;. (38)
This allows us to establish a first important theorem.

Theorem. The determinant of the correlation matrix oj,
det[oj] is invariant under GLU.

Proof. This follows from the fact that the determinant of
any symplectic matrix S is det[S]=1. Then, Eq. (38) yields
det[crj/k]=det[q,~k]. |

The next theorem provides a sufficient, although not

necessary, criterion for whether a given Gaussian state is
not GLU-equivalent to a cluster state.

Theorem. Ifa given Gaussian state is GLU-equivalent to
a graph state, then det[oj] < 0 for all (j,k #j).

Proof. Let us go back to the U diagonal case. Using Egs.
(31)~34), we can write

_ (N 0
ojj - (0 COV[P]]_'I‘) > (39)
_( ° A Vi
O'j;ék = <)"k ij COV[P]jk) 5 (40)

where we have assumed, without loss of generality, that
we do not have any self-loops on our real graph, i.e.,
Vi =0 for all j [42]. From Eq. (40), we deduce that the
determinant of oy, # k, for U diagonal is

det[oj] = =2 A V5 <O 41)

Note that det[o]=0 < V;=0. Since det[oj] is GLU-
invariant, any Gaussian state that is GLU-equivalent to a
cluster state (i.e., has U diagonal) has nonpositive det [ajk]
forallj # k.

The theorem is not a logical equivalence because there
are more submatrices oj; to process than available GLUs
when N(N — 1)/2 > N (i.e., when the total number of
qumodes N > 3). In this case, it is possible to have states
with det[oj;] < O for all (j, k # j) that are nonetheless not
GLU-equivalent to a cluster state.
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Exceptions to this are the cases N = 2, for which all
two-mode pure states are GLU-equivalent to two-mode
squeezed states and also to two-mode cluster states, and
N = 3, for which the number of submatrices oj; is N(N —
1)/2 = 3 and three-mode Gaussian states with det[oj;] < 0
for all (j,k #J) are therefore GLU-equivalent to cluster
states (see Appendix B).

The contraposition of the theorem above yields the suffi-
cient criterion for Gaussian states that cannot be expressed
as graph states, because U cannot be diagonalized by
GLUs:

If there exists (j,k # j) such that det[oj] > O, then the
corresponding Gaussian state is not GLU-equivalent to a
graph state.

To use this criterion, one just has to check all off-
diagonal 2 x 2 minors of the mode-ordered covariance
matrix: a single positive det[oj] is proof that irremov-
able hidden entanglement exists between j and k and that
the corresponding state can never be GLU-equivalent to a
cluster state.

IV. GENERAL ALGORITHM FOR
DIAGONALIZING U BY GAUSSIAN LOCAL
UNITARIES

We now extend the analysis of the previous section to
deriving a general algorithm for diagonalizing U using
GLUs.

The algorithm is based on noticing, from the quadrature-
ordered covariance matrix of Egs. (10) and (11), that the
complete absence of amplitude correlations, (Qj Qk> =0
for all j and k, is logically equivalent to a diagonal U~!
and hence to a diagonal U. We now introduce the GLU
aspect of the diagonalization algorithm, which is best seen
in the mode-ordered covariance matrix of Eqs. (35)+36):
we require a set of GLUs that cancel the upper-left entry
of all 2 x 2 submatrices oj. Because there are up to
N(N — 1)/2 such submatrices and only N available GLUs,
it is clear that the algorithm cannot always be successful:
for N > 3, canceling multiple (Qj Qk) with a single GLU
will be required, thereby placing symmetry constraints on
the Gaussian state under consideration. A detailed study of
such constraints is outside the scope of this paper.

One should note that the algorithm will succeed for all
Gaussian states that are GLU-equivalent to cluster states
(green subset in Fig. 1) and will fail for all the rest (red sub-
set in Fig. 1), including those undetected by the sufficient
criterion derived in Sec. II1.

We first proceed to define a “standard” covariance
matrix of a valid Gaussian graph state (i.e., for which U
is diagonal). We draw inspiration from the definition of
a standard covariance matrix for LU-equivalent Gaussian
states by Adesso [39] and Giedke and Kraus [43]. We first

define the single-mode squeezing operations

A0 )
Tj:(] 1/2), ]=1,,N (42)

0 A

Then, using the transformation rule of Eq. (38), we define
the standard covariance matrix as

0 =Tio;T; = <O A cov[P]jj> ) (43)

~ 0 V.
Otk = TjajkT,{ = w/)"j)"k (V] COVfP]jk> R (44)

where the off-diagonal terms of ¢ j; are the same and equal
to &,/—det[o j]. It is easy to see that this form corresponds
to a diagonal U by virtue of Eq. (36).

The goal is to find N single-mode GLUs that take all
covariance submatrices

. b
Ok = ("f’“ dj) (45)

Cjk

to the standard form of Eq. (44). Each of the N sought
GLUs is written as an Iwasawa decomposition [[44—46]]:

g (1 OY(u 0\ [cosg;
77 \g 1)\0 rj_l sin ¢;

where 7; > 0. The leftmost matrix in Eq. (46) corresponds
to a shearing transformation that shifts the diagonal ele-
ments of V: V; = Vj; + ¢;. This does not play any role in
the process of diagonalizing U, so without loss of gener-
ality we can set g; = 0, allowing us to reduce the number
of free parameters of S; to only two. The second matrix,
where r; > 0, corresponds to a single-mode squeezing and
the third matrix corresponds to a single-mode rotation. To
find GLUs that diagonalize U, we proceed by sequentially
finding the parameters 7; and ¢; in Eq. (46) by operat-
ing one by one in all the correlation submatrices o
and taking them to the standard form of Eq. (44). It is
important to point out that two GLUs S; and S act simul-
taneously on each given oj 4, as shown by Eq. (38); hence,
at each stage of the process of eliminating the term (Q; Ox),
both GLUs S; and S; must be taken into account at the
same time. This procedure varies slightly depending on
whether det[o; 4] < 0, as presented below, or det[o; x] = 0,
as presented in Appendix C.

Assuming that det[o; x] # 0,letM = (£ &) be a general
2 x 2 matrix. If we want to use the GLU multiplying to the

_Sinqu)’ (46)

cos ¢;
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left in Eq. (38), we find a GLU Sje such that

= (s pabg) @)
where § = ./—det[M] = ~/BC —AD. The Iwasawa
parameters are
C ) A
COS Pleft = W, SIN et = W, (48)
M = 87 VA2 + C2. (49)
Likewise, we can use a GLU to the right:
MS gy = (f; s Ac5+BD> , (50)
A2+B?
with
B ) A
COS Pright = \/ﬁ’ SIN Gright = \/ﬁ’ 51
Fright = 81 VA2 + B2, (52)

If we set M = q,-kS,Z in Egs. (47) and (48), then we have
taken oy to the standard form using only S; regardless
of the value that S; may take. If S; was already deter-
mined in a previous stage, then Eq. (48) fixes the value
of S;. On the other hand, if the S; have not been deter-
mined yet, then we will have that S; will be a function of
Sk (and oj;), denoted as S; [Sx], and S; can be used to take
another submatrix oy, [ # j, to the standard form. Using
other matrices o0,,;, m # k and taking them to the stan-
dard form via the procedure above, we can find expressions
of the form S,, = S,, [Sj] = S, [Sk] (Where we have taken
into account that S; = S; [S¢]). Finally the value of S; can
be found using a correlation matrix of type oy,, where
the o}, term must cancel out from the equation o}, =
Sk nSm[Sk]”. Explicit forms of S; [Sx], more details of
this procedure, and how it is modified when we have
singular matrices can be found in Appendix C.

The algorithm is complete when all the N GLUs are
determined using the above procedure, which, in general,
makes use of a subset of all the correlation matrices oj;. As
shown in Appendix C, the case may present itself where
we find multiple solutions for the GLUs S;,j =1,...,N,
but those solutions are the most general ones that take
the correlation submatrices oj; used through the algorithm
to the standard form. Therefore, the last step is to apply
those solutions to the remaining correlation matrices that
were not used yet and test whether they all also take
the standard form. If one of these GLU sets successfully
zeroes out all <Qj Qk) terms, for all j and &, j # k, then the
corresponding Gaussian state is a valid (GLU-equivalent)
CV cluster state, otherwise there exists irreducible hidden
entanglement.

V. CONCLUSION

We have reported and fully analyzed a fundamental
effect that is specific of continuous-variable quantum infor-
mation and does not occur in qubit-based quantum infor-
mation. This effect is linked to the description of any
Gaussian Wigner function, in the Iwasawa decomposition,
by a complex graph state [20] whose stabilizers are not
necessarily unitary or, equivalently, whose nullifiers are
not necessarily Hermitian. For the graph to provide a valid
representation of a cluster state—with unitary stabilizers
and Hermitian nullifiers—the imaginary part of the graph
must vanish. Whereas all previous work ensured that this
always occurred in the infinite squeezing limit, our work
shows that this limit is not reliable as state asymmetries
can give rise to hidden entanglement, at times irreducibly
so. Such hidden entanglement may morph into a more ver-
satile and useful cluster state but will disrupt quantum
information processing if not accounted for. An interest-
ing extension of this work might be to explore its possible
connections to an earlier study of tripartite entanglement
by Adesso and Illuminati [47], in which pure, symmetric
three-mode Gaussian states were shown to be simultane-
ous CV analogs of both the Greenberger-Horne-Zeilinger
state and the the W state of three qubits.

A simple occurrence of this effect is present in the case
of the workhorse of entanglement generation: the interfer-
ence of two orthogonally squeezed quantum quadratures
at a balanced beam splitter [40], which will exhibit excess
quantum noise, as per Eq. (20), if the initial squeezed
modes have different parameters. This is a heretofore
undiscovered source of imperfections in realistic CV quan-
tum information experiments. This result emphasizes the
importance of forgoing the use of the infinite squeezing
limit as more than a simplification when dealing with
continuous-variable quantum information. An example of
this philosophy is a recent result on the fault tolerance of
statistical mixtures of cluster states in CVQC [18].

We emphasize here that our results do not alter the fea-
sibility of continuous-variable quantum computing with
finitely squeezed Gaussian states. Indeed, it is well known
that these Gaussian resources must be completed by non-
Gaussian ones, necessary for exponential speedup [14,
15] and fault tolerance [16]. Moreover, one should also
remember that the resilience of cluster states under mea-
surement [25] makes it straightforward to cut out of a
Gaussian complex graph its irreducibly imaginary edges
(if they are reasonably local) so as to make the graph real
and therefore a valid CV cluster state.

Our work constitutes the first concrete analytic cor-
respondence between arbitrary Gaussian states and CV
cluster states. This paves the way to deriving mappings
between cluster states and the universal Bloch-Messiah
decomposition of Gaussian states [48], which opens up
a new area of research of translating nonconventional
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quantum circuits, such as Gaussian boson sampling [49],
into cluster states and one-way quantum computing.

This work is also relevant to quantum state engineering
given that it allows us to identify when a given general
scalable source of entangled Gaussian states can be also
a source of CV cluster states, which are a platform for
universal quantum computation.
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APPENDIX A: HIDDEN ENTANGLEMENT AND
DIAGONALIZATION OF U BY GLUs IN THE
TWO-MODE CASE

An ideal two-mode cluster state is defined as two p =
0 momentum eigenstates coupled by a CZ = exp(iQ:0,)
gate

Cy = e1Q1Q2
‘C>12: |0>p1 |0>p2
(AD)
which admit the following nullifiers:
P-VQ)I[C),=0[C), (A2)

where Q=(01,02)7, P=(P1,P,)T,and V = ({}).

In this appendix we study how different finitely
squeezed two-mode states relate to this ideal cluster state
as we approach the infinite squeezing limit.

We focus on the simple but fundamental case of the state
created by the interference at a balanced beam splitter of
two quadrature eigenstates out of phase by 6:

| B©) )12 =B1210)6110),2, (A3)
where By, = exp[—i(n/4)(a1ra2 —I—alaZ)] and where the
generalized-quadrature nullifier and eigenstate are

A1(0)[0)g; = (cos@ Py +sinf 01)[0)y; =01]0)y;.
(A4)

The nullifiers of | B(#) ), are

N = Bl2P2B]Lz =P — P, (AS)

N>(6) = B1,4,(0)B}, = sin6 (Q) + 0,)

+ cos b (P; + P»). (A6)
For 6 = 0, these nullifiers are P; &= P,. As the stabilizers
form a multiplicative group, the nullifiers form an addi-
tive one and a linear combination of nullifiers is a nullifier.
Hence, P and P, nullify | 3(0) },,, which entails V = 0:

1B(0))y, =10),,10),,= @ ® .

An edge between two vertices signifies entanglement, its
absence signifies separability, and GLUs cannot transform
two separated subgraphs into a connected one.

For 6 = /2, we recover the nullifiers of the Einstein-
Podolsky-Rosen state [50]

O1—0)1E),=0[E )2, (A8)

(P1+P)|E),=0|E), (A9)
which entails

1B3)), =180 % 1Chy. (A10)

For 6 < m /2, we can rewrite the nullifiers of Egs. (A5) and
(A6) in cluster state form,

I (tan6 tané
V= 2 (tan@ tan9) ’ (ALL)
which corresponds to the graph
% tan 6 % tan 6
% tan 6
| B(0) >12 = C>. .Q
(A12)

State | B(9) ), is therefore GLU-equivalent to a cluster
state, as expected since all bipartite entangled states are
equivalent under GLUs.

We now turn to the generalization to Gaussian states
of the graphical formalism introduced above, which was
developed by Menicucci et al. [20]. The gist of this for-
malism is that any pure Gaussian state can be represented
by a unique graph whose edges are weighted by complex
numbers, the imaginary edges representing the effect of the
squeezing. This is because the nullifier of a phase-squeezed
state of finite squeezing parameter » is not P anymore but
is P —ie 2 Q. As a result, the adjacency matrix Z of the
graph becomes complex:

Z =V +il, (A13)
where V is as before. Matrix U is symmetric, like V,
and also positive definite. It represents the effects of finite
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squeezing [20] and can be interpreted as the error of the
Gaussian state in approximating an ideal graph state of
weighted adjacency matrix V, as per

cov[P —VQ] = %U, (A14)
which generalizes Eq. (A2), cov denoting the covariance
matrix of the nullifiers. Hence, a Gaussian state Z is a good
approximation of a graph state V if U — 0, or Tr[U] — 0
since U is positive definite.

The canonical Gaussian cluster state has two phase-
squeezed qumodes [realistic implementations of phase-
quadrature eigenstates, i.e., finite squeezing version of Eq.
(A1)], of respective squeezing parameters | and r;, linked
by controlled-phase gates:

0 1\, . (e 0
ZCE(I 0)“( 0 e—%)’
(A15)

ie 21 ie~2r2

1

- (CO——— &)

(A16)

Our next example is the Gaussian Einstein-Podolsky-
Rosen state, also known as the two-mode squeezed state
| E() )1, where 7 is the squeezing parameter [40]. Solv-
ing the Heisenberg equations for the two-mode squeezing
Hamiltonian i(r/ t)afa;—i— H.c. over time t, one finds [51]

AOI—O)=AFP +P)=¢"",

which coincides with the nullifiers of Egs. (AS8) and (A9)
in the infinite squeezing limit » — oo. Using Gaussian
graphical calculus, we find, after a (7/2) rotation of
one mode [20],

7. — 0 tanh 2r n sech 2r 0
€= \tanh2r 0 "o sech2r )’

(A17)

(A18)
isech 2r i sech 2r
tanh 27
AECIN @ e )
(A19)

In the limit » — oo and up to a GLU (here a Fourier
transform), Eqs. (A16) and (A19) are identical.

The next case is much less trivial. The finitely squeezed
version of | B(9) )5, Eq. (A3), is

| BO,71,72) )12 = BiaR1(0)S1(r1)S2(2) 10)110),,
(A20)

where the initial state is a vacuum, S(r) = exp[(r/2)(a? —
a*)] is a phase squeezing operator for » > 0, and R(6) =

exp(—ifa'a) is a phase-space rotation operator. The Gaus-
sian graph is

- 1 1 U+ u_

7= (1 1) +1i (u_ u+> , (A21)

v+t ViU

vt+iu_

50 = ( OO———@)

(A22)
where
in 20 sinh 2
o sin 20 sinh 2r; — (A23)
2(e?1 cos? 0 + e=21 sin” 0)
672}’1

+ o722, (A24)

Ut = "3 “4r| <in2
cos* 6 + e~ 1 sin” 0

In an initial analysis of this situation for 0 < 6 < 7/2,
one is tempted to dismiss U altogether as its elements
clearly decrease as the squeezing factors decrease. Turn-
ing then to V, entanglement is clearly present since v # 0.
This result is well known [52].

For 8 = (;r/2), we know the result must be a two-mode
squeezed state [41]. However, we have

v=0,

uy =& e 2,

(A25)
(A26)

Entanglement would appear to have vanished (V = 0)
but here the effects of finite squeezing cannot be ignored
any longer: the diverging U makes V irrelevant as an
approximation of a graph state by a Gaussian state. It
was proposed in Ref. [20] that the closest CV graph state
that can be approximated by a given Gaussian state could
be found by minimizing the trace of U by local rota-
tions. An extremum of Tr[U] can always be reached using
/2 qumode rotations, i.e., Fourier transforms [53]. This

property yields

U = 1 2sech(r) + ryp) 0
- 0 e "gech(ry +1r) )’
(A27)
, 0 tanh(r; + 7)
V= (tanh(m + ) 0 ’ (A28)
iet1 T2 x iet2 T

sech(ri+r2) sech(ri+72)

tanh(ri+r2)
.7:’3(%,7“1,7“2)>12 = C).—()

(A29)

which yields Eq. (A19) for r; = r, = r and Eq. (A1) for
r — 00.
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APPENDIX B: THREE-MODE CASE

In this section we show that for the case of three modes,
the requirement det{o;;} < 0 is not only necessary but also
sufficient for a state to be GLU to a diagonal U state.
The concept of standard forms of covariance matrices was
developed in Refs. [[39,43]], where two Gaussian states
are GLU-equivalent if and only if they have the same
standard form of their covariance matrices.

The process to calculate the standard form is to decom-
pose each local operation in its Bloch-Messiah decomposi-
tionS; = M; A; NJ-T , where N; and M; are rotation matrices
and A; is a diagonal squeezing matrix. M; and A; are then
used to symplectically diagonalize all the oj; (i.e., make
them proportional to the identity). Finally, after applying
these first two operations, we use N; to diagonalize as
many oy, matrices as possible (j # k). To do this, we use
the singular value decomposition oz = A;D;:Bj, where
Ajr and By are orthogonal matrices and Dj is a diagonal
matrix. If oy is proportional to an orthogonal matrix, then
we can diagonalized it using only one matrix (instead of
two as the singular value decomposition indicates), let us
say N;, and use the other N; in the diagonalization process
of another o} ; matrix (see Ref. [43] for details).

It has been shown also that, for a three-mode Gaussian
state, the standard form is a covariance matrix with no O-P
correlations; that is, it has the form

X7 0
(gp) —
= =(3 3)

which, when written in the mode ordering, has the form

(B1)

Al Dy Dijs
Al Dys ),
sl

T = (B2)

where Dj; are diagonal matrices and 1 is the 2 x 2 iden-
tity matrix. If we suppose that all three Dj; matrices have
negative determinants, then we have

) 0 .
Djk = ( (]) ,Bjk) , with ajk,Bjk < 0, (B3)

and we can transform the covariance matrix in (B2) into a
covariance matrix with diagonal U (i.e., (Qj Qk> =0j #k)
in two steps. We first apply the following local squeezing
operations given by the GLUs:

[

B2 0
Bz |’

0 Vs

[ %13

S(a) _ B13 0
3 B13
0 Ve

(@) __
S/ =

ST s =1. (BY)

This leads us to a covariance matrix of the form

)‘lsga)sgaﬂ FV—a12B120: F/—a13B130;

= Aol D),
2388
(B5)

where the upper sign corresponds to o < 0, B > 0 and
the lower sign corresponds to the opposite situation,
D ; = diag{a) 5, 85 3} = diaglon 3/ (Brao1 /a1 2813), B2
V(@12B13/Bi2013)}, and o. = diag(1, —1} is one of the
Pauli matrices. In the second step we apply the local
rotations given by

s =Fsy",  SY =Fs{" =8P, (B6)
where S{” is a rotation to be determined later, F = (9, 1)
is a /2 rotation (also called the Fourier transform due to
the way it act on quantum states), and use the fact that
rotations in a plane commute with each other. Then given

that

0 1

T— — —
o.F =Fo, = <1 0

) =-J and o.M = Mo,
(B7)
for any pure two-dimensional rotation matrix M, we have
MSIS]  £/—i2fi2d £/ —ai3Bi3d

1,8,87 S VARSISEE
238587

Y =

(B8)

where S; = S;b) S;a) is the total local transformation. The

S;b) matrix is set such that the O-Q correlation (0,03) =0
in the matrix Sg”)D’z’3 ST

two-dimensional rotation:

Sg’) _ < cos 6

. For that we write it as a generic

sin @
cosf |’

Then the correlation matrix between modes 2 and 3 is

—sin® (B9)

oL s
_ @3 cos” 6 + B3 sin” 0 (B53 — &y 3) sin6 cos O
(B53 — a5 3) sinf cosf afysin® 6 + B} cos?6 )
(B10)

In the equation above, is possible to eliminate the Q-0 term
(upper-left term in the matrix) only if & ; and B, ; have
opposite sign; that is, if det{D)3} = &35 5 < 0. In this

case we can chose cos 0 = (\/—,82,3/\/012,3 — B23),sinf =
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(Va23/\/a23 — Ba3) for B3 <0 or cost = (\/B23/
VB3 —a23),8in0 = ((/—a3/\/ B3 —az3) for ap3 <

0, and then

0 +/—a3P3
VD) 8?7 = "y ) Bl
h U239, —23023 o3+ :32,3 ( )

where the minus sign corresponds to oz 3 < 0 and the plus
sign corresponds to 8,3 < 0. In this way we have removed
all the diagonal terms of U.

In this procedure we first use single-mode squeezing
operations to make the correlation matrices o1, and o3
proportional to the Pauli matrix o,, and use rotations to
eliminate the O-Q correlations [the first step is useful
because using Eq. (B7), we can transform a given corre-
lation matrix oy, j # k, to a matrix proportional to J by
using, let us say, S; regardless of the value of S;].

J

) .
— (c12cos ¢y — dyzsingh)

Si[S2] = 2812 = ajp cos ¢y — by sing,

This procedure is not enough for a general N-mode
Gaussian state given that the number of correlation matri-
ces oji,j # k,is N(N — 1)/2 and we have only N GLUs to
eliminate all the O-Q correlations, but for N = 3 we have
NN -1)/2=N.

For N > 3, the procedure can only be successful if the
state exhibits a high enough degree of symmetry.

APPENDIX C: DETAILED U DIAGONALIZATION
PROCEDURE

1. Negative-determinant correlation submatrices

If we start by operating in the matrix oy, then the
explicit form of S; [S,] is

15 .
3 (b12 sin¢py — a1 cos )

26812 2 €12 COS Py — dp sing, s (C1)

ry €128In2¢ + T12 €08 2¢h + P12

where 8 = /—det[oj] = \/bcik — apdj and

€12 = —2a12b1y — 2c12d1o, (C2)
T2 = a%z - b%z + C%z - d%za (C3)
P12 = a?z + b%z + C%z + d%z- (C4)

Then we can move throughout the first block row of
y(mode) Eq. (35), and bring the correlations matrices

J

r .
(viy sing + ny; cos ¢,)
S, [S,] = 3120y,
j 1921 = _dndy 1 sin gy + vij cos ¢,

ry €128In2¢h + T12 COS2¢h + P12

(

o1 j =3,4,...,N to the desired form using the GLUs
S, j =3,4,...,N from the right as in Eq. (50) with M =
Si01;. Similar to the case above, and given that S; is now a
function of S,, we end up with matrices S; as functions of
S», S; =S; [S2]. Again, all the matrices oy; will be in the
desired form regardless of the value of S,. Explicitly, the
matrices S;[S,] are

——— (py; sing + vy; cos )
81281

8120y, Y1 singy + n1; cos ¢,

ry &y sin2¢y + ki; + &1 cos 2¢, 123

forallj =3,4,...,N,

with

Sy =—cidn (a%j + b%j) + (andiy + bipen) (ayjey + bydy) — anbi (C%j + d%_,») ,

¢1j sin2¢y + k1; + &1 cos 2¢,

(C5)
1 2 2 2 2 2 2 2 2
K]j :E I:(CIZ + dlZ) (alj + blj) -2 ((1126‘12 + b]zdlz) (aljclj + b]jd[j) + (a12 + blZ) (clj + dlj)] , (C6)
(C7)
1 2 2 2 2 2 2 2 2
Slj ZE I:(cl2 — d12) (alj + blj) + 2 (b12d12 — alzclz) (aljclj + bljdlj) + (a12 - blZ) (clj + dlj)] N (C8)
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vy = biady; — diaby;, (C9)
m; = cnby —andy;, (C10)
ny = dinay; — bipcy, (Cl11)
Vij = apcy — Cnay;. (C12)

Once this procedure is complete, we have all elements
Uj; =0,7 =2,3,...,N, so now all the edges connecting
qumode 1 with the rest of the graph can only be real. So
far, we have set N — 1 of the GLUs. For the last one we
just take any other of the remaining correlation matrices to
the desired form, Eq. (40), let us say the matrix o53:
)3 = 8$,0238; [S2]" . (C13)
It is of course enough to set the upper-left element to zero.
This has the form
dyy = 1y (Acos2¢y + Bsin2¢, + C), (C14)
and d) ; = 0 has real solutions (two) for ¢, if and only
C? < 4 + B%. Again, which solution is the correct one

will be determined by testing the solutions on the remain-
ing correlation submatrices.

2. Singular correlation submatrices

The case o0j; =0, does not give us any information
about the required GLUs S; and S, so we just move to
the next nonzero submatrix. If o; ; # 0 then, defining M =
(¢0) = crijrTight a general 2 x 2 matrix with null determi-
nant. Then we can operate with a sympletic matrix to the
left such that the upper-right component of the correlation
submatrix will be set to zero (det[o; 1] = 0 also means that
the off-diagonal terms of 0; are also zero), i.e.,

0 0
SieM = ab+cd N I (C 1 5)
N r

where the upper-left component is automatically zero too
because det{M] = ad — bc = 0. To achieve this we set the
rotation

d
Ny
b

and the squeezing parameter 7. remains to be determined
later in the algorithm. If S, was already defined in a
previous step of the algorithm, then the lower-left term in
Eq. (C15) must be also zero, otherwise it means that the
state is not GLU-equivalent to a cluster state. In the case

COS Pleft = (C16)

Sin Pleqy = (C17)

that Sygne Was not determined yet, we can use it to impose
ab + cd = 0. This is easily done by setting g such that

2 2 2 2
ay — bjk + ¢ — djk

COS 2¢hright = , (C18)
ght Ny
~2 (apby + cud;
Sin 2bgighe = (ax ]f\’; X f"), (C19)
J

2 2
Nix = \/ 4 (apeb + cixdye)” + (afk — b+ - dfk) :
(C20)

where, as before, the squeezing parameter 7o can be used
in another stage of the algorithm. It is worth pointing out
that in this case, where det[oj;] = 0, we need both ¢jeq
and ¢rign; to take oy to the standard form, in contrast to
the case det[o; ;] # 0 as we saw above. There are two dif-
ferent solutions to Eq. (C18) (if a given ¢ is a solution,
then ¢ + 7 is also a solution corresponding to a different
rotation), but which one has to be picked will be deter-
mined by applying both solutions in following steps on the
algorithm.
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